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Abstract. We give a criterion, in terms of pluri-genera, for a normal surface

singularity over the complex number field to be a simple elliptic or cusp singularity (resp.

quotient singularity, log-canonical singularity).

Introduction. Let (X, x) be a normal ^-dimensional isolated singularity over the

complex number field C and / : (M, A)->(X9 x) a resolution of the singularity (X, x)

with the exceptional locus A =f~1(x). We say a resolution / to be good if A is a divi-

sor with normal crossings. The geometric genus of the singularity (X, x) is defined

by pg(X,x) = dimc(Rn-lf^M)x. Watanabe [15] introduced pluri-genera {δm(X,x)}meN

which carry more precise information of the singularity, where N is the set of positive

integers. The pluri-genera {δm(X, x)}meN can be computed on a good resolution,

andδί(X,x)=pg(X,x).

In this paper, we work only on surface singularities, so "a singularity" always

means a normal surface singularity over C

A singularity (X, x) is said to be rational (resp. elliptic) if pg{X, x) = 0 (resp. 1).

Watanabe [15] proved that a singularity (X, x) is a quotient singularity if and only if

δm(X, x) = 0 for all m e N. A singularity (X, x) is said to be purely elliptic if δm(X, x)=l

for all meN. Ishii [6] proved that a singularity (X, x) is a purely elliptic singularity if

and only if (X, x) is a cusp or a simple elliptic singularity, while (X, x) is a log-canonical

singularity if and only if δm(X, x)<l for all meN.

We will show that a singularity (X, x) is a quotient singularity if and only if

<5m(X, x) = 0 for m = 4, 6, while (X, x) is a purely elliptic singularity if and only if

(5m(X, x)=\ for m = l , 4 , 6. We also prove similar assertions for log-canonical sin-

gularities.

Our result is a partial answer to the following question: Can {δm(X, x)}meN be

determined by {<5m(X, x)}meN for some finite subset Λ̂  of Λ̂ ?

Thanks are due to the referee for valuable comments. Thanks are also due to

Professor Kimio Watanabe for his encouragement.

1. Preliminaries.

(1.1) Let (X, x) be a surface singularity and / : (M, A) -• (X, x) a resolution of the

singularity (X, x). Let A = \Jk

ί=ίAi be the decomposition of the exceptional set A into
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irreducible components. A cycle D is an integral combination of the Ah i.e., D = Σk

i = 1 diAi

with ^ e Z , where Zis the set of rational integers. There exists a natural partial ordering

for cycles by comparison of the coefficients. A cycle D is said to be positive if D>0

and DΦQ. For any two positive cycles F a n d W, there exists an exact sequence

(1.1.1) 0->Θw®ΘM-V)->Θv+w-+C)v-+0.

A resolution / : (M, A)->(X, x) is called a minimal good resolution, if / is the

smallest resolution for which A consists of non-singular curves interesecting among

themselves transversally, with no three through one point. It is well known that there

is a unique minimal good resolution. Let us assume that / : (M, A) -• (X, x) is the minimal

good resolution of the singularity (X, x). The weighted dual graph of (X, x) is the graph

such that each vertex represents a component of A weighted by the self-intersection

number, while each edge connecting the vertices corresponding to Ai and Aj9 iφj,

corresponds to the point A^Aj. Giving the weighted dual graph is equivalent to giving

the information on the genera of the A/s and the intersection matrix (At Aj). A string

S in A is a chain of smooth rational curves Aί9...,An so that At Ai+1 = l for

/= 1,...,« — 1, and these account for all intersections in A among the A/s, except that

Aγ intersects exactly one other curve. The weighted dual graph of the singularity (X, x)

is said to be star-shaped, if the divisor A is written as A=A0 + ΣSj, where Ao is a

curve and Sj are maximal strings. Then Ao is called the central curve, and Sj are called

branches.

(1.2) Let / : (M, A)->(X, x) be a resolution of a singularity (X, x), J^ a sheaf

of 0M-modules and D a divisor on M. We will use the following notation:

and

We denote by K the canonical divisor on M. The Riemann-Roch theorem implies,

for any positive cycle V and any invertible sheaf J£? on M, that

ύGy) = h\Gy)-h\Θy)= ~ V'(V+K)/2 ,

and

\h\(9y®5£)=<£- V+χ((9v).

DEFINITION 1.3. A positive cycle E is minimally elliptic if χ(ΘE) = 0 and χ(ΘD)>0

for all cycles D such that 0<D<E.

(1.4) There is a unique fundamental cycle Z (cf. [2]) such that Z > 0 , At Z < 0

for all /, and that Z is minimal with respect to these two properties. Note that h°(Θz) = 1

(cf. [9]).

PROPOSITION 1.5 (Laufer [9, Theorem 3.4]). Let f: (M, A) -> (X, x) be the minimal

resolution of the singularity (X, x), Z the fundamental cycle and K the canonical divisor

on M. Then the following are equivalent.
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(1) Z is a minimally elliptic cycle.

(2) At Z= -At Kfor all At.

DEFINITION 1.6. A singularity (X, x) is minimally elliptic if the minimal resolution

/ : (M, A)-+(X, x) satisfies the conditions of Proposition 1.5.

THEOREM 1.7 (cf. [9, Theorem 3.10]). A singularity (X, x) is minimally elliptic if

and only if(X9 x) is an elliptic Gorenstein singularity.

(1.8) Let / : (M, A)^>(X, x) be the minimal resolution of the singularity (X, x)

and Z the fundamental cycle. By the natural surjective map H1(ΘM)^Hι(Θz), we have

pg(X, x) >h\Θz). Artin [2] proved t h a t ^ X , x) = 0 if and only if h\Θz) = 0. Ifpβ(X, x)=\,

then h1{Θz)=\, and there exists a unique minimally elliptic cycle E by [9, Proposition

3.1]. The support of E is the exceptional set of a minimally elliptic singularity by [9,

Lemma 3.3].

(1.9) We take the following characterization of du Bois singularities as its

definition.

PROPOSITION 1.10 (Steenbrink [13, (3.6)]). A normal surface singularity (X, x) is a

du Bois singularity if and only if the natural map H1(ΘM)-^Hι{ΘA) is an isomorphism,

where f: (M, A) —• (X, x) is a good resolution.

THEOREM 1.11 (Ishii [3, Theorem 2.3]). Every resolution of a du Bois singularity

is a good resolution.

2. The pluri-genera.

(2.1) Let (X, x) be a singularity and / : (M, ̂ 4)->(X, x) a resolution. We denote

by Kthe canonical divisor on M, and set U=X—{x}^M—A.

DEFINITION 2.2 (Watanabe [15]). We define the pluri-genera {δm(X, x)}meN by

δm(X, x) = dhncH°(Θ^mKx))/L2lm(U),

where L2/m(U) denotes the set of all L2/m-integrable ra-ple holomorphic 2-forms on U.

PROPOSITION 2.3 (cf. [15, p. 67]). Iff: (M, A)-+(X, x) is a good resolution, then

δm(X,x) is expressed as

δm{X, x) = dimcH°(Θu(mK))/H°(ΘM(mK+(m~l)A)).

THEOREM 2.4 (cf. [15, Theorem 2.8]). Let A' be a connected proper subvariety of

A, and (X\ x') the singularity obtained by contracting A' in M. Then δm(X, x) > δm(X\ x')

for all meN.

THEOREM 2.5 (Ishii [5]). Let π: X-+ (C, 0) be a small deformation of a singularity

(X, x) = x~1(0). Let Y=π~ί(c), with ceC near 0, and {yt} the set of singular points of

Y. Then
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THEOREM 2.6 (Kato [8, p. 246]). Let S£ be an invertible sheaf on M. If

Aiforall i, then H\<£) = 0.

LEMMA 2.7. Iff: (M, A)-*(X9 x) is minimal, i.e., K A^Ofor all i, and if(X, x)

is not a rational double point, then H1(ΘM(nK+A)) = 0for n>2.

PROOF. There exists an exact sequence

0 -> ΘM{nK) -• (9M{nK+ A) -> ΘA(nK+ A) -• 0 .

By Theorem 2.6, H\ΘM(nK)) = 0, and hence H\ΘM{nK+A))^H\ΘA{nK+A)). By the

Serre duality, h1((9A(nK+A)) = h°(ΘA((l-ri)K)). We will show that H°(ΘA(-nK)) = 0

for n>\. Since (X, x) is not a rational double point, we may assume that KΆι>0.

Let {Zj}j=01Λ be a computation sequence for A: Zo = 0, Z1=A1=Aiί,..., Zj =

Zj_1+Aij,...,Zk = Zk_1+Aik = A,wheτeZj_1-Aij>0forj=2,...,k.Foτj=l,...,k,

H°(ΘA.(-nK-Zj_1)) = 0, since ( - Λ A ' - Z / _ 1 ) Λ I . / <0. From the exact sequences (cf.

(1.1.1»

D
we inductively see that / / o ( 0 z , ( - ^ ) ) = () fory= 1,..., k. In particular, / ί o

THEOREM 2.8. Let {X,x) be a du Bois singularity, and f: (M, A)->(X, x) the

minimal resolution of the singularity (X, x). Then

δ2(X, x) = h\ψM{2K + A)) = h\ΘM{-K-A)).

PROOF. By the Serre duality, hjι(ΘM(2K + A)) = h1(ΘM(-K-A)). We assume that

(X, x) is not a rational double point. By Lemma 2.7, there exists an exact sequence

0 -> H°(ΘM(2K + A)) - H°(ΘV(2K)) - HA(ΘM(2K + A)) - 0 .

From Theorem 1.11 and Proposition 2.3, <$2(X, x) =

Let (X, x) be a rational double point. Then K=0 and H1(ΘM(-A)) = 0. Hence

Hι(ΘM( — K— A)) = 0. Since (X, x) is a quotient singularity (see Theorem 2.11), δ2{X, x) =

0. D

COROLLARY 2.9. In the situation above, let V be a positive cycle. Then

δ2(X,x)>V (K + A)-χ(Θv).

PROOF. Theorem 2.8 implies that

δ2(X, x)>h\Θv(-K-A))> -χ(Θv(-K-A))= V' (K + A)-χ[Gv).

D
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DEFINITION 2.10. A singularity (X, x) is called a β-Gorenstein singularity if there

exists a positive integer r such that (9x(rKx) is invertible at x. It is well known that any

rational singularity is a Q-Gorenstein singularity. For a £>-Gorenstein singularity (X, x),

the minimal positive integer r which satisfies the condition above is called the index of

(X, x), and denoted by /(X, x).

For any singularity (X, x), the minimal positive integer m such that δm(X, x)φθ is

called the (5-index of (X, x), and denoted by Iδ(X, x). If <5m(X, x) = 0 for all meiV,we set

/,(X,x)=oo.

THEOREM 2.11 (cf. [15, Theorem 3.9]). A singularity (X, x) is a quotient singularity

if and only if Iδ(X, x) = oo.

THEOREM 2.12 (cf. [6]). Let (X, x) be a singularity such that {δm(X,x)}meN is

bounded, i.e., there exists an integer B such that δm(X, x)<B for all meN. Assume that

(X, x) is not a quotient singularity. Then (X, x) is a Q-Gorenstein singularity with

/(X, x) = Iδ(X, x), andδJX, x) < I for allm e N. Let 1= /(X, x). Then we have the following:

(1) δm(X, x)=\form = 0 (mod/) and δm(X, x) = 0formφ0 (modI).

(2) / = 1 if and only if{X, x) is a simple elliptic or a cusp singularity.

(3) If / > 1 , then (X, x) is the quotient with respect to a cyclic group of a simple

elliptic or a cusp singularity.

(2.13) A (J-Grorenstein singularity (X, x) is said to be log-canonical if the following

condition is satisfied: For a good resolution / : (M, A)->(X, x), we have, as β-divisor,

KM =f*Kx + X atAi with at > -1 for all i.

The singularities in Theorem 2.12 are log-canonical by [4, Theorem 2.1].

(2.14) A singularity with C*-action is called a C*-singularity.

Let (X, x) be a C*-singularity and / : (M, A)-+(X, x) the minimal good resolution.

It is well known that the weighted dual graph of (X, x) is a star-shaped graph. The

weighted dual graph of a cyclic quotient singularity is regarded as a start-shaped graph

without central curve (note that it is a chain of rational curves).

We set A = A0 + Σβ

i=ίSh where Ao is the central curve, and S( the branches. The

curves of St are denoted by Aitj9 \<j<rh where Ao AiΛ=Aitj Aij+ί = l. Let

bij= —Aij AtJ. For each branch Si9 positive integers ei and di are defined by

where et<dh and et and dt are relatively prime.

For any integers m>\ and k>0, we define the divisors on A0 by
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where D is a divisor such that (9Ao{D) is the conormal sheaf of Aθ9 Pi = Aor\AiΛ, and

for any aeR, [a] is the greatest integer not more than a.

The following is an extended version of Pinkham's formula (cf. [12, Theorem 5.7]).

THEOREM 2.15 (Watanabe [16, Corollary 2.22]). In the situation above,

δJtX,x)= Σh°(&Ao(rnKAo-DW)).
k>0

THEOREM 2.16 (Tomaru [14]). In the situation above, let g be the genus of the

central curve Ao.

(1) (X, x) is a log-canonical singularity with I(X,x)>\ if and only if g = 0 and

Σf=iW-1)M = 2 In this case> I(X,x) = km(du...,dβ).
(2) (X, x) is a quotient singularity if and only if g = 0 and Yfi = χ (ί/f — l)/ί/f < 2.

3. Rational singularities.

(3.1) Let (X, x) be a rational singularity and f:(M,A)->(X,x) the minimal

resolution of the singularity (X, x). Since H1(ΘM) = H1(ΘA) = 0, f is a minimal good

resolution by Proposition 1.10 and Theorem 1.11. Note that the weighted dual graph

of a rational singularity is a tree. For any component At of A, we set ti = (A—Ai) Ah

the cardinality of the intersection points on At.

In this section, except in Corollary 3.6, (X, x) denotes a rational singularity and

/ : (M, A)->(X9 x) the minimal resolution.

LEMMA 3.2. If the weighted dual graph of(X, x) is a star-shaped graph, then

k>0

where Ao and D^ are as in (2.14).

PROOF. By the Riemann-Roch theorem of [10, p. 196], δm(X, x) + hί(ΘM(rnK+

(m—\)A)) is determined by the weighted dual graph. Let Lm = mK + (m— \)A. From the

exact sequence

0 -> ΘM{mK) - ΘM{Lm) -> 0 (m_ 1 M ( L J - ° >

using Theorem 2.6, we have h1(ΘM(Lm)) = h1(Θ{m_1)A(Lm)). Since H\ΘM) = 0, we have

H1(Θim_1)A) = 0. By [1, (1.7)], invertible sheaves on (m— l)A are classified by their degree.

Thus hι(Θ{m_ ί)A(Lm)) is determined by the weighted dual graph and the variety A, hence

so is δm(X, x).

Let Ao, D, D%\ Ph et and di be as in (2.14) (note that they are defined for star-shaped

graphs). For any k>0, let D{k) be the divisor
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β
Γ)(λ)_^Γ)_ V ίfrp/rlXpU —KV 2^ \κei/aijΓi

on Ao, where for any aeR, {a} denotes the least integer not less than a. Let R =

®k>0H°(ΘAo(Dik))). By [12], Spec(7£) is a singularity of which the exceptional set of

the minimal good resolution and the weighted dual graph are the same as those of

(X,x). Then δm(X9 x) = <5m(Spec(i?)). Since Spec(iί) is a C*-singularity, δJSpQc(R)) is

computed by the formula in Theorem 2.15. •

(3.3) Let (X, x) be a rational singularity with a star-shaped graph. Then the central

curve is a non-singular rational curve. Using the notation of (2.14), we set

F%)=-2m-kb +

where b= —Ao Ao. By Lemma 3.2,

δm(X,x)= Σ '
k>0

We always assume that dx < <dβ.

LEMMA 3.4. Ifδ2(X, x) = 0, then the weighted dual graph of(X, x) is either a chain

(if(X, x) is a cyclic quotient singularity), or a star-shaped graph with three branches.

PROOF. For any component At of A, we have t{<3 by Corollary 2.9. If tt<2 for

all i, then A is a chain of curves.

We assume that tx = 3. Let An be any component of A. Let £"= i At be the minimal

connected cycle containing Aγ and An. Then tt>2 for i<n — 1. Applying Corollary 2.9

to the positive cycle Σ " ! * Ab we have 0 > £ " Γ 2 (ti~^) Hence t~2 for i=2,..., n — 1.

D

THEOREM 3.5 (Okuma [11]). If δm(X, x) = 0for m = 4, 6, ί/zew (Z, x) w α quotient

singularity.

PROOF. Note that the assumption implies δm(X, x) = 0 for m = 1, 2 (cf. Proposition

2.3). We assume that (X, x) is not a cyclic quotient singularity. By Lemma 3.4, the

weighted dual graph of (X, x) is a star-shaped graph with three branches. Then

n O ) = - 8 + Σ [4-4/4] and /*6°>= -12+ f [6-6/4]
i = l i = l

Note that [m — mlaι~\<[m — mla2~\ if aί<a2.

Since <56(X, x) = 0, we have F<°}< - 1 . If dγ > 3 , then F<,0)>0. Hence dx =2. Since

δάX, x) = 0, we have Fi O ) = - 6 + [4-4/rf2] + [4-4/rf 3]< - 1 . Thus d2<3.

If dγ=d2 = 2, then £f= χ ( 4 - 1 ) / 4 < 2 , and hence (X, x) is a quotient singularity by

Theorem 2.16.
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Assume d2 = 3. Since F{

6

0)= — 5 + [6-6/rf 3]< — 1, we have d3<5. Again, we get

Σf=i W ~ 1)M<2, and hence (X, x) is a quotient singularity by Theorem 2.16. •

COROLLARY 3.6. Let (X, x) be any singularity. If(X, x) is not a quotient singularity,

then Iδ(X,x)<6.

PROOF. The result is an immediate consequence of Theorems 2.11 and 3.5. •

PROPOSITION 3.7. Let (X, x) be a singularity with Iδ(X,x) = 6 and δl4(X, x) = 0.

Then (X, x) is a log-canonical singularity with I(X, x) = 6.

PROOF. By assumption, δm(X, x) = 0 for m = 1, 2, 3, 4, 5. By Lemma 3.4, (X, x) has

a star-shaped graph with three branches. Since δ3(X9 x) = 0, we have F ^ 0 ) = - 6 +

Σf= 11 3 ~ 3 M ] ^ - ! Thus dί = 2. Similarly, we have d2 < 3 by dx = 2 and F^] < - 1 .

If d2 = 2 or d3 < 5, then Iδ(X, x)=oo by the proof of Theorem 3.5. Hence we get dγ = 2,

d2 = 3 and d3>6. Since δ1 4(X,x) = 0, we have F[°2= - 1 2 + [14-14/d 3 ]< - 1 . Thus

d3 = 6. By Theorem 2.16, (X, x) is a log-canonical singularity with I(X, x) = 6. •

(3.8) We note that if Iδ(X, x) = 5, then (X, x) is not a log-canonical singularity by

Theorems 2.12 and 2.16 (cf. Theorem 3.11).

PROPOSITION 3.9. Let {X,x) be a singularity with Iό(X,x) = 4 and δίA(X, x) = 0.

Then (X, x) is a log-canonical singularity with I(X, x) = 4.

PROOF. AS in the proof of the proposition above, we have dλ=2 and d2>3.

However, d2 = 3 implies the same result as in the proposition above. Hence d2 >4. Then

d2 = d3 = 4 by F{^2< — 1. By Theorem 2.16, (X, x) is a log-canonical singularity with

/(*,*) = 4. D

PROPOSITION 3.10. Let (X, x) be a singularity with Iδ(X, x) = 3 and δ1A(X, x) = 0.

Then (X, x) is a log-canonical singularity with I(X, x) = 3.

PROOF. If d1=2, we have the same result as in the proposition above. Hence

dx>3. Then dx=d2 = d3 = 3 by Ff}<—\. Again by Theorem 2.16, (X, x) is a log-

canonical singularity with I(X, x) = 3. •

THEOREM 3.11. Let (X, x) be a singularity with δί4.(X, x) = 0. Then (X, x) is a log-

canonical singularity.

PROOF. Since δl4{X9 x) = 0, we have δ ̂ X, x) = δ2(X, x) = 0, and hence Iδ(X, x)>3.

If Iδ(X, x)= oo, then (X, x) is a quotient singularity, and it is log-canonical (more

precisely, log-terminal). Assume that Iδ(X, x)<6 (cf. Corollary 3.6). If Iδ(X, x)φ5, then

we are done. By the proof of the propositions above, there exists no singularity (X, x)

with Iδ(X, x) = 5 and δΐ4(X, x) = 0. •

LEMMA 3.12. Let (X, x) be a singularity with δ2(X, x)=l. Then we have one of the

following:
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(1) (X, x) has a star-shaped graph with three branches.
(2) (X, x) has a star-shaped graph with four branches.
(3) The exceptional divisor A is written as Y*=0Sb where Sh i> 1, are the maximal

strings, and So is a chain of curves.

PROOF. By Corollary 2.9, we have tt<4 for all Av Since (X, x) is not a cyclic
quotient singularity, there exists a component Aj such that tj>3. Assume that (X, x) is
not in the case (1). If tγ =4, then as in the proof of Lemma 3.4, we have a star-shaped
graph with four branches. If tt < 3 for all Ab then we may assume that ti = t2 = 3. Then,
as in the proof of Lemma 3.4, we have t{<2 for z>3. Thus A—Aί—A2 is a disjoint
union of chains of curves. Since the weighted dual graph is a tree, there exists a unique
minimal connected cycle So containing A1 and A2. Since tί = t2 = 3, a cycle A~So is a
disjoint union of four maximal strings in A. •

LEMMA 3.13. Let(X,x)bea singularity with δ x 4(X, x) = 1. If(X, x) has a star-shaped
graph with three branches, then δ2(X, x) = 0.

PROOF. Assume that (X, x) has a star-shaped graph with three branches. Using
the notation of (3.3), we have

If b>3, then F f <F(}~1)< • • • <Fi°»<0, and hence δ2(X,x)=0. If £ 1 M > 1 , then
δ2(X, x) = 0 by Theorem 2.16. Assume that b=2 and £ l/d, < 1. We define a subset J *
of iV6 as follows: (e, d)=(eu e2, e3, άx, d2, d3)eNβ is an element of Δ* if and only if
d^d^dj,, Σ l / d ; < l , £e ,M<2 (cf. [12, p. 185]), et<dh and ef and dt are relatively
prime for ι = l, 2, 3. We regard F* } as a function of k, m and (e, d)eΔ*, and write

e, d). Let

e, d)=k(Σei/di-2) + 2(l

Then

(e, d)<2-2/c+ Σί/ce.-^^G^e, d).

Since ^e,/i/,-2<0, we have F2

k)(e,d)<0 for A:>2 (resp. A:>3) if Gi2\e,d)<0 (resp.
= 0).

Let

Δ = {deN3\(e,d)eΔ* for some ee^V3, and F[°2<0}.

Let z>1 = {(2, 3,ί/3)|7<ί/3<13} and J 2 = {(2,4,5), (2,4,6)}. As in the proof of the
propositions above, we have Δ=Δ1uΔ2u {(3, 4, 4)}.

Assume that deΔγ. Since <514(X, x) = l and F$ = 0, we have
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Let Δ[ = {(e, d)eA*\deΔl9 ^ ^ < -1}. We can easily get Fγ\e9 d)<0 for (e, d)eΔ[ and
k = 0, 1,2. We will show G(2\e9d) = 2(Σ(ei-l)/di-l)<0 for (e,d)eΔ'v For (e9d)eΔ[
with e2 = l, we have G(2\e,d) = 2((e3-l)/d3-l)<0. Let e2 = 2. Then 3e3-H<d3, and
e3/d3<5/6. The maximum of {(^3-l)/rf3} is (7-1)/9 = 2/3. Hence G(2)(e, d) = 2((e3-l)/

d3-2/3)<0. Then we have i f ><0, for £ > 0 and fed)e JJ .

Assume that deΔ2.If e2 = l, then G(2)(e, d) = 2 ( ( e 3 - l ) / d 3 - l ) < 0 . Let e 2 = 3. As

above, we have e3 + d3<Ί from Fft < - 1 . Hence *?3 = 1. Then Gi2)(e, d) = 2(1/2-1)<0.

Clearly, F2

0) and i ^ υ are negative. Hence F(

2

k)<0 for &>0.

If d=(3, 3,4), then <? = ((?!, e2, e3) (e1<e2) such that (e, d)ez1* is one of (1,1,1),

(1,1, 3), (1, 2, 1), (1, 2, 3) and (2, 2, 1). Again, we have Fφ<Q for k>0.

Thus in any of the cases, we get δ2(X, x) = 0. • D

PROPOSITION 3.14. Let (X, x) be a singularity with Iδ(X, x) = 2 and (514(X, x)= 1.

Then (X, x) is a log-canonical singularity with I(X, x) = 2.

PROOF. Since δ14.(X, x)=l and δ2(X, x)^0, we have δ2(X, x)=l (cf. Proposition

2.3). By the lemmas above, we have the weighted dual graph in (2) or (3) of Lemma 3.12.

Suppose (X, x) has a star-shaped graph. Then d1= =d± = 2 by F[°2<0, and

hence (X, x) is a log-canonical singularity with /(X, x) = 2 by Theorem 2.16.

Assume that A=γΐ=0Si as in (3) of Lemma 3.12. By [7, Theorem 3.7], there

exists a deformation π : M-+(C, 0) of M=π~ 1 (0) which induces a trivial deformation

of St for /= 1, 2, 3, 4, and for c / 0 near 0, π " 1 ^ ) has a connected component of the

exceptional set ^o + Σf=i ^ ' where Ao is a rational curve. Note that π blows down to

a deformation of (X, x). Let (7, j>) be a singularity obtained by contracting the exceptional

divisor ^ O + Σf=i 5 ' ί above. By Theorem 2.5, we have pg(Y,y) = 0, δ2(Y,y)<\ and

δ14.(Y,y)<\. Thus {Y,y) is a rational singularity which has a star-shaped graph with

four branches. By Lemma 3.4, we have δ2(Y, y) = δΐ4.(Y, y)=\. Applying the argument

above to (7, y), we have dx = - =d± = 2. By the definition of db we see that St is a

curve with St St= —2, for i> 1. Recall that π induces a trivial deformation of *S£ for

i> 1. Let 5 be a cycle on M defined by B = A + S0. Then —5 is numerically equivalent

to 2K. Since any rational singularity is a β-Gorenstein singularity, (X, x) is a

log-canonical singularity with /(X, x) = 2 (cf. Theorem 2.12 and (2.13)). •

4. Elliptics singularities.

(4.1) Let (X, x) be an elliptic singularity, / : (M,,A)->{X, x) a resolution of the

singularity (X, x) and K the canonical divisor on M.

LEMMA 4.2. Let (X, x) be a Gorenstein singularity. Then δmι(X,x)<δm2(X,x) if

mx <m2.

PROOF. Let / : (M, A)->(X, x) be the minimal good resolution of the singularity

(X, x). It is well known that there exists a positive cycle D > A such that ΘM(K) ^ ΘM( — D).
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Then H°(ΘM_Λ(mK))9*H0(ΘM) and 0M(mK + (m-l)A)^(9M((m-l)(A-D) + K). Since
A— D<0, we have

for m1 <m2. Thus Proposition 2.3 implies the assertion. •

LEMMA 4.3. Let (X, x) be a minimally elliptic singularity which is not a du Bois
singularity. Then δ6(X,x)>2.

PROOF. First, we assume that the minimal resolution of the singularity (X, x) is
a good resolution. Let / : (M, A) -•(X, x) be the minimal resolution. By Lemma 2.7, we
have H\ΘM(2K + A)) = 0. By Proposition 2.3 and [8, Corollary 1], we have

δ2{X,x)=-{K + A) {2K + A)/2+l .

Since (X, x) is not a du Bois singularity, we have H1(ΘA) = 0, and hence — A'
(A + K)/2 = χ(ΘA) = 1. Then we have δ2(X, x)=—(K + A) K+2. Since / is minimal and
-(K+A)>0, we get δ2{X, x)>2. By Lemma 4.2, we have δ6(X, x)>2.

Now we assume that the minimal resolution of (X, x) is not good. Let
/ : (M, A)->(X, x) be the minimal good resolution of the singularity (X, x). By [9,
Proposition 3.5], (X, x) has a star-shaped graph with three branches, and the divisor
A can be written as A =Σf= t Ah where Ax is the central curve with A1 A1 = — 1, and
A2 A2>A3-A3>A4-A±. Then -K=2A1+Σ*=2Ai. Let Z = Yj

A

i=ιniAi be the
fundamental cycle on M. Then (nί9..., «4) is one of (6, 3, 2, 1), (4, 2, 1, 1) or (3, 1, 1, 1).
Let Jί be the maximal ideal in Θx which defines the singular point x. By [9, Theorem
3.13], there exists a function geH°(Jί) (under the assumption that X is sufficiently
small) such that f*(g) has a zero of order n1 on A1. Since (X, x) is minimally elliptic,
we have fJ9M(K)^Jί. On the other hand, we have

ΘM(6K + 5,4) s fl^tf- 54) ̂  flJ - 1A x - £

Hence

f*(g)eH°(ΘM(K))\H°(ΘM(6K + 5A)).

Since H°(ΘM)^H°(ΘM(K))^H°((9M(6K + 5A)l we have δ6(X,x)>2 by Proposition
2.3. •

PROPOSITION 4.4. Let (X, x) be an elliptic singularity which is not a du Bois
singularity. Then δ6{X,x)>2.

PROOF. (1.8), Theorem 2.4 and Lemma 4.3 imply the assertion. •

EXAMPLE 4.5. There exists a singularity (X, x) with δm(X, x)=l for m = 1,..., 5
which is not a du Bois singularity, but a minimally elliptic singularity.
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Let (X, x) be a minimally elliptic singularity such that the minimal resolution of

(X, x) is not good. Using the notation in the proof of Lemma 4.3, we assume that

A2-A2=-2, A3-A3=-3 and A4 A4<-Ί. Then Z=6A1 + 3A2 + 2A3 + A4 = -K+
4Ai+2A2 + A3. Note that there exists such a minimally elliptic singularity. Since

Z>A, we have H1(ΘA) = 0 (cf. Definition 1.3). Thus (X, x) is not a du Bois singularity

by Proposition 1.10. As in the proof of Lemma 4.3, we have

<55(X, x) = dimcH°(&M)/H°(ΘM(K)) + dimcH°(ΘM(K))/H°(ΘM(5K + 4A))

= 1 + dimcH°(ΘM(K))/H°(ΘM(K-4A1)).

From the exact sequence

0 -> ΘM{K-4Aλ) -> ΘM{K) - 04 i l l(tf) - 0 ,

we have

dimcH°(ΘM(K))/H°(ΘM(K-4Aγ)) = 6-fe^βUK-4AJ) .

We will show that hί((9M(K-4Aι)) = 6. Since H\ΘM)^H\ΘZ\ we have

H1(ΘM( — Z)) = 0. From the exact sequence

we have H1(ΘM(K-4Aι))^H1((92A2+A3(K-4Aί)). Let L = K-4AV Consider the exact

sequences

0 - Θ2A2(L-A3) -> ̂ 2 + A 3 ( L ) - ^ 3 (L) ^ 0 ,

0-+ΘA2(L-A3-A2)^Θ2A2(L-A3)-+ΘA2(L-A3)-^0.

Then we get

2 ^ 3 2 ΘA2(L-A3^

= 2 + 3 + 1 = 6 .

Hence 55(X, x)= 1. By Lemma 4.2, <5m(X, x)= 1 for m= 1,..., 5.

(4.6) Let (X, x) be an elliptic du Bois singularity and / : (M, A) -> (X, x) the minimal

resolution. Since H1(ΘA)=l9 the divisor A is decomposed as A=Eί+E2, where Ex is

either a non-singular elliptic curve or a cycle of r rational curves with r> 1 (a cycle of

one rational curve means a rational curve with an ordinary double point), and E2 is

void or a disjoint union of trees of non-singular rational curves. If E2 = 0, then (X, x)

is a simple elliptic or a cusp singularity.

We will use this notation in Lemma 4.7, Lemma 4.8 and Proposition 4.9 below.

LEMMA 4.7. If E2 is a rational curve with E2 E2< —3, ί/ze« δ3(X, x)>2.

PROOF. For any component At of A, we have (2K + 2A — E2) Ai > 0. By Theorem

2.6, Λrl(^M(3X + 2^4))^/ί1(^2(3X + 2yl)). Since (3K + 2Λ) £ 2 = ic: £ 2 - 2 > - 1 , we
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have H\(9M(3K + 2A)) = 0. Let L = 3K + 2A. Then we get

0 -> H°(ΘM(L)) - H^Θ^L + E,)) - H^Θ^L + E,)) -> 0 ,

and

dim c H°(ΘM(L + Eγ))IH\G^L)) = h °(ΘEί(L + Et))^ χ(ΘEι(L + EX)) = 2.

Since

δ3(X,x) = dimcH°(ΘM_A(3K))/H°(ΘM(L))

and

we have δ3(X, x)>2, Π

LEMMA 4.8. If E2 is a rational curve with E2 E2= — 2, ίÂ w δ^X, x)>2.

PROOF. AS above, we have H1{ΘM(4K + 3Λ))^H1{Θ2E2{4K + 3A)). Let L =

3A. From the exact sequence

0 -> ^ £ 2 ( L - ^ 2 ) -, ^ 2 £ 2 (L) - tfE2(L) -, 0 ,

we have h1(Θ2El(L)) = 2. Consider the exact sequence

0 -> ΘM(L) - ^ M (L + ̂ ) -> (P£l(L + ̂ ) ^ 0 .

As in the proof of Lemma 4.7,

Since h\ΘM{L + Eί))>h\ΘE2(L + Eί))=l9 we have <$4(X, x)>2. Π

PROPOSITION 4.9. L^ί (X, x) be an elliptic du Bois singularity such that E2Φ0.

Then δ3(X, x)>2 or <S4(X, x)>2.

PROOF. Let Aγ be a curve in £ 2 intersecting E1. Then /21((P£l+^4l) = 1. Let (X\ x')

be the singularity obtained by contracting Eί-\-A1 in M. By Theorem 2.4, we have

pg{X\x')<\. Hence pg(X\ xf) = h1(ΘEί + Ai)=\. By Proposition 1.10, the singularity

(X\ xr) is an elliptic du Bois singularity. Thus the result is an immediate consequence

of Theorem 2.4 and Lemmas 4.7 and 4.8. Π

THEOREM 4.10. Let (X, x) be a singularity with δm(X, x)= 1 for m= 1, 4, 6. Then

(X, x) is a simple elliptic or cusp singularity.

PROOF. Note that δ^X, x) = δ6(X, x)=l implies δ3(X, x) = l. By Proposition 4.4,

(X, x) is an elliptic du Bois singularity. Then Proposition 4.9 implies the assertion (cf.

(4.6)). D
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