CLASSICAL SCHOTTKY GROUPS OF REAL TYPE OF GENUS TWO, III

Dedicated to Professor Fumiyuki Maeda on his sixtieth birthday

Hiroki Sato

(Received July 25, 1995, revised July 1, 1997)

Abstract

There are eight kinds of classical Schottky spaces of real type of genus two. In this paper we consider the spaces of the third, sixth and eighth types. This paper has the following three aims: (1) to represent the shape of the spaces by using multipliers and cross ratios of the fixed points of two generators; (2) to find generators for the Schottky modular groups acting on the above spaces; (3) to determine fundamental regions for the Schottky modular group acting on the spaces.

Introduction. Schottky spaces and their boundaries, and augmented Schottky spaces were studied by Bers [1], Chuckrow [7], Earle [9], Hejhal [13], Sato [21] and others. Furthermore, classical Schottky spaces and classical Schottky groups were studied by Zarrow [30], Jørgensen-Marden-Maskit [14], Marden [17] and Sato [25]. In particular, Schottky spaces and classical Schottky groups of real type were studied by Bobenko [2], Bobenko-Bordag [3] and Sato [24], [26] (see §1 for the definition). In the case of genus two those spaces and groups are classified into eight types (see §1). Purzitsky [20] and Sato [24] obtained fundamental regions for Schottky modular groups acting on the classical Schottky spaces of the first and fourth types, that is, on the space of marked Fuchsian Schottky groups. Furthermore, Sato [26] gave the shape of the classical Schottky spaces of the second, fifth and seventh types and determined fundamental regions for the Schottky modular groups acting on those spaces.

This paper is the final version of the following: the shape of the classical Schottky spaces of real type of genus two and fundamental regions of the Schottky modular groups acting on those spaces. Namely, here we will consider the groups and the spaces of the third, sixth and eighth types as a sequel to our previous papers [24], [26]. This paper has the following three aims: (1) to represent the shape of the spaces of the third, sixth and eighth types by using the coordinates introduced in Sato [22] (Theorem 3); (2) to find generators for the Schottky modular groups acting on the above spaces (Propositions 5.3 and 5.4); (3) to determine fundamental regions for the Schottky modular groups (Theorems 4, 5 and 6).

It is an important problem to decide whether or not a two-generator group

[^0]$G=\left\langle A_{1}, A_{2}\right\rangle$ is a classical Schottky group. We can solve this problem for the case of two-generator groups of real type by considering the shape of the classical Schottky spaces of real type given in [24], [26] and this paper. For example, (i) the allegedly non-classical Schottky group constructed by Zarrow [30] is a group of the second type. Namely, the group is a classical Schottky group (Sato [25]); (ii) the group due to Jørgensen [14, p. 11] is a boundary group of the classical Schottky space of the sixth type.

The second problem is to find the best lower bound of Jørgensen's numbers for Schottky groups in connection with discreteness of two-generator groups. We solve this problem for classical Schottky groups of real type by using the Schottky modular groups and the fundamental regions for the groups given in [24], [26] and this paper (cf. Gilman [10], [11], [12], Sato [27], [28], [29] for this problem). To be more precise, let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a classical Schottky group generated by A_{1} and A_{2}. We call

$$
J(G):=\left|\operatorname{tr}^{2}\left(A_{1}\right)-4\right|+\left|\operatorname{tr}\left(A_{1} A_{2} A_{1}^{-1} A_{2}^{-1}\right)-2\right|
$$

Jorgensen's number for the marked group $G=\left\langle A_{1}, A_{2}\right\rangle$ (cf. Jørgensen [14]). Then we have the following:
(i) $J(G)>16$ if G is of the first type (Gilman [12], Sato [27]),
(ii) $J(G)>16$ if G is of the second type (Sato [28]),
(iii) $J(G)>4$ if G is of the third type (Sato [29]),
(iv) $J(G)>4$ if G is of the fourth type (Gilman [12], Sato [27]),
(v) $J(G)>4(1+\sqrt{2})^{2}$ if G is of the fifth type (Sato [28]),
(vi) $J(G)>16$ if G is of the sixth type (Sato [29]),
(vii) $J(G)>4(1+\sqrt{2})^{2}$ if G is of the seventh type (Sato [28]),
(viii) $J(G)>16$ if G is of the eighth type (Sato [29]).

Furthermore, it is expected that our results in [24], [26] and this paper are applicable to calculate the Hausdorff dimension of the limit sets of classical Schottky groups of real type (see Beardon [2], [3], Bishop-Jones [4], Doyle [8], Phillips-Sarnak [17] for the Hausdorff dimension of the limit sets of Schottky groups).

In §1 we will state some definitions and consider automorphisms of a free group on two generators. In $\S 2$ we will consider relationship among eight kinds of the classical Schottky spaces of real type of genus two (Theorem 1). In §3 we will determine the shape of the classical Schottky spaces of real type of classical generators (Theorem 2) (see $\S 3$ for the definition). In $\S 4$ we will determine the shape of the classical Schottky spaces of the third, sixth and eighth types (Theorem 3). In $\S 5$ we will find generators for the Schottky modular groups acting on those spaces (Propositions 5.3 and 5.4), and determine fundamental regions for the Schottky modular groups (Theorems 4, 5, and 6). In the final section we will collect the main results in [24], [26] and this paper for applications to Jørgensen's numbers and the Hausdorff dimension of the limit sets of classical Schottky groups. Namely, we will represent generators for eight kinds of the Schottky modular groups (Theorem 7) and give eight kinds of the fundamental regions
for the Schottky modular groups (Theorem 8).
Thanks are due to the referees for their careful reading and valuable suggestions.

1. Preliminaries.

1.1. In this section we will state some definitions and list properties of automorphisms of a free group on two generators. Let $C_{1}, C_{g+1} ; \ldots ; C_{g}, C_{2 g}$ be a set of $2 g$ $(g \geq 1)$ mutually disjoint Jordan curves on the Riemann sphere which comprise the boundary of a $2 g$-ply connected region ω. Suppose there are g Möbius transformations A_{1}, \ldots, A_{g} which have the property that A_{j} maps C_{j} onto C_{g+j} and $A_{j}(\omega) \cap \omega=\varnothing$, $1 \leq j \leq g$. Then the g necessarily loxodromic transformations A_{g} generate a marked Schottky group $G=\left\langle A_{1}, \ldots, A_{g}\right\rangle$ of genus g with ω as a fundamental region. In particular, if all the $C_{j}(j=1,2, \ldots, 2 g)$ are circles, then we call A_{1}, \ldots, A_{g} a set of classical generators of G. A classical Schottky group is a Schottky group for which there exists some set of classical generators.

We denote by Möb the group of all Möbius transformations. We say two marked subgroups $G=\left\langle A_{1}, \ldots, A_{g}\right\rangle$ and $\hat{G}=\left\langle\hat{A}_{1}, \ldots, \hat{A}_{g}\right\rangle$ of Möb to be equivalent if there exists a Möbius transformation T such that $\hat{A}_{j}=T A_{j} T^{-1}$ for $j=1,2, \ldots, g$. The Schottky space (resp. the classical Schottky space) of genus g, denoted by \mathfrak{S}_{g} (resp. \mathbb{S}_{g}^{0}), is the set of all equivalence classes of marked Schottky groups (resp. marked classical Schottky groups) of genus $g \geq 1$.

We denote by \mathfrak{M}_{2} the set of all equivalence classes [$\left\langle A_{1}, A_{2}\right\rangle$] of marked groups $\left\langle A_{1}, A_{2}\right\rangle$ generated by loxodromic transformations A_{1} and A_{2} whose fixed points are all distinct. Let $\left[\left\langle A_{1}, A_{2}\right\rangle\right] \in \mathfrak{M}_{2}$. For $j=1,2$, let $\lambda_{j}\left(\left|\lambda_{j}\right|>1\right), p_{j}$ and p_{2+j} be the multipliers, the repelling and the attracting fixed points of A_{j}, respectively. We define t_{j} by setting $t_{j}=1 / \lambda_{j}$. Thus $t_{j} \in D^{*}=\{z|0<|z|<1\}$. We determine a Möbius transformation T by $T\left(p_{1}\right)=0, T\left(p_{3}\right)=\infty$ and $T\left(p_{2}\right)=1$, and define ρ by $\rho=T\left(p_{4}\right)$. Thus $\rho \in C-\{0,1\}$. We can define a mapping α of the space \mathfrak{M}_{2} into $\left(D^{*}\right)^{2} \times(C-\{0,1\})$ by setting $\alpha\left(\left[\left\langle A_{1}, A_{2}\right\rangle\right]\right)=\left(t_{1}, t_{2}, \rho\right)$. Then we say $\left[\left\langle A_{1}, A_{2}\right\rangle\right]$ represents $\left(t_{1}, t_{2}, \rho\right)$ and $\left(t_{1}, t_{2}, \rho\right)$ corresponds to $\left[\left\langle A_{1}, A_{2}\right\rangle\right]$ or $\left\langle A_{1}, A_{2}\right\rangle$. We write $t_{1}=t_{1}(G), t_{2}=t_{2}(G)$ and $\rho=\rho(G)$. Conversely, λ_{1}, λ_{2} and p_{4} are uniquely determined from a given point $\tau=$ $\left(t_{1}, t_{2}, \rho\right) \in\left(D^{*}\right)^{2} \times(C-\{0,1\})$ under the normalization condition $p_{1}=0, p_{3}=\infty$ and $p_{2}=1$; we define $\lambda_{j}(j=1,2)$ and p_{4} by setting $\lambda_{j}=1 / t_{j}$ and $p_{4}=\rho$, respectively. We determine $A_{1}(z), A_{2}(z) \in$ Möb from τ as follows: the multiplier, the repelling and the attracting fixed points of $A_{j}(z)$ are λ_{j}, p_{j} and p_{2+j}, respectively. Thus we obtain a mapping β of $\left(D^{*}\right)^{2} \times(C-\{0,1\})$ into \mathfrak{M}_{2} by setting $\beta(\tau)=\left[\left\langle A_{1}(z), A_{2}(z)\right\rangle\right]$. Then we note that $\beta \alpha=\alpha \beta=$ id. Therefore we identify \mathfrak{M}_{2} with $\alpha\left(\mathfrak{M}_{2}\right)$. Similarly we can define the mapping α^{*} of \mathfrak{S}_{2} or \mathfrak{S}_{2}^{0} into $\left(D^{*}\right)^{2} \times(C-\{0,1\})$ by restricting α to this space, and identify \mathfrak{S}_{2} (resp. \mathbb{S}_{2}^{0}) with $\alpha^{*}\left(\mathfrak{S}_{2}\right)$ (resp. $\alpha^{*}\left(\mathbb{S}_{2}^{0}\right)$). From now on we denote $\alpha\left(\mathfrak{M}_{2}\right)$, $\alpha^{*}\left(\mathfrak{S}_{2}\right)$ and $\alpha^{*}\left(\mathfrak{S}_{2}^{0}\right)$ by $\mathfrak{M}_{2}, \mathfrak{\Im}_{2}$ and \mathfrak{S}_{2}^{0}, respectively.

We call $G=\left\langle A_{1}, A_{2}\right\rangle$ a marked group of real type if $\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \cap \mathfrak{M}_{2}$, that is, t_{1}, t_{2} and ρ are all real numbers, where $\left(t_{1}, t_{2}, \rho\right)$ corresponds to $G=\left\langle A_{1}, A_{2}\right\rangle$. Then
we can classify marked groups of real type into eight types as follows.
Definition 1.1 (cf. [24]). (1) G is of the first type (Type I) if $t_{1}>0, t_{2}>0, \rho>0$.
(2) G is of the second type (Type II) if $t_{1}>0, t_{2}<0, \rho>0$.
(3) G is of the third type (Type III) if $t_{1}>0, t_{2}<0, \rho<0$.
(4) G is of the fourth type (Type IV) if $t_{1}>0, t_{2}>0, \rho<0$.
(5) G is of the fifth type (Type V) if $t_{1}<0, t_{2}>0, \rho>0$.
(6) G is of the sixth type (Type VI) if $t_{1}<0, t_{2}<0, \rho>0$.
(7) G is of the seventh type (Type VII) if $t_{1}<0, t_{2}<0, \rho<0$.
(8) G is of the eighth type (Type VIII) if $t_{1}<0, t_{2}>0, \rho<0$.

The components of the coordinates $\left(t_{1}, t_{2}, \rho\right)$ have the following meaning. If ρ is positive (resp. negative), then the axes of A_{1} and A_{2} are disjoint (resp. intersect). If $t_{j}>0\left(\right.$ resp. $\left.t_{j}<0\right)$ for $j=1,2$, then A_{j} leaves the upper half plane invariant (resp. A_{j} interchanges the upper and the lower half planes). Concequently, $G=\left\langle A_{1}, A_{2}\right\rangle$ is a Schottky group of Type I or Type IV, that is, a Fuchsian Schottky group if and only if both t_{1} and t_{2} are positive. For geometrical meaning of t_{j} and ρ, see Sato [21], [22], [23].

For each $k=\mathrm{I}, \mathrm{II}, \ldots$, VIII, we call the set of all equivalence classes of marked groups (resp. marked Schottky groups and marked classical Schottky groups) of Type k the real space (resp. the real Schottky space and the real classical Schottky space) of Type k, and denote it by $R_{k} \mathfrak{M}_{2}$ (resp. $R_{k} \mathfrak{G}_{2}$ and $R_{k} \mathfrak{G}_{2}^{0}$).
1.2. Let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a marked free group on two generators.

Theorem A (Neumann [18]). The group Φ_{2} of automorphisms of $G=\left\langle A_{1}, A_{2}\right\rangle$ has the following presentation:

$$
\begin{aligned}
\Phi_{2}=\langle & N_{1}, N_{2}, N_{3} \mid\left(N_{2} N_{1} N_{2} N_{3}\right)^{2}=1, \\
& \left.N_{3}^{-1} N_{2} N_{3} N_{2} N_{1} N_{3} N_{1} N_{2} N_{1}=1, N_{1} N_{3} N_{1} N_{3}=N_{3} N_{1} N_{3} N_{1}\right\rangle,
\end{aligned}
$$

where N_{1} takes $\left(A_{1}, A_{2}\right)$ to $\left(A_{1}, A_{2}^{-1}\right), N_{2}$ takes $\left(A_{1}, A_{2}\right)$ to $\left(A_{2}, A_{1}\right)$ and N_{3} takes $\left(A_{1}, A_{2}\right)$ to $\left(A_{1}, A_{1} A_{2}\right)$.

We call the mappings N_{1}, N_{2} and N_{3} the Nielsen transformations.
Definition 1.2. Let ϕ_{1}, ϕ_{2} be elements of Φ_{2}. We say ϕ_{1} and ϕ_{2} are equivalent if $\phi_{1}(G)$ is equivalent to $\phi_{2}(G)$ for a Schottky group G, and expressed as $\phi_{1} \sim \phi_{2}$.

Remarks. (1) We can regard the Nielsen transformations $N_{j}(j=1,2,3)$ and hence $\phi \in \Phi_{2}$ as automorphisms of the space of all equivalence classes of marked free groups on two generators (cf. [24]).
(2) From the above (1) and Definition 1.2, we have the following: If $\left\langle A_{1}, A_{2}\right\rangle \sim$ $\left\langle\hat{A}_{1}, \hat{A}_{2}\right\rangle$ and $\phi_{1} \sim \phi_{2}\left(\phi_{1}, \phi_{2} \in \Phi_{2}\right)$, then $\phi_{1}\left(\left\langle A_{1}, A_{2}\right\rangle\right) \sim \phi_{2}\left(\left\langle\hat{A}_{1}, \hat{A}_{2}\right\rangle\right)$.

Definition 1.3. Let ϕ be in Φ_{2} and let $m_{j}(j=1,2)$ be the numbers of the Nielsen
transformations N_{j} contained in ϕ. If $m_{1}+m_{2}$ is even, we say that ϕ is an orientation preserving automorphism. The Schottky modular group of genus two, which is denoted by $\operatorname{Mod}\left(\Theta_{2}\right)$, is the set of all equivalence classes of orientation preserving automorphisms of Θ_{2}. We denote by [$\Phi_{2}\left(\Xi_{2}\right)$] the set of all equivalence classes of automorphisms of \Im_{2} and call it the extended Schottky modular group of genus two.
1.3. Let $\left(t_{1}, t_{2}, \rho\right)$ be the point in Ξ_{2} corresponding to a marked Schottky group $G=\left\langle A_{1}, A_{2}\right\rangle$. Let $\left(t_{1}(j), t_{2}(j), \rho(j)\right)$ be the images of ($\left.t_{1}, t_{2}, \rho\right)$ under the Nielsen transformations $N_{j}(j=1,2,3)$. We set $X=\rho-t_{2}-\rho t_{1} t_{2}+t_{1}$ and $Y=\rho-t_{2}+\rho t_{1} t_{2}-t_{1}$. Then by straightforward calculations, we have the following.

Lemma 1.1 (Sato [24, Lemma 2.1]). (1) $t_{1}(1)=t_{1}, t_{2}(1)=t_{2}$ and $\rho(1)=1 / \rho$.
(2) $t_{1}(2)=t_{2}, t_{2}(2)=t_{1}$ and $\rho(2)=\rho$.
(3) $t_{1}(3)=t_{1}, t_{2}(3)+1 / t_{2}(3)=Y^{2} / t_{1} t_{2}(\rho-1)^{2}-2$, and $\rho(3)+1 / \rho(3)=X^{2} / t_{1} \rho\left(1-t_{2}\right)^{2}-2$.

2. Relationship among the real Schottky spaces.

2.1. In this section we will consider relationship among the real schottky spaces $R_{k} \mathcal{G}_{2}$ ($k=$ I, II, III, IV, V, VI, VII, VIII). Throughout this section, let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in §1.

Proposition 2.1. Let $R_{k} \Xi_{2}(k=\mathrm{I}, \mathrm{II}, \ldots, \mathrm{VIII})$ be the Schottky spaces of type k, and let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in §1, Then
(i) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{1} \Im_{2}$. Then $N_{1}(\tau)$ is contained in $R_{1} \mathcal{G}_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{I}} \mathfrak{G}_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{I}} \mathfrak{G}_{2}$, where $\delta=+1$ or -1 .
(ii) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{II}} \Im_{2}$. Then $N_{1}(\tau)$ is contained in $R_{\mathrm{II}} \mathcal{G}_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{V}} \Im_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{II}} \mathcal{S}_{2}$, where $\delta=+1$ or -1 .
(iii) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{III}} \mathcal{\Im}_{2}$. Then $N_{1}(\tau)$ is contained in $R_{\mathrm{III}} \Im_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{VIII}} \Theta_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{III}} \mathcal{G}_{2}$, where $\delta=+1$ or -1 .
(iv) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{IV}} \mathbb{G}_{2}$. Then $N_{1}(\tau)$ is contained in $R_{\mathrm{IV}} \mathbb{G}_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{IV}} \mathcal{G}_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{IV}} \Im_{2}$, where $\delta=+1$ or -1 .
(v) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{V}} \mathfrak{G}_{2}$. Then $N_{1}(\tau)$ is contained in $R_{\mathrm{V}} \mathfrak{G}_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{II}} \mathcal{G}_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{VII}} \Im_{2}$, where $\delta=+1$ or -1 .
(vi) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{VI}} \mathcal{G}_{2}$. Then $N_{1}(\tau)$ is contained in $R_{\mathrm{VI}} \mathcal{G}_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{VI}} \mathcal{G}_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{VIII}} \mathcal{G}_{2}$, where $\delta=+1$ or -1 .
(vii) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{VII}} \mathcal{\Xi}_{2}$. Then $N_{1}(\tau)$ is contained in $R_{\mathrm{VII}} \mathcal{G}_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{VII}} \Xi_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{V}} \mathcal{G}_{2}$, where $\delta=+1$ or -1 .
(viii) Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{VIII}} \Theta_{2}$. Then $N_{1}(\tau)$ is contained in $R_{\mathrm{VIII}} \Theta_{2}, N_{2}(\tau)$ is contained in $R_{\mathrm{III}} \Im_{2}$ and $N_{3}^{\delta}(\tau)$ is contained in $R_{\mathrm{VI}} \Im_{2}$, where $\delta=+1$ or -1 .

Proof. (i) Our assertion in the cases (ii), (v) and (vii) are proved in Sato [26]. Here we only prove the case of (iii). Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\text {III }} \mathfrak{G}_{2}$. Then we easily see $N_{1}(\tau)$ is contained in $R_{\text {III }} \mathcal{G}_{2}$ and $N_{2}(\tau)$ is contained in $R_{\text {VIII }} \mathcal{G}_{2}$ by Lemma 1.1 and the definitions of $R_{\text {III }} \Theta_{2}$ and $R_{\mathrm{VIII}} \Im_{2}$. We have only to prove $N_{3}^{\delta}(\tau)$ is contained in $R_{\text {III }} \Theta_{2}$. Set

$$
A_{1}=\frac{1}{t_{1}^{1 / 2}}\left(\begin{array}{cc}
1 & 0 \\
0 & t_{1}
\end{array}\right)
$$

and

$$
A_{2}=\frac{1}{t_{2}^{1 / 2}(\rho-1)}\left(\begin{array}{cc}
\rho-t_{2} & \rho\left(t_{2}-1\right) \\
1-t_{2} & t_{2} \rho-1
\end{array}\right)
$$

Then $\left\langle A_{1}, A_{2}\right\rangle$ represents $\left(t_{1}, t_{2}, \rho\right)$. We set $N_{3}(\tau)=\left(t_{1}^{*}, t_{2}^{*}, \rho^{*}\right)$. Let p and q be the two solutions of the equation

$$
t_{1}\left(1-t_{2}\right) z^{2}-\left(\rho-t_{2}-\rho t_{1} t_{2}+t_{1}\right) z+\rho\left(1-t_{2}\right)=0
$$

Then p and q are the fixed points of $A_{1} A_{2}$. We may assume that p and q are the repelling and the attracting fixed points of $A_{1} A_{2}$, respectively. Since $p q=\rho / t_{1}<0$ and $\rho^{*}=q / p$, we have $\rho^{*}<0$. Furthermore, since

$$
t_{2}^{*}+1 / t_{2}^{*}+2=\left(\rho-t_{2}+t_{1} t_{2} \rho-t_{1}\right)^{2} / t_{1} t_{2}(\rho-1)^{2}<0
$$

we have $t_{2}^{*}<0$. Noting that $t_{1}^{*}=t_{1}$, we have $N_{3}(\tau)=R_{\mathrm{III}} \mathcal{G}_{2}$. By the same method as above, we see that $N_{3}^{-1}(\tau) \in R_{\text {III }} \mathcal{G}_{2}$.

The proof in the cases (i), (iv), (vi) and (viii) are done similarly to the above, and so we omit them.
q.e.d.

Remark. For $R_{k} \Im_{2}^{0}(k=\mathrm{I}, \mathrm{II}, \ldots, \mathrm{VIII})$, the same results as above hold.
We have the following theorem by Proposition 2.1 and Corollary to Lemma 2.1.
Theorem 1. Let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in §1. Let X be the classical Schottky space $R_{k} \mathbb{G}_{2}^{0}$ or the Schottky space $R_{k} \mathcal{G}_{2}$ of type k ($k=$ I, II, ..., VIII). Then
(i) $N_{1}\left(R_{k} X\right)=R_{k} X$ for each $k=\mathrm{I}, \mathrm{II}, \ldots$, VIII.
(ii) (1) $N_{2}\left(R_{k} X\right)=R_{k} X$ for $k=\mathrm{I}$, IV, VI, VII.
(2) $N_{2}\left(R_{\mathrm{II}} X\right)=R_{\mathrm{V}} X$ and $N_{2}\left(R_{\mathrm{V}} X\right)=R_{\mathrm{II}} X$.
(3) $N_{2}\left(R_{\mathrm{III}} X\right)=R_{\mathrm{VIII}} X$ and $N_{2}\left(R_{\mathrm{VIII}} X\right)=R_{\mathrm{III}} X$.
(iii) (1) $N_{3}\left(R_{k} X\right)=R_{k} X$ for $k=$ I, II, III, IV.
(2) $N_{3}\left(R_{\mathrm{V}} X\right)=R_{\mathrm{VII}} X$ and $N_{3}\left(R_{\mathrm{VII}} X\right)=R_{\mathrm{V}} X$.
(3) $\quad N_{3}\left(R_{\mathrm{VI}} X\right)=R_{\mathrm{VIII}} X$ and $N_{3}\left(R_{\mathrm{VIII}} X\right)=R_{\mathrm{VI}} X$.
3. Shape of $R_{k} \Im_{2}^{00}$.
3.1 We denote by \mathcal{S}_{g}^{00} the space of all equivalence classes of the following marked classical Schottky groups $G=\left\langle A_{1}, \ldots, A_{g}\right\rangle$ of genus $g: A_{1}, \ldots, A_{g}$ is a set of all classical generators of G (see $\S 1$ for the definition). We set $R_{k} \Im_{2}^{00}:=\Im_{2}^{00} \cap R_{k} \Im_{2}^{0}$ ($k=\mathrm{I}, \mathrm{II}, \ldots$, VIII). We call the space $R_{k} \mathcal{\Xi}_{2}^{00}$ the classical Schottky space of real type of classical generators. In this section we will determine the shape of the spaces
$R_{k} \mathfrak{S}_{2}^{00}:=\mathfrak{S}_{2}^{00} \cap R_{k} \Im_{2}^{0}(k=\mathrm{II}, \mathrm{VI}, \mathrm{VIII})$.
Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in\left(D^{*}\right)^{2} \times(C-\{0,1\})$. Throughout this section we let

$$
A_{1}(z):=z / t_{1}
$$

and

$$
A_{2}(z):=\left\{\left(\rho-t_{2}\right) z+\rho\left(t_{2}-1\right)\right\} /\left\{\left(1-t_{2}\right) z+\left(\rho t_{2}-1\right)\right\} .
$$

Then we note that $\left\langle A_{1}(z), A_{2}(z)\right\rangle$ represents $\tau=\left(t_{1}, t_{2}, \rho\right)$.
We set

$$
\begin{aligned}
& M_{\mathrm{HI}}(0)=\{ \left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid\left(1+t_{1}\right)\left((-\rho)^{1 / 2}+1 /(-\rho)^{1 / 2}\right) \\
&\left.\quad\left(1-t_{1}\right)\left(\left(-t_{2}\right)^{1 / 2}+1 /\left(-t_{2}\right)^{1 / 2}\right), \rho<0,0<t_{1}<1\right\}, \\
& M_{\mathrm{VI}}(1)=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid-\left(1+t_{1} \rho^{1 / 2}\right) /\left(\rho^{1 / 2}+t_{1}\right)<t_{2}<\rho,\right. \\
&\left.-1 / t_{1}^{2}<\rho<-1,-1<t_{1}<0\right\}, \\
& M_{\mathrm{VI}}(-1)=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid-\left(\rho^{1 / 2}+t_{1}\right) /\left(1+t_{1} \rho^{1 / 2}\right)<t_{2}<0,\right. \\
&\left.-1 \leq \rho<-t_{1}^{2},-1<t_{1}<0\right\},
\end{aligned}
$$

and

$$
\begin{gathered}
M_{\mathrm{vIII}}(0)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R^{3} \left\lvert\, 0<t_{2}<\frac{\left((-\rho)^{1 / 2}-\left(-t_{1}\right)^{1 / 2}\right)\left(1-\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right)}{\left((-\rho)^{1 / 2}+\left(-t_{1}\right)^{1 / 2}\right)\left(1+\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right)}\right.,\right. \\
\left.1 / t_{1}<\rho<t_{1},-1<t_{1}<0\right\} .
\end{gathered}
$$

3.2. Theorem 2. Let $R_{k} \mathbb{\Xi}_{2}^{00}$ ($k=\mathrm{III}, \mathrm{VI}, \mathrm{VIII}$) be the classical Schottky spaces of classical generators, and let $M_{\mathrm{II}}(0), M_{\mathrm{VI}}(1), M_{\mathrm{VI}}(-1)$ and $M_{\mathrm{vIII}}(0)$ be the spaces defined above. Then
(i) $R_{\mathrm{VI}^{\prime}} \Theta_{2}^{00}=M_{\mathrm{vI}}(1) \cup M_{\mathrm{vI}}(-1)$,
(ii) $R_{\mathrm{III}} \Im_{2}^{00}=M_{\mathrm{III}}(0)$,
(iii) $R_{\mathrm{vII}} \mathbb{S}_{2}^{00}=M_{\mathrm{VII}}(0)$.

Proof. (i) 1) First we will show that $M_{\mathrm{VI}}(1) \subseteq R_{\mathrm{VI}} \mathbb{S}_{2}^{00}$. Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in$ $M_{\mathrm{vI}}(1)$ and let $\left\langle A_{1}, A_{2}\right\rangle$ represent τ. If we can choose four circles $C_{j}(j=1,2,3,4)$ satisfying the following two conditions, then we easily see that we have $\tau \in R_{\mathrm{VI}_{1}} \mathbb{S}_{2}^{00}$:
(1) $C_{j}(j=1,2,3,4)$ are the circles perpendicular to the real axis such that $A_{1}\left(C_{1}\right)=C_{3}$ and $A_{2}\left(C_{2}\right)=C_{4}$.
(2) For $j=1,2,3,4$, the points a_{j} and b_{j} satisfy the inequality

$$
a_{3}<a_{1}<0<b_{1}<a_{2}<1<b_{2}<a_{4}<\rho<b_{4}<b_{3},
$$

where a_{j} and $b_{j}\left(a_{j}<b_{j}\right)$ are the intersection points of the circles C_{j} with the real axis.
We take a_{j} and $b_{j}(j=1,2,3,4)$ as follows: $a_{1}=-\rho^{1 / 2}, b_{1}=-t_{1} \rho^{1 / 2}-t_{1} \varepsilon$;
$a_{2}=-t_{1} \rho^{1 / 2}+\varepsilon, \quad b_{2}=A_{2}^{-1}\left(-\rho^{1 / 2} / t_{1}-\varepsilon\right) ; a_{3}=-\rho^{1 / 2}-\varepsilon, \quad b_{3}=-\rho^{1 / 2} / t_{1} ; a_{4}=A_{2}\left(a_{2}\right)=$ $A_{2}\left(-t_{1} \rho^{1 / 2}+\varepsilon\right)=\left\{\left(\rho-t_{2}\right)\left(-t_{1} \rho^{1 / 2}+\varepsilon\right)+\rho\left(t_{2}-1\right)\right\} /\left\{\left(1-t_{2}\right)\left(-t_{1} \rho^{1 / 2}+\varepsilon\right)+\left(\rho t_{2}-1\right)\right\}, b_{4}=$ $-\rho^{1 / 2} / t_{1}-\varepsilon$, where $\varepsilon>0$ is chosen sufficiently small. Then we easily see the following by noting $1<\rho<1 / t_{1}^{2}$:

$$
a_{3}<a_{1}<0<b_{1}<a_{2}<1<b_{2}, \quad a_{4}<\rho<b_{4}<b_{3} .
$$

Since $1<\rho^{1 / 2}<-\left(1+t_{1} t_{2}\right) /\left(t_{1}+t_{2}\right)$, we can show by straightforward calculations that $b_{2}<a_{4}$ for sufficiently small $\varepsilon>0$. Furthermore, we easily see that $a_{3}=A_{1}\left(b_{1}\right), b_{3}=A_{1}\left(a_{1}\right)$, $a_{4}=A_{2}\left(a_{2}\right)$ and $b_{4}=A_{2}\left(b_{2}\right)$, that is, $A_{1}\left(C_{1}\right)=C_{3}$ and $A_{2}\left(C_{2}\right)=C_{4}$.

Similarly, we can prove $M_{\mathrm{vI}}(-1) \subseteq R_{\mathrm{vI}} \mathcal{S}_{2}^{00}$. Hence we have $M_{\mathrm{VI}}(1) \cup M_{\mathrm{vI}}(-1) \subseteq$ $R_{\mathrm{VI}} \mathcal{S}_{2}^{00}$.
2) Next we show that $M_{\mathrm{VI}}(1) \cup M_{\mathrm{VI}}(-1) \supseteq R_{\mathrm{VI}} \Im_{2}^{00}$. Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{VI}} \mathcal{S}_{2}^{00}$. It is easily seen that if $\tau \in R_{\mathrm{VI}} \mathcal{E}_{2}^{00}$, then $1<\rho<1 / t_{1}^{2}$ and $1<\rho<1 / t_{2}^{2}$ for $\rho>1$, and $t_{1}^{2}<\rho<1$ and $t_{2}^{2}<\rho<1$ for $0<\rho<1$. We will show that if $\tau \notin M_{\mathrm{vI}}(1) \cup M_{\mathrm{vI}}(-1)$, then $\tau \notin R_{\mathrm{VI}} \widetilde{S}_{2}^{00}$. We only consider the case where $\rho>1$, since we can similarly treat the case where $0<$ $\rho<1$.

Suppose that $\tau \notin M_{\mathrm{vI}}(1), 1<\rho<1 / t_{1}^{2}$ and $1<\rho<t_{2}^{2}$. Then we have $t_{2} \leq-(1+$ $\left.\rho^{1 / 2} t_{1}\right) /\left(\rho^{1 / 2}+t_{1}\right)$. If $t_{2}=-\left(1+\rho^{1 / 2} t_{1}\right) /\left(\rho^{1 / 2}+t_{1}\right)$, then we see by straightforward calculations that $A_{1}^{-2} A_{2}^{2}$ is parabolic, and hence τ is not contained in $R_{\mathrm{VI}} \mathcal{S}_{2}^{00}$. If $-\left(1-\rho^{1 / 2} t_{1}\right) /\left(\rho^{1 / 2}-t_{1}\right)<t_{2}<-\left(1+\rho^{1 / 2} t_{1}\right) /\left(\rho^{1 / 2}+t_{1}\right)$, then $A_{1}^{-2} A_{2}^{2}$ is elliptic and hence τ is not contained in $R_{\mathrm{VI}} \mathcal{G}_{2}^{00}$. Furthermore, if $t_{2}<-1 / \rho^{1 / 2}$, then τ is not a point of $R_{\mathrm{VI}} \mathcal{S}_{2}^{00}$, since $1<\rho<1 / t_{2}^{2}$. Noting that $-\left(1-\rho^{1 / 2} t_{1}\right) /\left(\rho^{1 / 2}-t_{1}\right)<-1 / \rho^{1 / 2}$, we have that if $\tau \notin M_{\mathrm{vI}}(1)$ and $\rho>1$, then $\tau \notin R_{\mathrm{VI}} \mathbb{S}_{2}^{00}$. A similar argument shows that if $\tau \notin M_{\mathrm{vI}}(-1)$ and $\rho<1$, then $\tau \notin R_{\mathrm{VI}} \mathcal{S}_{2}^{00}$. Hence we have $M_{\mathrm{VI}}(1) \cup M_{\mathrm{VI}}(-1) \supseteq R_{\mathrm{VI}} \mathcal{S}_{2}^{00}$. By combining 1) with 2) we have the desired result $R_{\mathrm{VI}} \Im_{2}^{00}=M_{\mathrm{vI}}(1) \cup M_{\mathrm{vI}}(-1)$.
(ii) 1) First we will show that $M_{\mathrm{III}}(0) \subseteq R_{\mathrm{III}} \Im_{2}^{00}$. Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{III}}(0)$ and let $\left\langle A_{1}, A_{2}\right\rangle$ represent τ. If we can choose four circles $C_{j}(j=1,2,3,4)$ satisfying the following two conditions, then we have $\tau \in R_{\mathrm{III}} \mathfrak{S}_{2}^{00}$:
(1) $C_{j}(j=1,2,3,4)$ are circles perpendicular to the real axis such that $A_{1}\left(C_{1}\right)=C_{3}$ and $A_{2}\left(C_{2}\right)=C_{4}$.
(2) For $j=1,2,3,4$, the points a_{j} and b_{j} satisfy the inequality

$$
a_{3}<a_{4}<\rho<b_{4}<a_{1}<0<b_{1}<a_{2}<1<b_{2}<b_{3}
$$

where a_{j} and $b_{j}\left(a_{j}<b_{j}\right)$ are the intersection points of the circles C_{j} with the real axis.
We take a_{j} and $b_{j}(j=1,2,3,4)$ as follows: $a_{1}=A_{2}(q)+\varepsilon, b_{1}=t_{1} q-\varepsilon ; a_{2}=t_{1} q$, $b_{2}=q ; a_{3}=A_{2}(q) / t_{1}+\varepsilon / t_{1}, b_{3}=q-\varepsilon / t_{1} ; a_{4}=A_{2}\left(t_{1} q\right), b_{4}=A_{2}(q)$, where $q=\left\{\left(1+t_{1}\right)(1-\right.$ $\left.\left.\rho t_{2}\right)\right\} / 2 t_{1}\left(1-t_{2}\right)$ and $\varepsilon>0$ is a constant chosen to be sufficiently small. Then we easily see the following:

$$
a_{4}<\rho<b_{4}<a_{1}<0<b_{1}<a_{2}<1<b_{2}<b_{3} .
$$

Since $\left(1+t_{1}\right)\left((-\rho)^{1 / 2}+1 /(-\rho)^{1 / 2}\right)<\left(1-t_{1}\right)\left(\left(-t_{2}\right)^{1 / 2}+1 /\left(-t_{2}\right)^{1 / 2}\right)$, we can show by
straightforward calculations that $a_{3}<a_{4}$ for sufficiently small $\varepsilon>0$. Furthermore, we easily see that $a_{3}=A_{1}\left(a_{1}\right), b_{3}=A_{1}\left(b_{1}\right), a_{4}=A_{2}\left(a_{2}\right)$ and $b_{4}=A_{2}\left(b_{2}\right)$, that is, $C_{3}=A_{1}\left(C_{1}\right)$ and $C_{4}=A_{2}\left(C_{2}\right)$. Hence we have $M_{\mathrm{III}}(0) \subseteq R_{\mathrm{III}} \mathcal{S}_{2}^{00}$.
2) We can similarly prove $M_{\text {III }}(0) \supseteq R_{\text {III }} \mathcal{G}_{2}^{00}$ to the above (i) 2), and so omit the proof. By combining 1) with 2), we have the desired result $R_{\mathrm{III}} \mathcal{S}_{2}^{00}=M_{\mathrm{III}}(0)$.
(iii) 1) First we will show that $M_{\mathrm{VIII}}(0) \subseteq R_{\mathrm{VIII}} \mathcal{S}_{2}^{00}$. Let $\tau=\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{vIII}}(0)$ and let $\left\langle A_{1}, A_{2}\right\rangle$ represent τ. If we can choose four circles $C_{j}(j=1,2,3,4)$ satisfying the following two conditions, then we easily see $\tau \in R_{\mathrm{vIII}} \Im_{2}^{00}$:
(1) $C_{j}(j=1,2,3,4)$ are the circles perpendicular to the real axis such that $A_{1}\left(C_{1}\right)=C_{3}$ and $A_{2}\left(C_{2}\right)=C_{4}$.
(2) For $j=1,2,3,4$, the points a_{j} and b_{j} satisfy the inequality

$$
a_{3}<a_{4}<\rho<b_{4}<a_{1}<0<b_{1}<a_{2}<1<b_{2}<b_{3}
$$

where a_{j} and $b_{j}\left(a_{j}<b_{j}\right)$ are the intersection points of the circles C_{j} with the real axis.
We take a_{j} and $b_{j}(j=1,2,3,4)$ as follows: $a_{1}=-\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}, b_{1}=\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}$; $a_{2}=\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}+\varepsilon, b_{2}=(-\rho)^{1 / 2} /\left(-t_{1}\right)^{1 / 2}-\varepsilon ; a_{3}=-(-\rho)^{1 / 2} /\left(-t_{1}\right)^{1 / 2}, b_{3}=(-\rho)^{1 / 2} /$ $\left(-t_{1}\right)^{1 / 2} ; \quad a_{4}=A_{2}\left((-\rho)^{1 / 2} /\left(-t_{1}\right)^{1 / 2}-\varepsilon\right), \quad b_{4}=A_{2}\left(\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}+\varepsilon\right)$, where $\varepsilon>0$ is chosen to be sufficiently small. Then we easily see the following:

$$
a_{4}<\rho<b_{4}, \quad a_{1}<0<b_{1}<a_{2}<1<b_{2}<b_{3} .
$$

Since

$$
0<t_{2}<\frac{\left((-\rho)^{1 / 2}-\left(-t_{1}\right)^{1 / 2}\right)\left(1-\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right)}{\left((-\rho)^{1 / 2}+\left(-t_{1}\right)^{1 / 2}\right)\left(1+\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right)}
$$

we can show by straightforward calculations that $a_{3}<a_{4}$ and $b_{4}<a_{1}$ for a sufficiently small $\varepsilon>0$. Furthermore, we easily see that $a_{3}=A_{1}\left(b_{1}\right), b_{3}=A_{1}\left(a_{1}\right), a_{4}=A_{2}\left(b_{2}\right)$, and $b_{4}=A_{2}\left(a_{2}\right)$, that is, $C_{3}=A_{1}\left(C_{1}\right)$ and $C_{4}=A_{2}\left(C_{2}\right)$. Hence we have $M_{\mathrm{vII}}(0) \subseteq R_{\mathrm{vII}} \Im_{2}^{00}$.
2) We can similarly prove $M_{\mathrm{VII}}(0) \supseteq R_{\mathrm{VII}} \Im_{2}^{00}$ to the above (i) 2), and so omit the proof. By combining 1) with 2), we have the desired result $R_{\mathrm{VIII}} \mathcal{S}_{2}^{00}=M_{\mathrm{vII}}(0)$. q.e.d.
4. The domains of existence.
4.1. In this section we will determine the shape of the real classical Schottky spaces $R_{\mathrm{III}} \mathcal{S}_{2}^{0}, R_{\mathrm{VI}} \Im_{2}^{0}$ and $R_{\mathrm{VIII}} \mathcal{S}_{2}^{0}$ in \boldsymbol{R}^{3}. We set

$$
\begin{aligned}
& R_{\mathrm{III}}^{3}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid 0<t_{1}<1,-1<t_{2}<0, \rho<0\right\} \\
& R_{\mathrm{VII}}^{3}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid-1<t_{1}<0,-1<t_{2}<0, \rho>0\right\} \\
& R_{\mathrm{VIII}}^{3}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid-1<t_{1}<0,0<t_{2}<1, \rho<0\right\} .
\end{aligned}
$$

Refer to the previous section for the definitions of $M_{\mathrm{II}}(0), M_{\mathrm{VI}}(1), M_{\mathrm{VI}}(-1)$ and $M_{\mathrm{vIII}}(0)$. Throughout this section let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in §1. By straightforward calculations we have the following.

Proposition 4.1. Let $M_{\mathrm{III}}(0), M_{\mathrm{vI}}(1), M_{\mathrm{VI}}(-1)$ and $M_{\mathrm{vII}}(0)$ be the domains defined in $\S 3$, and let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in $\S 1$. Then
(1) $N_{1} M_{\mathrm{III}}(0)=M_{\mathrm{III}}(0), N_{3} M_{\mathrm{III}}(0)=M_{\mathrm{III}}(0), N_{2} M_{\mathrm{III}}(0)=M_{\mathrm{VIII}}(0)$.
(2) $\quad N_{1} M_{\mathrm{vI}}(1)=M_{\mathrm{vI}}(-1), N_{1} M_{\mathrm{vI}}(-1)=M_{\mathrm{vI}}(1), N_{3}^{2} M_{\mathrm{vI}}(-1)=M_{\mathrm{vI}}(1), N_{2} M_{\mathrm{vI}}(1)=$ $M_{\mathrm{vI}}(1), N_{2} M_{\mathrm{vI}}(-1)=M_{\mathrm{vI}}(-1), N_{3} M_{\mathrm{vI}}(-1)=M_{\mathrm{vII}}(0)$.
(3) $\quad N_{1} M_{\mathrm{VII}}(0)=M_{\mathrm{VII}}(0), N_{2} M_{\mathrm{VHI}}(0)=M_{\mathrm{II}}(0), N_{3} M_{\mathrm{VII}}(0)=M_{\mathrm{VI}}(1)$.
4.2. Inductively we now define the following domains. Let δ denote the number +1 or -1 , and let $-\delta$ denote -1 or +1 according as δ is +1 or -1 .

We define $M_{\mathrm{vI}}(\delta(2 k+1)):=N_{3}^{\delta 2 k} M_{\mathrm{vI}}(\delta 1)$ and $M_{\mathrm{vII}}(\delta 2 k)=N_{3}^{\delta 2 k} M_{\mathrm{vIII}}(0)$ for $k=1$, $2,3, \ldots$, where $M_{\mathrm{viI}}(-0)=M_{\mathrm{viII}}(0)$. Then we easily see the following.

Proposition 4.2. Let N_{1} be the Nielsen transformation defined in §1. Then
(1) $N_{1} M_{\mathrm{vI}}(\delta(2 k+1))=M_{\mathrm{vI}}(-\delta(2 k+1))$.
(2) $N_{1} M_{\mathrm{VIII}}(\delta 2 k)=M_{\mathrm{VIII}}(-\delta 2 k)$.

Definition 4.1. Domains $M_{l}\left(1, n_{0}\right)$, and $M_{l}\left(-1,-n_{0}\right)(l=$ III, VI, VIII $)$ are defined as follows. (1) $M_{\mathrm{III}}\left(1, n_{0}\right):=N_{2} M_{\mathrm{VII}}\left(n_{0}\right), M_{\mathrm{III}}\left(-1,-n_{0}\right):=N_{2} M_{\mathrm{VIII}}\left(-n_{0}\right)$, where $n_{0}=2 k(k=0,1,2, \ldots)$.
(2) $\quad M_{\mathrm{vI}}\left(1, n_{0}\right):=N_{2} M_{\mathrm{vI}}\left(n_{0}\right), M_{\mathrm{vI}}\left(-1,-n_{0}\right):=N_{2} M_{\mathrm{vI}}\left(-n_{0}\right)$, where $n_{0}=2 k-1$ $(k=1,2,3, \ldots)$.
(3) $M_{\mathrm{VIII}}\left(1, n_{0}\right):=N_{2} M_{\mathrm{III}}\left(n_{0}\right)=N_{2} M_{\mathrm{III}}(0)=M_{\mathrm{VIII}}(0), M_{\mathrm{VIII}}\left(-1,-n_{0}\right):=M_{\mathrm{VIII}}(-0)$ for $n_{0}=2 k(k=0,1,2, \ldots)$.

Remarks. By Proposition 4.1 we have $M_{\mathrm{III}}(1,0)=M_{\mathrm{III}}(0), M_{\mathrm{VI}}(1,1)=M_{\mathrm{VI}}(1)$ and $M_{\mathrm{vI}}(-1,-1)=M_{\mathrm{vI}}(-1)$.

Definition 4.2. Domains $\quad M_{\mathrm{III}}\left(k+1, n_{0}\right), \quad M_{\mathrm{III}}\left(-(k+1),-n_{0}\right), \quad M_{\mathrm{VI}}\left(2 k+1, n_{0}\right)$, $M_{\mathrm{VII}}\left(-(2 k+1),-n_{0}\right), M_{\mathrm{vIII}}\left(2 k, n_{0}\right), M_{\mathrm{vIII}}\left(-2 k,-n_{0}\right)$ are defined as follows. (1) $M_{\mathrm{III}}(k+$ $\left.1, n_{0}\right):=N_{3}^{k} M_{\mathrm{III}}\left(1, n_{0}\right), M_{\mathrm{III}}\left(-(k+1),-n_{0}\right):=N_{3}^{-k} M_{\mathrm{II}}\left(-1,-n_{0}\right),(k=0,1,2, \ldots)$, where $n_{0}=2 m(m=0,1,2, \ldots)$.
(2) $\quad M_{\mathrm{vI}}\left(2 k+1, n_{0}\right):=N_{3}^{2 k} M_{\mathrm{vI}}\left(1, n_{0}\right), M_{\mathrm{vI}}\left(-(2 k+1),-n_{0}\right):=N_{3}^{-2 k} M_{\mathrm{vI}}\left(-1,-n_{0}\right)$, ($k=1,2,3, \ldots$), where $n_{0}=2 k-1(k=1,2,3, \ldots)$.
(3) $\quad M_{\mathrm{vII}}\left(2 k, n_{0}\right):=N_{3} M_{\mathrm{vI}}\left(2 k-1, n_{0}\right), \quad M_{\mathrm{vII}}\left(-2 k,-n_{0}\right):=N_{3}^{-1} M_{\mathrm{vI}}\left(-(2 k+1),-n_{0}\right)$, ($k=1,2,3, \ldots$), where $n_{0}=2 m-1(m=1,2,3, \ldots)$.

We easily see that $N_{1} M_{l}\left(n_{1}, n_{0}\right)=M_{l}\left(-n_{1},-n_{0}\right)(l=\mathrm{III}, \mathrm{VI}, \mathrm{VIII})$.
Definition 4.3. Domains $M_{l}\left(0, n_{0}\right)$, and $M_{l}\left(-0,-n_{0}\right)(l=$ III, VI, VIII) are defined as follows. (1) $M_{\mathrm{VII}}\left(0, n_{0}\right):=N_{3}^{-1} M_{\mathrm{VI}}\left(1, n_{0}\right), M_{\mathrm{III}}\left(-0,-n_{0}\right)=N_{3} M_{\mathrm{VI}}\left(-1,-n_{0}\right)$, $n_{0}=2 m-1(m=1,2,3, \ldots)$.
(2) $\quad M_{\mathrm{III}}\left(0, n_{0}\right):=N_{3}^{-1} M_{\mathrm{III}}\left(1, n_{0}\right), M_{\mathrm{III}}\left(-0,-n_{0}\right)=N_{3} M_{\mathrm{III}}\left(-1,-n_{0}\right), n_{0}=2 m(m=$ $0,1,2, \ldots)$.
(3) $\quad M_{\mathrm{VI}}\left(0, n_{0}\right):=N_{3}^{-1} M_{\mathrm{VIII}}\left(1, n_{0}\right), M_{\mathrm{VI}}\left(-0,-n_{0}\right)=N_{3} M_{\mathrm{VIII}}\left(-1,-n_{0}\right), n_{0}=2 m(m=$ $0,1,2, \ldots)$.

Remark. $\quad M_{\mathrm{VI}}\left(0, n_{0}\right)=N_{3}^{-1} M_{\mathrm{VII}}\left(1, n_{0}\right)=N_{3}^{-1} N_{2} M_{\mathrm{III}}(0)=N_{3}^{-1} M_{\mathrm{VII}}(0)=M_{\mathrm{VI}}(-1)$.
4.3. We will define some domains $M_{l}\left(n_{k}, \ldots, n_{1}, n_{0}\right)$ ($\left.l=\mathrm{III}, \mathrm{VI}, \mathrm{VIII}\right)$ of length $k+1(k \geq 2)$. Let n_{0} and n_{1} be the integers as in $\S 4.2$ for each case III, VI, VIII. For simplicity, we write

$$
\delta\left(n_{k}, \ldots, n_{0}\right)= \begin{cases}\left(n_{k}, \ldots, n_{0}\right) & \text { if } \delta=+1 \\ \left(-n_{k}, \ldots,-n_{0}\right) & \text { if } \delta=-1 .\end{cases}
$$

Definition 4.4. Let $k \geq 2$ be integers. Domains $M_{l}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)(l=\mathrm{III}$, VI, VIII) are defined as follows.
(1) $M_{\mathrm{III}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{2} M_{\mathrm{vII}}\left(\delta\left(n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(2) $M_{\mathrm{vI}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{2} M_{\mathrm{VI}}\left(\delta\left(n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(3) $M_{\mathrm{VIII}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{2} M_{\mathrm{III}}\left(\delta\left(n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.

Definition 4.5. Domains $M_{l}\left(\delta\left(0, n_{k}, \ldots, n_{1}, n_{0}\right)\right)(l=\mathrm{III}, \mathrm{VI}, \mathrm{VIII})$ are defined as follows.
(1) $\quad M_{\text {viII }}\left(\delta\left(0, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{-\delta} M_{\mathrm{VI}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(2) $M_{\mathrm{VI}}\left(\delta\left(0, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{-\delta} M_{\mathrm{VIII}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(3) $M_{\mathrm{III}}\left(\delta\left(0, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{-\delta} M_{\mathrm{III}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.

Definition 4.6. Let $k \geq 2$ be integers. Domains $M_{l}\left(\delta\left(m+1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)(l=$ III, VI, VIII) are defined as follows. For $m=1,2,3, \ldots$,
(1) $M_{\mathrm{III}}\left(\delta\left(m+1, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{\delta m} M_{\mathrm{III}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(2) $M_{\mathrm{VI}}\left(\delta\left(2 m+1, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{\delta 2 m} M_{\mathrm{VI}}\left(\delta\left(1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(3) $M_{\mathrm{VI}}\left(\delta\left(2 m, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{\delta 2 m} M_{\mathrm{VI}}\left(\delta\left(0, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(4) $M_{\mathrm{VIII}}\left(\delta\left(2 m+1, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{\delta 2 m} M_{\mathrm{VIII}}\left(\delta\left(2 m-1, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
(5) $\quad M_{\mathrm{VII}}\left(\delta\left(2 m, n_{k}, \ldots, n_{1}, n_{0}\right)\right):=N_{3}^{\delta 2 m} M_{\mathrm{VIII}}\left(\delta\left(0, n_{k}, \ldots, n_{1}, n_{0}\right)\right)$.
4.4. Next we will consider relationship among the domains defined in the above. By replacing Types II, V, and VII in the previous paper [26] with Types III, VIII and VI, respectively and replacing the surfaces $F_{\mathrm{II}}^{+}\left(n_{k}, \ldots, n_{1}, n_{0}\right), F_{\mathrm{V}}^{+}\left(n_{k}, \ldots, n_{1}, n_{0}\right)$ and $F_{\mathrm{VII}}^{+}\left(n_{k}, \ldots, n_{1}, n_{0}\right)$ with the domains $M_{\mathrm{III}}\left(n_{k}, \ldots, n_{1}, n_{0}\right), M_{\mathrm{VIII}}\left(n_{k}, \ldots, n_{1}, n_{0}\right)$ and $M_{\mathrm{v1}}\left(n_{k}, \ldots, n_{1}, n_{0}\right)$, respectively, we have the same relationship among the domains $M_{l}\left(n_{k}, \ldots, n_{1}, n_{0}\right)$ as in $\S 5$ in the paper [26]. We will omit the detail here.

Noting that $R_{\mathrm{III}} \mathfrak{\Im}_{2}^{0}=\bigcup\left\{\phi\left(R_{\mathrm{III}} \mathfrak{\Im}_{2}^{00}\right) \mid \phi \in \operatorname{Mod} \mathfrak{\Im}_{2}\right\} \cap R_{\mathrm{III}}^{3}, R_{\mathrm{VI}} \mathfrak{\Im}_{2}^{0}=\bigcup\left\{\phi\left(R_{\mathrm{VI}} \mathcal{\Xi}_{2}^{00}\right) \mid \phi \in\right.$ $\left.\operatorname{Mod} \Im_{2}\right\} \cap R_{\mathrm{VI}}^{3}$ and $R_{\mathrm{VIII}} \Im_{2}^{0}=\bigcup\left\{\phi\left(R_{\mathrm{VII}} \Im_{2}^{00}\right) \mid \phi \in \operatorname{Mod} \mathfrak{\Im}_{2}\right\} \cap R_{\mathrm{VIII}}^{3}$, we have the following theorem by Theorem 2.

Theorem 3. Let $R_{l} \mathbb{S}_{2}^{0}$ ($\left.l=\mathrm{III}, \mathrm{VI}, \mathrm{VIII}\right)$ be the classical Schottky spaces of type l and let $M_{l}\left(n_{k}, \ldots, n_{1}, n_{0}\right)$ be the domains defined in $\S \S 4.2$ and 4.3. Then

$$
R_{\mathrm{II}} \Im_{2}^{0}=\bigcup\left\{M_{\mathrm{III}}\left(n_{k}, \ldots, n_{1}, n_{0}\right) \mid n_{0}= \pm 2 m(m=0,1,2, \ldots),\right.
$$

$$
\begin{gathered}
\left.n_{j}=0, \pm 1, \pm 2, \ldots(j=1,2, \ldots, k) ; k=0,1,2, \ldots\right\} ; \\
R_{\mathrm{VI}} \mathcal{S}_{2}^{0}=\bigcup\left\{M_{\mathrm{VI}}\left(n_{k}, \ldots, n_{1}, n_{0}\right) \mid n_{0}= \pm(2 m-1)(m=1,2,3, \ldots),\right. \\
\left.n_{j}=0, \pm 1, \pm 2, \ldots(j=1,2, \ldots, k) ; k=0,1,2, \ldots\right\} ; \\
R_{\mathrm{VIII}} \mathcal{S}_{2}^{0}=\bigcup\left\{M_{\mathrm{VIII}}\left(n_{k}, \ldots, n_{1}, n_{0}\right) \mid n_{0}= \pm 2 m(m=0,1,2, \ldots),\right. \\
\left.n_{j}=0, \pm 1, \pm 2, \ldots(j=1,2, \ldots, k) ; k=0,1,2, \ldots\right\} .
\end{gathered}
$$

5. Fundamental regions.

5.1. In this section we will determine fundamental regions for [Φ_{2}] and $\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)$ acting on $R_{\mathrm{III}} \mathcal{\Xi}_{2}^{0}, R_{\mathrm{VI}} \mathcal{\Xi}_{2}^{0}$ and $R_{\mathrm{VIII}} \Im_{2}^{0}$, respectively. We denote by $\operatorname{Mod}\left(R_{l} \Im_{2}^{0}\right)$ (resp. [$R_{l} \Phi_{2}$]) the restriction of $\operatorname{Mod}\left(\Im_{2}^{0}\right)$ (resp. [$\left.\Phi_{2}\right]$) to $R_{l} \mathbb{\Xi}_{2}^{0}$, that is, the set of all equivalence classes of orientation preserving automorphisms (resp. the set of all equivalence classes of automorphisms) in $R_{l} \mathbb{S}_{2}^{0}$ for $l=\mathrm{III}$, VI, VIII. We call $\operatorname{Mod}\left(R_{l} \mathbb{\Im}_{2}^{0}\right)$ and $\left[R_{l} \Phi_{2}\right]$ the Schottky modular group of type l and the extended Schottky modular group of type l, respectively.

Throughout this section, let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in $\S 1$. We denote by [ϕ] the equivalence class of $\phi \in \Phi_{2}$. We use the symbol ϕ for an element $[\phi]$ in $\left[\Phi_{2}\right]$ or $\operatorname{Mod}\left(\mathcal{S}_{2}^{0}\right)$ when there is no fear of confusion. We denote by $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$ a word on $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$. We denote by $S W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$ (resp. $S\left[W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\right]$ the set of all words on $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ (resp. the set of all equivalence classes of words on $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$). We easily see the following two lemmas by Theorem 1.

Lemma 5.1. Let $\operatorname{Mod}\left(R_{l} \mathbb{S}_{2}^{0}\right)$ and $\left[R_{l} \Phi_{2}\right]$ ($\left.l=\mathrm{III}, \mathrm{VI}, \mathrm{VIII}\right)$ be the Schottky modular group and the extended Schottky modular group of type l, respectively, and let N_{2} and N_{3} be the Nielsen transformations defined in §1. If $\phi \in \operatorname{Mod}\left(R_{\mathrm{VIII}} \mathcal{G}_{2}^{0}\right)\left(\right.$ resp. $\left.\phi \in\left[R_{\mathrm{VIII}} \Phi_{2}\right]\right)$, then $N_{2} \phi N_{2} \in \operatorname{Mod}\left(R_{\mathrm{III}} \mathcal{S}_{2}^{0}\right)$ (resp. $\left.N_{2} \phi N_{2} \in\left[R_{\mathrm{III}} \Phi_{2}\right]\right)$ and $N_{3}^{-1} \phi N_{3} \in \operatorname{Mod}\left(R_{\mathrm{VI}} \mathcal{S}_{2}^{0}\right)($ resp. $\left.N_{3}^{-1} \phi N_{3} \in\left[R_{\mathrm{VI}} \Phi_{2}\right]\right)$.

Lemma 5.2. Let $\operatorname{Mod}\left(R_{l} \Im_{2}^{0}\right),\left[R_{l} \Phi_{2}\right](l=\mathrm{III}, \mathrm{VI}, \mathrm{VIII}), N_{2}$ and N_{3} be as in Lemma 5.1. Then
(1) If $\psi \in \operatorname{Mod}\left(R_{\mathrm{III}} \Theta_{2}^{0}\right)\left(\right.$ resp. $\left.\psi \in\left[R_{\mathrm{III}} \Phi_{2}\right]\right)$, then there exists $\phi \in \operatorname{Mod}\left(R_{\mathrm{VIII}} \Im_{2}^{0}\right)($ resp. $\left.\phi \in\left[R_{\mathrm{VIII}} \Phi_{2}\right]\right)$ with $\psi=N_{2} \phi N_{2}^{-1}$.
(2) If $\psi \in \operatorname{Mod}\left(R_{\mathrm{VI}} \Im_{2}^{0}\right)$ (resp. $\left.\psi \in\left[R_{\mathrm{VI}} \Phi_{2}\right]\right)$, then there exists $\phi \in \operatorname{Mod}\left(R_{\mathrm{VIII}} \Im_{2}^{0}\right)$ (resp. $\phi \in\left[R_{\mathrm{VIII}} \Phi_{2}\right]$) with $\psi=N_{3}^{-1} \phi N_{3}$.

Proposition 5.1. Let $\operatorname{Mod}\left(R_{l} \mathcal{\Xi}_{2}^{0}\right),\left[R_{l} \Phi_{2}\right](l=\mathrm{III}, \mathrm{VI}, \mathrm{VIII}), N_{2}$ and N_{3} be as in Lemma 5.1. Then
(1) $\operatorname{Mod}\left(R_{\mathrm{III}} \mathcal{S}_{2}^{0}\right)=N_{2}\left(\operatorname{Mod}\left(R_{\mathrm{VII}} \Im_{2}^{0}\right)\right) N_{2}$ and $\left[R_{\mathrm{III}} \Phi_{2}\right]=N_{2}\left[R_{\mathrm{VII}} \Phi_{2}\right] N_{2}$.
(2) $\operatorname{Mod}\left(R_{\mathrm{VI}} \mathcal{S}_{2}^{0}\right)=N_{3}^{-1}\left(\operatorname{Mod}\left(R_{\mathrm{VII}} \mathcal{S}_{2}^{0}\right)\right) N_{3}$ and $\left[R_{\mathrm{VI}} \Phi_{2}\right]=N_{3}^{-1}\left[R_{\mathrm{VII}} \Phi_{2}\right] N_{3}$.

Proof. This follows from Lemmas 5.1 and 5.2.
q.e.d.
5.2. By straightforward calculations, we have the following lemma and proposition.

Lemma 5.3. Let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in $\S 1$. Then
(1) $N_{1}\left(R_{\mathrm{VIII}} \Im_{2}^{0}\right)=R_{\mathrm{VII}} \Im_{2}^{0}$.
(2) $\left(N_{2} W\left(N_{1}, N_{3}\right) N_{2}\right)\left(R_{\mathrm{VII}} \mathcal{S}_{2}^{0}\right)=R_{\mathrm{VIII}} \mathcal{S}_{2}^{0}$.
(3) $\left(N_{3}^{ \pm 1} W\left(N_{1}, N_{2}\right) N_{3}^{ \pm 1}\right)\left(R_{\mathrm{VIII}} \mathcal{E}_{2}^{0}\right)=R_{\mathrm{VIII}} \Im_{2}^{0}$.

Proposition 5.2. Let $\left[R_{\mathrm{VIII}} \Phi_{2}\right]$ be the extended Schottky modular group of type VIII. Then the set $\left[R_{\text {VIII }} \Phi_{2}\right]$ consists of all equivalence classes of words on $N_{1}, N_{2} W_{\alpha} N_{2}$, $N_{3}^{ \pm 1} W_{\beta} N_{3}^{ \pm 1}$ with $W_{\alpha} \in S W\left[N_{1}, N_{3}\right], W_{\beta} \in S W\left[N_{1}, N_{2}\right]$, where $S W\left[N_{1}, N_{2}\right]$ (resp. $S W\left[N_{1}, N_{3}\right]$) is the set of all equivalence classes of words on N_{1} and $N_{2}\left(\right.$ resp. N_{1} and $\left.N_{3}\right)$.

By the same method as in Lemmas 7.4 and 7.5 in Sato [26] we have the following lemmas.

Lemma 5.4. Let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in $\S 1$. Then the group $\left\{\left[N_{2} W_{\alpha} N_{2}\right] \mid W_{\alpha} \in S W\left(N_{1}, N_{3}\right)\right\}$ is generated by $\left[N_{1}\right]$ and $\left[N_{2} N_{3} N_{2}\right]$, where $S W\left(N_{1}, N_{3}\right)$ is the set of all equivalence classes of words on N_{1} and N_{3}.

Lemma 5.5. Let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in §1. Then
(1) The group $\left\{\left[N_{3} W_{\alpha} N_{3}\right] \mid W_{\alpha} \in S W\left(N_{1}, N_{2}\right)\right\}$ is generated by $\left[N_{1} N_{3}^{-2} N_{1}\right](=$ $\left.\left[N_{3}^{-2}\right]\right),\left[N_{3} N_{1} N_{3}\right]\left(=\left[N_{1}\right]\right)$ and $\left[N_{3} N_{2} N_{3}\right]$, where $S W\left(N_{1}, N_{2}\right)$ is the set of all equivalence classes of words on N_{1} and N_{3}.
(2) The group $\left\{\left[N_{3}^{-1} W_{\alpha} N_{3}\right] \mid W_{\alpha} \in S W\left(N_{1}, N_{2}\right)\right\}$ is generated by $\left[N_{3}^{-1} N_{1} N_{3}\right]$ and [$N_{3}^{-1} N_{2} N_{3}$], where $S W\left(N_{1}, N_{3}\right)$ is the set of all equivalence classes of words on N_{1} and N_{3}.

By Proposition 5.2., Lemmas 5.4 and 5.5, we have the following two propositions. The proofs are omitted, since the propositions are proved similarly to Propositions 7.3 and 7.4 in [26] by noting that $N_{3}^{-1} N_{1} N_{3} \sim N_{1} N_{3}^{2}$.

Proposition 5.3. Let $\operatorname{Mod}\left(R_{\mathrm{VIII}} \mathcal{\Xi}_{2}^{0}\right)$ and $\left[R_{\mathrm{VIII}} \Phi_{2}\right]$ be the Schottky modular group and the extended Schottky modular group of type VIII, and let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in §1. Then
(1) $\left[R_{\mathrm{VIII}} \Phi_{2}\right]$ is generated by $\left[N_{1}\right],\left[N_{3}^{2}\right]$, and $\left[N_{2} N_{3} N_{2}\right]$.
(2) $\operatorname{Mod}\left(R_{\mathrm{VIII}} \Theta_{2}^{0}\right)$ is generated by $\left[N_{3}^{2}\right]$ and $\left[N_{2} N_{3} N_{2}\right]$.

Proposition 5.4. Let $\operatorname{Mod}\left(R_{l} \mathbb{S}_{2}^{0}\right)$ and $\left[R_{l} \Phi_{2}\right](l=\mathrm{III}, \mathrm{VI})$ be the Schottky modular group and the extended Schottky modular group of type l, and let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in §1. Then
(1) (i) $\left[R_{\mathrm{III}} \Phi_{2}\right]$ is generated by $\left[N_{1}\right],\left[N_{2} N_{3}^{2} N_{2}\right]$ and $\left[N_{3}\right]$.
(ii) $\operatorname{Mod}\left(R_{\text {III }} \Im_{2}^{0}\right)$ is generated by $\left[N_{3}\right]$ and $\left[N_{2} N_{3}^{2} N_{2}\right]$.
(2) (i) $\left[R_{\mathrm{VI}} \Phi_{2}\right]$ is generated by $\left[N_{1}\right],\left[N_{1} N_{2}\right]$ and $\left[N_{3}^{2}\right]\left(=\left[N_{1} N_{3}^{-2} N_{1}\right]\right)$.
(ii) $\operatorname{Mod}\left(R_{\mathrm{VI}} \mathcal{S}_{2}^{0}\right)$ is generated by $\left[N_{3}^{2}\right]$ and $\left[N_{1} N_{2}\right]$.
5.3. We will introduce some surfaces in $\boldsymbol{R}_{\mathrm{VI}}^{3}$:

$$
\begin{aligned}
& B_{1}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{vI}}(-1) \mid t_{2}=t_{1},\left\{\left(t_{1}+1 / t_{1}\right) / 2\right\}^{-2}<\rho<1,-1<t_{1}<0\right\} ; \\
& B_{2}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{vI}}(1) \mid t_{2}=t_{1}, 1<\rho<\left\{\left(t_{1}+1 / t_{1}\right) / 2\right\}^{2},-1<t_{1}<0\right\} ; \\
& B_{3}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{vI}}(-1) \mid \rho=\left(t_{2}-t_{1}\right) /\left(1-t_{1} t_{2}\right), t_{20}<t_{2}<0,-1<t_{1}<0\right\},
\end{aligned}
$$

where

$$
t_{20}=\left[1-4 t_{1}+t_{1}^{2}-\left\{\left(1-4 t_{1}+t_{1}^{2}\right)^{2}-4 t_{1}^{2}\right\}^{1 / 2}\right] / 2 t_{1} .
$$

We note that $t_{1}<t_{20}<0$ in this case.

$$
\begin{aligned}
& B_{4}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{VI}}(1) \mid \rho=\left(1-t_{1} t_{2}\right) /\left(t_{2}-t_{1}\right), t_{20}<t_{2}<0,-1<t_{1}<0\right\} ; \\
& B_{5}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{VI}}(-1) \mid t_{2}=0,-t_{1}<\rho<1,-1<t_{1}<0\right\} ; \\
& B_{6}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{VI}}(1) \mid t_{2}=0,1<\rho<-1 / t_{1},-1<t_{1}<0\right\} ; \\
& B_{7}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{VI}}(-1) \mid \rho^{1 / 2}=-\left(t_{1}+t_{2}\right) /\left(1+t_{1} t_{2}\right), t_{1}<t_{2}<t_{20},-1<t_{1}<0\right\} ; \\
& B_{8}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{VI}}(1) \mid \rho^{1 / 2}=-\left(1+t_{1} t_{2}\right) /\left(t_{1}+t_{2}\right), t_{1}<t_{2}<t_{20},-1<t_{1}<0\right\} ; \\
& B_{9}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{VI}}(-1) \cap \partial M_{\mathrm{VI}}(1) \mid \rho=1, t_{1}<t_{2}<t_{20},-1<t_{1}<0\right\} .
\end{aligned}
$$

By Lemma 1.1 we have
Lemma 5.6. Let B_{1}, B_{2}, B_{3} and B_{4} be the surfaces defined in the above, and let N_{1} and N_{2} be the Nielsen transformations defined in §1. Then $N_{1} N_{2}\left(B_{1}\right)=B_{2}$ and $N_{3}^{2}\left(B_{3}\right)=B_{4}$.

We denote by $F_{\mathrm{vi}}^{-}\left(\left[\Phi_{2}\right]\right)$ (resp. $F_{\mathrm{VI}}^{+}\left(\left[\Phi_{2}\right]\right)$) the subregions in $M_{\mathrm{vI}}(-1)$ (resp. $\left.M_{\mathrm{VI}}(1)\right)$ bounded by the surfaces $B_{1}, B_{3}, B_{5}, B_{7}$ and B_{9} (resp. $B_{2}, B_{4}, B_{6}, B_{8}$ and B_{9}). Then $F_{\mathrm{vI}}^{+}\left(\left[\Phi_{2}\right]\right)=N_{1}\left(F_{\mathrm{vI}}^{-}\left[\Phi_{2}\right]\right)$. We set $F_{\mathrm{vI}}\left(\left[\Phi_{2}\right]\right)=F_{\mathrm{vi}}^{-}\left(\left[\Phi_{2}\right]\right)$ and $F_{\mathrm{vI}}\left(\mathbb{S}_{2}^{0}\right)=F_{\mathrm{vi}}^{+}\left(\left[\Phi_{2}\right]\right) \cup$ $F_{\mathrm{v} 1}^{-}\left(\left[\Phi_{2}\right]\right)$. Then we have the following by Proposition 5.4(2) and Lemma 5.6.

Theorem 4. Let $\operatorname{Mod}\left(R_{\mathrm{VI}} \mathcal{S}_{2}^{0}\right)$ and $\left[R_{\mathrm{VI}} \Phi_{2}\right]$ be the Schottky modular group and the extended Schottky modular group of type VI , and let $F_{\mathrm{VI}}\left(\Im_{2}^{0}\right)$ and $F_{\mathrm{VI}}\left(\left[\Phi_{2}\right]\right)$ be the domains defined in the above. Then
(1) $\left.F_{\mathrm{VI}} \Im_{2}^{0}\right)$ is a fundamental region in $R_{\mathrm{VI}} \Im_{2}^{0}$ for $\operatorname{Mod}\left(R_{\mathrm{VI}} \Theta_{2}^{0}\right)$.
(2) $F_{\mathrm{vI}}\left(\left[\Phi_{2}\right]\right)$ is a fundamental region in $R_{\mathrm{VI}} \mathbb{S}_{2}^{0}$ for $\left[R_{\mathrm{VI}} \Phi_{2}\right]$.
5.4. Next we will describe fundamental regions in $R_{\mathrm{III}} \mathcal{G}_{2}^{0}$ for $\operatorname{Mod}\left(R_{\mathrm{III}} \mathcal{G}_{2}^{0}\right)$ and [$\left.R_{\mathrm{III}} \Phi_{2}\right]$. We define some surfaces:

$$
B_{1}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{III}} \Im_{2}^{0} \mid \rho=\left(t_{2}-t_{1}^{1 / 2}\right) /\left(1-t_{1}^{1 / 2} t_{2}\right), t_{21}<t_{2}<0,0<t_{1}<1\right\},
$$

where $t_{21}=t_{21}\left(t_{1}\right)$ is the t_{2}-coordinate of the intersection point of two curves

$$
\rho=\left(t_{2}-t_{1}^{1 / 2}\right) /\left(1-t_{1}^{1 / 2} t_{2}\right)
$$

and

$$
\left(1+t_{1}\right)\left((-\rho)^{1 / 2}+1 /(-\rho)^{1 / 2}\right)=\left(1-t_{1}\right)\left(\left(-t_{2}\right)^{1 / 2}+1 /\left(-t_{2}\right)^{1 / 2}\right)
$$

for $0<t_{1}<1$;

$$
\begin{aligned}
& B_{2}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{III}} \mathcal{S}_{2}^{0} \mid \rho=\left(1-t_{1}^{1 / 2} t_{2}\right) /\left(t_{2}-t_{1}^{1 / 2}\right), t_{21}<t_{2}<0,0<t_{1}<1\right\} ; \\
& B_{3}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{III}} \mathcal{S}_{2}^{0} \mid\left(1+t_{1}\right)\left((-\rho)^{1 / 2}+1 /(-\rho)^{1 / 2}\right)\right. \\
&\left.\quad=\left(1-t_{1}\right)\left(\left(-t_{2}\right)^{1 / 2}+1 /\left(-t_{2}\right)^{1 / 2}\right), \rho<0,0<t_{1}<1\right\} ; \\
& B_{4}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial R_{\mathrm{III}} \mathcal{S}_{2}^{0} \mid t_{2}=0,-1<\rho<-t_{1}^{1 / 2}, 0<t_{1}<1\right\} ; \\
& B_{5}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial R_{\mathrm{III}} \mathcal{S}_{2}^{0} \mid t_{2}=0,-1 / t_{1}^{1 / 2}<\rho \leq-1,0<t_{1}<1\right\} ; \\
& B_{6}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{III}} \mathcal{S}_{2}^{0} \mid \rho=-1,-\left(\left(1-t_{1}^{1 / 2}\right) /\left(1+t_{1}^{1 / 2}\right)\right)^{2}<t_{2}<0,0<t_{1}<1\right\} .
\end{aligned}
$$

Let $F_{\mathrm{III}}\left(\Theta_{2}^{0}\right)\left(\right.$ resp. $F_{\mathrm{III}}\left(\left[\Phi_{2}\right]\right)$ be the subregions of $M_{\mathrm{III}}(0)$ bounded by B_{1}, B_{2}, B_{3}, B_{4} and B_{5} (resp. B_{1}, B_{3}, B_{4} and B_{6}).

We can show the following theorem by a similar argument to the proof of Theorem 4. Namely, noting that $B_{2}=N_{3}\left(B_{1}\right)$, we have the theorem by Proposition 5.4(1).

Theorem 5. Let $\operatorname{Mod}\left(R_{\mathrm{III}} \mathcal{S}_{2}^{0}\right)$ and $\left[R_{\mathrm{III}} \Phi_{2}\right]$ be the Schottky modular group and the extended Schottky modular group of type III, and let $F_{\mathrm{III}}\left(\Im_{2}^{0}\right)$ and $F_{\mathrm{III}}\left(\left[\Phi_{2}\right]\right)$ be the domains defined in the above. Then
(1) $F_{\mathrm{III}}\left(\mathfrak{S}_{2}^{0}\right)$ is a fundamental region in $R_{\mathrm{III}} \Im_{2}^{0}$ for $\operatorname{Mod}\left(R_{\mathrm{III}} \mathfrak{S}_{2}^{0}\right)$.
(2) $\left.F_{\mathrm{III}}\left[\Phi_{2}\right]\right)$ is a fundamental region in $R_{\mathrm{III}} \mathcal{S}_{2}^{0}$ for $\left[R_{\mathrm{II}} \Phi_{2}\right]$.
5.5. Finally we will describe fundamental regions in $R_{\mathrm{VIII}} \mathcal{S}_{2}^{0}$ for $\operatorname{Mod}\left(R_{\mathrm{VIII}} \mathcal{S}_{2}^{0}\right)$ and $R_{\text {VIII }}\left[\Phi_{2}\right]$. We set

$$
T_{1}\left(t_{1}, \rho\right)=\frac{\left((-\rho)^{1 / 2}-\left(-t_{1}\right)^{1 / 2}\right)\left(1-\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right)}{\left((-\rho)^{1 / 2}+\left(-t_{1}\right)^{1 / 2}\right)\left(1+\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right)}
$$

and

$$
T_{2}\left(t_{1}, \rho\right)=\left(t_{1}-\rho\right)^{2} /\left(1-t_{1} \rho\right)^{2} .
$$

We define some surfaces:

$$
B_{1}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{VIII}}(0) \mid t_{2}=T_{2}\left(t_{1}, \rho\right), \rho_{1}<\rho<t_{1},-1<t_{1}<0\right\},
$$

where $\rho_{1}=\rho\left(t_{1}\right)$ is the ρ-coordinate of the intersection point of two curves $t_{2}=T_{1}\left(t_{1}, \rho\right)$ and $t_{2}=T_{2}\left(t_{1}, \rho\right)$ for $-1<t_{1}<0$;

$$
\begin{aligned}
& B_{2}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{vIII}}(0) \mid t_{2}=T_{2}\left(t_{1}, \rho\right)^{-1}, 1 / t_{1}<\rho<1 / \rho_{1},-1<t_{1}<0\right\} ; \\
& B_{3}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{vII}}(0) \mid t_{2}=T_{1}\left(t_{1}, \rho\right),-1<\rho<\rho_{1},-1<t_{1}<0\right\} ; \\
& B_{4}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{vIII}}(0) \mid t_{2}=T_{1}\left(t_{1}, \rho\right), 1 / \rho_{1}<\rho<-1,-1<t_{1}<0\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
& B_{5}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{VIII}}(0) \mid t_{2}=0,-1<\rho<t_{1},-1<t_{1}<0\right\} ; \\
& B_{6}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in \partial M_{\mathrm{VII}}(0) \mid t_{2}=0,1 / t_{1}<\rho \leq-1,-1<t_{1}<0\right\} ; \\
& B_{7}:=\left\{\left(t_{1}, t_{2}, \rho\right) \in M_{\mathrm{VIII}}(0) \mid \rho=-1,0<t_{2}<\left\{\left(1-\left(-t_{1}\right)^{1 / 2}\right) /\left(1+\left(-t_{1}\right)^{1 / 2}\right)\right\}^{2},\right. \\
&\left.\quad-1<t_{1}<0\right\} .
\end{aligned}
$$

Let $F_{\mathrm{vIII}}\left(\Im_{2}^{0}\right)$ (resp. $F_{\mathrm{viII}}\left[\left[\Phi_{2}\right]\right)$) be the subregions in $R_{\mathrm{vIII}} \Theta_{2}^{0}$ bounded by B_{1}, B_{2}, B_{3}, B_{4}, B_{5} and B_{6} (resp. B_{1}, B_{3}, B_{5} and B_{7}).

We can show the following theorem by an entirely similar argument to the proof of Theorem 4. Namely, noting that $B_{2}=N_{2} N_{3} N_{2}\left(B_{1}\right)$, we can prove the theorem by Proposition 5.3.

Theorem 6. Let $\operatorname{Mod}\left(R_{\mathrm{VIII}} \widetilde{S}_{2}^{0}\right)$ and $\left[R_{\mathrm{VII}} \Phi_{2}\right]$ be the Schottky modular group and the extended Schottky modular group of type VIII, and let $F_{\mathrm{VIII}}\left(\mathbb{S}_{2}^{0}\right)$ and $F_{\mathrm{VIII}}\left(\left[\Phi_{2}\right]\right)$ be the domains defined in the above. Then
(1) $F_{\mathrm{VIII}}\left(\mathfrak{S}_{2}^{0}\right)$ is a fundamental region in $R_{\mathrm{VIII}} \mathfrak{S}_{2}^{0}$ for $\operatorname{Mod}\left(R_{\mathrm{VIII}} \mathfrak{S}_{2}^{0}\right)$.
(2) $F_{\mathrm{VIII}}\left(\left[\Phi_{2}\right]\right)$ is a fundamental region in $R_{\mathrm{VIII}} \Theta_{2}^{0}$ for $\left[R_{\mathrm{VIII}} \Phi_{2}\right]$.

6. Conclusion.

6.1. In this section we will collect together the main results in [24], [26] and this paper and apply them to calculate Jørgensen's numbers as in [27], [28], [29] and the Hausdorff dimensions of the limit sets of Schottky groups. Namely, we will list the fundamental regions $F_{l}\left(\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)\right)(l=\mathrm{I}, \mathrm{II}, \ldots$, VIII) for classical Schottky groups of real type of genus two and list generators of the Schottky modular groups $\operatorname{Mod}\left(R_{l} \mathbb{G}_{2}^{0}\right)$.

Theorem 7. Let $F_{l}\left(\operatorname{Mod}\left(\mathfrak{S}_{2}^{0}\right)\right)(l=\mathrm{I}, \mathrm{II}, \ldots, \mathrm{VIII})$ be the fundamental regions for classical Schottky groups $\operatorname{Mod}\left(\mathcal{R}_{l} \Im_{2}^{0}\right)$ of type l. Then
(1) $\quad F_{1}\left(\operatorname{Mod}\left(\mathcal{S}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{I}} \mathbb{S}_{2}^{0} \mid \rho\left(t_{1}, t_{2}\right)^{-1}<\rho<\rho\left(t_{1}, t_{2}\right)\right.$,

$$
\left.\rho \neq 1,0<t_{2}<1,0<t_{1}<1\right\}
$$

where $\rho\left(t_{1}, t_{2}\right)=\left(1+t_{1}^{1 / 2} t_{2}\right) /\left(t_{1}^{1 / 2}+t_{2}\right)$.
(2) $\quad F_{\mathrm{II}}\left(\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{II}} \mathbb{S}_{2}^{0} \mid\left(1+t_{1}^{1 / 2} t_{2}\right) /\left(t_{1}^{1 / 2}+t_{2}\right)<\rho\right.$

$$
\left.<\left\{\left(1-t_{1}^{1 / 2} t_{2}\right) /\left(t_{1}^{1 / 2}-t_{2}\right)\right\}^{2},-1<t_{2}<0,0<t_{1}<1\right\} .
$$

(3) $\quad F_{\mathrm{III}}\left(\operatorname{Mod}\left(\mathfrak{\Im}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{III}} \Im_{2}^{0} \mid \rho^{*}\left(T_{1}, T_{2}\right)<\rho<-1\right.$,

$$
\left.t_{2}^{*}\left(t_{1}, \rho\right)<t_{2}<0,0<t_{1}<1\right\},
$$

where $\rho^{*}\left(T_{1}, T_{2}\right)=\left\{4-T_{1} T_{2}+\left(4-T_{1}^{2}\right)^{1 / 2}\left(4-T_{2}^{2}\right)^{1 / 2}\right\} / 2\left(T_{2}-T_{1}\right), \quad T_{1}=t_{1}+1 / t_{1}, \quad T_{2}=$ $t_{2}+1 / t_{2}$, and $t_{2}^{*}\left(t_{1}, t_{2}\right)$ is t_{2} satisfying the equation $\left(1+t_{1}\right)\left\{(-\rho)^{1 / 2}+1 /(-\rho)^{1 / 2}\right\}=(1-$ $\left.t_{1}\right)\left\{\left(-t_{2}\right)^{1 / 2}+1 /\left(-t_{2}\right)^{1 / 2}\right\}$.
(4) $\quad F_{\mathrm{IV}}\left(\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{IV}} \mathbb{S}_{2}^{0} \mid \rho^{*}\left(t_{1}, t_{2}\right)<\rho\right.$

$$
\left.<1 / \rho^{*}\left(t_{1}, t_{2}\right), t_{2}<t_{1}, 0<t_{2}<t_{2}^{*}\left(t_{1}, \rho\right), 0<t_{1}<1\right\}
$$

where $\rho^{*}\left(t_{1}, t_{2}\right)=\left(1-t_{1}^{1 / 2} t_{2}\right) /\left(t_{2}-t_{1}^{1 / 2}\right)$ and $t_{2}^{*}\left(t_{1}, \rho\right)$ is t_{2} satisfying the equation $2 t_{1}^{1 / 2} t_{2}^{1 / 2}(1-$ $\rho)=(-\rho)^{1 / 2}\left(1-t_{1}\right)\left(1-t_{2}\right)$.
(5) $\quad F_{\mathrm{V}}\left(\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{V}} \mathbb{S}_{2}^{0} \mid\left(1-t_{1} t_{2}\right) /\left(t_{2}-t_{1}\right)<\rho\right.$

$$
\left.<\left\{\left(1-t_{2}^{1 / 2} t_{1}\right) /\left(t_{2}^{1 / 2}-t_{1}\right)\right\}^{2}, 0<t_{2}<1,-1<t_{1}<0\right\} .
$$

(6)
$F_{\mathrm{VI}}\left(\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{VI}} \mathcal{E}_{2}^{0} \mid\left(t_{2}-t_{1}\right) /\left(1-t_{1} t_{2}\right)<\rho<\left(1-t_{1} t_{2}\right) /\left(t_{2}-t_{1}\right)\right.$,

$$
\left\{-\left(t_{1}+t_{2}\right) /\left(1+t_{1} t_{2}\right)\right\}^{2}<\rho<\left\{-\left(1+t_{1} t_{2}\right) /\left(t_{1}+t_{2}\right)\right\}^{2}
$$

$$
\left.\rho \neq 1, t_{1}<t_{2}<0,-1<t_{1}<0\right\}
$$

(7)

$$
F_{\mathrm{VII}}\left(\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{VII}} \widetilde{S}_{2}^{0}\right\}
$$

$$
\begin{aligned}
& \left\{\left(-t_{1}\right)^{1 / 2}+\left(-t_{2}\right)^{1 / 2}\right\} /\left(1-\left(-t_{1}\right)^{1 / 2}\left(-t_{2}\right)^{1 / 2}\right) \\
& \left.<(-\rho)^{1 / 2}<\left(1-\left(-t_{1}\right)^{1 / 2}\left(-t_{2}\right)^{1 / 2}\right) /\left(\left(-t_{1}\right)^{1 / 2}+\left(-t_{2}\right)^{1 / 2}\right)\right), \\
& \left.t_{2}<t_{1},-1<t_{1}<0\right\} .
\end{aligned}
$$

(8) $\quad F_{\mathrm{VIII}}\left(\operatorname{Mod}\left(\mathbb{S}_{2}^{0}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{VIII}} \mathbb{S}_{2}^{0} \mid 0<t_{2}\right.$

$$
\left.<t_{2}\left(t_{1}, \rho\right), 1 / t_{1}<\rho<-1,-1<t_{1}<0\right\}
$$

where $t_{2}\left(t_{1}, \rho\right)=\left\{(-\rho)^{1 / 2}-\left(-t_{1}\right)^{1 / 2}\right\}\left\{1-\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right\} /\left\{(-\rho)^{1 / 2}+\left(-t_{1}\right)^{1 / 2}\right)(1+$ $\left.\left(-t_{1}\right)^{1 / 2}(-\rho)^{1 / 2}\right\}$.
6.2. Theorem 8. Let $N_{j}(j=1,2,3)$ be the Nielsen transformations defined in $\S 1$, that is, $N_{1}:\left(A_{1}, A_{2}\right) \mapsto\left(A_{1}^{-1}, A_{2}\right), N_{2}:\left(A_{1}, A_{2}\right) \mapsto\left(A_{2}, A_{1}\right)$ and $N_{3}:\left(A_{1}, A_{2}\right) \mapsto\left(A_{1}, A_{1} A_{2}\right)$. Let $\operatorname{Mod}\left(R_{l} \Im_{2}^{0}\right)(l=\mathrm{I}, \mathrm{II}, \ldots, \mathrm{VIII})$ be the Schottky modular group of type l. Then
(1) $\operatorname{Mod}\left(R_{1} \Im_{2}^{0}\right)=\left\langle N_{1} N_{3} N_{1}, N_{1} N_{2}\right\rangle$.
(2) $\operatorname{Mod}\left(R_{\text {II }} \Xi_{2}^{0}\right)=\left\langle N_{3}, N_{2} N_{3}^{2} N_{2}\right\rangle$.
(3) $\operatorname{Mod}\left(R_{\mathrm{II}} \mathcal{\Xi}_{2}^{0}\right)=\left\langle N_{3}, N_{2} N_{3}^{2} N_{2}\right\rangle$.
(4) $\operatorname{Mod}\left(R_{\text {IV }} \mathcal{G}_{2}^{0}\right)=\left\langle N_{1} N_{3} N_{1}, N_{1} N_{2}\right\rangle$.
(5) $\operatorname{Mod}\left(R_{\mathrm{V}} \mathbb{G}_{2}^{0}\right)=\left\langle N_{3}^{2}, N_{2} N_{3} N_{2}\right\rangle$.
(6) $\operatorname{Mod}\left(R_{\mathrm{VI}} \mathcal{G}_{2}^{0}\right)=\left\langle N_{3}^{2}, N_{1} N_{2}\right\rangle$.
(7) $\operatorname{Mod}\left(R_{\text {VII }} \Im_{2}^{0}\right)=\left\langle N_{3}^{2}, N_{1} N_{2}\right\rangle$.
(8) $\operatorname{Mod}\left(R_{\mathrm{VIII}} \mathcal{S}_{2}^{0}\right)=\left\langle N_{3}^{2}, N_{2} N_{3} N_{2}\right\rangle$.

References

[1] L. Bers, Automorphic forms for Schottky groups, Adv. in Math. 16 (1975), 332-361.
[2] A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722-736.
[3] A. F. Beardon, Inequalities for certain Fuchsian groups, Acta Math. 127 (1971), 221-258.
[4] C. Bishop and P. Jones, Hausdorff dimensions and Kleinian groups, preprint.
[5] A. I. Bobenko, Uniformization and finite-gap integration, Preprint Leningrad LOMI P-10-86 (1986), 1-41 (in Russian).
[6] A. I. Bobenko and L. A. Bordag, Periodic multiphase solutions of the Kadomsev-Petviashvili equation, J. Phys. A: Math. Gen. 22 (1989), 1259-1274.
[7] V. Chuckrow, On Schottky groups with applications to Kleinian groups, Ann. of Math. 88 (1969), 47-61.
[8] P. G. Doyle, On the bass note of a Schottky group, Acta Math. 160 (1988), 249-284.
[9] C. J. Earle, The group of biholomorphic self-mapping of Schottky space, Ann. Acad. Sci. Fernn. 16 (1991), 399-410.
[10] J. Gilman, A geometric approach to the hyperbolic Jørgensen's inequality, Bull. Amer. Math. Soc. 16 (1987), 91-92.
[11] J. Gilman, Inequalities in discrete subgroups of $\operatorname{PSL}(2, R)$, Can. J. Math. 40 (1988), 115-130.
[12] J. Gilman, A geometric approach to Jørgensen's inequality, Adv. in Math. 85 (1991), 193-197.
[13] D. A. Hejhal, On Schottky and Teichmüller spaces, Adv. in Math. 15 (1975), 133-156.
[14] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), 739-749.
[15] T. Jørgensen, Punctured torus bundles, preprint.
[16] T. Jørgensen, A. Marden and B. Maskit, The boundary of classical Schottky space, Duke Math. J. 46 (1979), 441-446.
[17] A. Marden, Schottky groups and circles, Contribution to Analysis, Academic Press, New York, 1974, 273-278.
[18] B. H. Neumann, Die Automorphismengruppe der freien Gruppen, Math. Ann. 107 (1932), 367-386.
[19] P. S. Phillips and R. Sarnak, The Laplasian for domains in hyperbolic spaces and limit sets of Kleinian groups, Acta Math. 155 (1985), 173-241.
[20] N. Purzitsky, Real two-dimensional representation of two-generator free groups, Math. Z. 127 (1972), 95-104.
[21] H. Sato, On augmented Schottky spaces and automorphic forms, I, Nagoya Math. J. 75(1979), 151-175.
[22] H. Sato, Introduction of new coordinates to the Schottky space-The general case-, J. Math. Soc. Japan 35 (1983), 23-35.
[23] H. Sato, Augmented Schottky spaces and a uniformization of Riemann surfaces, Tôhoku Math. J. 35 (1983), 557-572.
[24] H. Sato, Classical Schottky groups of real type of genus two, I, Tôhoku Math. J. 40 (1988), 51-75.
[25] H. Sato, On a paper of Zarrow, Duke Math. J. 56 (1988), 205-209.
[26] H. Sato, Classical Schottky groups of real type of genus two, II, Tôhoku Math. J. 43 (1991), 449-472.
[27] H. Sato, Jørgensen's inequality for purely hyperbolic groups, Rep. Fac. Sci. Shizuoka Univ. 26 (1992), 1-9.
[28] H. Sato, Jørgensen's inequality for classical Schottky groups of real type, J. Math. Soc. Japan, to appear.
[29] H. Sato, Jørgensen's inequality for classical Schottky groups of real type, II, preprint.
[30] R. Zarrow, Classical and non-classical Schottky groups, Duke Math. J. 43 (1975), 717-724.
Department of Mathematics
Faculty of Science
Shizuoka University
Shizuoka 422
Japan

[^0]: Partly supported by the Grant-in Aid for Co-operative Research as well as Scientific Research, the Ministry of Education, Science and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 32G15; Secondary 20M10, 30F40.

