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Abstract. We give a representation formula for minimal surfaces in hyperbolic

space. It is a natural generalization of the Weierstrass-Enneper formula for minimal

surfaces in Euclidean space. Furthermore, we define the normal Gauss map and discuss

some of its properties.

Introduction. Weierstrass-Enneper formula, which explicitly describes a minimal
immersion of a surface into Euclidean space, plays an important role in minimal surface
theory.

More generally, Kenmotsu [K] gave a representation formula for surfaces of
prescribed mean curvature in Euclidean 3-space and, as a special case, for surfaces of
constant mean curvature. By virtue of the formula, if a harmonic map φ from a Riemann
surface Σ into S2 is given, then one can construct an immersion of a constant mean
curvature surface whose Gauss map is φ. It is remarkable that the harmonic map
equation for φ is the complete integrability condition for a system of partial differential
equations of first order which should be satisfied by the corresponding constant mean
curvature immersion.

On the other hand, Bryant [B] obtained an explicit representation formula for sur-
faces of constant mean curvature one (CMC-1 surfaces) in hyperbolic 3-space H3( — 1)
of sectional curvature —1: Any CMC-1 surface in H3(— 1) can be constructed from
an sl(2, C)-valued holomorphic 1-form satisfying some conditions (or equivalently a
pair of a meromorphic function and a holomorphic 1-form) on a Riemann surface. The
study of CMC-1 surfaces in H3(— 1) is making steady progress thanks to Bryant's
formula (cf. [U-Y]).

The purpose of this paper is to provide a Weierstrass type representation formula
for minimal surfaces in hyperbolic «-space. In Section 2, we consider hyperbolic w-space
to be a Lie group equipped with a left invariant metric, which is also obtained by
deforming Euclidean space under certain change of the Riemannian metric. We use it
as a model of hyperbolic space mainly for the following three reasons: (1) Since it is
Rn as a differentiable manifold, an immersion is written in terms of an «-tuple of
real-valued functions. (2) We can see that the formula obtained in this paper is a
generalization of the Weierstrass formula in the case ofRn. (3) The normal Gauss map,
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which is introduced in Section 5, can be explained in terms of the left translation. In

Sections 3 and 4, we get an equation satisfied by a minimal immersion as well as the

complete integrability condition for it. We also derive a representation formula from

it. In Sections 6 and 7, as a special case, differential geometric invariants of minimal

surfaces in hyperbolic 3-space are given explicitly in terms of Weierstrass data.

The author would like to express his gratitude to Professors Koichi Ogiue, Takao

Sasai and Yoshihiro Ohnita for helpful comments and encouragements.

2. A model of hyperbolic space.

convention on the ranges of indices:

Throughout this paper we use the following

unless otherwise stated.

On Rn, we give a Riemannian metric gc defined by

gc: = (dt)2 + e-2ct{(dx2)2+ + {dxn)2} ,

where (r, x 2 , . . . , xn) is the Cartesian coordinate for Rn and c is a real constant. Then

(/?", gc) has constant sectional curvature — c2. More precisely, if cφO, then it is isometric

to hyperbolic space, i.e., a simply connected, complete Riemannian manifold of constant

negative sectional curvature. To see this, for instance, the coordinate transformation

y = ect, xj = cxj 0 = 2,. . . ,«) gives a standard upper half-space model of hyperbolic

space. If c = 0, then it is Euclidean space.

PROPOSITION 2.1. Let Gc be a Lie group defined by

Gc: =

1

1

czGL(n;R)

Then (/?", gc) is isometric to Gc with a left invariant metric.

PROOF. For an arbitrary ά=(a, aj)eGc, we denote by Lz the left translation by

a. Then L~(t, xj) = (ί + α, ecaxj + aj) and

D

Let g denote the Lie algebra of Gc and < , > an inner product on g induced by gc

under the identification g ^ TeG. We choose an orthonormal basis {eί9..., en} for g as

follows:
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(2.1) eΛ =

0

= 2 , . . . , « ) .

Here Ejn is an n x w-matrix whose (j, «)-entry is 1 and the other entries are 0. We
compute the Lie bracket as

(2.2) [el9 e,] = cβj, [ej9 ek~\ = 0 (j, k = 2 , . . . , n).

For Xe g we denote by ad(JQ* the adjoint operator of ad(Jf), that is, it is an element
in gl(g) defined by the equation

for any Y, Zeg. Let [/ be the symmetric bilinear operator on g defined by

U(X, 7 ) = y {ad(Λ0 (10 + ad(y

LEMMA 2.2. For /Λβ Lie algebra g o/ Gc, we have

U(el9 e x ) = 0 , t / ( ) U ( )

w α« orthonormal basis given in (2.1) αwί/ δjk is Kronecker's delta.

3. Harmonic map equation for φ: Ω -> G. Let Ω be a domain in I?2 and (w, v)
the usual coordinate for Ω. Let G be a Lie group endowed with a left invariant
Riemannian metric dsl and < , > an inner product on the Lie algebra g of G induced
by ds% via the identification ΓeG^g. Recall that a smooth mapφ: Ώ-»G is said to be
harmonic if it is a critical point of the energy functional £'(φ) = (l/2)Jβ | ί/φ|2 under
every compactly supported variation of φ.

For simplicity we may assume that G is a matrix group.

LEMMA 3.1. A smooth mapφ: β->(G, ds£) is harmonic if and only if

du \ δu J dv\ dv J

a d Ur1 —
du

— a d ί ςe> x

dv

holds.

PROOF. Let φ ί 5 — ε < / < ε, be a smooth variation of ψ = φ 0

 s u c h that <pr | a β = φ \dΩ,
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where dΩ is the boundary of Ω, and put

d _x

dt t t~°

It is easy to see that the energy density e(φ) of φ is

φ
- i

du
φ

- i

dv

Thus

ί=o J o l \ Λ \ du J ( = 0 du

I ,φ

We have

Therefore

d

D

REMARK. The formula in Lemma 3.1 was used by [U] when G is equipped with

a bi-invariant metric.

Let z = u + iv and let g c be the complexification of g. We extend U complex linearly

to a bilinear form on gc. Using the complex coordinate z, the equation (3.1) can be

written as

Let θ = φ~1dφ = Adz + Adz denote the pull-back of the Maurer-Cartan form of G
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by φ. Then the equation (3.2) can be written as

(3.3) AΈ + ZZ = 2U(A,Λ).

By the Maurer-Cartan equation, we have

(3.4) AΈ-ΆZ = IA,A],

The equations (3.3) and (3.4) above are reduced to the following single equation:

(3.5) A-z=U(A,A) + ±-lA,A].

The equation (3.4) is the complete integrability condition for the differential

equation φ~ιdφ = Adz + Adz. Hence if, conversely, a map A from a simply connected

Riemann surface Σ into g c satisfying (3.5) is given, then a solution toφ~1dφ = Adz + Adz

exists and defines a harmonic map from Σ into G.

4. Minimal surface in hyperbolic space. In this section we investigate harmonic

maps and minimal immersions φ: Σ-*(Rn, gc) using the results obtained in the previous

section.

For a smooth m a p φ : Σ-•(/?", gc), we write φ(z) = (ί(z), xj(z)). The following is

obtained by straightforward calculation.

LEMMA 4.1.

LEMMA 4.2. φ is harmonic if and only if the following equations hold:

=o 0 = 2 , . . . , n).

PROOF. We have only to check that the above equations is equivalent to (3.3).

D

By Lemma 4.2 and the maximum principle for subharmonic functions, if

φ: Σ^>(Rn, gc) is a harmonic map from a compact Riemann surface then φ must be a

constant map. Hence we assume that Σ is noncompact from now on.

Put ξ = tzdz and ωj = e~ctxJ

zdz. By Lemma 4.2, these (l,0)-forms satisfy the

equations

(4.1) W-cΣ
\ dωj = cωj

PROPOSITION 4.3. Let Σ be a simply connected Riemann surface. If an n-tuple of

(1, 0)-forms (ξ, ωj) on Σ satisfy (4.1), then
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= (l P Reξ, 2 Γ e«<z

\ J Zn J Zn' Zn %l Zn

gives a harmonic map from Σ into (Rn, gc). Furthermore if the conformality condition

( 4 2 )

w satisfied, then the above map defines a minimal surface in (Rn, gc). Conversely, any

harmonic map from Σ into (Rn, gc) or any minimal surface in (Rn, gc) can be represented

in this way.

PROOF. We have only to show that the equation (4.1) is equivalent to (3.5) and

recall that minimal immersions are equivalent to conformal harmonic maps. •

REMARK. In Proposition 4.3, if we assume only the weak-conformality condition

instead of (4.2), i.e., ξ ξ + Σ"=2 ω i ' ΰ>j can admit zero points, then the map obtained

defines a branched minimal immersion in the sense of Gulliver-Osserman-Roydon (cf.

Proposition 2.4 and Examples 2.5 of [G-O-R]).

PROPOSITION 4.4. Assume that cφO. If φ: Σ-+(Rn

9gc) is a conformal harmonic

map, i.e., a minimal surface, then there exist no points where both ξ and dξ vanish.

PROOF. Assume that such a point p exists. By the equation δξ = cΣn

Jss2ω
JΛώJ,

we have Σ " = 2

ω 7 Λ c ^ Ί = ^ Hence ωj\ = 0 holds for any j = 2,...,n. Therefore

(ξ ξ + Σ ω / ώj) | p = 0, a contradiction to the conformality. •

LEMMA 4.5. IfcφO, then the equations (4.1) and (4.2) are equivalent to

(ξ'ξ^Σnj=2ωJ'ωJ = 0,

(4.3) j There does not exist any point peΣ such that ξ \p = 0 and δξ \p — 0,

I dωj = cώjΛξ(j=2, ...,ri).

PROOF. Put ξ=fdz and ωj=hjdz for some smooth functions /, hj. From the first

condition of (4.3), we have / 2 + Σ"= 2 (hj)2 = 0. Differentiating this equations with respect

to z, we have jQ'i + Σ J = 2 A /Aj( = O. Using this and the third condition of (4.3), we have

fδξ=ffΈdzΛdz= - Σ hjhΐdzΛdz= - £ hjdωj

j=2 7=2

Thus

(4.4)

= — Σ hjcωJ Λξ = c Σ hjfdzΛωj = cf Σ
7=2 7=2 7=2

7 = 2
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holds outside the zeros of /. Since the set of zeros of / has no interior points because
of the second condition, (4.4) holds on Σ. Finally, we have only to show that

ζ'ζ + Σ%2ωimώJ:*0 I f ^ L ^ 0 ' t h e n c l e a r l v (£ *ξ + Σnj=2ωJ'ώJ)\p*0' Assume that
ξ\p = 0. Then dξΦO because of the second condition of (4.3), so_(X"=2ω

JΛώJ')|pτέ0
by (4.4). Hence at least one of the ωj |p's is non-zero. Therefore (ξ ξ + £ " = 2 ω

j ώj) \p φ 0
holds. •

Thus we have the following:

THEOREM 4.6. Assume that cφO. Let Σ be a simply connected Riemann surface.
If an n-tuple of (1, 0)-forms (ξ, ωj) on Σ satisfies (4.3), then

ectiz)Reωj]
Jz0 J z,

gives a minimal surface in (/?", gc). Conversely, any minimal surface in (Rn, gc) can be
represented in this way.

5. Gaussian curvature and normal Gauss map. Let φ: Σ-+(Rn, gc) be a minimal
surface with data (ξ, ωj). The induced metric ds\ is 2(ξ ξ + Σ%2 ω < / ' ^ J ) Using a local
coordinate z, we write ξ=fdz and ωj = hjdz. Then ds£ = 2(\ f \2 + Σn

j=2\hj\2)dzdz and
the conditions (4.1) and (4.2) are

(5.1) h=-c

If we put A = 2 ( | / | 2 + £ " |λ J |2), then the Gaussian curvature AT is given by

tf=-i-Δlogλ=-^A l o g A {
21 6 A} I 2

In terms of / and ΛJ, AT is computed to be

Let P(QC) be a projective space of complex lines in gc. Z = [Z t . . . Zπ] denotes
a complex line spanned by X"_1Z ί te ί t, where {ê } is the orthonormal basis chosen in
(2.1). Define a mapΦ: Σ-+P(QC) by

We call Φ the normal Gauss map of φ. In the case c = 0, Φ is exactly the Gauss map.
In the following, we see that Φ in case cφO is a geometrically natural generalization
of the Gauss map.

In fact, Φ has values in the hyperquadric β n - 2 = {Ze=P(gc); Σα=i( z«) 2 = 0} I ι i s

known that the hyperquadric Qn-2 is diffeomorphic to the Grassmannian manifold
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Gr2(g) of oriented 2-planes in g. Under this identification β π - 2 = Grr2(g), [<K/0] is

identified with φ~ι{φ^{dldυ\^)Aφ~1(φήc(d/du\p))eGr2(gi). So Φ is essentially equal

to the mapΦ: £->Gr2(g) so defined that Φ assigns a point pel to an oriented 2-plane

Lφ(P) -1 *(<P* TpΣ) i ng .

It should be remarked that the normal Gauss map is different from the Gauss map

due to Obata [O] or the hyperbolic Gauss map [E].

6. The 3-dimensional case. We consider the case « = 3, i.e., minimal surfaces in

(R3, gc). We introduce functions F, G and derive formulas similar to those in the case R3:

F=h2-ih3

9 G= f

h2-ih3 '

Strictly speaking, G is not a function but a smooth map into the Riemann sphere. In

fact, G is the composite of Φ, the diffeomorphism β χ - > 5 2 and the stereographic

projection 5 2 ->Cu {oo}. So we also call G the normal Gauss map.

THEOREM 6.1. Let φbea minimal immersion from a Riemann surface Σ into (R 3 , gc).

If the normal Gauss map G of φ is constant, then \ G \ = 1 and φ is totally geodesic.

PROOF. If G = 0, then / = 0 . Differentiating / with respect to z, we have fΈ = 0.

Thus A2 = Λ3 = 0 by (5.1), a contradiction to the assumption that φ is an immersion.

Hence G cannot be identically 0. If G=co, then h2 — ih3 = 0. So we have / = 0 by

conformality. By the argument similar to the above, G cannot be identically oo.

Assume that G = k were k is constant ( # 0 , oo), that is,

(6.1) f=k(h2-ih3).

Differentiating / with respect to z, we have fz = k(h^ — ih^). By (5.1),

(6.2) -

(6.1), (6.2) and the third equation of (5.1) yield

(6.3) ( Λ 2 - / 3 2 2 3 2

F r o m the former part of this proof, h2 — ίh3 cannot be identically zero on any open

subset. Hence, by continuity and (6.3), (\h2 | 2 + |A 3 | 2 - | A2 + //*3 |2) = 0, i.e.,

(6.4) h2h3 = h2h3.

Conformality and (6.4) yield \f\2 = \h2\2 + \h3\2. On the other hand, | / | 2 =

\k\2(\h2\2 + \h3\2) holds by (6.1). Therefore | * | = 1.

We have only to show that φ is totally geodesic. Differentiating the equation (6.4)

and using (5.1), we have

(6.5) h2h3 = h2h3.
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It follows from (6.4) and (6.5) that (h2, h3) = μ(hz

2, hi) for some function μ. We also
have / = μfz by (6.1), so (/, h2, h3) = μ(fz9 h

2, hi). This means that the Gaussian curvature
Kis identically equal to — c2 by the formula in Section 5. Therefore φ is totally geodesic.

D

Assume that G is not constant. By the conformality (f)2 + (h 2)2 + (h 3 ) 2 = 0, we have

f=FG, h2 =—F(l-G2), Λ 3 =-F(l+G 2 ) .
J 2 2

The condition (4.1) is

(6.6) Fz=-c\F\2\G\2G, G i = — ( I G Γ - 1 ) .

PROPOSITION 6.2. The normal Gauss map G of a minimal immersion φ: Σ"-»(il3, gc)
satisfies

„ . 2 | G | 2 G _ Λ

1 - I G I 4 z ~z '
(6.7)

(6.8) G G i g H I ) (i = 0,2).
l - I G Ί 4

PROOF. By straightforward computation, we see that if (F, G) is a solution to
(6.6), then G satisfies (6.7). As for (6.8),

i - | G | 4 2 1 - ι σ r 2

hence they are smooth. Π

LEMMA 6.3. The equation (6.7) is the harmonic map equation for a map

G:Σ->(Cu{oo}, \\-\w\*\~ιdwdw).

Strictly speaking, \ 1 — | w\*\~1dwdw is not a Riemannian metric on Cu{oo}, because it
diverges on \ w \ = 1, i.e., the equator of the Riemann sphere.

We omit the proof of Lemma 6.3 for it is straightforward. From Lemma 6.3, we
get:

PROPOSITION 6.4. The normal Gauss map of a minimal surface in (R3,gc) is a
harmonic map into the space (Cu {oo}, 11 — | w|4\~ιdwdw).

The induced metric ds\ and the (2, 0)-part of the complexification of the second
fundamental form (IIC) 2 ' 0, which is called the Hopf differential, are computed to be

dsl = I F|2(l +1G \2)2dzdz . (II C ) 2 ' 0 = FGzdzdz .
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In particular, G cannot be holomorphic. It is verified that the Hopf differential is

holomorphic. The Gaussian curvature K is given by

In particular, φ is totally geodesic if G is anti-holomorphic.

Conversely, the following lemma holds.

LEMMA 6.5. Let G be a solution to (6.7) satisfying the condition (6.8), which is not

a holomorphic map. Then there exists a function F which satisfies (6.6) together with G.

PROOF. Put F = 2 c " 1 G z / ( | G | 4 - 1 ) . Then

F_2 Gz-z(\G\*-\)-Gz(2GGΈG2

5 ( | G | 4 - 1 ) 2

Making use of (6.2), we have FΈ=-c\F\2\G\2G. •

Hence we have:

THEOREM 6.6. Let Σ be a simply-connected Riemann surface and G: Z->Cu{oo}

a solution to (6.7) satisfying the condition (6.8), which is not a holomorphic map. Then

there exists a branched minimal immersion from Σ into hyperbolic 3-space whose normal

Gauss map is G.

7. Examples. For simplicity, we deal only with the case c = 1.

EXAMPLE 7.1. Let Σ = {z = u + iveC; w>0} and

dz Ί idz ., Λ

ξ= , ω 2 = , ω 3 = 0 .
z + z z + z

Then (ξ, ω2, ω3) satisfies (4.3) and the surface obtained is totally geodesic:

-Γ! Z + Z

. -2dυ

= log(2«),

= -2v,
2M

x3(z)=constant.

EXAMPLE 7.2. Let ρ(u) be a solution to the ordinary differential equation

— = (e "-a e ") ,

where a is a real constant.
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On an appropriate domain Σ, if we put p = p(w) = p((z + z)/2) and

?~P — HP?

then G satisfies (6.2). By Lemma 6.1, Fcan be computed as F=(e~p-aep)/2.
Hence,

£ = — {e-2p-a2e2p)ll2dz, ω2= — aepdz, ω3=-—e'pdz
2 2 2

satisfy (4.3) and the minimal immersion obtained is given by

t(z) = p(u), x2(z) = ψ 2 p { u ) d u , x\z) = ϋ .

This minimal surface is known to be the rotational minimal surface of parabolic type
given by do Carmo and Dajczer [D-D].

The induced metric, the Hopf differential and the Gaussian curvature are com-
puted to be

dsi = e~2pdzdz, (Πc)2>°=—dzdz9 K=-(\+a2e2p).
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