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Abstract. Spacelike graphs of constant mean curvature over compact Riemannian

manifolds in Lorentzian manifolds with constant sectional curvature are studied. The

corresponding Calabi-Bernstein type problems are stated. In the case of nonpositive

sectional curvature all their solutions are obtained, and for positive sectional curvature

well-known results are extended.

1. Introduction. The solutions to the differential equation

(1) nH{f\u)-g(Vu, Vuψ2 = (f2(u)-g(Vu, Vu))(nf'(u) + - i - An)
\ /(w) /

/(w)

with

^(Vw,Vw)</2(W),

on an ^-dimensional Riemannian manifold (F, #), represent the spacelike graphs of

constant mean curvature (CMC) H in a Generalized Robertson-Walker (GRW) space

with fiber F, base I^R and warping function / (in our definition in Section 2, the fiber

is not assumed to be of constant sectional curvature).

This equation represents a general setup to formulate Calabi-Bernstein type

problems, and GRW spaces become the natural ambient Lorentzian manifolds for

these problems. In fact, two relevant special cases are the following: First, F is the

^-dimensional Euclidean space of curvature C=0, I=R and / = 1 . This corresponds to

CMC spacelike graphs in the Minkowski space Ln+1. In this case, Calabi [5] (for «<4)
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and Cheng and Yau [6] (for arbitrary ή) proved that the only (entire) solutions to (1)
for H=0 are affine functions, whereas for the case HΦQ many solutions have been
found (see, for instance, [11] and [12]). Secondly, Fis the round w-sphere with curvature
C= 1, I=R and /=cosh. This corresponds to CMC spacelike graphs in the de Sitter
space ST+1, and it has been studied by Montiel in [9], where the (entire) solutions to
(1) were determined.

In this paper we are interested in studying the solutions to this CMC differential
equation and its relation with the associated geometric problem of CMC spacelike
hypersurfaces in GRW spaces. Roughly, our main aim is to find all the solutions to
(1) when the ambient space has non-positive constant sectional curvature. Moreover,
in the case of positive constant sectional curvature we extend MontiePs result
(Proposition 1).

On the other hand, the equation (1) has been first considered by Choquet-Bruhat
[7] for H=0 and by the authors [2] for arbitrary H, in both cases under an addi-
tional hypothesis on the ambient space which is natural from the point of view of the
general relativity: the so called timelike convergence condition. Now, we will consider
this problem under more restricted situations related to classical Calabi-Bernstein
assumptions and so, we will assume the ambient Lorentzian manifold to be at least
Einstein.

As the first approach to the problem, we show that every compact spacelike
hypersurface of CMC in an Einstein GRW space must be totally umbilical (Proposition
1). This result can be seen as a positive answer to Goddard's conjecture [8] in the case
of Einstein GRW spaces. On the other hand, it is not difficult to see that the spacelike
slices of a GRW space (those with constant universal time) are totally umbilical spacelike
hypersurfaces of CMC. In this respect, we are able to characterize the spacelike slices
as the only compact spacelike hypersurfaces in an Einstein GRW space with CMC and
non-positive definite Ricci tensor (Theorem 2 and Corollary 3). This allows us to give
a very simple uniqueness result for compact spacelike hypersurfaces of CMC in a
classical Robertson-Walker spacetime (Corollaries 4 and 5), as well as the corresponding
uniqueness results for the associated Calabi-Bernstein type problem described by the
CMC differential equation (1) (Theorems 6 and 7). These results fulfill our main aims
in this paper.

Some remarks and applications of our main results are given in Section 4. In
particular we see that the compactness of the hypersurface can be often derived just by
imposing completeness (Remarks 2 and 3). We also discuss how our uniqueness results
can be used to obtain some information on the equation (1) for certain non-compact
complete Riemannian manifolds (Remark 4).

2. Preliminaries. Let (F, g) be an ^-dimensional, n > 2, (connected) Riemannian
manifold and let I^R be an open interval in R endowed with the metric —dt2.
Throughout this paper we will denote by (M, < , » the («+l)-dimensional product
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manifold / x F with the Lorentzian metric

(2) < , y = it*(—dt2) + f2(πI)π*(g),

where / > 0 is a smooth function on /, and πι and πF denote the projections onto /

and F, respectively. Namely, (M, < , » is a Lorentzian warped product with base

(/, —dt\ fiber (F, g) and warping function /. We will refer to M as a Generalized

Robertson-Walker (GRW) space.

Let x: M -> M be a connected, immersed spacelike hypersurface in M. As usual,

we will denote by < , > both the Lorentzian metric on M given by (2) and the Riemannian

metric induced on M via the corresponding spacelike immersion x. Set dt = d/dte&(M),

which is a unit timelike vector field globally defined on M and determines a

time-orientation on M. Thus the time-orientability of M allows us to define Ne%\M)

as the globally defined unit timelike vector field normal to M whose time-orientation

coincides with that of dt.

Following the usual terminology, a GRW space is said to be spatially closed when

the fiber F is compact. The existence of compact spacelike hypersurfaces in a GRW

space implies that the fiber must be compact. In fact, if M is such a hypersurface, then

its projection on the fiber Fis a covering map and, in particular, Fis compact. Therefore,

the GRW space which must be considered are necessarily spatially closed (see [2] for

details).

Finally, it is not difficult to see that (M, < , » is Einstein with Ric = c< , >, c being

a real constant, if and only if 1) (F, g) has constant Ricci curvature c\ and 2) / satisfies

the differential equations

(3) -— = — and = -
f n n j -

(see, for example, [4, Corollary 9.107]). Moreover, M has constant sectional curvature

C if and only if F has constant sectional curvature C (that is, M is a classical

Robertson-Walker (RW) spacetime) and / satisfies (3) with c = (n— \)C and c = nC.

In Table, the positive solutions to (3) are collected (in each case, the interval of

definition / of / is the maximal one where / is positive).

3. Main results. Let us consider on M the timelike vector field ξ e 9£(M) given

by ξ = f{nI)dt and put along x

(4) ξ = ξτ-(ξ,N}N9

where ξτe9C(M) is tangent to M. If we denote by V the Levi-Civita connection on M

of the Lorentzian metric < , >, it follows that

(5) V ξ = f'(π )Z,

for all vector field Z on M. Let us denote by V the Levi-Civita connection on M. By
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TABLE.

1

2

3

4

5

6

c > 0

c > 0

c > 0

c = 0

. . .

c<0

c>0

c = 0

c<0

c = 0

c<0

c<0

fit)--

m-

f(t) = a

en

Aac(n — \)

f(t) = a exp(εbt), a > 0 ,

en
- a Qxp(bt) H ex]

{cosφt) + a2 sin(bt), a\ H

)( — bt), a > 0 , 6

β = ± l , ^ = v^

p(-^), «^0, b

a>0

~)t + a, ε=±\

\-a2=cn/c(n—l), I

-yfcjn

Tn

-y/δ/n

taking covariant derivative in (4) and using the Gauss and Weingarten formulas for

the spacelike hypersurface, it is not difficult to get from (5) that

(6) Vxξ
τ = f'(π)X-(ξ,N)AX,

for all vector field X tangent to M, where π = π/o;c, and A stands for the Weingarten

endomorphism associated to N. Therefore, directly from (6) we have the equation,

(7) div(£ Γ) = nf\π) + nH(ξ, N} ,

where div denotes the divergence on M and H stands for the mean curvature function

corresponding to N (note that we are taking H= —tr(A)/n).

From a reasoning as above and using now the Codazzi equation we have

(8) div(Aξτ)= -n<yH, O~Ric(£Γ, N)-nf(π)H-(ξ, N}tτ(A2),

where V denotes the gradient on M (see [3] for details). Now, if M is assumed to be

Einstein and M is compact, then (7) and (8) allow us to obtain the integral formula

, N}(tτ(A2)-nH2))dV=0 .((n-lKVH,
Ϊ

Note that, from the Schwarz inequality, the function U=tτ(A2) — nH2 is non-negative

everywhere and U=0 if and only if x is a totally umbilical immersion. Thus, taking

into account the fact that <£, N}< — /(π)<0 everywhere, we have:

PROPOSITION 1. Every compact spacelike hypersurface of constant mean curvature

in a spatially closed Einstein GRW space must be totally umbilical.
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In orther to go further, observe that ξ τ = — /(π)Vπ, which implies that π is constant

if and only if ξ τ = 0, and also since M is compact there exists a point poeM such that

ζτ(po) = 0. Therefore, π is constant if and only if ξτ is a parallel vector field on M.

Moreover, when x is totally umbilical it follows from (6) that

and so ξτ is a conformal Killing vector field on M. Using now the fact that every

conformal Killing vector field on a compact Riemannian manifold with non-positive

definite Ricci tensor must be parallel [13], we obtain from Proposition 1 the following

result.

THEOREM 2. Let M be a spatially closed Einstein GRW space. Then, every compact

spacelike hyper surface in M with constant mean curvature and non-positive definite Ricci

tensor must be a spacelike slice.

Let us recall that each spacelike slice F(to) = {to}xF is a totally umbilical

hypersurface in M with constant mean curvature H=f'(to)/f(to), and it is homothetic

to (F, g) with scale factor \/f{t0) (see [3] for details). Therefore, Theorem 2 implies that

in the case 1 of Table

there exists no compact spacelike hypersurface in M with constant mean

curvature and non-positive definite Ricci tensor.

On the other hand, in the remaining cases in Table, Theorem 2 yields the following

characterization of spacelike slices.

COROLLARY 3. Spacelike slices are the only compact spacelike hyper surfaces in M

with constant mean curvature and non-positive definite Ricci tensor.

On the other hand, writing Ric for the Ricci tensor of M, it follows from the Gauss

equation that

(9) RicpΓ, X) = c-K(X ΛN)-tr{A)(AX, X} + {AX, AX}

for every unit vector X tangent to M, where K(XΛ N) stands for the sectional curvature

in M of the timelike plane XΛN. In order to compute K(XΛN), observe that

r = cosh flJT+sinh 07V,

where 0 e R is given by

form an orthonormal basis of XΛN which satisfies <F, d(> = 0. Writing now

T= — < Γ, δt}dt + TF, where the superscript F denotes the projection on the fiber, and
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using the expression for the curvature tensor R of M in terms of its warping function

and the curvature of the fiber [10, Chapter 7], it is not difficult to obtain

, τ)τ, Y> = <T, dty\R(γ, dt)dt, r> + <£(r, τF)τF, ry.

Moreover,

and

(fΫ 1

<*(r, τF)τF, Y> = <TF, τFy -^ f-+yr

where RF stands for the curvature tensor of the fiber. Using now (3), we conclude that

(10) K(XΛN) = K(YΛ T) = --(g(RF(Y, TF)TF, Y) °--g{TF, TF)) .

n \ n-\ )

Now, if M is a compact spacelike hypersurface in M with constant mean curvature,

we know from Proposition 1 that it is totally umbilical, and (9) and (10) yield
(11) Ric(X,X) = (n-l)(--H2) + g(RF(Y, TF)TF, Y) °--g{TF, TF),

\n ) n-\

for every unit vector X tangent to M. This expression is specially meaningful when

(F, g) has constant sectional curvature C, that is, when M is a classical RW spacetime.

In that case C=cj(n— 1) and Corollary 3 can be stated, using (11), as follows:

COROLLARY 4. Let M be a spatially closed classical RW spacetime with constant

sectional curvature C. Then, the only compact spacelike hypersurfaces in M with constant

mean curvature H such that H2 > C are the spacelike slices.

The following special case of Corollary 4 yields a full geometric answer to our

main question in this paper.

COROLLARY 5. Let M be a spatially closed classical RW spacetime with non-

positive constant sectional curvature. Then, the only compact spacelike hypersurfaces in

M with constant mean curvature are the spacelike slices.

Note that the CMC spacelike hypersurfaces in de Sitter space S\+1 show that

Corollary 5 cannot be extended to RW spaces with positive constant curvature.

Finally, taking into account the constant mean curvature differential equation (1)

for spacelike graphs in M we can give the following uniqueness results.

THEOREM 6. Let (F, g) be a flat compact Riemannian manifold. Let H be a real

constant and let f: i?->(0, oo) be one of the functions



SPACELIKE HYPERSURFACES OF CONSTANT MEAN CURVATURE 343

f(t) = a, a>0,

and

f(t) = aebt, a>O,bφO with b2<H2 .

The only solutions u: F-* R to the constant mean curvature differential equation on (F, g)

nH{f\u) - g(Vu, Vuψ2 = (f2(u) - g(Vu, Vu))(nf\u) + J - Au)
\ /(«) /

+

with

g(Vu,VU)<f2(u),

are the constant functions.

THEOREM 7. Let (F, g) be a hyperbolic compact Riemannian manifold with sectional

curvature — 1. Let H be a real constant and let f: I<^R-+ (0, oo) be one of the functions

f(t) = aebt ί-T-έ?"*, aΦ0,b>0 with b2<H2 ,
4ab2

and

fit) = ci\ cos bt + a2 sin bt, 6 > 0 , a\-\-a\ — —y .

only solutions u: F-> R to the constant mean curvature differential equation on (F, g)

nH(f2(u)-g(Vu, (u) +
f{u)

V 2 ( V V )

/Λ̂  constant functions.

4. Some remarks and applications.

REMARK 1. It should be noted that, even without any assumption on the curvature
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of M or F, if the warping function of a GRW space is constant then the only compact
spacelike hyper surf aces in M with signed mean curvature function H<0 or H>0 are
the spacelike slices, which are totally geodesic. This follows from (7), by observing that
in that case div(ξΓ) is, up to a non-zero constant, the Laplacian of π. As a consequence,
on every compact Riemannian manifold (F, g) and for every signed function H on F,
the only solutions to

(1 - g(Vu, Vw))Δw + V2u(V«, Vw) > 0 or < 0,

with

are the constant functions (cf. [2]).

REMARK 2. Recall that if M is a compact spacelike hypersurface in M, then its
projection X=πFoχ on the fiber is a covering map. When M is assumed to be just
complete, this result still holds if /(π7) is bounded on M. Thus if the fiber is also simply
connected, then M is compact (see [2] for details). In particular, in the cases 4 and 6
of Table, every complete spacelike hypersurface of constant mean curvature is totally

umbilical, when the fiber is simply connected.

We point out that there are simply connected compact Riemannian manifolds
which can be taken as fibers in these cases. For example, let F be a complex hypersurface
of degree dm an m-dimensional complex projective space, m>2 and d>m+ 1, (Fmust
be simply connected by the Lefschetz hyperplane theorem). If d=m+\ then the first
Chern class of F is zero and, from a well known result by Yau (see, for instance, [14,
Theorems 1 and 2]), F admits a non-flat Riemannian metric which is Ricci flat; in
particular, when w = 3, Mis a A3 surface. When d>m+\, a similar result by Yau [14,
Theorems 1 and 3] says that there is a negatively Ricci curved Einstein metric on F.

REMARK 3. It follows from the Gauss equation (9) that

n2H2

— K(XΛN),

for every unit vector X tangent to M. So, if there exists an upper bound c1 <c for the
sectional curvature of timelike planes, we know from Bonnet-Myers' theorem that every
complete spacelike hypersurface of constant mean curvature H satisfying

H2<-
n2

is compact and Proposition 1 implies that it is totally umbilical. For instance, sup-
pose that M has constant sectional curvature C, that is, F has also constant sectional
curvature C. If C>0 (the first three cases in Table) then c=nC and we can take c1 = C.
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Therefore, every complete spacelike hypersurface of constant mean curvature H
such that H2<4(n—\)C/n2 is totally umbilical (compare with the Theorem in [1]).

REMARK 4. It is worth pointing out that Theorems 6 and 7 yield also some
consequences about solutions to the CMC differential equation (1) when the Riemannian
manifold (F, g) is either the Euclidean space Rn or the hyperbolic space Hn. In fact, if
u: Rn-*R (resp. u: Hn -> R) is a solution to (1) with / as in Theorem 6 (resp. Theorem
7), and u is invariant under a discrete subgroup Γ of rigid motions of Rn (resp. isometries
of Hn) with compact quotient Rn/Γ (resp. Hn/Γ), then w must be constant.
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