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Abstract. There are eight kinds of classical Schottky spaces of real type of genus

two. In this paper we consider the spaces of the third, sixth and eighth types. This paper

has the following three aims: (1) to represent the shape of the spaces by using multipliers

and cross ratios of the fixed points of two generators; (2) to find generators for the

Schottky modular groups acting on the above spaces; (3) to determine fundamental

regions for the Schottky modular group acting on the spaces.

Introduction. Schottky spaces and their boundaries, and augmented Schottky
spaces were studied by Bers [1], Chuckrow [7], Earle [9], Hejhal [13], Sato [21]
and others. Furthermore, classical Schottky spaces and classical Schottky groups were
studied by Zarrow [30], Jorgensen-Marden-Maskit [14], Marden [17] and Sato [25].
In particular, Schottky spaces and classical Schottky groups of real type were studied
by Bobenko [2], Bobenko-Bordag [3] and Sato [24], [26] (see §1 for the definition).
In the case of genus two those spaces and groups are classified into eight types (see
§1). Purzitsky [20] and Sato [24] obtained fundamental regions for Schottky modular
groups acting on the classical Schottky spaces of the first and fourth types, that is, on
the space of marked Fuchsian Schottky groups. Furthermore, Sato [26] gave the shape
of the classical Schottky spaces of the second, fifth and seventh types and determined
fundamental regions for the Schottky modular groups acting on those spaces.

This paper is the final version of the following: the shape of the classical Schottky
spaces of real type of genus two and fundamental regions of the Schottky modular
groups acting on those spaces. Namely, here we will consider the groups and the spaces
of the third, sixth and eighth types as a sequel to our previous papers [24], [26]. This
paper has the following three aims: (1) to represent the shape of the spaces of the third,
sixth and eighth types by using the coordinates introduced in Sato [22] (Theorem 3);
(2) to find generators for the Schottky modular groups acting on the above spaces
(Propositions 5.3 and 5.4); (3) to determine fundamental regions for the Schottky
modular groups (Theorems 4, 5 and 6).

It is an important problem to decide whether or not a two-generator group
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G = (Al9 A2) is a classical Schottky group. We can solve this problem for the case of
two-generator groups of real type by considering the shape of the classical Schottky
spaces of real type given in [24], [26] and this paper. For example, (i) the allegedly
non-classical Schottky group constructed by Zarrow [30] is a group of the second type.
Namely, the group is a classical Schottky group (Sato [25]); (ii) the group due to
J0rgensen [14, p. 11] is a boundary group of the classical Schottky space of the sixth
type.

The second problem is to find the best lower bound of Jorgensen's numbers for
Schottky groups in connection with discreteness of two-generator groups. We solve this
problem for classical Schottky groups of real type by using the Schottky modular groups
and the fundamental regions for the groups given in [24], [26] and this paper (cf.
Gilman [10], [11], [12], Sato [27], [28], [29] for this problem). To be more precise,
let G = (Aί9 A2} be a classical Schottky group generated by Aγ and A2. We call

Jorgensen's number for the marked group G = (Aί9 A2} (cf. Jorgensen [14]). Then we
have the following:

( i ) J(G)> 16 if G is of the first type (Gilman [12], Sato [27]),
( ii ) J(G)> 16 if G is of the second type (Sato [28]),
(iii) J{G) > 4 if G is of the third type (Sato [29]),
(iv ) J(G)>4 if G is of the fourth type (Gilman [12], Sato [27]),
( v ) J(G)>4(1 +yβ)2 if G is of the fifth type (Sato [28]),
( vi) J{G)> 16 if G is of the sixth type (Sato [29]),
(vii) J(G)> 4(1+yj2)2 if G is of the seventh type (Sato [28]),
(viii) J(G)> 16 if G is of the eighth type (Sato [29]).
Furthermore, it is expected that our results in [24], [26] and this paper are ap-

plicable to calculate the Hausdorff dimension of the limit sets of classical Schottky
groups of real type (see Beardon [2], [3], Bishop-Jones [4], Doyle [8], Phillips-Sarnak
[17] for the Hausdorff dimension of the limit sets of Schottky groups).

In § 1 we will state some definitions and consider automorphisms of a free group
on two generators. In §2 we will consider relationship among eight kinds of the classical
Schottky spaces of real type of genus two (Theorem 1). In §3 we will determine the
shape of the classical Schottky spaces of real type of classical generators (Theorem 2)
(see §3 for the definition). In §4 we will determine the shape of the classical Schottky
spaces of the third, sixth and eighth types (Theorem 3). In §5 we will find generators
for the Schottky modular groups acting on those spaces (Propositions 5.3 and 5.4), and
determine fundamental regions for the Schottky modular groups (Theorems 4, 5, and
6). In the final section we will collect the main results in [24], [26] and this paper for
applications to Jorgensen's numbers and the Hausdorff dimension of the limit sets of
classical Schottky groups. Namely, we will represent generators for eight kinds of the
Schottky modular groups (Theorem 7) and give eight kinds of the fundamental regions
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for the Schottky modular groups (Theorem 8).

Thanks are due to the referees for their careful reading and valuable suggestions.

1. Preliminaries.

1.1. In this section we will state some definitions and list properties of auto-

morphisms of a free group on two generators. Let Cί9 Cg + x ; . . . Cg, C2g be a set of 2g

(g>l) mutually disjoint Jordan curves on the Riemann sphere which comprise the

boundary of a 2g-p\y connected region ω. Suppose there are g Mόbius transformations

Al9...9Ag which have the property that Ai maps C, onto Cg+j and A}(ω) n ω = 09

\<j<g. Then the g necessarily loxodromic transformations Ag generate a marked

Schottky group G=(Al9..., Ag} of genus g with ω as a fundamental region. In

particular, if all the C, (j = 1, 2,..., 2g) are circles, then we call Al9...9Ag a set of

classical generators of G. A classical Schottky group is a Schottky group for which there

exists some set of classical generators.

We denote by Mob the group of all Mόbius transformations. We say two marked

subgroups G = (Aί9..., Ag} and G= (Al9..., Ag} of Mob to be equivalent if there

exists a Mόbius transformation T such that Aj=TAjT~ί for y = l , 2 , . . . , g. The

Schottky space (resp. the classical Schottky space) of genus g, denoted by Sff (resp. S°),

is the set of all equivalence classes of marked Schottky groups (resp. marked classical

Schottky groups) of genus g > 1.

We denote by 9Jl2 the set of all equivalence classes [(Aί9 A2y] of marked groups

(Al9A2y generated by loxodromic transformations Ax and A2 whose fixed points are

all distinct. Let [(Al9 ,42>]e9W2. F o r / = 1 , 2 , l e t ^ (\λj\>\)9pj a n d / ? 2 + i be the mul-

tipliers, the repelling and the attracting fixed points of Aj9 respectively. We define

tj by setting tj=l/λj. Thus tjeD* = {z\0<\z\<l}. We determine a Mόbius trans-

formation Γ b y 7 ( ^ 0 = 0, T(p3)= oo and T ( p 2 ) = l , and define p by p^TipJ. Thus

p e C - { 0 , 1}. We can define a mapping α of the space 9M2 into (D*)2 x(C-{0, 1}) by

setting α([<i41,i42>]) = (ίi, t2, p). Then we say [(Al9A2y] represents (tl9t29ρ) and

(tl9t29p) corresponds to [(Al9A2y] or <Al9A2}. We write t1 = t1(G)9 t2 = t2(G) and

ρ = p(G). Conversely, λl9 λ2 and p 4 are uniquely determined from a given point τ =

(ί l 9 ί2, p)e(D*)2 x (C-{0 , 1}) under the normalization condition pί=0, p3 = oo and

p2 = \\ we define ^ (; = 1,2) and pA by setting λj=l/tj and p 4 = p, respectively. We

determine Ax(z\ A2(z)£Mbb from τ as follows: the multiplier, the repelling and the

attracting fixed points of Aj(z) are λj9 pj and p2+ji respectively. Thus we obtain a

mapping β of (Z)*)2 x (C-{0 , 1}) into SR2 by setting β(τ) = l(A1(z),A2(Φl Then we

note that βoc = ocβ = id. Therefore we identify 9Jί2 with α(9M2). Similarly we can define

the mapping α* of S 2 or &°2 into (Z)*)2 x (C-{0, 1}) by restricting α to this space, and

identify S 2 (resp. S£) with α*(S2) (resp. α*(S5)) From now on we denote α(9W2),

α*(S2) and α*(S^) by ΪR2, S 2 and S§, respectively.

We call G = <^4t, ^ 2 > a marked group of real type if ( ί l 9 r2, ρ)eR3 n 9Ji2, that is,

tl9 t2 and p are all real numbers, where (tί9 tl9 p) corresponds to G=(Al9 A2}. Then
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we can classify marked groups of real type into eight types as follows.

DEFINITION 1.1 (cf. [24]). (1) G is of the first type (Type I) if tx > 0, t2 > 0, p > 0.
(2) G is of the second type (Type II) if t1 >0, t2 <0, p>0.
(3) G is of the third type (Type III) if tx > 0, t2 < 0, p < 0.
(4) G is of the fourth type (Type IV) if tx > 0, t2 > 0, p < 0.
(5) G is of the fifth type (Type V) if tt < 0, t2 > 0, p > 0.
(6) G is of the sixth type (Type VI) if ti<0, t2 <0, p>0.
(7) G is of the seventh type (Type VII) if tx<09 t2 <0, p <0.
(8) G is of the eighth type (Type VIII) if tt <0, f2 >0, p <0.

The components of the coordinates (tu t2, p) have the following meaning. If p is
positive (resp. negative), then the axes of Ax and A2 are disjoint (resp. intersect). If
tj>0 (resp. ^ <0) for j=l, 2, then Aj leaves the upper half plane invariant (resp. Aj
interchanges the upper and the lower half planes). Concequently, G = (Aί9A2y is a
Schottky group of Type I or Type IV, that is, a Fuchsian Schottky group if and only
if both tγ and t2 are positive. For geometrical meaning of tj and p, see Sato [21], [22],
[23].

For each k = I, I I , . . . , VIII, we call the set of all equivalence classes of marked
groups (resp. marked Schottky groups and marked classical Schottky groups) of Type
k the real space (resp. the real Schottky space and the real classical Schottky space) of
Type k, and denote it by ^30^2 (resp. Rk

(B2 and ^S^)-
1.2. Let G= <v41? A2} be a marked free group on two generators.

THEOREM A (Neumann [18]). The group Φ2 of automorphisms of G = (AUA2}
has the following presentation:

where Nί takes (Aί9 A2) to (Aί9 A2 *), N2 takes (Al9 A2) to (A29 Ax) andN3 takes (Aί9 A2)
to (Al9AxA2).

We call the mappings Nί9 N2 and N3 the Nielsen transformations.

DEFINITION 1.2. Let φί9 φ2 be elements of Φ2. We say φ1 and φ2 are equivalent
if φi(G) is equivalent to φ2(G) for a Schottky group G, and expressed as φi~φ2.

REMARKS. (1) We can regard the Nielsen transformations Nj (7=1, 2, 3) and
hence φ e Φ2 as automorphisms of the space of all equivalence classes of marked free
groups on two generators (cf. [24]).

(2) From the above (1) and Definition 1.2, we have the following: If (Au A2}~
<Al9Λ2y and φ1~φ2 (φu Φ2eΦ2), then φ^A^ A2))~φ2((Au A2}).

DEFINITION 1.3. Let φ be in Φ2 and let ra,- 0 = 1 , 2) be the numbers of the Nielsen
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transformations Nj contained in φ. If m1 + m2 is even, we say that φ is an orientation

preserving automorphism. The Schottky modular group of genus two, which is denoted

by Mod(S 2 ), is the set of all equivalence classes of orientation preserving automorphisms

of S 2 . We denote by [Φ 2 (6 2 ) ] t n e s e t °f a ^ equivalence classes of automorphisms of

<32 and call it the extended Schottky modular group of genus two.

1.3. Let (tu t29 p) be the point in S 2 corresponding to a marked Schottky group

G=(Aί9A2y. Let (tiU)> hU)* PUD be the images of (tut2,p) under the Nielsen

transformations Nj (j= 1, 2, 3). We set X=ρ — t2 — pt1t2 + t1 and Y=p — t2 + ptίt2 — tί.

Then by straightforward calculations, we have the following.

LEMMA 1.1 (Sato [24, Lemma 2.1]). (1) tί(l) = tu t2(l) = t2 and p(\) = \/p.

(2) ti(2) = t2,t2(2) = tίandp(2) = p.

(3) ^(3) = *!, ί2(3)+lA2(3)= Y2/tιt2(p-l)2-29andp(3)+l/p(3) = X2/tιp(l-t2)
2-2.

2. Relationship among the real Schottky spaces.

2.1. In this section we will consider relationship among the real schottky spaces

Rk&2 (k = I, II, III, IV, V, VI, VII, VIII). Throughout this section, let Nj (/= 1, 2, 3) be

the Nielsen transformations defined in § 1.

PROPOSITION 2.1. Let Rk

(Z2 (k = l, I I , . . . , VIII) be the Schottky spaces of type k,

and let Nj (/= 1, 2, 3) be the Nielsen transformations defined in §1, Then

( i ) Let τ = (tί, t2, p)eRι

(Z2. Then N^τ) is contained in i ^ S 2 , N2(τ) is con-

tained in R\(Z2 and Nδ

3(τ) is contained in ^ ® 2 , where δ= + 1 or — 1.

( ii ) Let τ = (f l 5 1 2 , p)eRn&2. Then N^τ) is contained in i?nβ 2, N2(τ) is con-

tained in RγS2 and Nδ

3(τ) is contained in Rn&2, where δ— + 1 or — 1.

(i i i) Let τ = (tu t2, p)eRm<Z2. Then iVΊ(τ) is contained in i ? m S 2 , Λ 2̂(τ) is con-

tained in ^viπ®2 and ^3( τ ) w contained in ^ I Π S 2 , where δ= + 1 or — 1.

( i v ) Let τ = (tί912, p)eRlY

(Z2. Then N^τ) is contained in RιyS2, N2(τ) is con-

tained in Riγ<B2 and Nδ

3(τ) is contained in ^ I V®2i where δ= + 1 or — 1.

( v ) Let τ = (tu t2, p)eRγ

<Z2. Then N^τ) is contained in RY<S2, N2(τ) is con-

tained in Ru&2 and N3(τ) is contained in ^VII®2? where δ= + 1 or — 1.

( v i ) Let τ = (f l 5 1 2 , ρ)eRγι

(Z2. Then N^τ) is contained in i£Vi2>2> Λ^2(τ) is con-

tained in Ryι&2 and Nδ

3(τ) is contained in ^VIII®2? where δ= -f 1 or — 1.

(vii) Let τ = (tu t2i p)eRγιιS2. Then N^τ) is contained in RYnQ2, N2(τ) is con-

tained in RyU&2 and Nδ

3(τ) is contained in RyS^ where δ= + 1 or — 1.

(viii) Let τ = (tί9 tl9 p)eRyιιι

<52. Then N^τ) is contained in i?Viii®2> ^2( τ ) ^ con-

tained in R\u(&2 and Nδ

3{τ) is contained in Λ V I S 2 , where δ= + 1 or — 1.

PROOF, (i) Our assertion in the cases (ii), (v) and (vii) are proved in Sato [26].

Here we only prove the case of (iii). Let τ = {tu t2, p)eRmQ2. Then we easily see N^τ)

is contained in Rm<Z2 and N2(τ) is contained in Rym&2 by Lemma 1.1 and the definitions

of Rm&2 and Rγm&2. We have only to prove N3(τ) is contained in Rm&2. Set
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0

h

and

A 1 fp-t2 p(t2-\)
2 4 / 2 ( p - i ) \ l—ί 2 ^ p - 1

Then <v4l5 Λ2> represents (ί1 ? tl9 p). We set J/V3(τ) = (ίf, t\, p*). Let/? and g be the

two solutions of the equation

tί(\-t2)z2-(p-t2-pt1t2 + tί)z + p(\-t2) = O.

Then/7 and q are the fixed points of AXA2. We may assume that/7 and q are the repelling

and the attracting fixed points oϊ AXA2, respectively. Since pq = ρ/t1<0 and p* = q/p,

we have p * < 0 . Furthermore, since

tϊ + l/t* + 2 = (p-t2 + tίt2p-t1)
2/t1t2(p-\)2<0,

we have ί*<0 Noting that tf = tί9 we have N3(τ) = Rm&2. By the same method as

above, we see that N3

ί(τ)eRm

(Z2.

The proof in the cases (i), (iv), (vi) and (viii) are done similarly to the above, and

so we omit them. q.e.d.

REMARK. For Rk<Z2 (k = I9 I I , . . . , VIII), the same results as above hold.

We have the following theorem by Proposition 2.1 and Corollary to Lemma 2.1.

THEOREM 1. Let Nj (/= 1, 2, 3) be the Nielsen transformations defined in §1. Let

X be the classical Schottky space Rk&2 or the Schottky space Rk<Z2 of type k (k =

I, I I , . . . , VIII). Then

( i ) N^RkX) = RkXfor each k = I, I I , . . . , VIII.

(2) N2(RUX) = RyX and N2(RYX) = RUX.

(3) N2(RmX) = RymX and N2(RγmX) = RmX

(iii) (1) N3(RkX) = RkXfor k = I, II, III, IV.

(2) N3(RYX) = RγnX and N3(RynX) = RyX.

(3) N3(RwιX) = RymX and N3(RwmX) = RyιX.

3. Shape of RkS°2°.

3.1 We denote by S£° the space of all equivalence classes of the following

marked classical Schottky groups G= {Al9 ..., Ag} of genus g: Aί9..., Ag is a set of

all classical generators of G (see §1 for the definition). We set RkQ2° : = <Z2° n Rk(Z2

(fc = I, I I , . . . , VIII). We call the space ^ S ^ 0 the classical Schottky space of real type

of classical generators. In this section we will determine the shape of the spaces
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Rk&%° : = <Z°2°n Rk<5i (k = II, VI, VIII).

Let τ = (tu t2, p)e(D*)2 x(C-{0, 1}). Throughout this section we let

A1(z):=z/t1

and

Then we note that <Λi(z), A2(z)) represents τ = (t1, t2, p).

We set

-ι/tj<p<-ι, -\<tt<o},

{(tί,t2,p)eR*\-(p1'2 + t1)/(l

-\<ρ<-t2

u - l < ί i < 0 } ,

and

l/tx<p<tl9 - l < ί ! <

3.2. THEOREM 2. Lei Λfc6^° (A: = 111, VI, VIII) be the classical Schottky spaces

of classical generators, and let MIΠ(0), MVI(1), MV I( - 1 ) and MVIII(0) be the spaces defined

above. Then

( i ) * V I S5° = M V I ( l ) u M V I ( - l ) ,

(ii) Λ m S § o = Afra(0),

(iii) ^VIIIS2° = M V I I I ( 0 ) .

PROOF, ( i ) 1) First we will show that Myι(\)<^Rγι&
0

2°. Let τ = (t1,t2,ρ)e

MVI(1) and let (y^, A2} represent τ. If we can choose four circles C, (J= 1, 2, 3, 4)

satisfying the following two conditions, then we easily see that we have τeRy^0:

(1) Cj (y '=l,2,3,4) are the circles perpendicular to the real axis such that

(2) For 7= 1, 2, 3, 4, the points a-3 and bj satisfy the inequality

a3<a1<O<bi<a2<l<b2<a^<p<b4<b3 ,

where #,- and ^ (aj<bj) are the intersection points of the circles Cj with the real axis.

We take as and b 3 (7=1,2,3,4) as follows: α1 = - p 1 / 2 , bι = -tιp
ιl2-t1ε\
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a2=-tίP

1/2 + ε, b2 = A2

ί(-p1/2/tί-ε);a3=-p1/2-ε, b3 = -p^2/tx; a4=A2(a2) =

—p1/2/tί—ε, where ε>0 is chosen sufficiently small. Then we easily see the following
by noting \<p<\/t\\

a3<aί<0<bί<a2<l<b2, a4r<p<bAr<b3.

Since 1 < p 1 / 2 < —(1 + t1t2)/(tι + t2), we can show by straightforward calculations that
b2 < α4 for sufficiently small ε > 0. Furthermore, we easily see that a3 = A1(b1)9b3= A γ{a{),
a^ = A2(a2) and b^ = A2(b2), that is, A1(Cί) = C3 and A2(C2) = C4r.

Similarly, we can prove MVI(— 1) £ Jf?VI®2°. Hence we have MVI(1) u MVI(— 1) c
n (^ OO

^ V I ^ 2

2) Next we show that MVI(1) u MV I(-1) => i?Vi<32°. Let τ = (Ί,1 2 , p)eRγι&°2

0. It
is easily seen that if τ e Rm<52°9 then 1 <p < \jt\ and 1 <p < \jt\ for p > 1, and ίf <p < 1
and tl<p<\ for 0 < p < l . We will show that if τφMγι(\) u MV I(-1), then τφRYl(Z°2°.
We only consider the case where p> 1, since we can similarly treat the case where 0<
p<\.

Suppose that τ<£MVI(l), l<p<l/ίf and \<p<t\. Then we have ί 2 ^ ~ 0 +
P1 / 2Ί)/(P1 / 2 + Ί ) If ^2=-(l+P 1 / 2^i)/(P 1 / 2 + ̂ i)) then we see by straightforward cal-
culations that A^2A\ is parabolic, and hence τ is not contained in Rγι(B2°. If
-(1 -ρll2t1)/(ρ1/2-t1)<t2< -(1 +p1 / 2/i)/(p1 / 2 + ίi), then AΓ2^2, is elliptic and hence
τ is not contained in iΐyjS!?0. Furthermore, if t2< —\/p1/2

9 then τ is not a point of
i ίv i^ 0 , since \<p<l/t2

2. Noting that - ( l - p 1 / 2 ί i ) / ( p 1 / 2 - ' i ) < - l/p 1 / 2 , we have that
if τφMVI(1) and p> 1, then τφRyιS2°. A similar argument shows that if τφMYl(— 1)
and p< 1, then τφR^S^0. Hence we have MVI(1) u MVI( — 1) 3 i^vi^0- By combining
1) with 2) we have the desired result ΛVIS^° = MVI(1) u MV I(-1).

(ii) 1) First we will show that MIΠ(0) c ΛΠIS5°. Let τ = (ί l 9 /2, p)eMΠI(0) and
let {Al9 A2} represent τ. If we can choose four circles C, (/= U 2, 3, 4) satisfying the
following two conditions, then we have τei^mS^0:

(1) Cj (J = 1, 2, 3, 4) are circles perpendicular to the real axis such that Aι(Cί) = C3

and^ 2 (C 2 ) = C4.
(2) For y= 1, 2, 3, 4, the points α,- and bj satisfy the inequality

a3<a4<p<b4.<aί<0<bί<a2<l<b2<b3

where α,- and ^ (cij<bj) are the intersection points of the circles Cj with the real axis.
We take a^ and b-} (/=1,2,3,4) as follows: aί=A2(q) + ε, bι = tίq — ε; a2 = t1q,

b2 = q\ a3 = A2(q)/t1-\-ε/tu b3 = q-ε/t1; a4 = A2(tίq), b4r = A2{q\ where ?={( l+f i ) ( l -
pί2)}/2^i(l — ί2)

 a n d ε>0 is a constant chosen to be sufficiently small. Then we easily
see the following:

a4.<p<b4.<a1<O<b1<a2<l<b2<b3 .

Since (l+/1)((-p)1/2 + 1 / ( _ p ) i / 2 ) < ( 1 _ / i ) ( ( _ / 2 ) i / 2 + 1 / ( _ ί 2 ) i/2 ) ) w e c a n s h o w b y
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straightforward calculations that a3<aAr for sufficiently small ε>0. Furthermore, we

easily see that a3 = Aί(aί), b3=Aί(bι), aAr = A2{a2) and b4r = A2(b2)9 that is, C3=A1(C1)

and C 4 = ^ 2 ( C 2 ) . Hence we have MIΠ(0) £ Λ f f lS20.

2) We can similarly prove MIΠ(0) 2 ^ I I I S 2

0 to the above (i) 2), and so omit the

proof. By combining 1) with 2), we have the desired result Rm&2° = Mm(0).

(iii) 1) First we will show that MVIII(0) c Rγm(B0

2

0. Let τ = (tu t2, p)eAfVIII(0)

and let (Au A2} represent τ. If we can choose four circles C, (/= 1, 2, 3, 4) satisfying

the following two conditions, then we easily see τei? V I I I S 2 ° :

(1) Cj 0 = 1 , 2 , 3 , 4 ) are the circles perpendicular to the real axis such that

(2) For 7= 1, 2, 3, 4, the points a^ and bj satisfy the inequality

a3<a4.<p<b4.<aί<0<bί<a2<l<b2<b3

where a3 and bj {a}<b^ are the intersection points of the circles Cj with the real axis.

We take β, and b3 (j= 1,2, 3,4) as follows: ^ = - ( - ί i ) 1 / 2 (-p) 1 / 2 , bx = ( - ^ ) 1 / 2 ( - p ) 1 / 2 ;
1 2 1 ^

), where ε > 0 is

chosen to be sufficiently small. Then we easily see the following:

« 4 <p<ft 4 , a1<0<b1<a2<\<b2<b3.

Since

Λ-P)ίl2-(-t1)
il2)ii-(-h)il2(

) 1 / 2 ( 1 / 2 ) 1 / 2

we can show by straightforward calculations that a3<a4. and b±<aγ for a sufficiently

small ε>0. Furthermore, we easily see that a3 = Aί(b1), b3 = A1(aί), aAr = A2(b2), and

b4r = A2(a2), that is, C3 = Aί(C1) and C 4 = ̂ 2 ( Q ) Hence we have MVIII(0) c ΛVΠIS5°.

2) We can similarly prove MVIII(0) 2 ^ v m ^ i 0 t 0 the above (i) 2), and so omit the

proof. By combining 1) with 2), we have the desired result ^ I I ® 2 ° = ̂ VIII(O). q.e.d.

4. The domains of existence.

4.1. In this section we will determine the shape of the real classical Schottky

spaces Rm&2, Ryι^°2 and Rym&2 in R3. We set

9 - l < ί 2 < 0 , p > 0 }

Refer to the previous section for the definitions of MIΠ(0), MVI(1), MV I(—1) and

^VIII(0) Throughout this section let Nj 0 = 1 , 2 , 3 ) be the Nielsen transformations

defined in §1. By straightforward calculations we have the following.
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PROPOSITION 4.1. Let Mm(0), Mv,( 1), MV 1( — 1) and MVIII(0) be the domains defined

in §3, and let N} (j= 1, 2, 3) be the Nielsen transformations defined in § 1. Then

(1) J V ^ O ) = MΠI(0), N3Mm(0) = Mm(0), N2Mm(0) = MVΠI(0).

(2) N1Myι(l) = Myi(-1), NtMyι(- 1) = MVI(1), N | M V I ( - 1) = MVI(1), W2MV1(1) =

MVI(1), N2Mvι( - 1 ) = MV I( - 1 ) , W3MVI( - 1 ) = MVIII(0).

(3) Λ^Mv^O) = M v m (0), W2M v m(0) = Mm(0), ^ 3 M V I U (0) = MVI(1).

4.2. Inductively we now define the following domains. Let δ denote the number

+ 1 or — 1, and let —δ denote — 1 or + 1 according as δ is + 1 or — 1.

We define Myx{δ{2k+\)) : = ΛΓ3

2lίMVI(c51) and MVIII(«52/c) = N 3

2 tMV I I I(0) for k=\,

2, 3 , . . . , where Mvm(—0) = M v m (0). Then we easily see the following.

PROPOSITION 4.2. Let Nt be the Nielsen transformation defined in § 1. Then

(1) N1Myι(δ(2k +1)) = MV I( - δ{2k +1)).

(2) W1M

Next we define some domains M,(n1, n2) (/=ΠI, VI, VIII) of length two.

DEFINITION 4.1. Domains M,(l, n0), and M , ( - 1 , - « 0 ) (/=ΠI, VI, VIII) are de-

fined as follows. (1) M,,,(l,«0) : = N2M-vm(n0), M m ( — 1 , — n0) : = N2Mym(—n0), where

«0 = 2/c(A: = 0, 1,2,...).

(2) Myι(l,n0): = N2Myι(n0), Myι(-l, -n0) : = N2Myι(-n0), where no = 2k~ί

(fc = l,2,3,...).

(3) MV I I 1(1, n0) :=iV 2Mm(n 0) = ΛΓ2MΠI(0) = MVIII(0), M V I I 1 ( - 1 , -no) : = M v m ( - 0 )

for « 0 = 2fc(/c = 0,1,2,...).

REMARKS. By Proposition 4.1 we have M,,,(l, 0) = Mm(0), MVi(l, 1) = MV1(1) and

DEFINITION 4.2. Domains Mm(k+ί,n0), Mm(—(k + l),—n0), Myι(2k+ί,n0),
MVi(—(2/e + l), — π0), MVιπ(2A:, no)> ^vm(~2A:, —«0) are defined as follows. (1) Mm(k +

1, no): = Nk

3Mm(\,n0), Mm(-(k+1), -n0): = iV3-
tM I I I(-1, - « 0 ) , (A: = 0, 1,2,...), where

no = 2m (m = 0,1, 2,...).

(2) M V I (2/c+l,n 0 ): = NfM V I ( l ,« 0 ) , M V I (-(2/c+l), -no): = N3

2kMyι(-l, -n0),

(k = l, 2, 3,...), where no = 2k-1 (ik= 1, 2, 3,...).

(3) Mvm(2A:,«o):=Λr3MVI(2A:-l,no), MVJS^-2k, -no):=N31My^-(2k+l), -n0),

{k = ί, 2, 3,...), where no = 2m — 1 (m = l, 2, 3,...).

We easily see that N^in^, no) = M,(-n1, -n0) (/=ΠI, VI, VIII).

DEFINITION 4.3. Domains M,(0, n0), and M , ( - 0 , - n 0 ) (/=IΠ, VI, VIII) are de-

fined as follows. (1) MVIII(0, n o ) : = ΛΓ3"
1MVI(l,no), M I Π ( - 0 , - M O ) = N 3 M V I ( - 1 , - « O ) »

no=2m — l (m = 1, 2, 3,...).

(2) Mm(0, «0) :=JVa ^ m ί l , n0), M m ( - 0 , — «0) = Λr3Λ4r

III(—1, -« 0 ) , «0 = 2w (m =

0,1,2,. . .) .
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(3) MVI(0, no): = N^Mγm(l "o)> M V I ( - 0 , - n o ) = Λr 3MV I I I(-l, -no\ no = 2m (m =

0,1,2,.. .).

REMARK. M V I ( 0 , n0) = Nς ' Λ W l , n0) = Nς 1N2Mm(0) = Nς ^ ^ , , ( 0 ) = M V I (-1) .

4.3. We will define some domains Af,(/ik, ...9nl9 n0) (/=IΠ, VI, VIII) of length

fc+ 1 (fc>2). Let Λ0 and ^ be the integers as in §4.2 for each case III, VI, VIII. For

simplicity, we write

ί(n k , . . . ,n 0 ) if δ= + l

l(-nk9...9-n0) if δ=-l.

DEFINITION 4.4. Let k>2 be integers. Domains M,((5(l, nk9..., nl9 n0)) (/=ΠI,

VI, VIII) are defined as follows.

(1) M m ( ( 5 ( l , nk9...9 nl9 n0)) : = N2Mγm(δ(nk9 ...9nl9 n0)).

(2) M V I ( 5 ( 1 , nk9 . . . , nl9 n0)) :=N2Mγι(δ(nk, ...9nl9 n0)).

(3) M V I I I ( 5 ( 1 , nk9...9 nί9 n0)) : = N2Mm(δ(nk9..., nl9 n0)).

DEFINITION 4.5. Domains Mj((5(0, nk,..., nl9 n0)) (/=IΠ, VI, VIII) are defined as

follows.

(1) M V I I I ((5(0, nk9...9 nί9 n0)): = i V ^ M V I ( ( 5 ( l , nk9...9 nl9 n0)).

(2) M V I ((5(0, nk9...9 nl9 n0)): = N 3 " δ M V Π I ( ( 5 ( l , nk9...9 nl9 n0)).

(3) M I Π((5(0, nk9..., Λ 1 9 π 0 ) ) : = N^δMm(δ(\, nk9..., π l s n o ) )

D E F I N I T I O N 4.6. L e t & > 2 be integers . D o m a i n s Mι(δ(m + \9 nk9...9nl9 n0)) ( / =

I I I , VI , V I I I ) a r e defined as fol lows. F o r m = 1, 2, 3 , . . . ,

(1) Mm(δ(m + 1 , nk9..., w l 9 Λ 0 ) ) : = i V f M I Π ( δ ( l , Λfc> . . . , nl9 n0)).

(2) M V I ( δ ( 2 r n + 1, « „ . . . , Λ 1 9 no)): = Nδ

3

2mMYl(δ(h nk9...9 nl9 n0)).

(3) Mγι(δ(2m, nk9...9nl9 n0)): = Nf mMYl(δ(0, nk9...9nl9 no)).

(4) M V I Π ( ( 5 ( 2 m + 1, / i k , . . . , « l 5 Λ 0 ) ) : = Λ Γ 3

2 m M V I I I ( δ ( 2 m - 1 , nk9...9 nl9 n0)).

(5) M V I Π ((5(2m, Λ f c , . . . , / i l f Λ 0 ) ) : = Nδ

3

2mMγm(δ(0, nk9...9nl9 n0)).

4.4. Next we will consider relationship among the domains defined in the above.

By replacing Types II, V, and VII in the previous paper [26] with Types III, VIII

and VI, respectively and replacing the surfaces F^(nk9..., nί9 n0), Fγ(nk, ...9nί9n0)

a n d Fγu(nk, ...,nl9n0) w i t h t h e d o m a i n s Mm(nk,..., nl9 n0), Mγm(nki ...,nun0) a n d

MYι(nk,..., n1,n0)9 respectively, we have the same relationship among the domains

Mx(nk9 ...9nl9 n0) as in §5 in the paper [26]. We will omit the detail here.

Noting that Λ m S§ = \J {Φ(Rm&°20) \ Φ e Mod S 2 } n R&, RYlS°2 = \J {φ(Rγι&°2°) \ Φ e

Mod S 2 } n Rγι and uVm®2 = U WC^VIII®2°) IΦ e Mod S 2 } n RYUh we have the following

theorem by Theorem 2.

THEOREM 3. Let Rt(S2 (/=IΠ, VI, VIII) ^ the classical Schottky spaces of type I

and let Mt(nk,..., nί9 n0) be the domains defined in §§4.2 and 4.3. Then

Λk, . . . , « ! , Λ O ) | Λ O = ± 2 m (m = 0, 1 , 2 , . . . ) ,
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nj = 09 ± 1 , ± 2 , . . . ( . / = 1 , 2 , . . . , * ) ; * = <>, 1 , 2 , . . . } ;

nk9..., nl9 no)\no= ±(2m-\) (m = 1, 2, 3,...),

«7 = 0, ± 1, ± 2 , . . . (j= 1, 2,..., k) Λ = 0, 1, 2,...}

fa, , nl9 no)\no= ±2m (m = 0, 1, 2,...),

Λ7 = 0 , ± 1, ± 2 , . . . 0 = 1, 2 , . . . , k) * = 0, 1 , 2 , . . . } .

5. Fundamental regions.

5.1. In this section we will determine fundamental regions for [Φ2] and Mod(62)
acting on ΛΠI®2, ΛVi®2 a n d ΛVIII®2» respectively. We denote by ModORjS2) (resp.
[i^^ 2]) the restriction of Mod(S2) (resp. [ Φ 2 ] ) t 0 /̂®2> that is, the set of all equivalence
classes of orientation preserving automorphisms (resp. the set of all equivalence classes
of automorphisms) in U,S§ for /=IΠ, VI, VIII. We call Mod(Λ,®2) and [Λ,Φ2] the
Schottky modular group of type I and the extended Schottky modular group of type /,
respectively.

Throughout this section, let Nj 0 = 1 , 2, 3) be the Nielsen transformations defined
in §1. We denote by [0] the equivalence class of φeΦ2. We use the symbol φ for an
element [0] in [Φ2] oτ Mod(S2) when there is no fear of confusion. We denote by
W(φl9 φ2,..., φn) a word on φl9 φ2,..., φn. We denote by SW(φu φ2,..., φn) (resp.
S[W{φu φ2, .., </>„)] the set of all words on φί9 φl9..., φn (resp. the set of all
equivalence classes of words on φl9 φ2,..., φn). We easily see the following two lemmas
by Theorem 1.

LEMMA 5.1. LetMoά{Rι&
0

2)and\_RιΦ2~\ (/=IΠ, VI, VIII) be the Schottky modular
group and the extended Schottky modular group of type /, respectively, and let N2 and
N3 be the Nielsen transformations definedin§l. IfφeMod(7?vmS2) (resp. φe DRvm^lX
then N2φN2eMod(Rm<Z°2) (resp. N2φN2e\_RmΦ2~\) and N^^N3eMod(RyiS

0

2) (resp.

LEMMA 5.2. Let Mod(ΛzS5), DR/Φ2] (/=ΠI, VI, VIII), N2 andN3 be as in Lemma
5.1. Then

(1) Ifφ G Mod(^ΠI62) (resp. ψ e [^mΦ2]), then there exists φ e Mod(i?VIIIS2) (resp.

Φ G DRviii^]) with φ = N2φN2

 1.
(2) If φeMoά(Ryι&2) (resp. φe\_RyλΦ2~\), then there exists φeMod(^VIIIS^)

(resp. φ e [RvmΦ^) with φ = N3

 1φN3.

PROPOSITION 5.1. Let Mod(Λ,®2), [Λ,Φ2J (/=ΠI, VI, VIII), N2 and N3 be as in
Lemma 5.1. Then

(1) Mod(/W3a = # 2 ( M o d ( l ^ ^
(2) Mod(^VI6^) = iV3-1(Mod(ΛVIII6^M3 and [Ry^^N^lR^Φ^Ns

PROOF. This follows from Lemmas 5.1 and 5.2. q.e.d.
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5.2. By straightforward calculations, we have the following lemma and proposi-

tion.

LEMMA 5.3. Let Nj (j= 1, 2, 3) be the Nielsen transformations defined in §1. Then

(1) Nί(Rγm(B0

2) = Rγm&2.

(2) (N2 W(NU N3)N2)(Rγm&2) = Rγm&2.

(3) (Ni1 W(NU N2)N± 'X*V I I IS°) = RγιιιS°2.

PROPOSITION 5.2. Let [^vmΦ2] be the extended Schottky modular group of type

VIII. Then the set Qi^VΠIΦ2] consists of all equivalence classes of words on Nu N2WaN2,

Nί'WβNΪ1 with W.eSWlN^N^ WβeSW\_NuN2\ where SWlNl9N2'] (resp.

SW[NU N3~]) is the set of all equivalence classes of words on Nι and N2 (resp. Nx and N3).

By the same method as in Lemmas 7.4 and 7.5 in Sato [26] we have the following

lemmas.

LEMMA 5.4. Let Nj 0 = 1 , 2, 3) be the Nielsen transformations defined in §1. Then

the group {[N2WJSl2~\\ WaeSW(Nu N3)} is generated by [JVJ and [N2JV3iV2], where

SW(NU N3) is the set of all equivalence classes of words on Λ/\ and N3.

LEMMA 5.5. Let Nj (y= 1, 2, 3) be the Nielsen transformations defined in §1. Then

(1) The group {[.N3WaN3']\WaeSW(Ni9N2)} is generated by ίNίN3

2N1]( =

[N3~2]), [#3#iW3]( = |Wi]) and [A 3̂A 2̂7V3], where SW(NUN2) is the set of all

equivalence classes of words on Nί and N3.

(2) The group {[_N3

 x WJST{\ \ WΛe SW(Nί9 N2)} is generated by [_N3 ̂ ^ 3 ] and

\N3

1N2N3\ where SW(Nί,N3) is the set of all equivalence classes of words on Nt

and N3.

By Proposition 5.2., Lemmas 5.4 and 5.5, we have the following two propositions.

The proofs are omitted, since the propositions are proved similarly to Propositions 7.3

and 7.4 in [26] by noting that N3

ίNιN3^NίN
2

3.

PROPOSITION 5.3. Let Mod^viii®^) and \Άy\\\^ϊ\ be the Schottky modular group

and the extended Schottky modular group of type VIII, and let Nj 0 = 1 , 2, 3) be the

Nielsen transformations defined in § 1. Then

(1) [* V I I I Φ 2 ] is generated by [7VJ, [ΛΓ|], and [N2N3N2l

(2) Mod(Λvra®2) is generated by [ N | ] and IN2N3N21

PROPOSITION 5.4. Let ModOfy ® 2 ) a n d ίRιφi\ (ι=IΠ> V I ) b e t n e Schottky modular

group and the extended Schottky modular group of type /, and let Nj (j=l, 2, 3) be the

Nielsen transformations defined in § 1. Then

(1) (i) [Λ r aΦ 2] is generated by [ t f j , [ΛΓ2JV|ΛΓ2] and [JV3].

(ii) Mod(Rm&2) is generated by [JV3] and lN-2NlN2'].

(2) (i) [7^VIΦ2] is generated by [WJ, [^iV2] and [ΛΓ|] ( = lNxNς2N^).

(ii) Mod(^ V I S5) is generated by [JVf] and [^7V2].
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5.3. We will introduce some surfaces in Rγι:

where

We note that tί<t20<0 in this case.

BΊ

B9: = {(tut2,p)edMYl(-l)ndMγι(l)\p = ht1<t2<t20, - l < ^ < 0 } .

By Lemma 1.1 we have

LEMMA 5.6. Let Bί9 B2, B3 and 2?4 be the surfaces defined in the above, and let

N1 and N2 be the Nielsen transformations defined in §1. Then N1N2(B1) = B2 and

We denote by ^ Ϋ i d ^ ] ) ( r e s P ^ v i d ^ ] ) ) the subregions in MV I(—1) (resp.

MVI(1)) bounded by the surfaces Bί9 2?3, B5, BΊ and B9 (resp. B2, B4, B6, B8 and B9).

Then FULΦ2']) = N1(FγιlΦ2]). We set FV I([Φ 2]) = Fv,([Φ2]) and FV I(S§) = Fί I ([Φ 2 ]) u

Fvi([Φ2]) Then we have the following by Proposition 5.4(2) and Lemma 5.6.

THEOREM 4. Let ModiR^S^) and [^1^2] be the Schottky modular group and the

extended Schottky modular group of type VI, and let ^1(^2) and Fγι([Φ 2~\) be the domains

defined in the above. Then

(1) i v i ί ^ ) is a fundamental region in Rγι&2for

(2) ^ v i d ^ l ) ύ a fundamental region in RY]β>°2for

5.4. Next we will describe fundamental regions in Rnι&2 for Mod(Rm&2) and

[/?IΠΦ2] We define some surfaces:

where t21 = t21(t1) is the ^-coordinate of the intersection point of two curves

P=(t2-til2W-t\l2t2)
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and

(l+^i)((-p)1/2 + l/(-p)1/2) = (l-ίi)((-ω 1 / 2 + l/(-ω1 / 2)

forO<ί1<l;

*: = {(tl9t2, p)edRm<5°2\t2 = 09 -

Let FmίSξ) (resp. /Γ

III([Φ2]) be the subregions of MIΠ(0) bounded by Bu B2, B3,

£ 4 and B5 (resp. Bί9 B3, BA and B6).

We can show the following theorem by a similar argument to the proof of

Theorem 4. Namely, noting that B2 = N3(Bί)9 we have the theorem by Proposition

5.4(1).

THEOREM 5. Let Moά(Rm&2) and \_R\\\Φ2~\ be the Schottky modular group and the

extended Schottky modular group of type III, and let Fm(<Z2) and iΓ

III([Φ2]) be the domains

defined in the above. Then

(1) ^111(62) is a fundamental region in Rm&ifor Mod(ΛΠI®2)

(2) Fm([Φ2~\) is a fundamental region in Rm&2for [i?ΠIΦ2]

5.5. Finally we will describe fundamental regions in ΛVm®2 f° r

and RymLΦi]' We set

and

We define some surfaces:

where px =p{tv) is the p-coordinate of the intersection point of two curves t2 = T1(t1, p)

and t2 = T2(tu p) for - 1 <t1 <0;

1, p), -
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B5: = {(tut2,p)edMγm(0)\t2=0, -\<p<tu -

Let Fym((Z2) (resp. i7vm([^2])) be the subregions in RγmS2 bounded by Bl9 B2,
B3, £ 4 , B5 and B6 (resp. Bί9 B3, B5 and BΊ).

We can show the following theorem by an entirely similar argument to the proof
of Theorem 4. Namely, noting that B2 = N2N3N2(Bί), we can prove the theorem by
Proposition 5.3.

THEOREM 6. Let Mod(i?VIΠS2) and [^vm^] be the Schottky modular group and
the extended Schottky modular group of type VIII, and let Fym{<S^) and ^vmd^]) be
the domains defined in the above. Then

(1) FVIII(S2) w a fundamental region in Ry\γ^\foτ Mod(/?ViiiS>2)-
(2) iΓ

VIII([Φ2]) is a fundamental region in Rymβ^for [^111^2] •

6. Conclusion.
6.1. In this section we will collect together the main results in [24], [26] and this

paper and apply them to calculate Jorgensen's numbers as in [27], [28], [29] and the
Hausdorff dimensions of the limit sets of Schottky groups. Namely, we will list the
fundamental regions Fι{

1ίAoά{&2)) (/=I, II,..., VIII) for classical Schottky groups of
real type of genus two and list generators of the Schottky modular groups ^

THEOREM 7. Let ^(Mod(S^)) (/=I, I I , . . . , VIII) be the fundamental regions for
classical Schottky groups ModCfyS^) of type I Then

(1) FI(Mod(SS)) = {(ί1, t2, p)eRιS°2\p(tu t^1 <p<p(tu f2),

where pit,, ί2) = (l+ί}/ 2ί2)/(ίi/ 2 + t2).
(2) Fπ(Mod(S2)) = {(*!, t2, p) e Λπ©21(1 + ί|/2ί2)/(ί}/2 +12) <p

<{(l-t['2t2)/(t\'2-t2)}\-\<t2<O,O<tι<\}.
(3) Fm(Mod(&2)) = {(tί, t29p)eRm<S°2\p*(Tl9 T2)<p<-1,

tϊ(ti,p)<t2<O,O<tί<\},
where p*(Tu Γ2) = {4-Γ 1Γ 2 + (4-T1

2)1/2(4-T2

2)1/2}/2(Γ2-Γ1), T^t^l/t,, T2 =
t2 + l/t2, and t%(tl912) is t2 satisfying the equation (1 +tί){(-ρ)ll2 + l/(-p) 1 / 2}=(l -

(4) FIV(Mod(®S)) = {(ί1, t29 p)eRιv&2\p*{tu t2)<p
<l/p*(tut2),t2<tu0<t2<t2

<(tupl0<tί<l},
where ρ*{tx, t2) = (l-t\/2t2)/(t2-t\/2) and tξ{tu p) is t2 satisfying the equation 2t^2tψ{\
p) = (-p)^(l-tί)(l-t2).

(5) Fv(Mod(6^)) = {(/1, t29p)eRYG°2\(l-t1t2)/(t2-tί)<p



CLASSICAL SCHOTTKY GROUPS 501

(6) Fvl(Mod(<S2

>)) = {(tι,t2,p)eRyι®
0

2\(t2-t1)/(l-tιt2)<p<(l-t1t2)/(t2-t1),

{-(ti + t2)/(l+t1t2

pφl,t1<t2<0, —

(7) F

t2<tu - l < ί ! < 0 } .

(8) FVIII(Mod(S°)) = {(?!, t2, p)eRxm<5°2\0<t2

<t2(tu p), \jtγ <p< — 1, — 1 <t1 <0},

Where^2(tu p) = {(-pγi2-(-tiyi2}{l-(-t1)
1'2(-pyι2}/{(-py'2 + (-tίyι2)(l +

6.2. THEOREM 8. Let Nj 0'= 1, 2, 3) 6e the Nielsen transformations definedin§l9

that is, Nil (Al9A2)\-^(Aϊ1

9A2)9 N2: (Al9A2)\-^(A29A1) andN3: (Al9 A2)\-^(AU AγA2\

Let Mod(/?,S5) (/=I, II, . . . , VIII) be the Schottky modular group of type I Then

(2) Mod(ΛπS5) = <JV3, N2N
2

3N2).

(4) Mod(Rιγ&°2) = (N.N.N,, N,N2}.

(5) ModCRvS£) = <iVi N2N3N2).

(6)

(7)

(8) ModOKVIIIS2) = <N|, N2N3N2}.
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