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POINTWISE CONVERGENCE OF FEJER TYPE MEANS
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Abstract. We study the almost everywhere convergence of polyhedral Fejer type

means. We prove positive results for the ^-dimensional Euclidean spaces and tori. We

then show that these positive results cannot be extended to the whole setting of compact

Lie groups.

1. Introduction. A fundamental result of A. N. Kolmogorov (proved in two

steps, when he was only nineteen and twenty-two years old!) exhibits a function fe

LX(T) whose Fourier series diverges everywhere (cf. [18, ch. 8]). This means that if

£>N(t) = Σk=-Ne2πikt i s t h e Dirichlet kernel, then the partial sum SNf(t) = (f *DN)(t) =

Yϊt=-Nf(k)e2πikt diverges for all / when JV-> + oo. To get positive results one can

substitute the partial sum with some suitable means. The Fejer kernel

i Σ D * ) « Σ f i -
v Λ

N+\) N+\\ sin(πθ

provides one of the most important examples. In fact, it is well known (cf. [18, ch. 3])

that if feL\T), then (KN*f)(ή^f(ή for almost every te T.

If we now look at the above chain of identities, we see that the Fejer kernel may

be seen either as the arithmetric mean of the Dirichlet kernel or, for even N, as (\/(N+1)

times) the square of a Dirichlet kernel. This gives rise to two reasonable definitions of

the Fejer kernel in several variables. We have to start by defining the Dirichlet kernel

on Γ.

DN(ή = D%(ή= Σ e2πimt, teT\ meZn

meNB

where B is a convex body containing the origin in its interior and NB is its dilation.

As the first two examples one takes B to be the unit cube or the unit ball. An n-

dimensional polyhedron and a convex body whose smooth boundary satisfies good

curvature properties are the most familiar generalizations of the cube and the ball

respectively. In this paper we are interested in the polyhedral case.

Let P be a compact ^-dimensional convex polyhedron in Rn containing the origin

in its interior. Following the previous remarks we can define (cf. [16]) the ^-dimensional

polyhedral Fejer kernel either as
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PίΛ\2
Δ" ^ card(JVPnZ")

or as

I D&t) |

N+l v=o

We have used different symbols since HN and KN coincide only in the 1-dimensional
case. We shall call HN a Fejer type kernel. Observe that the graph of HN(m) is a pyramid
restricted to the integral points inside NP and that H^ may be seen as a polyhedral
analogue of the Bochner-Riesz kernel of index one.

Both kernels K2N and HN have good summability properties. If /eL^Γ"), then
II*2N / - / H I - > 0 and \\HN* f-f \\^0 as W-> + oo.

The above result for K2N is obvious since K2N is positive. The result for HN is
contained in [9] (see below for a short proof).

For n > 2 the study of the pointwise convergence is a different problem. We recall
that it is not easy to prove that (K2N*f)(ή^f(ή a.e. for any feL1(TH)9 even if P is
the unit cube (i.e. even if we can separate the variables). See the last chapter in [18].

The pointwise convergence of polyhedral Fejer type means has not yet been inves-
tigated and it is the main object of this paper.

We now introduce the definition of a Fejer type kernel on Rn and relate it to HN. Let

\ χ v P ( ζ ) ζ \ ξ , teR"
R"Jθ J

\1χvP(ζ)dve2πitξdζ={1 \ e2πit'
Jθ JO JvP

then

(1) HN(ή = -^-Σ^j= Σ ffi/iN+i)(t + m),. teΓ,
N+ 1 j = 0 meZ"

where χυP is the characteristic function of the dilated set vP, Hε(ή = ε~nH(t/ε) and the
last identity depends on the Poisson summation formula.

In the following section we shall prove that (Hε*f)(t)^>f(ή a.e. for any feL1(Rn),
and that (HN*f)(t)-*f(t) a.e. for any fsL}{Tn). Our argument relies on pointwise
estimates for H. It turns out that the decay of H at infinity depends on the direction
chosen, so that H does not admit suitable radial bounds and the maximal operator
suPε>ol H**f{t) I cannot be controlled via the Hardy-Littlewood maximal function. This
difficulty can be overcomed by appealing to an argument of H. S. Shapiro (see Theorem
3 below).

In the last part of this paper we shall prove that these results cannot be extended
to all compact Lie groups. We shall consider a compact simple simply connected Lie
group G and we shall define polyhedral Dirichlet kernels DN and the associated Fejer
type kernels HN. When the rank of G is greater than one, we shall prove that there
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exists a central function feL1(G) such that (HN*f)(x) diverges a.e. As a corollary of

the proof we shall produce, for any p < n/m (here n is the dimension of G and m is the

number of positive roots), a central function geLp(G) such that (DN* g)(x) diverges

a.e. This almost complements the known fact that (DN* g)(x)^g{x) a.e. whenever g is

a central function in LP(G), for p>n/m (see [12]). The proof of our result is essentially

a combination of arguments in [8], [4], [15] and [16] and we shall only sketch it. We

refer the interested reader to [12] and [6] for the related problem concerning the LP

convergence.

ACKNOWLEDGEMENTS. The authors wish to thank L. Colzani, P. Sjόgren and A.

Solianik for some helpful comments and suggestions.

2. Fejer type kernels on Rn and Tn. Our main results are the following.

THEOREM 1. Let Hε(t) = ε-nH(t/ε). Then for any feL\Rn), (He*f)(t)-+f(t) a.e.

as ε->0.

THEOREM 2. Let Tn be the n-dimensίonal torus, let P be a polyhedron with vertices

in Zn and let

be the Fejer type kernel defined on Tn. Then, for any feL1^"), HN*f(t)-+f(t) a.e. on

Tn as N-+00.

We need the following result from [10] (see also [14] and [11] for related problems).

THEOREM 3 (Shapiro). Let k be a measurable function satisfying the following

conditions: there exists a sequence {Aj} of centrally symmetric convex bodies about ί = 0

such that, for any teRn,

\Kt)\<Σ «J-ΓΓ
\A

with

α7 > 0 , α ^ O , X 0,-logI— )
j=ί \CCjJ

(\Aj\ is the Lebesgue measured of A j). Then, for any feL\Rn), (kε*f)(t)->k(O)f(t) a.e.

PROOF OF THEOREM 1. Let t be a regular point in dvP with outward unit normal

ω(t). Then the divergence theorem implies

=[dυ\ e2^dt = -±—[dυ\
Jo JvP 2πι\ξ\2 Jo Jdv
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where dt' denotes the (n— l)-dimensional measure. Let P' be a face of P. We suppose

it is contained in (1, ί2,..., tn) and therefore, since ω(i) is constant on P\ it is enough

to estimate

e2πivξidv e

2πiit2ξ2 +

Jo JvP'
(2) minfi^l

\\ξ\2

where T is the pyramid having P' as a face and the origin as the opposite vertex. We

split T into simplices. Let S be one of them with vertices a0,..., an. The identity

n_^ e-2πiξaj

has been pointed out in [9]. We treat one of the above terms (say 7 = 0) and we observe

that the applicability of Shapiro's theorem is not affected by a linear change of variables.

Therefore we can assume ak—aj=ek and we are reduced to bounding

G(ξ) = mm
\ξ\\ξ1 ξ2 ξn\

Let

Then

0

G(ξ)< h h 1 o h
Λ = l /ι = 0

We claim that there exist a family {Qj} of centrally symmetric ^-dimensional intervals

about ξ = 0 and a sequence {α,-} satisfying

(3) ^Σoij^χQj(
J=O \Qj\

Assuming this to be true we observe that Eh = 2h/(n+1)E0 so that

χEh(ξ)< Σ VJJJTJXRJAO
7 = 0 \\lj\

where Rjih = 2mn+l)Qj. Since \Rj,h\ = 2nmn+1)\Qj\ we obtain

00 00 1 1

Λ = 0 j = 0 l ^ l j,Λ | Λ Λ Λ |

with
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as a consequence of the assumptions on {α,-}. We shall prove (3) in the following

proposition. •

REMARK. Observe that (2), the inequality

I χP(pσ) I dσ < c(2 + p) "» l o g - \2 + p)L
(proved in [2]) and an integration in polar coordinates yield a simple proof of the

bound \\H\\Li<co already proved in [9].

PROPOSITION 4. For every dimension n there exist a family {β]π)} of centrally

symmetric n-dimensional intervals about ξ = 0 and a sequence {αjw)} satisfying

af > 0 , αf->0 , Σ «Γ l°g( -L-) < + oo .

PROOF. The proof is by induction on the dimension n. If « = 1 then E^ is a

symmetric interval and the above is trivial. We assume the case n— 1 and we shall prove

the case n. By symmetry we can study

in place of £#>. Let ξeE™. Then l>\ξ\ξtξ2 ξn>ξΐ+1 and ̂ < 1 . Assuming

^ e [ 2 - * , 2 - * + 1 ] , we have

si

and therefore (ξ2,..., ^ )e2 f t / w £ I ^" 1 ) . Hence we have

+ 00

+ 00

^ Σ /[-2-^t,2-fc+i](ίl)X2'c/»4»-i)(ί2J Jί«)

and using the induction hypothesis

+ oo oo 1

j — l I v ^ j Ifc — l
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We consider the centrally symmetric sets βj3 = [-2~*+1, 2" k + 1 ] x{2kl"Qf-l)). Then

Since

Σ#jw~ 1 )2~ k / ' 1 + 2log[ 2kln + 2 )< + co
k,j \ CCjn )

the proposition and the theorem are proved. •

Theorem 2 follows from Theorem 1 and the general result in [1, p. 276]. However
we like to propose the following direct proof.

PROOF OF THEOREM 2. Since the convolution commutes with translations it will
be enough to prove the almost everywhere convergence of HN*f(t) for a ball of /, say
| ί |<l/4. Let β = [-l/:

JQ
(HN*f)(t) = I f(s) Σ

JQ meZ"

= Σ I f(s)
meZn J Q

= f(s)HmN+1)(t-s)ds+ Σ f(s)H1/(N+i)((t-s)+m)ds
JQ mΦOjQ

= A(t) + B(ή.

Observe that for almost every /

= ί
JR.

ΊκN+i)O-s)ds^(fχQ)(ή

by the previous theorem. Now we have to prove that i?(7)->0 a.e. Arguing as in the
proof of the previous theorem, we can control H(ξ) with a sum of terms of the form

fcr1 fl\ξ (ak-a0)Γι,l)

where a0,..., an denote the vertices of a simplex. Let Pk = ak~ao- We are reduced to
showing that, for almost every t,

(4)

as

Σ ί
mΦOjQ
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Let

R = sup \(t-s) pk\.
t,seQ

k=l,...,n

For every Λ^{l,...9n} we denote by AΛ the set of all m e Z " , ra#0, such that

\m pk\>2R when keA and \m pk\<2R when kφΛ. Since {AΛ} is a partition of

Z"\{0} we can split the sum over m in (4) and are reduced to considering

Σ ί
ΛΛJQ

(5) ^ I \f(s)\NnminlN n 1\t — s + m\ * Π \(t — s + rri)' p k \ \ 1 \ds
AΛJQ \ k=l )

for a given A. We consider three different cases.

( i ) A = {1,...,«}. This means | m * pk \ >2R for k= 1, . . . , n and therefore, since

mΦO and | / | < l / 4 ,

n n

k=l k = l

Since

n

\m pk\>2R fc-1

converges it follows that (5) is bounded up to a constant by

4τί \f(s)\ds

which tends to zero as N^> + oo. To see that (6) converges observe that

n

|m|>const f] |m-pk\
1/n

k=l

and therefore (6) is bounded by

|mj? k |>2R fc=l

However it is not difficult to show that one can substitute the above series by an integral

and, after a change of variable, one is reduced to bounding

r «
I I P P , , , ι l + 1/n

J\ξj\>R I S 1 S 2 S n l

w h i c h c o n v e r g e s .

( i i ) A is a p r o p e r n o n - e m p t y s u b s e t o f { 1 , . . . , « } . W e c a n s u p p o s e A = {l9...,r}
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with r<n. Then

\(t-s + rn)'Pk\>\m pk\-R> — \rn pk\

for k = 1,..., r. Hence (5) is bounded by

Σ ί \f(s)\mm(N-1\m\-1f\\m'pk\-1 f\ \(t-s + m) pk\~\ Nn)ds .
AΛJQ \ k=l k = r+l /

Since m,pkeZn and \m*pk\<2R for fc = r + l , . . . , n it follows that in this case m pk

takes only a finite number of values. We fix one of these values, say zk, and we are

reduced to showing that

X ί \f{s)\mm(N-'\m\-'f\\m'Pk\-' f\ \{t-s) Pk + zkΓ\ N»)ds ̂ 0
AΛJQ \ k=l k = r+l )

for almost every t. To see this we apply the dominated convergence theorem on the

measure space AΛ x Q. First of all we observe that for every fixed t

\ k=l k=r+l

as N-+ + oo for almost every (m, s)eAΛx Q. Moreover using the inequality

(8) minίW" 1^, Nn)<an/(n + 1)

the term in (7) is bounded, up to a constant, by F{m)G{s, t), where

( r \n/(w+D n

\rn\~1 Y[\m'pk\~1) , G(s,t)=f(s) Π \(t-s)-pk + zk\~n/{n+1).
k=l / k=r+l

Observe first that J Q G(s, t)ds is the convolution of two functions of LX(Q) and therefore

the integral is finite for almost every /. Moreover

To see this observe that

so that

| m | > c o n s t f ] \m-pk\
1/r

k=l

( r \n/(n+l) r

Π \^'Pk\~1~ί/r) =constΣ Π |/
fc=l / AΛk=l

Since r<n the convergence follows similarly to the one of (6).
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From the above considerations it follows that

Σ F(m)G(s, t)ds<+00
ΛΛ JQ

for almost every t and therefore the convergence in (7) is dominated.

(iii) Λ = 0. In this case AΛ = {meZn: mφO, \m -pk\<2R, k=\,...,«} is finite

since the pks span Rn, so that it is enough to show that for every me A

ί
JQ

(9) f(
Q \

tends to zero as N-+ + oc for almost every /. Observe now that since | /1 < 1/4 and

we have 11 — s + m | bounded away from zero. Hence (9) is controlled, up to a constant,

by

1 [N n 1 Π \ ( t - s + m)'pk\ \ l ) d s .
Q \ fc = i

Now we argue as in the previous case. Indeed,

/ n

\\ \(t — s + m) pk\ \ 1(
\

as Λ̂ -̂  + 00 for almost every s. Moreover by (8) we have

Π \( )pk\-\ 1 < Π \(t-s + m) 'Pk\~n/{n + 1).
\ k = l / fc=l

Since the latter function is in L * ( 0 w e conclude that the convergence is dominated for

almost every t and therefore (9) tends to zero for almost every /. •

3. Fejer type kernels on compact Lie groups. In this section we prove that the

positive results on the pointwise convergence of Fejer type means on Tn cannot be

extended to the whole setting of compact Lie groups.

We first need to set the notation.

Let G be an ^-dimensional compact simple simply connected Lie group. Every

integrable function f on G has a Fourier series

f~Σdλχλ*f
λ

where dλ and χλ are the dimension and the character of the irreducible unitary rep-

resentation λ, respectively. Let T be a maximal torus of G, and let t and g be the Lie

algebras of T and G. We choose a positive system Φ + in the set of roots of G and

let {α l 5 . . . , αz} be the associated system of simple roots. We shall write m = card(Φ+).

We denote by W the Wτeyl group generated by the reflections σ, in the hyperplanes
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(Xj(H) = 0 (j= 1,...,/), and we consider W acting both on t and on the dual t*. The

Killing form B defines a positive definite inner product ( , •)=—!?(•, •) in t. For every

Ae/t* there exists a unique Hλeί such that λ(H) = i(Hλ, H) for every Het The vec-

tors Hj = 4πiHa./ocj(Ha.) generate the lattice Ker(exp). The elements λeit* satisfying

λ(H) e 2πiZ for all He Ker(exp) give the set A of the weights of G, and the fundamental

weights are defined by the relations λj(Hj) = 2πiδjk, j9 k = 1,...,/. If μ and λ are weights

we write μ-^λ if λ — μ is a sum of positive roots.

The setΣ = {λeΛ: λ = Σι

j=ι rrijλj, m} e N) of the dominant weights can be naturally

identified with the set of the equivalence classes of unitary irreducible representations

of G. A dominant weight λ is non-singular if nij > 0 for every j = 1,..., I.

If ξ is a character of Γ, there exists a unique λeit* such that

for He T. The character χλ of a representation λ splits (on T) as

Xx= Σ rnλ(jι)ξμ

where mλ(μ) is the multiplicity of the weight μ in the representation corresponding to

the dominant weight λ.

For λeΣ and t = exp(//) in Twe define the alternating sum and the symmetric sum

A{λ){t) = Σ det(σK ( λ ) ( H ) , S(λ)(t) = X
σeW

where the last sum is over the orbit of λ under the action of the Weyl group.

For the character χλ and the dimension dλ of the representation corresponding to

the dominant weight λ we have the Weyl formulas:

dx= ΓΊ ^ r
«eΦ* (β, α)

where /?=(Σ α e Φ + α)/2 and

Π
αeΦ +

A function / on G is said to be central if f(xyx~1)=f(y) for any x,yeG. A

reference for the theory is [17].

Let ω be a dominant nonsingular weight and let P+(ω) be the set of all dominant

A's such that (Λy, Λ,)^/^-, ω) for every j= 1,...,/. The polyhedron P(ω) is defined

to be the union of the satured hull of the dominant weights λeP+(ω): i.e.

P(ω)=\Jσew
σ(P+(ω)) W e now fix a nonsingular large ω and for any nonnegative

integer N we write PN and P^ in place of ^(Λ^ω) and P+(Nω) respectively. We denote

by DN the polyhedral Dirichlet kernel
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(10) DN= Σ

Then the Fejer type kernel HN is defined as

We need the following result from [16] (see also [15] and [8]).

LEMMA 5. Let P be a polyhedron in Rn and let V= VPczZn be the set of vertices.

Let [_aί9 bγ~],..., \_as, 6S] be a maximal set of pairwise nonparallel edges of P. For

h = 1, . . , s let mhe Zn such that [0, wΛ] is a segment of minimal length parallel to [ah, b^\.

Let ^ ( 0 = Π f t = i ^ 2 π ί l " l ί ~ 1 ) Then, for any large natural number N,

£ e

2πimt = E-\i)* Σ e2πiNat-Fa(t)
meNP aeV

where the Fa's are trigonometric polynomials with integral coefficients, independent of N.

We can now prove the following:

THEOREM 6. Let G be a compact simple simply connected Lie group of rank greater

than one. Then there exists a central function feL1(G) such that

lim sup I (/ * HN)(x) \ = + oo
J V - + 00

for almost every xeG.

PROOF. The function / can be constructed (cf. e.g. [ 13, p. 272]) after we prove that

(11) lim sup I HN(t) | = + oo

for almost every t e T.

In order to prove (11) we argue as in [16]. For any positive root α let ^ α denote

the partial derivative with respect to the tangent vector Ha. Then, by the previous lemma

and by [5], there exists a polynomial F independent of N such that

H" 1 αeΦ + \ j = 0 ΛeP + 0'ω + /3) /

i - Λ - H O Π ®.f Σ ^"X(O Σ Co ω)Wdet(σ)F(σ(0))
+ 1 oceΦ+ \j = O σeίF /
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Kt) Π ah-Kt) Σ^ K t ) Π a K t ) Σ
N+l αeΦ+ \ σeW

where the CN's are polynomials with a bounded number of terms, and with coefficients

uniformly bounded and uniformly away from zero. Then (cf., e.g., [4, p. 381]) we have

limsup|CN(Y)|>0
N-oo

for almost every t e T.

Then one checks through similar computations that

1), a.e.

with y(ή independent of N. This implies (11) since m> 1 whenever /> 1. •

The previous argument suggests the new part §f the following theorem. Here DN

is the Dirichlet kernel defined in (10).

THEOREM 7. Let G be a compact simple simply connected Lie group.

( i ) Let p > n/m. Then any central function f s LP(Q) satisfies (DN * f)(x) ->f(x) for

almost every xeG.

(ii) Let p < n/m. Then there exists a central function f e LP(G) such that (DN * f)(x)

diverges for almost every XGG.

PROOF, (i) has been proved in [ 12] for a larger class of polyhedral Dirichlet kernels.

Here we sketch the proof of (ii). The rank one case has already been implicitly

proved in [7, p. 127], we therefore assume /> 1. Our argument is simply a refinement

of the one in [4].

It is enough to prove that ((D2N - DN) * f)(x) diverges a.e. By [3] we have a sequence

{ΦN} of central trigonometric polynomials ΦN = ΣJλ^λN)dλXλ satisfying

α f > = l if

< > = 0 if

N for any λ

The above assumptions on the αΛ's imply | | Φ N | | 2 <const Nn/2. Then, for any 1 <p<2



POINTWISE CONVERGENCE OF FEJER TYPE MEANS 335

we have, by the Holder inequality,

(P-D/P

where p and p' are conjugate exponents. An argument similar to the one we used in
the proof of the previous theorem yields

n/pt. Σ dλχλ(t)

Σ S(λ)(t)
αeΦ \

αeΦ+

Σ
<reW

Σ

where Fx and F2 are polynomials independent of N.
Now we observe that CN(ή behaves like CN(ή in the previous theorem. We also

point out that AN(t) = o(Nm~n/p). The explicit construction of the function / in the
statement of the theorem is now easy as long as we recall that m>n/p'. •
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