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POINTWISE CONVERGENCE OF FEJER TYPE MEANS
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Abstract. We study the almost everywhere convergence of polyhedral Fejer type
means. We prove positive results for the n-dimensional Euclidean spaces and tori. We
then show that these positive results cannot be extended to the whole setting of compact
Lie groups.

1. Introduction. A fundamental result of A. N. Kolmogorov (proved in two
steps, when he was only nineteen and twenty-two years old!) exhibits a function fe
LY(T) whose Fourier series diverges everywhere (cf. [18, ch. 8]). This means that if
Dy(t)=YY__,e*™™ is the Dirichlet kernel, then the partial sum Sy f(£)=(f * Dy)(t)=
YN _yf(k)e*™* diverges for all + when N—+oco. To get positive results one can
substitute the partial sum with some suitable means. The Fejer kernel

R Sk e ] (sin(n(N+1)t))2
KN(t)——NHD;OD.,(t)—k:Z_N(l —N+l>e i S

provides one of the most important examples. In fact, it is well known (cf. [18, ch. 3])
that if /e LY(T), then (Ky* f)(£)—f(¢) for almost every te T.

If we now look at the above chain of identities, we see that the Fejer kernel may
be seen either as the arithmetric mean of the Dirichlet kernel or, for even N, as (1/(N+1)
times) the square of a Dirichlet kernel. This gives rise to two reasonable definitions of

the Fejer kernel in several variables. We have to start by defining the Dirichlet kernel
on T".

Dy()=DEn= ) e*™mt  teT", meZ"
meNB
where B is a convex body containing the origin in its interior and NB is its dilation.
As the first two examples one takes B to be the unit cube or the unit ball. An n-
dimensional polyhedron and a convex body whose smooth boundary satisfies good
curvature properties are the most familiar generalizations of the cube and the ball
respectively. In this paper we are interested in the polyhedral case.
Let P be a compact n-dimensional convex polyhedron in R" containing the origin
in its interior. Following the previous remarks we can define (cf. [16]) the n-dimensional
polyhedral Fejer kernel either as
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1
Kon()=K3n(t) = W | DR |

or as
P 1 X P
Hy()=Hy(t)=—— ), D, (9.
W0 =HiO= 1~ ¥ DI

We have used different symbols since Hy and Ky coincide only in the 1-dimensional
case. We shall call Hy a Fejer type kernel. Observe that the graph of Hy(m) is a pyramid
restricted to the integral points inside NP and that HY may be seen as a polyhedral
analogue of the Bochner-Riesz kernel of index one.

Both kernels K,y and Hy have good summability properties. If fe L(T"), then
| Kon* f=f11 >0 and ||[Hy* f—f]|,—0 as N— + 0.

The above result for K,y is obvious since K,y is positive. The result for Hy is
contained in [9] (see below for a short proof).

For n>2 the study of the pointwise convergence is a different problem. We recall
that it is not easy to prove that (Kiy* f)()=f(?) a.e. for any f e L*(T"), even if P is
the unit cube (i.e. even if we can separate the variables). See the last chapter in [18].

The pointwise convergence of polyhedral Fejer type means has not yet been inves-
tigated and it is the main object of this paper.

We now introduce the definition of a Fejer type kernel on R" and relate it to Hy. Let

1 1
Hin= [ 1op(E)dve 2™ e dE =j f e?™idEdy,  teR"
0 JoP

R"JO
then

N
M HN(’)z'l— Z D;= > ﬁ1/(N+1)(t+m)a< teT",
N+1 j=0 meZn
where x,p is the characteristic function of the dilated set vP, H,(f)=¢ "H(t/e) and the
last identity depends on the Poisson summation formula.

In the following section we shall prove that (H,* f)(f)—f () a.e. for any f e L'(R"),
and that (Hy* f)(©)=f(¢) a.e. for any feL'(T"). Our argument relies on pointwise
estimates for H. It turns out that the decay of H at infinity depends on the direction
chosen, so that A does not admit suitable radial bounds and the maximal operator
sup,»o| H,* f(¢)| cannot be controlled via the Hardy-Littlewood maximal function. This
difficulty can be overcomed by appealing to an argument of H. S. Shapiro (see Theorem
3 below).

In the last part of this paper we shall prove that these results cannot be extended
to all compact Lie groups. We shall consider a compact simple simply connected Lie
group G and we shall define polyhedral Dirichlet kernels Dy and the associated Fejer
type kernels Hy. When the rank of G is greater than one, we shall prove that there
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exists a central function f e L'(G) such that (Hy* f)(x) diverges a.e. As a corollary of
the proof we shall produce, for any p <n/m (here n is the dimension of G and m is the
number of positive roots), a central function g€ LP(G) such that (Dy* g)(x) diverges
a.e. This almost complements the known fact that (Dy* g)(x)—g(x) a.e. whenever g is
a central function in L?(G), for p>n/m (see [12]). The proof of our result is essentially
a combination of arguments in [8], [4], [15] and [16] and we shall only sketch it. We
refer the interested reader to [12] and [6] for the related problem concerning the L?
convergence.

ACKNOWLEDGEMENTS. The authors wish to thank L. Colzani, P. Sjégren and A.
Solianik for some helpful comments and suggestions.

2. Fejer type kernels on R" and 7". Our main results are the following.

THEOREM 1. Let H(t)=¢ "H(t/¢). Then for any feL'(R"), (ﬁs*f)(t)—>f(t) a.e.
as ¢—0.

THEOREM 2. Let T" be the n-dimensional torus, let P be a polyhedron with vertices
in Z" and let

Hy(n) = —~——1 Zo

be the Fejer type kernel defined on T". Then, for any feL*(T"), Hy* f(£)—=f(?) a.e. on
T" as N—oo.

We need the following result from [10] (see also [14] and [11] for related problems).

THEOREM 3 (Shapiro). Let k be a measurable function satisfying the following
conditions: there exists a sequence {A;} of centrally symmetric convex bodies about t=0
such that, for any te R",

k()| <
lk()| < Zoc AJ|XA’()
with
® 1
>0, a;>0, Y oz,-log(—)ﬁc
j=1 a;
(| 4;| is the Lebesgue measured of A;). Then, for any f € LY(R"), (ka*f)(t)—>l€(0)f(t) a.e.

ProOF OF THEOREM 1. Let ¢ be a regular point in dvP with outward unit normal
(t). Then the divergence theorem implies

1
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where dt’ denotes the (n—1)-dimensional measure. Let P’ be a face of P. We suppose
it is contained in (1, t,, ..., t,) and therefore, since w(¢) is constant on P’, it is enough

to estimate
) ) 1
f e2intigy f emitness - rntgy gy 1>$min<|—é—llir(f)l, 1)
vP’

1<
145

where T is the pyramid having P’ as a face and the origin as the opposite vertex. We

split 7 into simplices. Let S be one of them with vertices ay, ..., a,. The identity

_n![S|
#(0)= (2mi)" JZO l_[k;gjé.(ak_aj)

has been pointed out in [9]. We treat one of the above terms (say j=0) and we observe
that the applicability of Shapiro’s theorem is not affected by a linear change of variables.
Therefore we can assume a, —a;=e, and we are reduced to bounding

1
G(&)=mi ,1].
© m"’(mnél-éz-----énr )

2) m1n<

e—-Znit,"a,-

Let
Ey=EP={(cR":|&||& &y o &, |<2M .
Then

G5 3. GO 1O+ 1) <2 L 2715,

We claim that there exist a family {Q;} of centrally symmetric n-dimensional intervals
about £=0 and a sequence {a;} satisfying

3 (&)<
(3) XEo(8) < Z a; IQJIXQ,(C)

& 1
o;>0, o;-0, Z aﬂog(—)Sc.
j=1 OCJ-
Assuming this to be true we observe that E,=2""*1DE, so that

15 (8) < Z ¥ —— IQ,I ——Xr;u(&)

where R;,=2""*1Q;. Since |R;,|=2"/"*1|Q;| we obtain

1

GE)<2Y 27 2Y a2 Mt .
©) Z Z ®; IQJIXR,,.(f) Z R, IXR,,h(ﬁ)

with
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Za.z-"ﬂ"*”1og<2h/<"+“i>< + 00

i o%;

as a consequence of the assumptions on {a;}. We shall prove (3) in the following
proposition. O

REMARK. Observe that (2), the inequality
J | 1p(po) [do <c(2+p)"log"~'(2+p)
Tn-1

(proved in [2]) and an integration in polar coordinates yield a simple proof of the
bound | H|,: < oo already proved in [9].

PROPOSITION 4. For every dimension n there exist a family {Q™} of centrally
symmetric n-dimensional intervals about £ =0 and a sequence {o{"} satisfying

x 1
(n)
ngu(ﬁ) < j;o H | Q}") | Xng(f)

=1

& 1
(n) (
ocjn >0 ’ aj(.”)—)o . Z aj") 10g<w>< +00.
J

ProoF. The proof is by induction on the dimension n. If n=1 then E{" is a
symmetric interval and the above is trivial. We assume the case n— 1 and we shall prove
the case n. By symmetry we can study

E$)={€GE8n)O<éIS€k,k>l}
in place of E{". Let (€ EP. Then 1>|&(E &, -+ &,2E1%! and &, <1. Assuming

&, e[27% 2717, we have

VI A < g eyt
:
1

and therefore (&,, ..., &,)€2¥"Ey~ 1), Hence we have

Xee() < Z X2-x,2-%+ l](él)%:k/nsg'- (€25 -5 &)

X[ 2-k+1 2~ k+l](él)X2k/nE8n 1)(62,...,6)

= + R‘
"M8

and using the induction hypothesis

1

|Q n— l)l XZ"/"Q(" ‘)(62, ) én) .

XE(n)(é)< Z Af—2-k+1,2- k+1](é ) Zl OC(” D
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We consider the centrally symmetric sets Qi =[—2"%*1,27*¥*1]x 2*"Q{"~ V). Then
QM |=22"¥" Q"= V| and

—im2—km 1
2p@(E) <Y o~ V22 M o (€) -
ko 1O~
Since
1

Zalgn—l)z—k/n+210g<2k/n+2 ("_1))<+OO

k,j aj
the proposition and the theorem are proved. O

Theorem 2 follows from Theorem 1 and the general result in [1, p. 276]. However
we like to propose the following direct proof.

PrOOF OF THEOREM 2. Since the convolution commutes with translations it will
be enough to prove the almost everywhere convergence of Hy f(¢) for a ball of ¢, say
|t]<1/4. Let Q=[—1/2,1/2]". By (1),

(Hy*)O=| f(s) Zz ﬁl/(N+1)((t—s)+m)ds
Q meZn

= Z Jf(s)ﬁ1/(N+1)((t‘5)+m)ds
Q

meZn

=J f(s)ﬁl/(N+1,(t—s)ds+ 20 f(s)ﬁI/(N+1,((t—s)+m)ds
Q m#* Q

=A()+B(¢) .

Observe that for almost every ¢
A1) =J (fXQ)(S)ﬁl/(N+ y(t—9)ds = (fxo)(0)
n"

by the previous theorem. Now we have to prove that B(f)—0 a.e. Arguing as in the
proof of the previous theorem, we can control H(¢) with a sum of terms of the form

min() e [T 16- a0 4 1)

where a,, ..., a, denote the vertices of a simplex. Let p,=a,—a,. We are reduced to
showing that, for almost every ¢,

4) Y f lf(s)IN"min<N‘"*‘|t—s+ml‘1 H | (t—=s+m)-p,|" 1, 1>ds—>0
m#0 Q k=1

as N— +o0.
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Let

R= sup [(t—9)"pul.

For every A<{1, ..., n} we denote by A4, the set of all me Z", m#0, such that
|m-p,|>2R when k€A and |m-p,|<2R when k¢ A. Since {4,} is a partition of
Z"™\ {0} we can split the sum over m in (4) and are reduced to considering

) Y |f(s)|N"min<N‘"‘1|t—s+m|'1 fl |(t—s+m)-p, |71, 1>ds
VPR K k=1

for a given A. We consider three different cases.
(i) A={1,...,n}. This means |m-p,|>2R for k=1, ..., n and therefore, since
m+#0 and |¢|<1/4,

n n
lt—s+m| ' ] |(t—=s+m)-pe| ' <const|m| L[] |m-p|~*.
k=1 k=1

Since
n
(©6) : Y Am|" [ 1m-p~*
|,r(n-pi(|>2R k=1
=1,...,n

converges it follows that (5) is bounded up to a constant by

‘)

— | 1f(9)]ds

NJo
which tends to zero as N— + o0. To see that (6) converges observe that

[m|>const [] |m - p*"
k=1

and therefore (6) is bounded by

S TTimepl— "0,

|mpr|>2R k=1
k=1,..., n

However it is not difficult to show that one can substitute the above series by an integral
and, after a change of variable, one is reduced to bounding

s
[&|>R €8s - fnllﬂln

which converges.
(ii) A is a proper non-empty subset of {1, ..., n}. We can suppose A={1,...,r}
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with r<n. Then
1
[(t—s+m)-p|=|m 'PkI—Rzylm * Pr|

for k=1, ..., r. Hence (5) is bounded by

2

Aa
Since m, p,eZ" and |m-p,|<2R for k=r+1,...,n it follows that in this case m * p,

takes only a finite number of values. We fix one of these values, say z,, and we are
reduced to showing that

z

for almost every ¢. To see this we apply the dominated convergence theorem on the
measure space 4, x Q. First of all we observe that for every fixed ¢

|f(s)|min<N-1|m|-1H|m-pk|-1 11 |(z—s+m)-pk|-1,N">ds.
k=1

Q k=r+1

|f(s)|min(N"|m|“‘ [Tim-p~t T1 I(t—s)'Pk+Zk|_l,N">ds—>0
k=1 1

Q k=r+

(M If(S)Imfm<N_‘|m|’1 [Tim-p™* 11 I(t—S)°pk+zkI_‘,N")—>0
k=1 k=r+1

as N— + oo for almost every (m, s)e A, x Q. Moreover using the inequality

®) min(N~'a, N")<q""* 1

the term in (7) is bounded, up to a constant, by F(m)G(s, t), where

k=r+1

r n/(n+1) n
F(m)=<|m|‘lkl;[1|m.pk|—1> , G(s, )=f(s) n [(t=$)* pp+2, |+ D

Observe first that IQ G(s, t)ds is the convolution of two functions of L*(Q) and therefore
the integral is finite for almost every . Moreover

Y. Fm)< + 0.

To see this observe that

r
|m|>const [] |m-p,
k=1

|1/r

so that

r n/(n+1)
) F(m)sconstz( I |m-pk|“-“'> —const 3, T Im-p,|~*-=riesir
Aa A

A\k=1 As k=1

Since r<n the convergence follows similarly to the one of (6).
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From the above considerations it follows that
Y. | Fm)G(s, t)ds< + o
AA Q

for almost every ¢ and therefore the convergence in (7) is dominated.
(iii) A=F. In this case 4,={meZ": m+#0,|m-p,|<2R, k=1,...,n} is finite
since the p,’s span R”", so that it is enough to show that for every me 4,

©) j |f(s)|N"min<N""1|t—s+m|‘1 f[ [(t—s+m)-p,|~}, 1>ds
Q k=1

tends to zero as N— + oc for almost every ¢. Observe now that since || <1/4 and m#0

we have | t—s+m| bounded away from zero. Hence (9) is controlled, up to a constant,
by

f lf(s)lN"min(N‘"_lkﬁl|(t—s+m)-pkl'1, l>ds.

0 =

Now we argue as in the previous case. Indeed,
|f(s)|N"min(N-"-1kIjl|(t-s+m)~pkl“‘, 1>—»o

as N— + oo for almost every s. Moreover by (8) we have

n n

N"min(N‘"‘l [11¢—s+m)-pel ™", 1>s [T 1(—s+m)-p,| ™m0
k=1 k=1

Since the latter function is in L!(Q) we conclude that the convergence is dominated for

almost every ¢ and therefore (9) tends to zero for almost every ¢. d

3. Fejer type kernels on compact Lie groups. In this section we prove that the
positive results on the pointwise convergence of Fejer type means on T" cannot be
extended to the whole setting of compact Lie groups.

We first need to set the notation. .

Let G be an n-dimensional compact simple simply connected Lie group. Every
integrable function f on G has a Fourier series

f"’;,‘ﬁh*f »

where d, and yx, are the dimension and the character of the irreducible unitary rep-
resentation A, respectively. Let T be a maximal torus of G, and let t and g be the Lie
algebras of T and G. We choose a positive system @ in the set of roots of G and
let {ay, ..., o} be the associated system of simple roots. We shall write m=card(®™*).
We denote by W the Weyl group generated by the reflections g; in the hyperplanes
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a;(H)=0 (j=1,...,1), and we consider W acting both on t and on the dual t*. The
Killing form B defines a positive definite inner product (, *)=—B(*, *) in t. For every
Aeit* there exists a unique H;et such that A(H)=i(H,, H) for every Het. The vec-
tors H;=4niH, |a;(H,,) generate the lattice Ker(exp). The elements Aeit* satisfying
MH)e2niZ for all HeKer(exp) give the set A of the weights of G, and the fundamental
weights are defined by the relations 4;(H;)=2mnid, j,k=1,...,1. If p and A are weights
we write u<1 if A—pu is a sum of positive roots.

Theset Z={leA: A=Z;= ,m;A;, mje N} of the dominant weights can be naturally
identified with the set of the equivalence classes of unitary irreducible representations
of G. A dominant weight 4 is non-singular if m;>0 for every j=1,..., 1L

If £ is a character of 7, there exists a unique A€it* such that

Eoexp H=eMH = g'HaH)

for He T. The character y; of a representation 4 splits (on T') as
0= Z m;(WE,
u<a

where m,(u) is the multiplicity of the weight p in the representation corresponding to
the dominant weight A.
For Ae X and t=exp(H) in T we define the alternating sum and the symmetric sum

A=Y, det(a)e” P | SA)(n)=) ec P
oeW
where the last sum is over the orbit of 4 under the action of the Weyl group.
For the character y, and the dimension d, of the representation corresponding to
the dominant weight A we have the Weyl formulas:

1 (A48, )

LO=47040+pO, 4= 11 =2

where f=(}.,_,.®)/2 and
A= AB)O=(=2)" [] sin(ia(H)/2) .

aedt

A function f on G is said to be central if f(xyx~!)=f(y) for any x,yeG. A
reference for the theory is [17].

Let w be a dominant nonsingular weight and let P*(w) be the set of all dominant
A’s such that (4;, 1) <(4;, w) for every j=1,...,/ The polyhedron P(w) is defined
to be the union of the satured hull of the dominant weights Ae P*(w): i.e.
P(w)=J,.wo(P*(w)). We now fix a nonsingular large w and for any nonnegative
integer N we write Py and Py in place of P(Nw) and P*(Nw) respectively. We denote
by Dy the polyhedral Dirichlet kernel
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(10) Dy= Z+ dxs -

We need the following result from [16] (see also [15] and [8]).

LEMMA 5. Let P be a polyhedron in R" and let V=V,cZ" be the set of vertices.
Let [a;,b,],...,[a, b] be a maximal set of pairwise nonparallel edges of P. For
h=1, .., s let m,e Z" such that [0, m,] is a segment of minimal length parallel to [a,, b,].
Let E(t)=]]; -, (e*™™"—1). Then, for any large natural number N,

Z eZm‘m~t=E—1(t) . z e2niNa~t . Fa(t)

meNP aeV
where the F,'s are trigonometric polynomials with integral coefficients, independent of N.
We can now prove the following:

THEOREM 6. Let G be a compact simple simply connected Lie group of rank greater
than one. Then there exists a central function f e L'(G) such that

limsup | (f * Hy)(x)|= + o
N-+ow

for almost every xeG.

Proor. The function f can be constructed (cf. e.g. [13, p. 272]) after we prove that

an limsup | Hy(?)|= + o
N—->+ow

for almost every te T.

In order to prove (11) we argue as in [16]. For any positive root « let 2, denote
the partial derivative with respect to the tangent vector H,. Then, by the previous lemma
and by [5], there exists a polynomial F independent of N such that

B 1 N _ 1 N -
H(t)—mjgo D=7 j;o AEZP; d, A~ YA+ B)(2)

N
=_1_A-1(z) I1 9«(2 Y S(/l)(t)>

N+1 2e®* =0 AeP*(jo+p)

1 N
“ N+l a4~ 1(t)a!!;!+ @a<j=0 4710 a;w Eotian(D) det(G)F(U(t))>
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- 0 e < 0¥ det(a)F(o(z»—é“—“"-“—’“’ﬁ)—>

N+ 1 aedPt Ea(w)( )
=AN0)+ oy n Il 2 ( Y. det(a)F(a(2)) -5_“—’&”‘"—’(’—)——>
N+1 aed* a(m)(t)
- ) [leco+r 2Fo®) o+ —1))
B AN(I) * BN(t) * N+ (t) agw det( ) éa(w)(t) - l

=An()+By(H)+N™"1 - Cy(2)
where the Cy’s are polynomials with a bounded number of terms, and with coefficients

uniformly bounded and uniformly away from zero. Then (cf., e.g., [4, p. 381]) we have

lim sup| Cy(8)| >0
N—-o

for almost every teT.
Then one checks through similar computations that

| AN@+By(1) | <y(@) - o(N™71),  ae.
with y(¢) independent of N. This implies (11) since m>1 whenever />1. d

The previous argument suggests the new part gf the following theorem. Here Dy
is the Dirichlet kernel defined in (10).

THEOREM 7. Let G be a compact simple simply connected Lie group.

(i) Let p>n/m. Then any central function f € LP(G) satisfies (Dy* f)(x)—f(x) for
almost every xeG.

(ii) Let p<n/m. Then there exists a central function [ € LP(G) such that (Dy* f)(x)
diverges for almost every xeG.

PrOOF. (i) has been proved in [12] for a larger class of polyhedral Dirichlet kernels.

Here we sketch the proof of (ii). The rank one case has already been implicitly
proved in [7, p. 127], we therefore assume /> 1. Our argument is simply a refinement
of the one in [4].

It is enough to prove that ((D,y — Dy) * f)(x) diverges a.e. By [3] we have a sequence
{®y} of central trigonometric polynomials ®y=Y , a{Vd,y;, satisfying

aM=1 if AePiy\Px
a™=0 if A¢P}

0<a™<1  forany A
|[®yll, <const.

The above assumptions on the a;’s imply ||@y|, <const N2, Then, for any 1 <p<2
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we have, by the Holder inequality,

1/p (2-p)p (p—1)/p ,
||¢N||p={f |¢N|2—p|¢N|2p_2} S{j |¢N|} {J |¢N|2} SconstpN"“’
G G G

where p and p’ are conjugate exponents. An argument similar to the one we used in

the

proof of the previous theorem yields

NP @yx(Doay—Dy)ON™"? % dyya(0)

AePiy\P%

=N"""47Y D) Y dAG+B)()

AEPH\PH

=N"""47) [] 2,

aedt <leP*(2Nw+ﬁ)\P+(Nw+ﬂ)

=N"""4"'(0) ] 2, (A ROD det(0)(Eoanwy () F2(0(D) — Eovw)(DF1 (0'([))))

aedt oceW

S(l)(t)>

aedt

AN +N"" 4720 ] %( ZW det(0)(Co2na)(DF2(0(D) — EonaDF 1(6(1)))>

=4+ N"""P A~ 2(1)Cp(1),

where F, and F, are polynomials independent of N.

Now we observe that Cy(f) behaves like Cy(?) in the previous theorem. We also

point out that Ay(f)=o(N™ "?). The explicit construction of the function f in the

statement of the theorem is now easy as long as we recall that m>n/p’. O
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