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Abstract. Liapunov's direct method is used to give conditions ensuring the uniform
asymptotic stability in a system of infinite delay differential equations. By introducing
the concept of a seminorm having a fading memory with respect to the norm on the
space of initial functions, we obtain a Liapunov functional with an upper bound larger
than those traditionally given. This new approach enables us to unify several well-known
theorems in the literature. Examples are provided to illustrate the application of these
results.

1. Introduction. In this paper we consider a system of functional differential
equations with infinite delay

(1.1) x'(f) = F(t,xt}

with xt(s) = x(t + s) for — oo <s<0 and obtain a Liapunov-type stability theorem in the
phase space Cg. Our work provides a unified approach to the stability theory for infinite
delay systems.

Let R — (—ao9 +00), ^^[O, +00), and R~=(—ao90], respectively. | | denotes
the Euclidean norm on Rn. C(A, E) denotes the set of all continuous functions φ: A-+B.
We define

(1.2) G = {geC(R~, R+): g is nonincreasing and 0(0) = !} .

For each g e G, we define (Cg, \ \g) by

(1.3) Cg = {φEC(R-,R"):\φ\g<+π}

where | φ |̂  = sup s<01 φ(s) \/g(s). Then (Cg9 \ \g) is a Banach space. We also set for //>0

Cβ(H) = {φεCβ:\φ\g<H}.

When g(s) = 1, we obtain the classical Banach space (BC, \\ ||),

BC=\φeC(R-,Rn):\\φ\\=sup\φ(s)\<+π
( s<0
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and

BC(H) = {φεBC: \\φ\\<H} .

We consider F: RxCg(H)-+Rn with F(t, 0) = 0 for all teR and make the following

assumptions on the solutions of (1.1) throughout this paper.

(HO For each (tθ9 φ)εRx Cg(H)9 there exists a constant σ>0 and a continuous
function x: (— oo, /0 + σ)->^n such that x(f) satisfies the equation (1.1) on

[ί0, ί0 + σ) with xto = 0. The function x is called a solution of (1 . 1) and is denoted

by x = x(tθ9 φ) or x(i) = x(t, ί0, 0).
(H2) For each (f0, φ^eRx Cg(H)9 x(i) = x(t, tθ9 φ) is defined on [f0, + oo) unless there

exists f o < /? < + oo such that lim sup, ̂ β - \ x(t9 tθ9φ)\=+co.
For discussion on the Cg space, we refer to Burton [3], Corduneanu [6], Haddock [8],
Hale and Lunel [9], and Hino, Murakami, and Naito [11].

Let V: R x Cg(H)^>R+ be continuous. The upper right-hand derivative of F along

solutions of (1.1) is defined by

(1.4) V(lΛ}(t, 0) = lim sup [V(t + δ, xt+δ(t, </>))- F(ί, φ)}/δ .
δ^0 +

DEFINITION 1.1. The zero solution of (1.1) is ^-uniformly stable (0-US) if for
each ε>0, there exists a 5>0 such that [(*0, φ)eR+ x Cg(H)9 \φ\g<δ9 t>tQ~\ imply

DEFINITION 1.2. The zero solution of (1.1) is ^-uniformly asymptotically stable

(0-UAS) if it is ^-uniformly stable and there exists δ>0 such that for each ε>0 there

exists Γ>0 such that [(ί0, φ)eR+ x Cg(H)9 \φ\g<δ9 />ί0 + ̂ ] imply \x(t9tθ9φ)\<ε.
If g = 1, we write UAS for 0-UAS.

DEFINITION 1.3. W\ R+-*R+ is called a wedge if W is continuous and strictly

increasing with W(0) = Q. Throughout the paper W and Wj (j= 1, 2, . . .) will denote
wedges.

DEFINITION 1.4. A continuous function G:R+-^R+ is convex downward if
G[(ί + s)/2] < [G(0 + G(j)]/2 for all ί, 5 e Λ + .

Jensen's inequality. Let W be convex downward and let x, p: [α, fc]-^^+ be
continuous with §b

ap(s)ds>Q. Then

Γ ϊ
I— J a

For reference on Jensen's inequality and its applications, we refer to Becker, Burton,
and Zhang [1] and Natanson [16].

LEMMA 1.1. Let W± be a wedge. For any L>0, define WQ(r) = \r

Q W^dsjL on
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[0, L}. Then WQ is a convex downward wedge such that WQ(r)< W^r) for all re [0, L].

In order to put the problem into its historical context we consider the ordinary
differential equation

(1.5) *'(/) =/(*,*«)

where f:Rx R"^Rn is continuous. The following result is well-known (see [3, p. 261]).

THEOREM A. Let V: R x Rn-+R+ be continuous such that

(i) W,(\x\)<V(t,x)<W2(\x\\
(ii) F(V5)(ί,x)<-^3(|*|).

Then the zero solution 0/(1.5) is uniformly asymptotically stable.

Extending Theorem A to functional differential equations has been the subject of
extensive investigations for many years. For results on equations with finite delay, we
refer to Burton [3], Burton and Hatvani [4], Hale and Lunel [9], Kato [13], Krasovskii
[15], Wang [18], Yoshizawa [19], and Zhang [20]. Generalizing Theorem A to infinite
delay systems is far more difficult. For reference and notation, we state some results of
Burton and Zhang [5], Hering [10] for (1.1) with infinite delay. For additional results
on stability of functional differential equations with infinite delay we refer to Burton
[3], Grippenberg, Londen, and Staffans [7], Hino, Murakami, and Naito [11], Kato
[14] and references therein.

THEOREM B (cf. [5]). Suppose that there exists a continuous functional V:Rx
BC^R+ andΦ:R+-+R+ with ΦeL^O, +00) such that

(i) W,(\ 0(0) I) < F(ί, 0) < W2(\ 0(0) I) + ̂ 3(j °_ ̂ Φ(-s) Wά\ φ(s) |)ώ),

(ϋ) V'(,Λ)(t,φ)<-W5(\φ(ϋ)\}
Then the zero solution 0/(l.l) is UAS.

A generalization of Theorem B to the space Cg may be found in Zhang [23]. We
now state the recent work of Hering [10] in Cg. He define an order in G by g<g° if

and only if g, g°eG, g(s)<g°(s) for all 5 <0 and

lim

THEOREM C (cf. [10]). Suppose that there exists a continuous functional V\ R+ x
Cg-+R+, positive constants rί9 α, and L, functions g°eG with g<g° and ηeC(R,R+)
with γt

+Lη(s)ds>ufor all teR such that

(i) W,(\ 0(0) I) < F(ί, 0) < W2(\ 0(0) I) + W3(\ φ |,o),

(ϋ) ^7ι.i)(^ 0)^ "^(0^4(10(0)1) whenever |0(0)|<r1?

(iii) WΊ(r)— W^(r) is positive, nondecreasing on (0, rj.

Then the zero solution of (I. I) is g-UAS.

The present paper continues the work of Zhang [21] in which a combination of
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Theorem A and Theorem B are obtained in the space BC. By introducing a semi-norm
I \B on Cg which has a fading memory with respect to | \g, we will extend Theorem
A and Theorem B with η = 1 . The Liapunov functional obtained here has a large upper
bound and can be applied to highly perturbed systems.

2. The main result. When (1.1) has an unbounded delay, an example of Seifert
[17] shows that if UAS is expected, then (1.1) must have some type of fading memory.
It is also believed that in order to prove that the zero solution of (1.1) is UAS or
solutions are uniformly ultimately bounded using a Liapunov functional F, the upper
bound of Fmust have a fading memory with respect to the norm on the space of initial
functions (see [3], [10], [11]). For each continuous function φ: [α, b~\-+Rn, we define

We introduce the following definition which may be found in Zhang [22].

DEFINITION 2.1. A seminorm | \B on Cg is said to have a fading memory with
respect to | \g if | φ \B < \ φ \g for all φ e Cg and if for each ε > 0 and D > 0 there exists
an h > 0 such that

whenever η>h and \φ-η\g<D, where

I φ _ η\g = sup I φ(s - η) \/g(s) = sup | φ(u) \/g(u + η) .
s<0 u<-η

EXAMPLE 2.1. Let α: R~^R+ be continuous and geG such that

o po !
<x(s)g(s)ds<l and u(s)ds< — .

— oo J — oo ^

Define \φ\B = lQ-aQ^(s)\Φ(s)\ds for any φeCg. Then | \B has a fading memory with
respect to | \g.

PROOF. For any φ e Cg, we have

*(s)g(s)ds<\φ\d.
o

Let ε>0 and D>0 be given. Then there exists an h>0 such that 2D$^h

aQoι(s)g(s)ds<ε.
lfη>h and \φ-η\g<D, then

I φ \B= Γ α(j)| φ(s) \ds= ί° α(j)| φ(s) \ds+ ( " α(j)| φ(s) \ds
J — oo J — η J — oo

sup J
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<*(s)g(s)ds

Thus, I \B has a fading memory with respect to | \g.

EXAMPLE 2.2. Let g*eG and g<g*, that is, g(s)<g*(s) for all seR~ and

lim sup tfw =0.
ι̂  + .Uo0*(ί-ΛθJ

Then I |9» has a fading memory with respect to | \g.

PROOF. For any ε > 0 and D > 0, there exists h > 0 such that sups < 0 g(s)/g *(s—N)<
ε/D for N>h. Ifη>h and |0_Jβ<Z>, then

sup \φ(s)\/g*(s), sup\φ(s)\/g*(S)
-tj<s<0 s< —η

<m^hφ\Γ^\sup\φ(u-η)\/g^(u-η}}
( «^o J

( M < 0

<max{||0||t-" 0],ε}.

Also, I φ |β» < I φ \g for all φ e Cg. Therefore, | |β« has a fading memory with respect to

I I.-
REMARK 2.1. It follows from Example 2.2 that | \g has a fading memory with

respect to || || if g(s)-+ H- oo as s-> — oo.

EXAMPLE 2.3. Let p: R~ -+R+ be continuous and ge G such that

p(s)g(s)ds < 1 and ρ(s)ds < — .

Define \φ\B = l-^p(s)\\Φ\\[s^}ds for any φeCg. It was shown in Zhang [22] that | \B

has a fading memory with respect to | \g. For more properties of | \B defined here with

I * 10= II ' II we refer to Huang and Wang [12].

DEFINITION 2.2. Let α: R + -+R + be continuous and J °_ ^ α(—s)g(s)ds < 1 for some
g e G. We adopt the notation in Burton [2] and define

<x(-s)\φ(s)\ds
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for any φ e Cg throughout of the rest of this paper.

THEOREM 2.1. Suppose that there exists a continuous functional V\ Rx Cg(H)-+
R + , a semίnorm \ |β on Cg having a fading memory with respect to \ \g, and positive
constants y, Ke(09 H) such that the following conditions hold for (ί, φ)eRx Cg(K).

( i ) W,(\ 0(0) |)< F(ί, φ)< W2(\ φ(Q) I + |||φ|||)+ W*(\ φ |B),
(π) V'(,Λ)(t,φ)<-Wώφm,
(iii) Wί(r)-W3(r)>Q for re(0, y].

Then the zero solution 0/(l.l) is 0-UAS.

PROOF. For any (ί, φ)eRx Cg(K), we have

F(ί, φ)< W2(\ φ(ϋ) I + |||0|||)+ W3(\ φ \B)

< W2(\ φ(0) \ + \φ\g)+ W3(\ φ I,) < Wξ(\ φ \g}

where W$(r} = W2(2r) + W3(r). For any ε > 0 (ε < K\ there exists a δ > 0 (δ < K- ε) such
that Wξ(δ)<W1(β). Let x(t) = x(t, tθ9 φ) be a solution of (1.1) with | φ \g<δ. We claim
that \x(t)\<ε for all t>t0. Notice that \x(tQ)\<e. Suppose that there exists a ti>tQ

such that I x(t^) | = ε and | x(t) | <ε for t e [ί0, f j . Then

(2.1) |,t|9 = s u p < s u p Wί+,),+ s u p
s<0 gf(5) -(ί-ίo)<s<0 s<-(ί-ί0)

<ε+sup
g(u-(t-toy)

for all ίe[ί0, ίj. Since F^.i^ί, x,)< - W4(\x(f)\\ it follows that

| x(t) I) < F(t, x() < F(ί0) ψ) < ̂ 2*(| φ \g)

This implies that \x(t)\<ε for all ίe[/0, ̂ ]. In particular, Ijc^J^ε. We have a
contradiction. Thus, |x(ί)|<ε for all t>t0 and the zero solution of (1.1) is #-US.

By the above argument, we may choose δ>0 for ε0 = min{l, y, K/2}, where y>0
is given in (iii), such that \_\φ\g<δ, ί>ί0] implies \x(t)\<ε0 and \xt\g<K. To com-
plete the proof, we must show that for each ε>0 there exists Γ>0 such that
[(* o, φ)eRx Cg(H), I φ \g < δ, t > t0 + Γ] implies | x(t, t0,φ)\<ε. Let ε > 0 be given and
find a constant M with 0<M <y such that

(2.2) W2(3M) +

By the condition (iii), there exists a σ>0 such that 0<σ<M and

(2.3) War) - W3(r) > σ + W2(3σ)

for re[M, y]. Since W± is uniformly continuous on [σ, y], there is a constant m such
that 0<m<M— σ and
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(2.4)

for all re [M, 7]. This yields

(2.5) W^r-m)-

for re [M, 7]. Since | \B has a fading memory with respect to | \9, for D = K and σ>0
defined above there exists an h > 0 such that

(2.6) |,A

whenever ψ e Cg and | ψ _ h \g < D. We also choose h > 0 so large that D J I ̂  α( — s)g(s)ds <
σ. Let :c(0 = x(ί, ί0> 0) be a solution of (1.1) with \φ\g<δ. Since IxJ^Z) for all t>t0,
using (2.6) we obtain

(2.7)

for all t>t0 + h. Moreover, for any τ>t0 and t>τ we have

V(t, xt) < V(τ, xτ) - ( ' W4(\ x(s) \)ds < Wί(D) - f ' W4(\ x(s) \}ds .
Jτ Jτ

This implies that there exists a constant L>0 depending on D such that for each τ>ί0,
there is a number ί * e [τ, τ + L] with | x(t *) | < σ. Consequently, we can find a sequence
{ίπ} such that

(2.8) tn-i+h^t^t^i+h + L and

for n = 1, 2, ____ For any t>t§ + h, we have

ί-Λ

Γ Γ1 Γ"A Ί
W 2 \ \ x(t) I + α(t-s)| x(ί) |ώ+Z> α(-ίMί)Λ

L Jί-Λ J-oo J

Thus, for n > 1 we have

V(tn, xtn} < W2 \2σ + Γ <x(tn - s)\ x(s) Ids'] + max[ W3( \\x\\ [1" ~ "-1"1), 3̂(σ)] .
L Jtn-h J

Notice that | x(t) | <ε0 <y for all t > t0. By Lemma 1.1, there exists a convex downward
wedge W% such that W$(r)< W^(r) for 0<r<y. Without loss of generality, we assume
that W4 is convex downward. Thus, for t > /0, we have

(2.9) V(lΛ}(t9xte
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Let β=l +sup{α(X) : 0<s<h} and / be the integer such that

Wξ(D) - (J- 1)Λ W^σ/hQ) < 0 .

For any integer n and t>tn+J, integrate (2.9) from tn to t and use Jensen's inequality
to obtain

V(t, xt) < V(tn9 xj - Γ W4(\ x(s) \)ds < W*(D) - "I ί h W<(\ x(s) \)ds
Jtn J = n+lJtj-h

n + J / 1 Γtj \

<W$(D)- Σ hWΛ-\ \x(s)\ds\.
.7 = 11+1 \ λ Jtj-h /

We now claim that there is an integer k, n+\<k<n + J, such that

Γίk

(2.10) β \x(s)\ds<σ.
Jtk~h

Indeed, suppose Q\ \{ _ h \ x(s) \ds > σ for all j with « + !</<« + /. Then

V(t, xt) < Wξ(D) - °Σ h W4(σ/hQ) = Wξ(D) - (J-

a contradiction. Thus, (2.10) holds. By (2.8) and (2.10), there is a subsequence {sk} of

{tn} such that

βp \x(s)\ds<σ
J sk-h

and sk-l+h<sk<sk-ί+J(h + L) for n= 1, 2, . . . with s0 = t0. Thus,

Kfe, xsk)< PF2(3σ) + max[^3(||%||^-^]), 3̂(σ)] .

Let Ij = [Sj — h, Sj~]. On each 77 we have either

(A) ||x||[sJ-h^]<M or
(B) I X(TJ) I > M for some t,- e Ij .

If (A) holds, then for t>Sj we have

W,(\ x(f) I) < F(ί, xf) < F(̂  , xsj.) < W2(3σ) + W3(M) < W2(3M) + W3(M) < W,(B) .

This implies that \x(t)\<ε for t>Sj. Now suppose (B) holds. Let Mj=\\x\\ίSj~ktSj]^γ.
We will show that \x(t)\<Mj—m for all t>sj9 where m is given in (2.4). Indeed, if
there exists a £*>£/ such that \x(t*)\ = Mj — m9 then

which contradicts (2.5). Thus, | x(t) \<Mj—m for all t >Sj. Now choose the first positive
integer TV such that \-Nm<M. If (B) holds on /,- for 7= 1, 2, ... TV, then for t>sN we
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have

\x(t, ί0, φ)\<MN—m<MN_1—2m< - <\—Nm<M.

Thus, (A) must occur on some /,- withy < TV +1, that is, \x(t, ί0> φ)\<ε for t>sN + ί>Sj.
Notice that

Therefore, | x(f, ί0, φ)\<ε for t > t0 + T and the proof is complete.

COROLLARY 2.1. Suppose that there exists a continuous functional V: Rx BC(H)

^+, g e G w/fλ #(,?)-> + 00 as s-> — oo, and positive constants y, Λ^e(0, //) swc/z f/z<zf f
following conditions hold for (ί, φ)eRx BC(K).

( i ) ^(| 0(0) |)< F(ί, 0)< ̂ 2(| 0(0) I + |||0|||)+ W3(\ φ \g),

(ii) F(ί,0)<- ^4(10(0)1)
(iii) War) - W3(r) >Qforrε (0, y).

zero solution of (I. I) is UAS.

REMARK 2.2. We can replace the seminorm ||| φ \\\ in the condition (i) of Theorem

2.1 by ^_QOθL(-s)W(\φ(s)\)ds for any φeCg(K) with ^°.aooί(-s)W(γg(s))ds<+ao for
all γ > 0 and get the same result.

In part (i) of Theorem 2.1 we can replace the norm |||0||| by

"0

α(ί, t + s)\φ(s)\ds
0

with α(ί, s) > 0 satisfying the following conditions:
(H3) For each /z>0 there exists a positive constant L depending on h such that

sup{α(ί, t + s): — h<s<Q, teR}<L.
(H4) For each ε>0, there exists />0 such that

-j
α(ί, t + s)ds < ε

— oo

for all teR.
By Burton [3, p. 282, Theorem 4.3.1], there exists a function geG such that

ί-ooβfc t + s)g(s)ds<l for all teR. Moreover, for each ε>0, there exists a constant
/>0 such that

α(ί, t + s)g(s)ds < ε
— 00

for all teR.

THEOREM 2.2. Suppose that there exists a continuous functional V: Rx Cg(H)^>
R+, a seminorm \ \B on Cg having a fading memory with respect to \ g, and positive
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constants y, Ke(Q, H) such that the following conditions hold for (ί, φ)εRx Cg(K).

( i ) W,(\ φ(ΰ) I) < V(t, φ) < W2(\ 0(0) 1 + 10 |α(ί)) + W3(\ φ I*),

(ϋ) ^(i.i)(ί,0)<-^4(l^(0)l),
(iii) W^r) - W3(r) >0forre (0, y).

Then the zero solution 0/(l.l) is 0-UAS.

Since the proof is so similar to that of Theorem 2.1 it will not be given here.

3. Examples. In this section we present two examples to show that the com-
bination of the norms \\\φ\\\, \ φ |α(ί), and | φ \B yields very interesting results in perturba-
tion.

EXAMPLE 3.1. Consider the equation

P
(3.1) x'(t) = A(t)x(t) + C(t, s, x(s))ds+f(t, xt)

J — oo

where

0 a(i)

a: R-+R+ and C: R4-*R2 are continuous. There exists a positive constant β>0 and
a continuous function E: R+^>R+ with EeL1^, + oo) such that

\ C ( t 9 s 9 x ) \ £ Q E ( t - s ) \ x \

for all xeR2. We define α(0 = §* '^ E(u)du and assume αeL^O, +00). By Burton
[3, p. 282] there exists a function geG such that J^^— s)g(s)ds< +00 and
J °. oo oc( — s)g(s)ds < + oo . Without loss of generality, we assume that J °_ ̂  α( — s)g(s)ds < 1 .
For this fixed g e G, we consider the initial function space Cg and assume f:Rx Cg^R2

is well-defined. Then the right-hand side of (3.1) can be written as

D(t, φ) = A(t)φ(0)+ ί° C(ί, ί + s, 0(j))ώ+/(ί, Φ)
J — oo

as a function on ̂  x C .̂ We assume that for each (tθ9 φ)eRx Cg9 there exists a unique
solution x(f) = x(t, ί0, φ) of (3.1) defined on [ί0, + oo). Suppose the following conditions
hold.

( i ) There are positive constants/? and h withph < 1 such that | /(£, φ) \ <p \\ φ \\ [~ft'0]

for all φe Cg with | φ \g<l. Assume that g(s) = 1 for all se [ — h, 0].
(ii) a(t) + (l+qh)Q$ + 00E(s)ds + q< -δ, for some δ>0, where q=p/(\-ph).

Then the zero solution of (3.1) is 0-UAS.

PROOF. For (ί, φ)eRx Cg9 we define
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«(-s)\φ(s)\ds + q
J — h

Notice that h\φ(ty\<$°_h\\φ\\[s^ds<h\\φ\\[-h>°\ Define fΓ1(r) = (l+^A)r, W2(r) = (l +
Q + qhQ)r, W3(r) = qhr, and | φ \B= \\φ\\[~h'°\ It is clear that | \B has a fading memory
with respect to | \ g . Thus,

W,(\ 0(0) |)< V(t, φ)<W2(\ 0(0) I + |||<A I I I ) + W3(\ φ IB) .

Moreover, W1(r)-W3(r)>0 for reR+. Let x(ί) = x(ί, f0> 0) be a solution of (3.1). Then

t-h

If x(0/0, then

WO I

<a(t}\x(t)\ +

For x(f) = 0, we have

I x ' ( t ) \<a(t}\x(t) I + I QE(t-s)\x(s) \ds+\ f(t, xt) | .

Thus,

(3.2) ^3.i)(ί,

+ Q(l + qh) I E(s)ds\ x(f) \ — Q(l+qh) \ E(t-s)\ x(s) \ds

For each fixed s, if || x \\ [s '] = | x(θ) \ with s < θ < t and | x(θ) | > | x(τ) \ for all θ < τ < t, then

(d/dt)\\x\\ls ' ] = 0. If ||x||[s't] = |x(OI, then

(3.3) lW[*.<]<β

«

Substitute (3.3) into (3.2) to obtain

ί* + 00

E(s)ds\ x(t) I
o
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+qh)p\\x\\ίf-hΛ-q\\x\\lt-hΛ=-δ\x(t)\.

All conditions of Theorem 2.1 are satisfied. Thus, the zero solution of (3.1) is g-UAS.

EXAMPLE 3.2. Consider the scalar equation

Γ
J-

(3.4) x'(0 = <0*3(0+ b(t, s)x\s)ds + ak(t)x\t-hk)
J-oo fc=l

where {hk} is a sequence of real numbers with 0<//1 <h2< ' ' ' and the functions a(f),

ak(f), and &(£, 5) are continuous. Suppose there are positive constants δ and M such
that the following conditions are satisfied:

(i) a(f) + \^\b(u,f)\du + ̂ ^\ak(t + hk)\<-δ.

(n) ί -oo ίί+°° I b(u, s) \duds <M. For each h>0 there exists a positive constant L
depending on h such that supfj^0 0 \b(u, s)\du: — h<s<0, teR}<L and for each ε>0,

there exists />0 such that

\b(u, t + s)\duds<ε
J — oo J t

for all teR.

Then the zero solution of (3.4) is UAS.

PROOF. For each φ e BC(R ~, R), define

ro p + oo oo ro

J — co J t k= ί J — fa

Let x(f) = x(t, ί0, 0) be a solution of (3.4). Then

Γt Λ + oo oo [*ί

K(ί, x,) = I x(t) I + I b(u, s) 1 1 x(s) \3duds + £
J — co J t ^ ~ 1 J ί — i- o o ί

and

Γί

x(t)\ί+
J —

|*(ί,s)||Λ(ί)|3<fe+ Σ K(OII*3(i-A)l
fc== 1

Γr

+ I I Z>(u, ί) I Jw| Λ: 3(0 - | έ(ί, 5) 1 1 x(^) |3ώ
/ ί J — oo

Σ |«,(/ + ̂ )||x3(OI- °°
k=l
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Next, define α(ί, 5) = (1/M ) J f

+ °° | ό(w, 5) |dw. Then J'_ ̂  α(ί, s)ώ < 1 and α(ί, s) satisfies (H3)
and (H4). Choose a constant K such that 0 < K< 1 and ^ΣΓ= ί a*hk < 1/2. Then define

\φ\B = ̂ Σΐ=ίakhk\\Φ\\[~hkί0] Thus, for φeBC(R~9R) with ||(£||<^we have

Define W1(r) = r, W2(r) = (M+ l)r, and PF3(r) = Λ>. Then W^r)- W^(r)>0 for r>0. It
remains to show that | \B has a fading memory with respect to || ||.

It is clear that \φ\B<\\Φ\\KΣk = ιa*hk^\\Φ\\' For anY ε>0 and ^>>0, there exists
Λ > 0 such that

hk>h

If [μ>h, iμiΓ00'-"'^/)], we have

ak*hk\\φ\\l~hk'°]

hk<μ hk>μ

hk<μ hk>μ hk>μ

oo I P

'0]KΣ ak*hk + KD Σ «Λ<-ll^'ll["'ί'OI + -
fc=l hk>μ 2 2

We conclude that all conditions of Theorem 2.2 are satisfied and the zero solution of
(3.4) is UAS. This completes the proof.
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