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Abstract. There are eight kinds of classical Schottky spaces of real type of genus
two. In this paper we consider the spaces of the third, sixth and eighth types. This paper
has the following three aims: (1) to represent the shape of the spaces by using multipliers
and cross ratios of the fixed points of two generators; (2) to find generators for the
Schottky modular groups acting on the above spaces; (3) to determine fundamental
regions for the Schottky modular group acting on the spaces.

Introduction. Schottky spaces and their boundaries, and augmented Schottky
spaces were studied by Bers [1], Chuckrow [7], Earle [9], Hejhal [13], Sato [21]
and others. Furthermore, classical Schottky spaces and classical Schottky groups were
studied by Zarrow [30], Jergensen-Marden-Maskit [14], Marden [17] and Sato [25].
In particular, Schottky spaces and classical Schottky groups of real type were studied
by Bobenko [2], Bobenko-Bordag [3] and Sato [24], [26] (see §1 for the definition).
In the case of genus two those spaces and groups are classified into eight types (see
§1). Purzitsky [20] and Sato [24] obtained fundamental regions for Schottky modular
groups acting on the classical Schottky spaces of the first and fourth types, that is, on
the space of marked Fuchsian Schottky groups. Furthermore, Sato [26] gave the shape
of the classical Schottky spaces of the second, fifth and seventh types and determined
fundamental regions for the Schottky modular groups acting on those spaces.

This paper is the final version of the following: the shape of the classical Schottky
spaces of real type of genus two and fundamental regions of the Schottky modular
groups acting on those spaces. Namely, here we will consider the groups and the spaces
of the third, sixth and eighth types as a sequel to our previous papers [24], [26]. This
paper has the following three aims: (1) to represent the shape of the spaces of the third,
sixth and eighth types by using the coordinates introduced in Sato [22] (Theorem 3);
(2) to find generators for the Schottky modular groups acting on the above spaces
(Propositions 5.3 and 5.4); (3) to determine fundamental regions for the Schottky
modular groups (Theorems 4, 5 and 6).

It is an important problem to decide whether or not a two-generator group
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G={Ay, 4,) is a classical Schottky group. We can solve this problem for the case of
two-generator groups of real type by considering the shape of the classical Schottky
spaces of real type given in [24], [26] and this paper. For example, (i) the allegedly
non-classical Schottky group constructed by Zarrow [30] is a group of the second type.
Namely, the group is a classical Schottky group (Sato [25]); (ii) the group due to
Jorgensen [14, p. 11] is a boundary group of the classical Schottky space of the sixth
type.

The second problem is to find the best lower bound of Jergensen’s numbers for
Schottky groups in connection with discreteness of two-generator groups. We solve this
problem for classical Schottky groups of real type by using the Schottky modular groups
and the fundamental regions for the groups given in [24], [26] and this paper (cf.
Gilman [10], [11], [12], Sato [27], [28], [29] for this problem). To be more precise,
let G=<A4,, A,) be a classical Schottky group generated by 4, and 4,. We call

J(G):=|tr*(Ad,) —4|+|tr(4, 4,47 A5 1) 2]

Jorgensen’s number for the marked group G=<4,, 4,) (cf. Jorgensen [14]). Then we
have the following:

(i) J(G)>16if G is of the first type (Gilman [12], Sato [27]),

(ii ) J(G)>16 if G is of the second type (Sato [28]),

(iii) J(G)>4 if G is of the third type (Sato [29]),

(iv) J(G)>4 if G is of the fourth type (Gilman [12], Sato [27]),

(v) J(G)>4( +\/7)2 if G is of the fifth type (Sato [28]),

(vi) J(G)>16 if G is of the sixth type (Sato [29]),

(vil) J(G)>4(1 +ﬁ )? if G is of the seventh type (Sato [28]),

(viii) J(G)>16 if G is of the eighth type (Sato [29]).

Furthermore, it is expected that our results in [24], [26] and this paper are ap-
plicable to calculate the Hausdorff dimension of the limit sets of classical Schottky
groups of real type (see Beardon [2], [3], Bishop-Jones [4], Doyle [8], Phillips-Sarnak
[17] for the Hausdorff dimension of the limit sets of Schottky groups).

In §1 we will state some definitions and consider automorphisms of a free group
on two generators. In §2 we will consider relationship among eight kinds of the classical
Schottky spaces of real type of genus two (Theorem 1). In §3 we will determine the
shape of the classical Schottky spaces of real type of classical generators (Theorem 2)
(see §3 for the definition). In §4 we will determine the shape of the classical Schottky
spaces of the third, sixth and eighth types (Theorem 3). In §5 we will find generators
for the Schottky modular groups acting on those spaces (Propositions 5.3 and 5.4), and
determine fundamental regions for the Schottky modular groups (Theorems 4, 5, and
6). In the final section we will collect the main results in [24], [26] and this paper for
applications to Jorgensen’s numbers and the Hausdorff dimension of the limit sets of
classical Schottky groups. Namely, we will represent generators for eight kinds of the
Schottky modular groups (Theorem 7) and give eight kinds of the fundamental regions
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for the Schottky modular groups (Theorem 8).
Thanks are due to the referees for their careful reading and valuable suggestions.

1. Preliminaries.

1.1. In this section we will state some definitions and list properties of auto-
morphisms of a free group on two generators. Let C;, C,4; ...; C,, C,, be a set of 2g
(9=1) mutually disjoint Jordan curves on the Riemann sphere which comprise the
boundary of a 2g-ply connected region w. Suppose there are g Mobius transformations
Ay, ..., A, which have the property that 4; maps C; onto C,,; and 4;(w) n o=,
1<j<g. Then the g necessarily loxodromic transformations A4, generate a marked
Schottky group G={A,,...,A,> of genus g with » as a fundamental region. In
particular, if all the C; (j=1,2,...,2g) are circles, then we call 4,,..., 4, a set of
classical generators of G. A classical Schottky group is a Schottky group for which there
exists some set of classical generators.

We denote by M6b the group of all Mobius transformations. We say two marked
subgroups G=<{4,, ..., 4,> and G=(A4,, ...,/ig> of Mob to be equivalent if there
exists a Mobius transformation T such that A j=TAjT‘1 for j=1,2,...,9. The
Schottky space (resp. the classical Schottky space) of genus g, denoted by S, (resp. &Y),
is the set of all equivalence classes of marked Schottky groups (resp. marked classical
Schottky groups) of genus g>1.

We denote by I, the set of all equivalence classes [{A4,, A,>] of marked groups
{4, A,) generated by loxodromic transformations 4, and 4, whose fixed points are
all distinct. Let [{A4,, 4,>]1€M,. For j=1, 2, let4; (|4;|>1), p; and p,,; be the mul-
tipliers, the repelling and the attracting fixed points of A;, respectively. We define
t; by setting t;=1/4;. Thus t;e D*={z|0<|z|<1}. We determine a Mé&bius trans-
formation T by T(p;)=0, T(p;)=oc0 and T(p,)=1, and define p by p=T(p,). Thus
pe C—{0, 1}. We can define a mapping a of the space 9, into (D*)* x (C—{0, 1}) by
setting a([<{A4,, 4,0])=(t, t5, p). Then we say [{4,, A,>] represents (t,, t,, p) and
(21, 15, p) corresponds to [{A;, A,>] or (A, A,). We write ¢, =1,(G), t,=t,(G) and
p=p(G). Conversely, 4;, 4, and p, are uniquely determined from a given point 7=
(t1, 3, p)€(D*)?> x (C—{0, 1}) under the normalization condition p, =0, p;=oco0 and
p2=1; we define 4; (j=1,2) and p, by setting A;=1/t; and p,=p, respectively. We
determine A(z), A5(z)e MOb from 7 as follows: the multiplier, the repelling and the
attracting fixed points of 4;(z) are 4;, p; and p,,;, respectively. Thus we obtain a
mapping B of (D*)* x (C—{0, 1}) into M, by setting f(t) =[{4,(z), 4,(z)>]. Then we
note that fa=af=id. Therefore we identify M, with a(9M,). Similarly we can define
the mapping a* of €, or &9 into (D*)* x (C—{0, 1}) by restricting « to this space, and
identify &, (resp. ©9) with a*(S,) (resp. a*(S9)). From now on we denote a(IM,),
a*(S,) and a*(S9) by M,, S, and Y, respectively.

We call G={A4,, A,) a marked group of real type if (t, t,, p)€ R® n M,, that is,
t1, t; and p are all real numbers, where (¢,, ,, p) corresponds to G=<{A4,, A,>. Then



488 H. SATO

we can classify marked groups of real type into eight types as follows.

DerFiNiTION 1.1 (cf. [24]). (1) Gis of the first type (Type I) if ¢, >0, £,>0, p>0.
(2) G is of the second type (Type II) if ¢, >0, ¢, <0, p>0.

(3) G is of the third type (Type III) if ¢, >0, ¢,<0, p<O.

(4) G is of the fourth type (Type IV) if ¢, >0, #,>0, p<O0.

(5) G is of the fifth type (Type V) if ¢, <0, t,>0, p>0.

(6) G is of the sixth type (Type VI) if ¢, <0, ¢, <0, p>0.

(7) G is of the seventh type (Type VII) if ¢, <0, ¢, <0, p<O0.

(8) G is of the eighth type (Type VIII) if ¢, <0, t,>0, p<0.

The components of the coordinates (¢, ¢,, p) have the following meaning. If p is
positive (resp. negative), then the axes of 4, and A, are disjoint (resp. intersect). If
t;>0 (resp. t;<0) for j=1, 2, then 4; leaves the upper half plane invariant (resp. 4;
interchanges the upper and the lower half planes). Concequently, G={4,, 4,) is a
Schottky group of Type I or Type IV, that is, a Fuchsian Schottky group if and only
if both ¢, and ¢, are positive. For geometrical meaning of ¢; and p, see Sato [21], [22],
[23].

For each k=L, 11, ..., VIII, we call the set of all equivalence classes of marked
groups (resp. marked Schottky groups and marked classical Schottky groups) of Type
k the real space (resp. the real Schottky space and the real classical Schottky space) of
Type k, and denote it by RIN, (resp. RS, and R, S)).

1.2. Let G=({A,, 4,) be a marked free group on two generators.

THEOREM A (Neumann [18]). The group ®, of automorphisms of G=<{A,, A,)
has the following presentation:
@,=(N;y, N, Nsl(N2N1N2N3)2=1,
N3_1N2N3N2N1N3N1N2N1=1’ N1N3N1N3=N3N1N3Nl> )

where N, takes (A, A,) 10 (A,, A5 1), N, takes (A,, A,) 10 (A,, A,) and N takes (A,, A3)
to (A, A14,).

We call the mappings N,, N, and N, the Nielsen transformations.

DEerINITION 1.2. Let ¢, ¢, be elements of @,. We say ¢, and ¢, are equivalent
if ¢,(G) is equivalent to ¢,(G) for a Schottky group G, and expressed as ¢, ~ ¢,.

REMARKS. (1) We can regard the Nielsen transformations N; (j=1, 2, 3) and
hence ¢ € @, as automorphisms of the space of all equivalence classes of marked free
groups on two generators (cf. [24]).

(2) From the above (1) and Definition 1.2, we have the following: If (A4,, 4,)> ~

</‘ila f‘iz> and ¢, ~ @, (@1, $,€P,), then ¢,({4,, A2>)~¢2(<1‘ila /iz>)
DEerFINITION 1.3.  Let ¢ be in @, and let m; (j=1, 2) be the numbers of the Nielsen
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transformations N; contained in ¢. If m; +m, is even, we say that ¢ is an orientation
preserving automorphism. The Schottky modular group of genus two, which is denoted
by Mod(&,), is the set of all equivalence classes of orientation preserving automorphisms
of S,. We denote by [P,(S,)] the set of all equivalence classes of automorphisms of
S, and call it the extended Schottky modular group of genus two.

1.3. Let (¢4, t,, p) be the point in S, corresponding to a marked Schottky group
G={(A,,A,>. Let (t,()), t,()), p(j)) be the images of (¢, ?,, p) under the Nielsen
transformations N; (j=1, 2, 3). We set X=p—1,—pt 1, +1t, and Y=p—t,+pt,t,—1;.
Then by straightforward calculations, we have the following.

Lemma 1.1 (Sato [24, Lemma 2.17). (1) t,(1)=t,, t,(1)=t, and p(1)=1/p.
(2) 1=t 1,(2)=t, and p(2)=p.
(B) uB3)=t;, ,3)+1/,3)= Y?*/t;1,(p—1)* —2,and p(3) + 1/p(3) = X */t;p(1 — 1,)* —2.

2. Relationship among the real Schottky spaces.

2.1. In this section we will consider relationship among the real schottky spaces
RS, (k=111 11, IV, V, VI, VII, VIII). Throughout this section, let N; (j=1, 2, 3) be
the Nielsen transformations defined in §1.

ProposiTiION 2.1. Let RS, (k=L 11, ..., VIII) be the Schottky spaces of type k,
and let N; (j=1, 2, 3) be the Nielsen transformations defined in §1, Then

(i) Let t=(ty,t,, p)eERS,. Then Ny(1) is contained in R/S,, N,(1) is con-
tained in RS, and Ni(z) is contained in RiS,, where = +1 or —1.

(ii) Let 1=(ty,t,, p)ERyS,. Then N,(t) is contained in RyS,, N,(1) is con-
tained in RyS, and N(t) is contained in RyS,, where = +1 or —1.

(ili) Let t=(t,t,, p)€RyS,. Then N, (1) is contained in RyS,, N,(t) is con-
tained in Ry, and N(t) is contained in RyS,, where 6= +1 or —1.

(iv) Let t=(ty,t;, p)€ERyS,. Then N,(7) is contained in RyS,, N,(t) is con-
tained in RS, and Ni() is contained in RyS,, where 6= +1 or —1.

(v) Let 1=(t,t,, p)ERyS,. Then N,(1) is contained in RyS,, N,(1) is con-
tained in RyS, and Ni(t) is contained in RyyS,, where 6= +1 or —1.

(vi) Let t=(ty, 5, p)€ERyS,. Then N,(7) is contained in Ry;S,, N,(t) is con-
tained in Ry,S, and N(t) is contained in RyyS,, where = +1 or —1.

(vii) Let 1=(ty,t;, p)€ RyyS,. Then N{(1) is contained in RyyS,, N,(7) is con-
tained in RyyS, and N5(t) is contained in RyS,, where 6= +1 or —1.

(viii) Let t=(t, t5, p) € RyyyS,. Then N,(7) is contained in Ry S,, N,(t) is con-
tained in RyyS, and Ni() is contained in R\,S,, where 6= +1 or —1.

ProoF. (i) Our assertion in the cases (ii), (v) and (vii) are proved in Sato [26].
Here we only prove the case of (iii). Let t=(¢, £,, p) € Ry;S,. Then we easily see N,(1)
is contained in Ry;;S, and N,(t) is contained in Ry;S, by Lemma 1.1 and the definitions
of RS, and Ry, S,. We have only to prove N3(t) is contained in Ry, S,. Set
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1 1 0
A=
“i+lo o)

A= 1 p—ty p(t,—1)
2 alrp-n\1- -1 )
L p—1) I ILp
Then {A4,, A,) represents (¢, t,, p). We set N;(7)=(t¥, t%, p*). Let p and g be the
two solutions of the equation

and

ti(1=1)22 = (p—t,—ptity + 1)z +p(1 —1,)=0.

Then p and ¢ are the fixed points of 4, 4,. We may assume that p and q are the repelling
and the attracting fixed points of A4,4,, respectively. Since pg=p/t, <0 and p*=¢q/p,
we have p* <0. Furthermore, since

B+1/54+2=(p—t,+1,1,p—1,)*/t,1:(p—1)* <0,

we have t%<0. Noting that tf=¢,, we have N;(1)=R;S,. By the same method as
above, we see that N3 (1) € Ry S,.

The proof in the cases (i), (iv), (vi) and (viii) are done similarly to the above, and
so we omit them. q.e.d.

ReMark. For R, &Y (k=1,11, ..., VIII), the same results as above hold.
We have the following theorem by Proposition 2.1 and Corollary to Lemma 2.1.

THEOREM 1. Let N; (j=1, 2, 3) be the Nielsen transformations defined in §1. Let
X be the classical Schottky space R,SS or the Schottky space RS, of type k (k=
LII,..., VIII). Then
(i) N{(RX)=RX for each k=111, ..., VIII.
(ii) (1) NyRX)=RJX for k=I,1V, VI, VII.
(2) Ny(RyX)=RyX and Ny(RyX)=RyX.
(3) Ny(RyX)=RyyX and Ny(RyyX)=RyX.
(iii) (1) N3(RX)=RX for k=1 11, 111, IV.
(2) N3(RyX)=RyyX and N3(RyyX)=RyX.
(3) N3(RyiX)=RyyX and N3(RyyX)=RyX.

3. Shape of R,S3°.

3.1 We denote by ©9° the space of all equivalence classes of the following
marked classical Schottky groups G=<{4,,...,4,> of genus g: 4, ..., 4, is a set of
all classical generators of G (see §1 for the definition). We set R,S3°:=89°n R, &)
(k=L11,..., VIII). We call the space R,G3° the classical Schottky space of real type
of classical generators. In this section we will determine the shape of the spaces
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R,3%°:=3%n R,SY (k=1I, VI, VIII).
Let t=(t,, t,, p)€(D*)* x (C—{0, 1}). Throughout this section we let
A(2) :=z/t,
and
Ax2):={(p—t2)z+p(ta— D}{(1 —12) 2+ (pt,— 1)} .

Then we note that {A4,(z), A,(2)) represents t=(¢,, t,, p).
We set

Myu0)={(t,, 13, p) e R*|(1 +1)((—p) > +1/(—p)*'?)
<=t )(—1)"*+1/(— 1)), p<0,0<t, <1},
My (1)={(t,, t, P)€R3| —(1+1,p")/(p"* +1,) <1, <p,
—1/8<p<—1, —1<1t,<0},
My(=1D)={(t,, t5, P)€R3| — (2 +1)/(1 +1,p'?) <1, <0,
—1<p<—t}, —1<t,<0},
and

(=p)'2 = (=)A= (=t)"*(=p)""*)
(=p) 2+ (=1)"D(A+ (= 1)) (= p)'?)

Mvun(o):{(tp 1, P ER?|0<1,<

1/t,<p<ty, —1<t1<0}.

3.2. THEOREM 2. Let R,&%° (k=1I11, VI, VIII) be the classical Schottky spaces

of classical generators, and let M(0), My(1), My,(—1) and M;(0) be the spaces defined
above. Then

(i) RySP°=My(1) u My(—1),
(ii) Rme(z)0 = Mm(O),
(iii) Rvme(z)0 =M vm(O)-

Proor. (i) 1) First we will show that My, (1) < Ry,S°. Let t=(ty, 5, p)€
Myy(1) and let {A4,, 4,) represent 7. If we can choose four circles C; (j=1,2,3,4)
satisfying the following two conditions, then we easily see that we have 1 e Ry,;S%°:

(1) C; (j=1,2,3,4) are the circles perpendicular to the real axis such that
4,(Cy)=Cj and 4,(C,)=C,.

(2) Forj=1,2,3,4, the points a; and b; satisfy the inequality

a;<a,<0<b;<a,<l<b,<a,<p<b,<b;,

where a; and b; (a;<b;) are the intersection points of the circles C; with the real axis.
We take a; and b; (j=1,2,3,4) as follows: a,=—p'? b,=—t,p'*—te;
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ay=—1,p"7+e, by=A;'(—p'?/ty—¢); a3=—p'P—e, by=—p'?t;; a,=A5(a;)=
Ay(=t1p"+e)={(p— 1 )(—t1p' P + &)+ p(t, = D}/ {(1 —t)(— 110" + )+ (pt,— 1)}, by =
—p*?/t, —¢, where £>0 is chosen sufficiently small. Then we easily see the following
by noting 1 <p<1/t3:

a;<a;<0<b,<a,<l<b,, a,<p<b,<b;.

Since 1<p?< —(1+1,1,)/(t; +1,), we can show by straightforward calculations that
b, <a, for sufficiently small > 0. Furthermore, we easily see that a; = A4(b,), b5 =A4(a,),
a,=A,(a,) and b, = A,(b,), that is, 4,(C;)=C; and 4,(C;)=C,.

Similarly, we can prove My;(—1) S Ry;S9°. Hence we have My, (1) U My (—1) <
Ry SS°.

2) Next we show that My,(1) U My,(—1) 2 Ry, S9°. Let 1=(¢,, t,, p) e Ry;S2°. It
is easily seen that if Te Ry,&3°, then 1 <p<1/t? and 1 <p<1/t3 for p>1,and ti<p<]1
and t2<p<1 for 0<p<1. We will show that if 7¢ My,(1) U My,(—1), then 1¢ Ry,;S%°.
We only consider the case where p> 1, since we can similarly treat the case where 0 <
p<l.

Suppose that t¢ My (1), 1<p<1/t? and 1<p<ti Then we have t,<—(1+
p 2t ))(p 1 +1,). If t,=—(1+p'2t)/(p'/? +1,), then we see by straightforward cal-
culations that A;2A42 is parabolic, and hence 7 is not contained in Ry,&3°. If
—(=p'2t))(pV*—t) <ty < —(1+p'%t,)/(p'* +1¢,), then A] 2A2 is elliptic and hence
7 is not contained in Ry,&%°. Furthermore, if z,< —1/p'/?, then 7 is not a point of
Ry S9°, since 1 <p<1/t3. Noting that —(1 —p'/%t,)/(p'*—t,)< —1/p'/?, we have that
if t¢ My(1) and p>1, then 7¢ Ry;S9°. A similar argument shows that if 1¢ My;(—1)
and p<1, then 7¢ Ry,S9°. Hence we have My (1) U My,(—1) 2 Ry;S3%°. By combining
1) with 2) we have the desired result Ry;S9° = My, (1) u My, (—1).

(ii) 1) First we will show that M(0) < R;;S9°. Let 1=(t, t,, p) € My(0) and
let {4,, A,) represent 7. If we can choose four circles C; (j=1, 2, 3, 4) satisfying the
following two conditions, then we have te Ry S5°:

(1) C;(j=1,2,3, 4)are circles perpendicular to the real axis such that 4,(C,)=C,
and 4,(C,)=C,.

(2) Forj=1,2, 3,4, the points a; and b; satisfy the inequality

az<a,<p<bs<a;<0<b,<a,<l<b,<b;

where a; and b; (a;<b;) are the intersection points of the circles C; with the real axis.

We take a; and b; (j=1,2,3,4) as follows: a,=A4,(q)+¢, b,=t,9—¢; a,=1,q,
by=q; ay=A,(9)/t; +¢/t, by=q—¢/t;; ay=A,(t,19), by=A(q), where g={(1+1;)(1—
pt,)}/2t,(1—1,) and &>0 is a constant chosen to be sufficiently small. Then we easily
see the following:

a,<p<b,<a;<0<b,<a,<l<b,<b;.

Since (1+2)((—p)'?+1/(—p)"*) <A —t)((—1)*+1/(—1,)"'?), we can show by
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straightforward calculations that a; <a, for sufficiently small ¢>0. Furthermore, we
easily see that a;=A4,(a,), b3=A4,(b,), a,=A,(a,;) and b, = A4,(b,), that is, C;=4,(C,)
and C,=4,(C,). Hence we have My;(0) < R;,S2°.

2) We can similarly prove My(0) 2 R;S3° to the above (i) 2), and so omit the
proof. By combining 1) with 2), we have the desired result R;;S3° = M;(0).

(iii) 1) First we will show that My (0) S Ry S3°. Let t=(ty, t,, p) € Myy(0)
and let {A4,, A, represent 7. If we can choose four circles C; (j=1, 2, 3, 4) satisfying
the following two conditions, then we easily see T € Ry;;S3°:

(1) C; (j=1,2,3,4) are the circles perpendicular to the real axis such that
A1(C)=Cj and 4,(C))=C,.

(2) Forj=1,2,3,4, the points a; and b; satisfy the inequality

az<a,<p<b,<a;<0<bi<a,<l<b,<b,

where a; and b; (a;<b;) are the intersection points of the circles C; with the real axis.

We take a;and b; (j=1, 2, 3, 4) as follows: a, = —(—t,)*(—p)*/?, by =(—1)/*(— p)'/%
ay=(—t)"2(—p)"? +e&, by=(—p)'*[(—1)"* —& a3 = —(—p)*[(—1)'%, by=(—p)'?/
(—t)"% a4=A2((_P)1/2/(_11)1/2_3), b4=A2((_t1)1/2(_P)1/2+8), where &>0 is
chosen to be sufficiently small. Then we easily see the following:

a,<p<b,, a;,<0<b;<a,<l<b,<b;.

Since

(=) = (= 1) )1 (1) (= p)'P2)
O S ) S (o By + (=) (= p))

we can show by straightforward calculations that a3 <a, and b, <a, for a sufficiently
small ¢>0. Furthermore, we easily see that a;=A4,(b,), b;=4,(a,), a,=A,(b,), and
by=A4,(a,), that is, C;=4,(C,) and C,=A4,(C,). Hence we have My;;(0) S Ry;S5°.

2) We can similarly prove My;(0) 2 Ry S9° to the above (i) 2), and so omit the
proof. By combining 1) with 2), we have the desired result Ry;;S3°=Myyu(0). q.e.d.

4. The domains of existence.

4.1. In this section we will determine the shape of the real classical Schottky
spaces RS9, Ry;S9 and Ry &9 in R3. We set

Ry={(ty, 15, p)eR?*|0<1t, <1, —1<1,<0, p<0}
Ry ={(t1, t;, p)eR?*| —1<1, <0, —1<1,<0, p>0}
Rim={(t1, 1, p)eR?| —1<1,<0,0<1,<1, p<0}.
Refer to the previous section for the definitions of My (0), My,(1), My(—1) and

My1y(0). Throughout this section let N; (j=1, 2, 3) be the Nielsen transformations
defined in §1. By straightforward calculations we have the following.
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PrOPOSITION 4.1.  Let My(0), My (1), My — 1) and My(0) be the domains defined
in §3, and let N; (j=1, 2, 3) be the Nielsen transformations defined in §1. Then

(1) N My(0)=My(0), N3My(0)=My(0), N My(0)=M v(0).

() N My (1)=My(—1), N\My(—1) = My(1), NiMy(—1)=My(1), N,My(1)=
MVI(I)a NoyMy(— D=My(-1), NiMy(—-1)= My1(0).

3 N M vin(0) = Myy(0), Ny Mypy(0) = My(0), NsM vm(O) =My(1).

4.2. Inductively we now define the following domains. Let § denote the number
+1or —1, and let —§ denote —1 or +1 according as § is +1 or —1.

We define My,(6(2k+1)) := N5 M (61) and My (62k) = N3**Myy(0) for k=1,
2,3,..., where Mypy(—0)=Myy(0). Then we easily see the following.

PrOPOSITION 4.2. Let N, be the Nielsen transformation defined in §1. Then
(1) N iMy(6(2k +1))= My(—6(2k +1)).
(2)  NiMy(02k) = Myy(—062k).

Next we define some domains M,(n,, n,) (/=1III, VI, VIII) of length two.

DErINITION 4.1. Domains M;(1, n,), and M,(—1, —n,) (/=1I1, VI, VIII) are de-
fined as follows. (1) My (1, no) : =N, Myyy(no), Mu(—1, —no) : =N Myy(—no), where
no=2k (k=0,1,2,...).

(2) My(1,no) :=NyMy(no), My(—1, —no):=N,My(—no), where no=2k—1
(k=1,2,3,..)).

(3) Myy(1, ng) :=N,My(ng) = N, My(0) = My(0), Myy(—1, —no) :=Myy(—0)
for ng=2k (k=0,1,2,...).

REMARKS. By Proposition 4.1 we have M, (1, 0) = M;(0), My(1, 1)=My(1) and
My (=1, —=1)=My(-1).

DErFINITION 4.2. Domains Myy(k+1, ny), My(—(k+1), —ng), My (2k+1,ng),
My(—Qk+1), —ng), Myu(2k, ny), Myy(—2k, —n,) are defined as follows. (1) Mk +
1, no) :=NsMy(1, ng), My(—(k+1), —ng) :=N3*My(—1, —ny), (k=0,1,2,...), where
no=2m (m=0,1,2,...).

2) My 2k+1,n0):= N3*Myy(1, no), Myy(—(2k+1), —ng) := N3 *My(—1, —ny),
(k=1,2,3,...), where no=2k—1 (k=1,2,3,...).

(3) Myy(2k, ng) :=N3My(2k—1,n5), Myy(—2k, —ng):=N3 ' My(—Q2k+1), —ny),
(k=1,2,3,...), where no=2m—1 (m=1,2,3,...).

We easily see that N, M (n,, no)=M,(—n,, —ny) (I=I1I1I, VI, VIII).

DerFiNiTION 4.3. Domains M,(0, ny), and M;(—0, —n,) (/=1II, VI, VIII) are de-
fined as follows. (1) Myy(0, ny) := N3 ' My (1, ng), My(—0, —ng)=N3My(—1, —ny),
no=2m—1@m=1,2,3,...).

(2) M0, ng) :=N3z ' My(1, no), My(—0, —no)=N3My(—1, —ny), ng=2m (m=
0,1,2,...).
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(3) Myy(0,ng):=N3 lem(la no), My(—0, —no)=N;3;Myy(—1, —ng), ng=2m (m=
0,1,2,...).

REMARK.  My(0, ng)=N3 "Mym(1, no)=N3 IN,My(0)=N3 ' My(0) = Myy(—1).

4.3. We will define some domains M,(n, ..., #y, ny) ({=II1, VI, VIII) of length
k+1 (k>2). Let n, and n, be the integers as in §4.2 for each case III, VI, VIII. For
simplicity, we write

(s - - 1) if 6=+1
(=M ..., —ng)  if 6=—1.

DEFINITION 4.4. Let k>2 be integers. Domains M,(6(1, ny, ..., ny, ng)) (I=1II,
VI, VIII) are defined as follows.

(1) My(3(1, ny, ..., 0y, n0)) :=NoMyy(0(ny, .., ny, no)).

Q) M6, n, ..., ny,n0)) i =NyMy(0(mys . ..., 1y, np)).

(3) Myu(d(1, ny, ..., 1y, o)) i =N My(8(ny, ..., ny, no)).

DEFINITION 4.5. Domains M,(6(0, ny, . .., ny, ny)) (=111, VI, VIII) are defined as
follows.

(1) Myy(6(0, ny, ..., ny, ng)) :=N3°My(6(1, ny, ..., ny, 1))

(2) My(5(0, ny, ..., 0y, 1)) i =N3°Myy(6(1, ny, ..., ny, ng)).

(3) M50, my, ..., ny, np)) :=N3°My(3(1, ny, ..., ny, no)).

DErFINITION 4.6. Let k>2 be integers. Domains M,(6(m+1, ny, ..., n,, ng)) (I=
III, VI, VIII) are defined as follows. For m=1,2,3, ...,

(1) My(dm+1,n,...,n,,n) :=NMy(6(1, ny, ..., ny, ng)).

(2) My(6Cm+1,ny, ..., 10y, ny):=NP"My(6(1, ny, ..., ny, no)).

B) Myu(6C2m,ny, ..., ny, ny)) i=NP"My(5(0, ny, ..., ny, ng)).

4 Myy(6Cm+1,ny, ..., 10y, ng)) :=NP"My(6Qm—1, ny, ..., ny, ng)).

(5) Myw(6@2m, ny, ..., ny, ng)) :=N§2"‘Mvm(5(0, iy « o o5 By, Ng)).

4.4. Next we will consider relationship among the domains defined in the above.
By replacing Types II, V, and VII in the previous paper [26] with Types III, VIII
and VI, respectively and replacing the surfaces Fyf (ny, ..., n, ny), Fy(n, ..., ny, no)
and Fyy(ny, ..., ny, ny) with the domains My(ny, . . ., ny, no), Myy(#y, ..., ny, ny) and
My, ..., ny, ng), respectively, we have the same relationship among the domains
Mn,, ..., ny, ng) as in §5 in the paper [26]. We will omit the detail here.

Noting that Ry &3 = J {#(RuS3%)|p € Mod ©,} n Riy;, RyiS3 = {$(RviS3%) | €
Mod &,} n Ry and Ry S9 = {#(RyinS3°%)| ¢ e Mod S,} n Ry, we have the following
theorem by Theorem 2.

6(nk,...,no)={

THEOREM 3. Let R,GY (I=II1, VI, VIII) be the classical Schottky spaces of type
and let M,(ny, ..., ny, ny) be the domains defined in §§4.2 and 4.3. Then

Rm@(2)= U {Mlll(nka ey Ny, no)|n0= +2m(m=0,1,2,..)),
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n=0, +1, +2,...(j=1,2,...,k); k=0,1,2,...};

RV|62=U{MV|(VI", ey Ry, n0)|n0= i(zm_l) (m=l’2a 33 '“),
n;=0, +1, £2,...(j=1,2,...,k); k=0, 1,2,...};

Rvmeo=U{Mvm(nk, sy Py, n0)|”0= +2m (m=0,1,2,...),
n;=0, +1, +2,...(j=1,2,...,k); k=0,1,2,...}.

5. Fundamental regions.

5.1. In this section we will determine fundamental regions for [@,] and Mod(S9)
acting on RS9, RyS) and Ry S9, respectively. We denote by Mod(R,S9) (resp.
[R,®,]) the restriction of Mod(S?) (resp. [®,]) to R, &), that is, the set of all equivalence
classes of orientation preserving automorphisms (resp. the set of all equivalence classes
of automorphisms) in R, &9 for /=1III, VI, VIII. We call Mod(R,S9) and [R,®,] the
Schottky modular group of type | and the extended Schottky modular group of type I,
respectively.

Throughout this section, let N; (j=1, 2, 3) be the Nielsen transformations defined
in §1. We denote by [¢] the equivalence class of ¢ € #,. We use the symbol ¢ for an
element [¢] in [®,] or Mod(S9) when there is no fear of confusion. We denote by
Wb, ¢2,..., ¢, aword on ¢, ¢,, ..., »,. We denote by SW(¢,, ¢,, ..., p,) (resp.
S[W(dy, ¢,y ..., ¢,)] the set of all words on ¢, ¢, ..., ¢, (resp. the set of all
equivalence classes of words on ¢4, ¢,, ..., ¢,). We easily see the following two lemmas
by Theorem 1.

LemMMA 5.1. Let Mod(R,S9) and [R,®,] (I=111, VI, VIII) be the Schottky modular
group and the extended Schottky modular group of type I, respectively, and let N, and
N, be the Nielsen transformations defined in §1. If ¢ € Mod(RyyS9) (resp. ¢ € [Ry®,)),
then N,¢pN, e Mod(RSY) (resp. N,@dN,e[Ry®P,]) and N3 N, e Mod(Ry,S?) (resp.
N3'¢N;e[Ry;D,)).

LEMMA 5.2. Let Mod(R,;&9), [R,®,] (I=111, V1, VIII), N, and N, be as in Lemma
5.1. Then

(1) Ify eMod(RySY) (resp. Y € [Ryy®,]), then there exists ¢ € Mod(RyS?) (resp.
¢ € [Ryy®,]) with y=N,¢N; .

(2) If yeMod(RySY) (resp. Y[Ry ®,]), then there exists ¢ eMod(RyyS9)
(resp. ¢ €[Ry®,]) with y=N3'$N;.

PROPOSITION 5.1. Let Mod(R,S9), [R,®,] (I=111, VI, VIII), N, and N, be as in
Lemma 5.1. Then

(1) Mod(Ryy&9)=N,(Mod(RyyS))N, and [Ry®;]=N,[Ryy®,]N,.

(2) Mod(Ry,83)=N3 ' (Mod(Ry@9)N; and [Ry;®,]= N3 '[Ryy®P;]N;.

Proor. This follows from Lemmas 5.1 and 5.2. q.e.d.
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5.2. By straightforward calculations, we have the following lemma and proposi-
tion.

Lemma 5.3. Let N; (j=1, 2, 3) be the Nielsen transformations defined in §1. Then
(1) Nl(Rvul@(z)) = Rvmeg

(2) (N, W(Ny, N3)N)(RymS3) = Ry ).

(3) (Nai ! W (N, Nz)N;Tr 1)(Rvme(z)) = Rvmeg-

PROPOSITION 5.2. Let [Ryy@,] be the extended Schottky modular group of type
VIII. Then the set [Ryyu®,] consists of all equivalence classes of words on N, N,W,N,,
N3'WyN3' with W,e SW[N,, N;], Wye SW[N,, N,], where SW[N,, N,] (resp.
SWI[N,, N5]) is the set of all equivalence classes of words on N, and N, (resp. N, and N3).

By the same method as in Lemmas 7.4 and 7.5 in Sato [26] we have the following
lemmas.

LemmA 5.4. Let N;(j=1, 2, 3) be the Nielsen transformations defined in §1. Then
the group {[N,W,N,]1|W,e SW(N,, N3)} is generated by [N,] and [N,N;N,], where
SW (N, N3) is the set of all equivalence classes of words on N, and N,.

LemMA 5.5. Let N; (j=1, 2, 3) be the Nielsen transformations defined in §1. Then

(1) The group {[NsW,N;]|W,eSW(N,, N,)} is generated by [N;N3*N,](=
[N32]), [NsNN3](=[N,]) and [N5N,N;], where SW(N,, N,) is the set of all
equivalence classes of words on N, and N.

(2) The group {[N;'W,N;]|W,e SW(N,, N,)} is generated by [N3'N,N;] and
[N;'N,N;], where SW(N,, N;) is the set of all equivalence classes of words on N,
and Nj.

By Proposition 5.2., Lemmas 5.4 and 5.5, we have the following two propositions.
The proofs are omitted, since the propositions are proved similarly to Propositions 7.3
and 7.4 in [26] by noting that N3 'N,N;~ N,N3.

PROPOSITION 5.3. Let Mod(Ry;;S?) and [Ryy®,] be the Schottky modular group
and the extended Schottky modular group of type VIII, and let N; (j=1, 2, 3) be the
Nielsen transformations defined in §1. Then

(1) [Rym®,] is generated by [N,], [N3], and [N,N;N,].

(2) Mod(RyySY) is generated by [N3] and [N,N;N,].

PROPOSITION 5.4. Let Mod(R,S9) and [R,®,] (I=111, VI) be the Schottky modular
group and the extended Schottky modular group of type [, and let N; (j=1, 2, 3) be the
Nielsen transformations defined in §1. Then

(1) (i) [Ry®,] is generated by [N,], [N,N3N,] and [N,].

(i) Mod(RySY) is generated by [N5] and [N,N3N,].
(2 (i) [Rw®,] is generated by [N,], [N;N,] and [N3]1(=[N,N3*N,]).
(i) Mod(Ry,S9) is generated by [N3] and [N,N,].
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5.3.  We will introduce some surfaces in R3;:
By :={(t;, 1, p)e My(—= )|ty =1, {(1, +1/1})/2} 72 <p<1, —1<t;<0};
B, :={(t1, 1, p) e My(D)|t, =1, 1 <p<{(t; +1/11)/2}?, —1 <1, <0} ;
By :={(ty, 5, p)eMy(—D)|p=(t,—1)/(1 —1,1,), t,0<t,<0, —1<t, <0},
where
to=[1—4t, +t2—{(1 —4t, +13)*—4t}}1*])/2t, .
We note that ¢, <t,,<0 in this case.
B, :={(ty, 11, p)eMy(D|p=(1—1,1,)/(t;—1y), 1,0<t, <0, —1<t, <0} ;
Bs :={(t1, 13, p)€IMy(—1)|1,=0, =1, <p<1, —1 <1, <0} ;
Be:={(t1, 15, p)eOMy(1)|1,=0, 1 <p< —1/t;, —1<t;<0};
B, :={(ty, t5, p)€OMy(—1)|p' 2= —(t; +1)/(1 + 1115), t; <t <tpo, —1 <1, <0} ;
By :={(1y, 3, p) €My (1) | p* P = — (1 +1,8) (1, + 1,), ty <1, <tp9, —1 <1, <0} ;
By :={(t,, 15, p)€OMy(—1) n My ()| p=1, t; <1, <159, —1<1t,; <0} .
By Lemma 1.1 we have

LemMA 5.6. Let By, B,, By and B, be the surfaces defined in the above, and let
N, and N, be the Nielsen transformations defined in §1. Then N,N,(B,)=B, and
N3(B3)=B,.

We denote by Fy([®,]) (resp. Fui([P,])) the subregions in My,(—1) (resp.
My(1)) bounded by the surfaces B,, B, Bs, B, and By (resp. B,, B,, Bg, Bg and By).
Then Fyy([®,]) = N (Fy[®,]). We set Fy([P,]) = Fy([®,]) and Fy(S9)=Fy([®,]) v
Fy([®,]). Then we have the following by Proposition 5.4(2) and Lemma 5.6.

THEOREM 4. Let Mod(Ry,3Y) and [Ry,®,] be the Schottky modular group and the
extended Schottky modular group of type V1, and let Fy(S9) and Fy([®,]) be the domains
defined in the above. Then

(1) Fy(SY) is a fundamental region in RS9 for Mod(Ry,S9).

(2) Fy([®,)) is a fundamental region in RS9 for [Ry;®P,].

5.4. Next we will describe fundamental regions in RS9 for Mod(R;;S9) and
[Ry®,]. We define some surfaces:

By :={(t}, t3, p) € RyC3|p= (1, —t1/H)/(1 = t}%t,), 1,, <1, <0,0<1, <1},
where t,; =1,,(t,) is the t,-coordinate of the intersection point of two curves

p=(t,—t1*)/(1 —t{"%t,)
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and

A+1)(=p) 2+ 1/(=p))=(1=1)((— 1) +1/(=12)"?)

for 0<t,<1;
B, :={(t;, 15, P)GRllle(z)ll’:(l —1P) (1, —t17%), 15, <1,<0,0<t; < 1};

By :={(t1, 13, p) € Ru@3 | (1 +1)((—= )2 +1/(=p)'"?)
=(1=1)(—= )2+ 1/(=1)'?), p<0,0<t, <1} ;
B4- :2{(11, t2, p)eaRllleth:O’ _1<P< _t}/Za 0<t1 <1} 5
BS :={(t1a t25 p)eaRllleg“Z:O, _l/ti/2<p—<— - 13 0<t1 < 1} 5
B :={(t1, 15, P RSy |p=—1, —((1 —t1D)/(A +1}*))* <1,<0,0<1, <1} .
Let Fiy(S9) (resp. Fiy([®,]) be the subregions of My,(0) bounded by B,, B,, B,
B, and Bs (resp. B,, B;, B, and By).
We can show the following theorem by a similar argument to the proof of

Theorem 4. Namely, noting that B,=N;(B,), we have the theorem by Proposition
5.4(1).

THEOREM 5. Let Mod(Ry;S?) and [Ryy®,] be the Schottky modular group and the
extended Schottky modular group of type 111, and let Fy(S9) and Fyy([®,]) be the domains
defined in the above. Then

(1) Fy(SY) is a fundamental region in RS9 for Mod(RS9).

(2) Fy([®,)) is a fundamental region in Ry for [Ry®,].

5.5. Finally we will describe fundamental regions in Ry &% for Mod(Ry;€9)
and Ryj[@,]. We set

(=p)' = (=1 = (=1)*(=p)'")

Tt D = o ey B+ (1) (= p) )

and
Ty(ty, p)=(t1—p)* /(1 =t1p)* .
We define some surfaces:
By :={(ty, t3, p) e My(0) |1, =T,(t, p), py <p<ty, —1<t; <0},

where p, =p(¢,) is the p-coordinate of the intersection point of two curves ¢, =T(;, p)
and t,=T,(t,, p) for —1<t,<0;

B, :={(ty, 15, P)EMyy(0)| 1, =T(t;, p)~ 1, 1/t <p<l/p;, —1<t;<0};
By :={(t;, 15, p) € OMyy(0)|t, =T (ty, p), —1<p<p;, —1<t,<0};
By :={(t;, t,, P)ean111(0)|t2=T1(t1,P), l/py<p<—1, —1<t,<0};
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By :={(t,, t5, p) € OMyy(0)|1, =0, —1<p<t;, —1<t,<0};
Bg:={(t1, t, P) € IMyyy(0)[1,=0, 1/t; <p< —1, —=1<t, <0} ;

B, :={(t;, t, P)eMvm(O)|P= —1L0<t,<{(1=(=t)"®/1+(—1,)"H}?,
—1<t,<0}.

Let Fyy(3S9) (resp. Fyy([@,])) be the subregions in Ry;;S? bounded by B, B,,
B, B,, Bs and B¢ (resp. B,, B;, Bs and B,).

We can show the following theorem by an entirely similar argument to the proof
of Theorem 4. Namely, noting that B,=N,N;N,(B,), we can prove the theorem by
Proposition 5.3.

THEOREM 6. Let Mod(RyyS9) and [Ryy®,] be the Schottky modular group and
the extended Schottky modular group of type VIII, and let Fyy(S3) and Fyy([,]) be
the domains defined in the above. Then

(1) Fyy(SY) is a fundamental region in Ry &3 for Mod(RySY).

(2) Fyw([D,]) is a fundamental region in RyyySY for [Ryy®,].

6. Conclusion.

6.1. In this section we will collect together the main results in [24], [26] and this
paper and apply them to calculate Jorgensen’s numbers as in [27], [28], [29] and the
Hausdorft dimensions of the limit sets of Schottky groups. Namely, we will list the
fundamental regions F,(Mod(&9)) (/=L 11, ..., VIII) for classical Schottky groups of
real type of genus two and list generators of the Schottky modular groups Mod(R,S%).

THEOREM 7. Let F;(Mod(&9)) (I=1,11, ..., VIII) be the fundamental regions for
classical Schottky groups Mod(R,SY) of type I. Then
(1) F(Mod(&9)={(t1, t2, p) e RE3|p(t, 1) <p<p(ty, 1),
p#1,0<t,<1,0<t, <1},
where p(t;, t;) =(1+t121,)/(t1* +1,).
(2) Fy(Mod(€9)= {(ti, t2, p) € Rne(z)l(l +ei20)/(t + 1) <p
<{(1 =t} ))(t1* —1,)}*, —1<1,<0,0<t, <1}.
() FuMod(&9))={(t,, t5, p) € Ry@3 | p*(Ty, Ty)<p< -1,
t3(ty, p)<t,<0,0<t, <1},
where p*(Ty, T,)={4—T T, + (4 =T *4—T2)'?}/AT,~T)), Ty=t,+1/t;, T,=
t,+1/ty, and t4(t,, t,) is t, satisfying the equation (1+1){(—p)'*+1/(—p)*?*}=(1-
t{(— 1) 2+ 1/(—1,)'.
(4 Fy(Mod(89)={(t1, 12, p) € Ry@3| p*(t1, t2) <p
<1/p*(ty, ty), t,<ty, 0<t,<t¥(ty, p), 0<t; <1},
where p*(t,, t,) =(1—1t12t,)/(t, —t}/?) and ti(t,, p) is t, satisfying the equation 2t} t3/*(1 —
p)=(=p)'?(1 =t )(1—-1).
(5) Fy(Mod(&9))={(t1, 1, p) € RvS3|(1 =11 1,) (1, — 1) <p
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<{A—=t3t))(t3*—1))}%, 0<t,<1, —1<t, <0}.

(6) Fy(Mod(€9))={(t1, 15, p) € Ryy@Y| (12— 1,)/[(1 — t31,) < p <(1 =t 1,) [(t, — 1),
{=+ )0+ 1) <p<{—=(1+1,1,)/(1; +1,)}%,
p#1,t,<t,<0, —1<t;<0}.

(1) FyuMod(€9)) ={(t,, t,, p) € RyySY|
{(—t)"2+(=1)2} /A = (= 1) 3 (= 1)'?)
<(=p)P <= (=t ) H(= 1)) U(= 1) 2+ (—1) ")),
1,<ty, —1<t;<0}.

(8) Fym(Mod(€9))={(t,, 12, p) € RyyS3|0 <1,

<t)(ty, p), 1/t;<p<—1, —1<t,<0},

where t,(t1, p)={(—p)'"* = (= 1) 2H{1 = (=1)"2(=p)2}{(=p) > + (=1 "P)(1 +
(1) (—p)'2}.

6.2. THeoreM 8. Let N;(j=1, 2, 3) be the Nielsen transformations defined in §1,

that is, Ny: (Ay, A)) (AT Y, Ay), Nyt (Ay, A))—(A,, Ay) and Ny: (Ay, A,)—(A4,, A,A,).
Let Mod(R,&?) (I=1,11, ..., VIII) be the Schottky modular group of type I. Then

(1]
[2]

[31
[4]
[5]
[6]
[7]

[8]
[91]

[10]

(]

(1) Mod(R&%)=<N,;N3N,, N\N,).
(2) Mod(RyS9)=(N;, N,N3N,).

(3) Mod(Ry &%) =<N3,N,N3N,>.

(4) Mod(Ry&9)=(N;N;N,, N,N,>.
(5) Mod(RyS9)={N3, N,N3N,).
(6) Mod(Ry,;&3)=<{N3, N,N,).

(7) Mod(Ry;S9) = <N§, NyN5).

(8) Mod(RyySY) = <N:24’ NyN3N,».
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