THE PLURI-GENERA OF SURFACE SINGULARITIES

Tomohiro Okuma

(Received June 19, 1996, revised October 8, 1996)

Abstract

We give a criterion, in terms of pluri-genera, for a normal surface singularity over the complex number field to be a simple elliptic or cusp singularity (resp. quotient singularity, log-canonical singularity).

Introduction. Let (X, x) be a normal n-dimensional isolated singularity over the complex number field C and $f:(M, A) \rightarrow(X, x)$ a resolution of the singularity (X, x) with the exceptional locus $A=f^{-1}(x)$. We say a resolution f to be good if A is a divisor with normal crossings. The geometric genus of the singularity (X, x) is defined by $p_{g}(X, x)=\operatorname{dim}_{C}\left(R^{n-1} f_{*} \mathcal{O}_{M}\right)_{x}$. Watanabe [15] introduced pluri-genera $\left\{\delta_{m}(X, x)\right\}_{m \in N}$ which carry more precise information of the singularity, where N is the set of positive integers. The pluri-genera $\left\{\delta_{m}(X, x)\right\}_{m \in N}$ can be computed on a good resolution, and $\delta_{1}(X, x)=p_{g}(X, x)$.

In this paper, we work only on surface singularities, so "a singularity" always means a normal surface singularity over \boldsymbol{C}.

A singularity (X, x) is said to be rational (resp. elliptic) if $p_{g}(X, x)=0$ (resp. 1). Watanabe [15] proved that a singularity (X, x) is a quotient singularity if and only if $\delta_{m}(X, x)=0$ for all $m \in N$. A singularity (X, x) is said to be purely elliptic if $\delta_{m}(X, x)=1$ for all $m \in N$. Ishii [6] proved that a singularity (X, x) is a purely elliptic singularity if and only if (X, x) is a cusp or a simple elliptic singularity, while (X, x) is a log-canonical singularity if and only if $\delta_{m}(X, x) \leq 1$ for all $m \in N$.

We will show that a singularity (X, x) is a quotient singularity if and only if $\delta_{m}(X, x)=0$ for $m=4,6$, while (X, x) is a purely elliptic singularity if and only if $\delta_{m}(X, x)=1$ for $m=1,4,6$. We also prove similar assertions for log-canonical singularities.

Our result is a partial answer to the following question: Can $\left\{\delta_{m}(X, x)\right\}_{m \in N}$ be determined by $\left\{\delta_{m}(X, x)\right\}_{m \in N}$ for some finite subset N of N ?

Thanks are due to the referee for valuable comments. Thanks are also due to Professor Kimio Watanabe for his encouragement.

1. Preliminaries.

(1.1) Let (X, x) be a surface singularity and $f:(M, A) \rightarrow(X, x)$ a resolution of the singularity (X, x). Let $A=\bigcup_{i=1}^{k} A_{i}$ be the decomposition of the exceptional set A into
irreducible components. A cycle D is an integral combination of the A_{i}, i.e., $D=\sum_{i=1}^{k} d_{i} A_{i}$ with $d_{i} \in \boldsymbol{Z}$, where \boldsymbol{Z} is the set of rational integers. There exists a natural partial ordering for cycles by comparison of the coefficients. A cycle D is said to be positive if $D \geq 0$ and $D \neq 0$. For any two positive cycles V and W, there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{W} \otimes_{\mathcal{O}_{M}} \mathcal{O}_{M}(-V) \rightarrow \mathcal{O}_{V+W} \rightarrow \mathcal{O}_{V} \rightarrow 0 . \tag{1.1.1}
\end{equation*}
$$

A resolution $f:(M, A) \rightarrow(X, x)$ is called a minimal good resolution, if f is the smallest resolution for which A consists of non-singular curves interesecting among themselves transversally, with no three through one point. It is well known that there is a unique minimal good resolution. Let us assume that $f:(M, A) \rightarrow(X, x)$ is the minimal good resolution of the singularity (X, x). The weighted dual graph of (X, x) is the graph such that each vertex represents a component of A weighted by the self-intersection number, while each edge connecting the vertices corresponding to A_{i} and $A_{j}, i \neq j$, corresponds to the point $A_{i} \cap A_{j}$. Giving the weighted dual graph is equivalent to giving the information on the genera of the A_{i} 's and the intersection matrix $\left(A_{i} \cdot A_{j}\right)$. A string S in A is a chain of smooth rational curves A_{1}, \ldots, A_{n} so that $A_{i} \cdot A_{i+1}=1$ for $i=1, \ldots, n-1$, and these account for all intersections in A among the A_{i} 's, except that A_{1} intersects exactly one other curve. The weighted dual graph of the singularity (X, x) is said to be star-shaped, if the divisor A is written as $A=A_{0}+\sum S_{j}$, where A_{0} is a curve and S_{j} are maximal strings. Then A_{0} is called the central curve, and S_{j} are called branches.
(1.2) Let $f:(M, A) \rightarrow(X, x)$ be a resolution of a singularity $(X, x), \mathscr{F}$ a sheaf of \mathcal{O}_{M}-modules and D a divisor on M. We will use the following notation: $\mathscr{F}(D)=\mathscr{F} \otimes_{\mathcal{O}_{M}} \mathcal{O}_{M}(D), H^{i}(\mathscr{F})=H^{i}(M, \mathscr{F}), H_{A}^{i}(\mathscr{F})=H_{A}^{i}(M, \mathscr{F}), h^{i}(\mathscr{F})=\operatorname{dim}_{C} H^{i}(\mathscr{F})$ and $h_{A}^{i}(\mathscr{F})=\operatorname{dim}_{\boldsymbol{C}} H_{A}^{i}(\mathscr{F})$.

We denote by K the canonical divisor on M. The Riemann-Roch theorem implies, for any positive cycle V and any invertible sheaf \mathscr{L} on M, that

$$
\chi\left(\mathcal{O}_{V}\right)=h^{0}\left(\mathcal{O}_{V}\right)-h^{1}\left(\mathcal{O}_{V}\right)=-V \cdot(V+K) / 2,
$$

and

$$
\chi\left(\mathcal{O}_{V} \otimes \mathscr{L}\right)=h^{0}\left(\mathcal{O}_{V} \otimes \mathscr{L}\right)-h^{1}\left(\mathcal{O}_{V} \otimes \mathscr{L}\right)=\mathscr{L} \cdot V+\chi\left(\mathcal{O}_{V}\right) .
$$

Defintion 1.3. A positive cycle E is minimally elliptic if $\chi\left(\mathcal{O}_{E}\right)=0$ and $\chi\left(\mathcal{O}_{D}\right)>0$ for all cycles D such that $0<D<E$.
(1.4) There is a unique fundamental cycle Z (cf. [2]) such that $Z>0, A_{i} \cdot Z \leq 0$ for all i, and that Z is minimal with respect to these two properties. Note that $h^{0}\left(\mathcal{O}_{Z}\right)=1$ (cf. [9]).

Proposition 1.5 (Laufer [9, Theorem 3.4]). Let $f:(M, A) \rightarrow(X, x)$ be the minimal resolution of the singularity $(X, x), Z$ the fundamental cycle and K the canonical divisor on M. Then the following are equivalent.
(1) Z is a minimally elliptic cycle.
(2) $A_{i} \cdot Z=-A_{i} \cdot K$ for all A_{i}.

Definition 1.6. A singularity (X, x) is minimally elliptic if the minimal resolution $f:(M, A) \rightarrow(X, x)$ satisfies the conditions of Proposition 1.5.

Theorem 1.7 (cf. [9, Theorem 3.10]). A singularity (X, x) is minimally elliptic if and only if (X, x) is an elliptic Gorenstein singularity.
(1.8) Let $f:(M, A) \rightarrow(X, x)$ be the minimal resolution of the singularity (X, x) and Z the fundamental cycle. By the natural surjective map $H^{1}\left(\mathcal{O}_{M}\right) \rightarrow H^{1}\left(\mathcal{O}_{Z}\right)$, we have $p_{g}(X, x) \geq h^{1}\left(\mathcal{O}_{Z}\right)$. Artin [2] proved that $p_{g}(X, x)=0$ if and only if $h^{1}\left(\mathcal{O}_{Z}\right)=0$. If $p_{g}(X, x)=1$, then $h^{1}\left(\mathcal{O}_{Z}\right)=1$, and there exists a unique minimally elliptic cycle E by [9, Proposition 3.1]. The support of E is the exceptional set of a minimally elliptic singularity by [9 , Lemma 3.3].
(1.9) We take the following characterization of du Bois singularities as its definition.

Proposition 1.10 (Steenbrink [13, (3.6)]). A normal surface singularity (X, x) is a du Bois singularity if and only if the natural map $H^{1}\left(\mathcal{O}_{M}\right) \rightarrow H^{1}\left(\mathcal{O}_{A}\right)$ is an isomorphism, where $f:(M, A) \rightarrow(X, x)$ is a good resolution.

Theorem 1.11 (Ishii [3, Theorem 2.3]). Every resolution of a du Bois singularity is a good resolution.

2. The pluri-genera.

(2.1) Let (X, x) be a singularity and $f:(M, A) \rightarrow(X, x)$ a resolution. We denote by K the canonical divisor on M, and set $U=X-\{x\} \cong M-A$.

Definition 2.2 (Watanabe [15]). We define the pluri-genera $\left\{\delta_{m}(X, x)\right\}_{m \in N}$ by

$$
\delta_{m}(X, x)=\operatorname{dim}_{c} H^{0}\left(\mathcal{O}_{U}\left(m K_{X}\right)\right) / L^{2 / m}(U)
$$

where $L^{2 / m}(U)$ denotes the set of all $L^{2 / m}$-integrable m-ple holomorphic 2-forms on U.
Proposition 2.3 (cf. [15, p. 67]). If $f:(M, A) \rightarrow(X, x)$ is a good resolution, then $\delta_{m}(X, x)$ is expressed as

$$
\delta_{m}(X, x)=\operatorname{dim}_{\boldsymbol{C}} H^{0}\left(\mathcal{O}_{U}(m K)\right) / H^{0}\left(\mathcal{O}_{M}(m K+(m-1) A)\right)
$$

Theorem 2.4 (cf. [15, Theorem 2.8]). Let A^{\prime} be a connected proper subvariety of A, and $\left(X^{\prime}, x^{\prime}\right)$ the singularity obtained by contracting A^{\prime} in M. Then $\delta_{m}(X, x) \geq \delta_{m}\left(X^{\prime}, x^{\prime}\right)$ for all $m \in N$.

Theorem 2.5 (Ishii [5]). Let $\pi: \bar{X} \rightarrow(\boldsymbol{C}, 0)$ be a small deformation of a singularity $(X, x)=x^{-1}(0)$. Let $Y=\pi^{-1}(c)$, with $c \in C$ near 0 , and $\left\{y_{i}\right\}$ the set of singular points of Y. Then

$$
\delta_{m}(X, x) \geq \sum \delta_{m}\left(Y, y_{i}\right)
$$

Theorem 2.6 (Kato [8, p. 246]). Let \mathscr{L} be an invertible sheaf on M. If $\mathscr{L} \cdot A_{i} \geq K \cdot A_{i}$ for all i, then $H^{1}(\mathscr{L})=0$.

Lemma 2.7. If $f:(M, A) \rightarrow(X, x)$ is minimal, i.e., $K \cdot A_{i} \geq 0$ for all i, and if (X, x) is not a rational double point, then $H^{1}\left(\mathcal{O}_{M}(n K+A)\right)=0$ for $n \geq 2$.

Proof. There exists an exact sequence

$$
0 \rightarrow \mathcal{O}_{M}(n K) \rightarrow \mathcal{O}_{M}(n K+A) \rightarrow \mathcal{O}_{A}(n K+A) \rightarrow 0
$$

By Theorem 2.6, $H^{1}\left(\mathcal{O}_{M}(n K)\right)=0$, and hence $H^{1}\left(\mathcal{O}_{M}(n K+A)\right) \cong H^{1}\left(\mathcal{O}_{A}(n K+A)\right)$. By the Serre duality, $h^{1}\left(\mathcal{O}_{A}(n K+A)\right)=h^{0}\left(\mathcal{O}_{A}((1-n) K)\right)$. We will show that $H^{0}\left(\mathcal{O}_{A}(-n K)\right)=0$ for $n \geq 1$. Since (X, x) is not a rational double point, we may assume that $K \cdot A_{1}>0$. Let $\left\{Z_{j}\right\}_{j=0,1, \ldots, k}$ be a computation sequence for $A: Z_{0}=0, Z_{1}=A_{1}=A_{i_{1}}, \ldots, Z_{j}=$ $Z_{j-1}+A_{i_{j}}, \ldots, Z_{k}=Z_{k-1}+A_{i_{k}}=A$, where $Z_{j-1} \cdot A_{i_{j}}>0$ for $j=2, \ldots, k$. For $j=1, \ldots, k$, $H^{0}\left(\mathcal{O}_{A_{i j}}\left(-n K-Z_{j-1}\right)\right)=0$, since $\left(-n K-Z_{j-1}\right) \cdot A_{i_{j}}<0$. From the exact sequences (cf. (1.1.1))

$$
0 \rightarrow \mathcal{O}_{A_{i_{j}}}\left(-n K-Z_{j-1}\right) \rightarrow \mathcal{O}_{Z_{j}}(-n K) \rightarrow \mathcal{O}_{Z_{j-1}}(-n K) \rightarrow 0
$$

we inductively see that $H^{0}\left(\mathcal{O}_{Z_{j}}(-n K)\right)=0$ for $j=1, \ldots, k$. In particular, $H^{0}\left(\mathcal{O}_{A}(-n K)\right)=0$.

Theorem 2.8. Let (X, x) be a du Bois singularity, and $f:(M, A) \rightarrow(X, x)$ the minimal resolution of the singularity (X, x). Then

$$
\delta_{2}(X, x)=h_{A}^{1}\left(\mathcal{O}_{M}(2 K+A)\right)=h^{1}\left(\mathcal{O}_{M}(-K-A)\right) .
$$

Proof. By the Serre duality, $h_{A}^{1}\left(\mathcal{O}_{M}(2 K+A)\right)=h^{1}\left(\mathcal{O}_{M}(-K-A)\right)$. We assume that (X, x) is not a rational double point. By Lemma 2.7, there exists an exact sequence

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{M}(2 K+A)\right) \rightarrow H^{0}\left(\mathcal{O}_{U}(2 K)\right) \rightarrow H_{A}^{1}\left(\mathcal{O}_{M}(2 K+A)\right) \rightarrow 0
$$

From Theorem 1.11 and Proposition 2.3, $\delta_{2}(X, x)=h_{A}^{1}\left(\mathcal{O}_{M}(2 K+A)\right)$.
Let (X, x) be a rational double point. Then $K=0$ and $H^{1}\left(\mathcal{O}_{M}(-A)\right)=0$. Hence $H^{1}\left(\mathcal{O}_{M}(-K-A)\right)=0$. Since (X, x) is a quotient singularity (see Theorem 2.11), $\delta_{2}(X, x)=$ 0.

Corollary 2.9. In the situation above, let V be a positive cycle. Then

$$
\delta_{2}(X, x) \geq V \cdot(K+A)-\chi\left(\mathcal{O}_{V}\right)
$$

Proof. Theorem 2.8 implies that

$$
\delta_{2}(X, x) \geq h^{1}\left(\mathcal{O}_{V}(-K-A)\right) \geq-\chi\left(\mathcal{O}_{V}(-K-A)\right)=V \cdot(K+A)-\chi\left(\mathcal{O}_{V}\right) .
$$

Definition 2.10. A singularity (X, x) is called a Q-Gorenstein singularity if there exists a positive integer r such that $\mathcal{O}_{X}\left(r K_{X}\right)$ is invertible at x. It is well known that any rational singularity is a \boldsymbol{Q}-Gorenstein singularity. For a \boldsymbol{Q}-Gorenstein singularity (X, x), the minimal positive integer r which satisfies the condition above is called the index of (X, x), and denoted by $I(X, x)$.

For any singularity (X, x), the minimal positive integer m such that $\delta_{m}(X, x) \neq 0$ is called the δ-index of (X, x), and denoted by $I_{\delta}(X, x)$. If $\delta_{m}(X, x)=0$ for all $m \in N$, we set $I_{\delta}(X, x)=\infty$.

Theorem 2.11 (cf. [15, Theorem 3.9]). A singularity (X, x) is a quotient singularity if and only if $I_{\delta}(X, x)=\infty$.

Theorem 2.12 (cf. [6]). Let (X, x) be a singularity such that $\left\{\delta_{m}(X, x)\right\}_{m \in N}$ is bounded, i.e., there exists an integer B such that $\delta_{m}(X, x) \leq B$ for all $m \in N$. Assume that (X, x) is not a quotient singularity. Then (X, x) is a \mathbf{Q}-Gorenstein singularity with $I(X, x)=I_{\delta}(X, x)$, and $\delta_{m}(X, x) \leq 1$ for all $m \in N$. Let $I=I(X, x)$. Then we have the following:
(1) $\delta_{m}(X, x)=1$ for $m \equiv 0(\bmod I)$ and $\delta_{m}(X, x)=0$ for $m \not \equiv 0(\bmod I)$.
(2) $I=1$ if and only if (X, x) is a simple elliptic or a cusp singularity.
(3) If $I>1$, then (X, x) is the quotient with respect to a cyclic group of a simple elliptic or a cusp singularity.
(2.13) A Q-Gorenstein singularity (X, x) is said to be log-canonical if the following condition is satisfied: For a good resolution $f:(M, A) \rightarrow(X, x)$, we have, as Q-divisor,

$$
K_{M}=f^{*} K_{X}+\sum a_{i} A_{i} \text { with } \quad a_{i} \geq-1 \text { for all } i
$$

The singularities in Theorem 2.12 are log-canonical by [4, Theorem 2.1].
(2.14) A singularity with C^{*}-action is called a C^{*}-singularity.

Let (X, x) be a C^{*}-singularity and $f:(M, A) \rightarrow(X, x)$ the minimal good resolution. It is well known that the weighted dual graph of (X, x) is a star-shaped graph. The weighted dual graph of a cyclic quotient singularity is regarded as a start-shaped graph without central curve (note that it is a chain of rational curves).

We set $A=A_{0}+\sum_{i=1}^{\beta} S_{i}$, where A_{0} is the central curve, and S_{i} the branches. The curves of S_{i} are denoted by $A_{i, j}, 1 \leq j \leq r_{i}$, where $A_{0} \cdot A_{i, 1}=A_{i, j} \cdot A_{i, j+1}=1$. Let $b_{i, j}=-A_{i, j} \cdot A_{i, j}$. For each branch S_{i}, positive integers e_{i} and d_{i} are defined by

$$
\frac{d_{i}}{e_{i}}=b_{i, 1}-\frac{1}{b_{i, 2}-\frac{1}{\cdots-\frac{1}{b_{i, r_{i}}}}}
$$

where $e_{i}<d_{i}$, and e_{i} and d_{i} are relatively prime.
For any integers $m \geq 1$ and $k \geq 0$, we define the divisors on A_{0} by

$$
D_{m}^{(k)}=k D-\sum_{i=1}^{\beta}\left[\left(k e_{i}+m\left(d_{i}-1\right)\right) / d_{i}\right] P_{i},
$$

where D is a divisor such that $\mathcal{O}_{A_{0}}(D)$ is the conormal sheaf of $A_{0}, P_{i}=A_{0} \cap A_{i, 1}$, and for any $a \in \boldsymbol{R},[a]$ is the greatest integer not more than a.

The following is an extended version of Pinkham's formula (cf. [12, Theorem 5.7]).
Theorem 2.15 (Watanabe [16, Corollary 2.22]). In the situation above,

$$
\delta_{m}(X, x)=\sum_{k \geq 0} h^{0}\left(\mathcal{O}_{A_{0}}\left(m K_{A_{0}}-D_{m}^{(k)}\right)\right) .
$$

Theorem 2.16 (Tomaru [14]). In the situation above, let g be the genus of the central curve A_{0}.
(1) (X, x) is a log-canonical singularity with $I(X, x)>1$ if and only if $g=0$ and $\sum_{i=1}^{\beta}\left(d_{i}-1\right) / d_{i}=2$. In this case, $I(X, x)=\operatorname{lcm}\left(d_{1}, \ldots, d_{\beta}\right)$.
(2) (X, x) is a quotient singularity if and only if $g=0$ and $\sum_{i=1}^{\beta}\left(d_{i}-1\right) / d_{i}<2$.

3. Rational singularities.

(3.1) Let (X, x) be a rational singularity and $f:(M, A) \rightarrow(X, x)$ the minimal resolution of the singularity (X, x). Since $H^{1}\left(\mathcal{O}_{M}\right)=H^{1}\left(\mathcal{O}_{A}\right)=0, f$ is a minimal good resolution by Proposition 1.10 and Theorem 1.11. Note that the weighted dual graph of a rational singularity is a tree. For any component A_{i} of A, we set $t_{i}=\left(A-A_{i}\right) \cdot A_{i}$, the cardinality of the intersection points on A_{i}.

In this section, except in Corollary 3.6, (X, x) denotes a rational singularity and $f:(M, A) \rightarrow(X, x)$ the minimal resolution.

Lemma 3.2. If the weighted dual graph of (X, x) is a star-shaped graph, then

$$
\delta_{m}(X, x)=\sum_{k \geq 0} h^{0}\left(\mathscr{O}_{A_{0}}\left(m K_{A_{0}}-D_{m}^{(k)}\right)\right),
$$

where A_{0} and $D_{m}^{(k)}$ are as in (2.14).
Proof. By the Riemann-Roch theorem of [10, p. 196], $\delta_{m}(X, x)+h^{1}\left(\mathcal{O}_{M}(m K+\right.$ $(m-1) A)$) is determined by the weighted dual graph. Let $L_{m}=m K+(m-1) A$. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{M}(m K) \rightarrow \mathcal{O}_{M}\left(L_{m}\right) \rightarrow \mathcal{O}_{(m-1) A}\left(L_{m}\right) \rightarrow 0
$$

using Theorem 2.6, we have $h^{1}\left(\mathcal{O}_{M}\left(L_{m}\right)\right)=h^{1}\left(\mathcal{O}_{(m-1) A}\left(L_{m}\right)\right)$. Since $H^{1}\left(\mathcal{O}_{M}\right)=0$, we have $H^{1}\left(\mathcal{O}_{(m-1) A}\right)=0$. By $[1,(1.7)]$, invertible sheaves on $(m-1) A$ are classified by their degree. Thus $h^{1}\left(\mathcal{O}_{(m-1) A}\left(L_{m}\right)\right)$ is determined by the weighted dual graph and the variety A, hence so is $\delta_{m}(X, x)$.

Let $A_{0}, D, D_{m}^{(k)}, P_{i}, e_{i}$ and d_{i} be as in (2.14) (note that they are defined for star-shaped graphs). For any $k \geq 0$, let $D^{(k)}$ be the divisor

$$
D^{(k)}=k D-\sum_{i=1}^{\beta}\left\{k e_{i} / d_{i}\right\} P_{i}
$$

on A_{0}, where for any $a \in \boldsymbol{R},\{a\}$ denotes the least integer not less than a. Let $R=$ $\oplus_{k \geq 0} H^{0}\left(\mathcal{O}_{A_{0}}\left(D^{(k)}\right)\right)$. By [12], $\operatorname{Spec}(R)$ is a singularity of which the exceptional set of the minimal good resolution and the weighted dual graph are the same as those of (X, x). Then $\delta_{m}(X, x)=\delta_{m}(\operatorname{Spec}(R))$. Since $\operatorname{Spec}(R)$ is a C^{*}-singularity, $\delta_{m}(\operatorname{Spec}(R))$ is computed by the formula in Theorem 2.15.
(3.3) Let (X, x) be a rational singularity with a star-shaped graph. Then the central curve is a non-singular rational curve. Using the notation of (2.14), we set

$$
F_{m}^{(k)}=-2 m-k b+\sum_{i=1}^{\beta}\left[\left(k e_{i}+m\left(d_{i}-1\right)\right) / d_{i}\right],
$$

where $b=-A_{0} \cdot A_{0}$. By Lemma 3.2,

$$
\delta_{m}(X, x)=\sum_{k \geq 0} h^{0}\left(\mathcal{O}_{A_{0}}\left(F_{m}^{(k)}\right)\right)
$$

We always assume that $d_{1} \leq \cdots \leq d_{\beta}$.
Lemma 3.4. If $\delta_{2}(X, x)=0$, then the weighted dual graph of (X, x) is either a chain (if (X, x) is a cyclic quotient singularity), or a star-shaped graph with three branches.

Proof. For any component A_{i} of A, we have $t_{i} \leq 3$ by Corollary 2.9. If $t_{i} \leq 2$ for all i, then A is a chain of curves.

We assume that $t_{1}=3$. Let A_{n} be any component of A. Let $\sum_{i=1}^{n} A_{i}$ be the minimal connected cycle containing A_{1} and A_{n}. Then $t_{i} \geq 2$ for $i \leq n-1$. Applying Corollary 2.9 to the positive cycle $\sum_{i=1}^{n-1} A_{i}$, we have $0 \geq \sum_{i=2}^{n-1}\left(t_{i}-2\right)$. Hence $t_{i}=2$ for $i=2, \ldots, n-1$.

Theorem 3.5 (Okuma [11]). If $\delta_{m}(X, x)=0$ for $m=4,6$, then (X, x) is a quotient singularity.

Proof. Note that the assumption implies $\delta_{m}(X, x)=0$ for $m=1,2$ (cf. Proposition 2.3). We assume that (X, x) is not a cyclic quotient singularity. By Lemma 3.4, the weighted dual graph of (X, x) is a star-shaped graph with three branches. Then

$$
F_{4}^{(0)}=-8+\sum_{i=1}^{3}\left[4-4 / d_{i}\right] \quad \text { and } \quad F_{6}^{(0)}=-12+\sum_{i=1}^{3}\left[6-6 / d_{i}\right] .
$$

Note that $\left[m-m / a_{1}\right] \leq\left[m-m / a_{2}\right]$ if $a_{1} \leq a_{2}$.
Since $\delta_{6}(X, x)=0$, we have $F_{6}^{(0)} \leq-1$. If $d_{1} \geq 3$, then $F_{6}^{(0)} \geq 0$. Hence $d_{1}=2$. Since $\delta_{4}(X, x)=0$, we have $F_{4}^{(0)}=-6+\left[4-4 / d_{2}\right]+\left[4-4 / d_{3}\right] \leq-1$. Thus $d_{2} \leq 3$.

If $d_{1}=d_{2}=2$, then $\sum_{i=1}^{3}\left(d_{i}-1\right) / d_{i}<2$, and hence (X, x) is a quotient singularity by Theorem 2.16.

Assume $d_{2}=3$. Since $F_{6}^{(0)}=-5+\left[6-6 / d_{3}\right] \leq-1$, we have $d_{3} \leq 5$. Again, we get $\sum_{i=1}^{3}\left(d_{i}-1\right) / d_{i}<2$, and hence (X, x) is a quotient singularity by Theorem 2.16.

Corollary 3.6. Let (X, x) be any singularity. If (X, x) is not a quotient singularity, then $I_{\delta}(X, x) \leq 6$.

Proof. The result is an immediate consequence of Theorems 2.11 and 3.5.
Proposition 3.7. Let (X, x) be a singularity with $I_{\delta}(X, x)=6$ and $\delta_{14}(X, x)=0$. Then (X, x) is a log-canonical singularity with $I(X, x)=6$.

Proof. By assumption, $\delta_{m}(X, x)=0$ for $m=1,2,3,4,5$. By Lemma 3.4, (X, x) has a star-shaped graph with three branches. Since $\delta_{3}(X, x)=0$, we have $F_{3}^{(0)}=-6+$ $\sum_{i=1}^{3}\left[3-3 / d_{i}\right] \leq-1$. Thus $d_{1}=2$. Similarly, we have $d_{2} \leq 3$ by $d_{1}=2$ and $F_{4}^{(0)} \leq-1$. If $d_{2}=2$ or $d_{3} \leq 5$, then $I_{\delta}(X, x)=\infty$ by the proof of Theorem 3.5. Hence we get $d_{1}=2$, $d_{2}=3$ and $d_{3} \geq 6$. Since $\delta_{14}(X, x)=0$, we have $F_{14}^{(0)}=-12+\left[14-14 / d_{3}\right] \leq-1$. Thus $d_{3}=6$. By Theorem 2.16, (X, x) is a log-canonical singularity with $I(X, x)=6$.
(3.8) We note that if $I_{\delta}(X, x)=5$, then (X, x) is not a log-canonical singularity by Theorems 2.12 and 2.16 (cf. Theorem 3.11).

Proposition 3.9. Let (X, x) be a singularity with $I_{\delta}(X, x)=4$ and $\delta_{14}(X, x)=0$. Then (X, x) is a log-canonical singularity with $I(X, x)=4$.

Proof. As in the proof of the proposition above, we have $d_{1}=2$ and $d_{2} \geq 3$. However, $d_{2}=3$ implies the same result as in the proposition above. Hence $d_{2} \geq 4$. Then $d_{2}=d_{3}=4$ by $F_{14}^{(0)} \leq-1$. By Theorem 2.16, (X, x) is a log-canonical singularity with $I(X, x)=4$.

Proposition 3.10. Let (X, x) be a singularity with $I_{\delta}(X, x)=3$ and $\delta_{14}(X, x)=0$. Then (X, x) is a log-canonical singularity with $I(X, x)=3$.

Proof. If $d_{1}=2$, we have the same result as in the proposition above. Hence $d_{1} \geq 3$. Then $d_{1}=d_{2}=d_{3}=3$ by $F_{14}^{(0)} \leq-1$. Again by Theorem $2.16,(X, x)$ is a logcanonical singularity with $I(X, x)=3$.

Theorem 3.11. Let (X, x) be a singularity with $\delta_{14}(X, x)=0$. Then (X, x) is a \log canonical singularity.

Proof. Since $\delta_{14}(X, x)=0$, we have $\delta_{1}(X, x)=\delta_{2}(X, x)=0$, and hence $I_{\delta}(X, x) \geq 3$.
If $I_{\delta}(X, x)=\infty$, then (X, x) is a quotient singularity, and it is log-canonical (more precisely, log-terminal). Assume that $I_{\delta}(X, x) \leq 6$ (cf. Corollary 3.6). If $I_{\delta}(X, x) \neq 5$, then we are done. By the proof of the propositions above, there exists no singularity (X, x) with $I_{\delta}(X, x)=5$ and $\delta_{14}(X, x)=0$.

Lemma 3.12. Let (X, x) be a singularity with $\delta_{2}(X, x)=1$. Then we have one of the following:
(1) (X, x) has a star-shaped graph with three branches.
(2) (X, x) has a star-shaped graph with four branches.
(3) The exceptional divisor A is written as $\sum_{i=0}^{4} S_{i}$, where $S_{i}, i \geq 1$, are the maximal strings, and S_{0} is a chain of curves.

Proof. By Corollary 2.9, we have $t_{i} \leq 4$ for all A_{i}. Since (X, x) is not a cyclic quotient singularity, there exists a component A_{j} such that $t_{j} \geq 3$. Assume that (X, x) is not in the case (1). If $t_{1}=4$, then as in the proof of Lemma 3.4, we have a star-shaped graph with four branches. If $t_{i} \leq 3$ for all A_{i}, then we may assume that $t_{1}=t_{2}=3$. Then, as in the proof of Lemma 3.4, we have $t_{i} \leq 2$ for $i \geq 3$. Thus $A-A_{1}-A_{2}$ is a disjoint union of chains of curves. Since the weighted dual graph is a tree, there exists a unique minimal connected cycle S_{0} containing A_{1} and A_{2}. Since $t_{1}=t_{2}=3$, a cycle $A-S_{0}$ is a disjoint union of four maximal strings in A.

Lemma 3.13. Let (X, x) be a singularity with $\delta_{14}(X, x)=1 . \operatorname{If}(X, x)$ has a star-shaped graph with three branches, then $\delta_{2}(X, x)=0$.

Proof. Assume that (X, x) has a star-shaped graph with three branches. Using the notation of (3.3), we have

$$
F_{m}^{(k)}=m-k b+\sum_{i=1}^{3}\left[\left(k e_{i}-m\right) / d_{i}\right] .
$$

If $b \geq 3$, then $F_{2}^{(k)} \leq F_{2}^{(k-1)} \leq \cdots \leq F_{2}^{(0)}<0$, and hence $\delta_{2}(X, x)=0$. If $\sum 1 / d_{i} \geq 1$, then $\delta_{2}(X, x)=0$ by Theorem 2.16. Assume that $b=2$ and $\sum 1 / d_{i}<1$. We define a subset Δ^{*} of N^{6} as follows: $(e, d)=\left(e_{1}, e_{2}, e_{3}, d_{1}, d_{2}, d_{3}\right) \in N^{6}$ is an element of Δ^{*} if and only if $d_{1} \leq d_{2} \leq d_{3}, \sum 1 / d_{i}<1, \sum e_{i} / d_{i}<2$ (cf. [12, p. 185]), $e_{i}<d_{i}$, and e_{i} and d_{i} are relatively prime for $i=1,2,3$. We regard $F_{m}^{(k)}$ as a function of k, m and $(e, d) \in \Delta^{*}$, and write $F_{m}^{(k)}(e, d)$. Let

$$
G^{(k)}(e, d)=k\left(\sum e_{i} / d_{i}-2\right)+2\left(1-\sum 1 / d_{i}\right) .
$$

Then

$$
F_{2}^{(k)}(e, d) \leq 2-2 k+\sum\left(k e_{i}-2\right) / d_{i}=G^{(k)}(e, d) .
$$

Since $\sum e_{i} / d_{i}-2<0$, we have $F_{2}^{(k)}(e, d)<0$ for $k \geq 2$ (resp. $k \geq 3$) if $G^{(2)}(e, d)<0$ (resp. $=0$).

Let

$$
\Delta=\left\{d \in N^{3} \mid(e, d) \in \Delta^{*} \text { for some } e \in N^{3}, \text { and } F_{14}^{(0)} \leq 0\right\} .
$$

Let $\Delta_{1}=\left\{\left(2,3, d_{3}\right) \mid 7 \leq d_{3} \leq 13\right\}$ and $\Delta_{2}=\{(2,4,5),(2,4,6)\}$. As in the proof of the propositions above, we have $\Delta=\Delta_{1} \cup \Delta_{2} \cup\{(3,4,4)\}$.

Assume that $d \in \Delta_{1}$. Since $\delta_{14}(X, x)=1$ and $F_{14}^{(0)}=0$, we have

$$
F_{14}^{(3)}=-3+e_{2}+\left[\left(3 e_{3}-14\right) / d_{3}\right] \leq-1 .
$$

Let $\Delta_{1}^{\prime}=\left\{(e, d) \in \Delta^{*} \mid d \in \Delta_{1}, F_{14}^{(3)} \leq-1\right\}$. We can easily get $F_{2}^{(k)}(e, d)<0$ for $(e, d) \in \Delta_{1}^{\prime}$ and $k=0,1,2$. We will show $G^{(2)}(e, d)=2\left(\sum\left(e_{i}-1\right) / d_{i}-1\right) \leq 0$ for $(e, d) \in \Delta_{1}^{\prime}$. For $(e, d) \in \Delta_{1}^{\prime}$ with $e_{2}=1$, we have $G^{(2)}(e, d)=2\left(\left(e_{3}-1\right) / d_{3}-1\right)<0$. Let $e_{2}=2$. Then $3 e_{3}-14<d_{3}$, and $e_{3} / d_{3}<5 / 6$. The maximum of $\left\{\left(e_{3}-1\right) / d_{3}\right\}$ is $(7-1) / 9=2 / 3$. Hence $G^{(2)}(e, d)=2\left(\left(e_{3}-1\right) /\right.$ $\left.d_{3}-2 / 3\right) \leq 0$. Then we have $F_{2}^{(k)}<0$, for $k \geq 0$ and $(e, d) \in \Delta_{1}^{\prime}$.

Assume that $d \in \Delta_{2}$. If $e_{2}=1$, then $G^{(2)}(e, d)=2\left(\left(e_{3}-1\right) / d_{3}-1\right)<0$. Let $e_{2}=3$. As above, we have $e_{3}+d_{3}<7$ from $F_{14}^{(2)} \leq-1$. Hence $e_{3}=1$. Then $G^{(2)}(e, d)=2(1 / 2-1)<0$. Clearly, $F_{2}^{(0)}$ and $F_{2}^{(1)}$ are negative. Hence $F_{2}^{(k)}<0$ for $k \geq 0$.

If $d=(3,3,4)$, then $e=\left(e_{1}, e_{2}, e_{3}\right)\left(e_{1} \leq e_{2}\right)$ such that $(e, d) \in \Delta^{*}$ is one of $(1,1,1)$, $(1,1,3),(1,2,1),(1,2,3)$ and $(2,2,1)$. Again, we have $F_{2}^{(k)}<0$ for $k \geq 0$.

Thus in any of the cases, we get $\delta_{2}(X, x)=0$.
Proposition 3.14. Let (X, x) be a singularity with $I_{\delta}(X, x)=2$ and $\delta_{14}(X, x)=1$. Then (X, x) is a log-canonical singularity with $I(X, x)=2$.

Proof. Since $\delta_{14}(X, x)=1$ and $\delta_{2}(X, x) \neq 0$, we have $\delta_{2}(X, x)=1$ (cf. Proposition 2.3). By the lemmas above, we have the weighted dual graph in (2) or (3) of Lemma 3.12.

Suppose (X, x) has a star-shaped graph. Then $d_{1}=\cdots=d_{4}=2$ by $F_{14}^{(0)} \leq 0$, and hence (X, x) is a log-canonical singularity with $I(X, x)=2$ by Theorem 2.16.

Assume that $A=\sum_{i=0}^{4} S_{i}$ as in (3) of Lemma 3.12. By [7, Theorem 3.7], there exists a deformation $\pi: \bar{M} \rightarrow(\boldsymbol{C}, 0)$ of $M=\pi^{-1}(0)$ which induces a trivial deformation of S_{i} for $i=1,2,3,4$, and for $c \neq 0$ near $0, \pi^{-1}(c)$ has a connected component of the exceptional set $A_{0}+\sum_{i=1}^{4} S_{i}$, where A_{0} is a rational curve. Note that π blows down to a deformation of (X, x). Let (Y, y) be a singularity obtained by contracting the exceptional divisor $A_{0}+\sum_{i=1}^{4} S_{i}$ above. By Theorem 2.5, we have $p_{g}(Y, y)=0, \delta_{2}(Y, y) \leq 1$ and $\delta_{14}(Y, y) \leq 1$. Thus (Y, y) is a rational singularity which has a star-shaped graph with four branches. By Lemma 3.4, we have $\delta_{2}(Y, y)=\delta_{14}(Y, y)=1$. Applying the argument above to (Y, y), we have $d_{1}=\cdots=d_{4}=2$. By the definition of d_{i}, we see that S_{i} is a curve with $S_{i} \cdot S_{i}=-2$, for $i \geq 1$. Recall that π induces a trivial deformation of S_{i} for $i \geq 1$. Let B be a cycle on M defined by $B=A+S_{0}$. Then $-B$ is numerically equivalent to $2 K$. Since any rational singularity is a Q-Gorenstein singularity, (X, x) is a log-canonical singularity with $I(X, x)=2$ (cf. Theorem 2.12 and (2.13)).

4. Elliptics singularities.

(4.1) Let (X, x) be an elliptic singularity, $f:(M, A) \rightarrow(X, x)$ a resolution of the singularity (X, x) and K the canonical divisor on M.

Lemma 4.2. Let (X, x) be a Gorenstein singularity. Then $\delta_{m_{1}}(X, x) \leq \delta_{m_{2}}(X, x)$ if $m_{1} \leq m_{2}$.

Proof. Let $f:(M, A) \rightarrow(X, x)$ be the minimal good resolution of the singularity (X, x). It is well known that there exists a positive cycle $D \geq A$ such that $\mathcal{O}_{M}(K) \cong \mathcal{O}_{M}(-D)$.

Then $H^{0}\left(\mathcal{O}_{M-A}(m K)\right) \cong H^{0}\left(\mathcal{O}_{M}\right)$ and $O_{M}(m K+(m-1) A) \cong \mathcal{O}_{M}((m-1)(A-D)+K)$. Since $A-D \leq 0$, we have

$$
\mathcal{O}_{M}\left(\left(m_{1}-1\right)(A-D)+K\right) \supset \mathcal{O}_{M}\left(\left(m_{2}-1\right)(A-D)+K\right)
$$

for $m_{1} \leq m_{2}$. Thus Proposition 2.3 implies the assertion.
Lemma 4.3. Let (X, x) be a minimally elliptic singularity which is not a du Bois singularity. Then $\delta_{6}(X, x) \geq 2$.

Proof. First, we assume that the minimal resolution of the singularity (X, x) is a good resolution. Let $f:(M, A) \rightarrow(X, x)$ be the minimal resolution. By Lemma 2.7, we have $H^{1}\left(\mathcal{O}_{M}(2 K+A)\right)=0$. By Proposition 2.3 and [8, Corollary 1], we have

$$
\delta_{2}(X, x)=-(K+A) \cdot(2 K+A) / 2+1
$$

Since (X, x) is not a du Bois singularity, we have $H^{1}\left(\mathcal{O}_{A}\right)=0$, and hence $-A$. $(A+K) / 2=\chi\left(\mathcal{O}_{A}\right)=1$. Then we have $\delta_{2}(X, x)=-(K+A) \cdot K+2$. Since f is minimal and $-(K+A) \geq 0$, we get $\delta_{2}(X, x) \geq 2$. By Lemma 4.2, we have $\delta_{6}(X, x) \geq 2$.

Now we assume that the minimal resolution of (X, x) is not good. Let $f:(M, A) \rightarrow(X, x)$ be the minimal good resolution of the singularity (X, x). By [9, Proposition 3.5], (X, x) has a star-shaped graph with three branches, and the divisor A can be written as $A=\sum_{i=1}^{4} A_{i}$, where A_{1} is the central curve with $A_{1} \cdot A_{1}=-1$, and $A_{2} \cdot A_{2} \geq A_{3} \cdot A_{3} \geq A_{4} \cdot A_{4}$. Then $-K=2 A_{1}+\sum_{i=2}^{4} A_{i}$. Let $Z=\sum_{i=1}^{4} n_{i} A_{i}$ be the fundamental cycle on M. Then $\left(n_{1}, \ldots, n_{4}\right)$ is one of $(6,3,2,1),(4,2,1,1)$ or $(3,1,1,1)$. Let \mathscr{M} be the maximal ideal in \mathcal{O}_{X} which defines the singular point x. By [9 , Theorem 3.13], there exists a function $g \in H^{0}(\mathscr{M})$ (under the assumption that X is sufficiently small) such that $f^{*}(g)$ has a zero of order n_{1} on A_{1}. Since ($\left.X, x\right)$ is minimally elliptic, we have $f_{*} \mathcal{O}_{M}(K) \cong \mathscr{M}$. On the other hand, we have

$$
\mathcal{O}_{M}(6 K+5 A) \cong \mathcal{O}_{M}(K-5 A) \cong \mathcal{O}_{M}\left(-7 A_{1}-\sum_{i=2}^{4} A_{i}\right) .
$$

Hence

$$
f^{*}(g) \in H^{0}\left(\mathcal{O}_{M}(K)\right) \backslash H^{0}\left(\mathcal{O}_{M}(6 K+5 A)\right)
$$

Since $H^{0}\left(\mathcal{O}_{M}\right) \supsetneqq H^{0}\left(\mathcal{O}_{M}(K)\right) \supseteqq H^{0}\left(\mathcal{O}_{M}(6 K+5 A)\right.$), we have $\delta_{6}(X, x) \geq 2$ by Proposition 2.3.

Proposition 4.4. Let (X, x) be an elliptic singularity which is not a du Bois singularity. Then $\delta_{6}(X, x) \geq 2$.

Proof. (1.8), Theorem 2.4 and Lemma 4.3 imply the assertion.
Example 4.5. There exists a singularity (X, x) with $\delta_{m}(X, x)=1$ for $m=1, \ldots, 5$ which is not a du Bois singularity, but a minimally elliptic singularity.

Let (X, x) be a minimally elliptic singularity such that the minimal resolution of (X, x) is not good. Using the notation in the proof of Lemma 4.3, we assume that $A_{2} \cdot A_{2}=-2, A_{3} \cdot A_{3}=-3$ and $A_{4} \cdot A_{4} \leq-7$. Then $Z=6 A_{1}+3 A_{2}+2 A_{3}+A_{4}=-K+$ $4 A_{1}+2 A_{2}+A_{3}$. Note that there exists such a minimally elliptic singularity. Since $Z>A$, we have $H^{1}\left(\mathcal{O}_{A}\right)=0$ (cf. Definition 1.3). Thus ($\left.X, x\right)$ is not a du Bois singularity by Proposition 1.10. As in the proof of Lemma 4.3, we have

$$
\begin{aligned}
\delta_{5}(X, x) & =\operatorname{dim}_{\boldsymbol{C}} H^{0}\left(\mathcal{O}_{M}\right) / H^{0}\left(\mathcal{O}_{M}(K)\right)+\operatorname{dim}_{\boldsymbol{C}} H^{0}\left(\mathcal{O}_{M}(K)\right) / H^{0}\left(\mathcal{O}_{M}(5 K+4 A)\right) \\
& =1+\operatorname{dim}_{\boldsymbol{C}} H^{0}\left(\mathcal{O}_{M}(K)\right) / H^{0}\left(\mathcal{O}_{M}\left(K-4 A_{1}\right)\right)
\end{aligned}
$$

From the exact sequence

$$
0 \rightarrow \mathcal{O}_{M}\left(K-4 A_{1}\right) \rightarrow \mathcal{O}_{M}(K) \rightarrow \mathcal{O}_{4 A_{1}}(K) \rightarrow 0
$$

we have

$$
\operatorname{dim}_{\boldsymbol{C}} H^{0}\left(\mathcal{O}_{M}(K)\right) / H^{0}\left(\mathcal{O}_{M}\left(K-4 A_{1}\right)\right)=6-h^{1}\left(\mathcal{O}_{M}\left(K-4 A_{1}\right)\right) .
$$

We will show that $h^{1}\left(\mathcal{O}_{M}\left(K-4 A_{1}\right)\right)=6$. Since $H^{1}\left(\mathcal{O}_{M}\right) \cong H^{1}\left(\mathcal{O}_{Z}\right)$, we have $H^{1}\left(\mathcal{O}_{M}(-Z)\right)=0$. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{M}(-Z) \rightarrow \mathcal{O}_{M}\left(K-4 A_{1}\right) \rightarrow \mathcal{O}_{2 A_{2}+A_{3}}\left(K-4 A_{1}\right) \rightarrow 0
$$

we have $H^{1}\left(\mathcal{O}_{M}\left(K-4 A_{1}\right)\right) \cong H^{1}\left(\mathcal{O}_{2 A_{2}+A_{3}}\left(K-4 A_{1}\right)\right)$. Let $L=K-4 A_{1}$. Consider the exact sequences

$$
\begin{gathered}
0 \rightarrow \mathcal{O}_{2 A_{2}}\left(L-A_{3}\right) \rightarrow \mathcal{O}_{2 A_{2}+A_{3}}(L) \rightarrow \mathcal{O}_{A_{3}}(L) \rightarrow 0, \\
0 \rightarrow \mathcal{O}_{A_{2}}\left(L-A_{3}-A_{2}\right) \rightarrow \mathcal{O}_{2 A_{2}}\left(L-A_{3}\right) \rightarrow \mathcal{O}_{A_{2}}\left(L-A_{3}\right) \rightarrow 0 .
\end{gathered}
$$

Then we get

$$
\begin{aligned}
h^{1}\left(\mathcal{O}_{2 A_{2}+A_{3}}\left(K-4 A_{1}\right)\right) & =h^{1}\left(\mathcal{O}_{A_{3}}(L)\right)+h^{1}\left(\mathcal{O}_{A_{2}}\left(L-A_{3}\right)\right)+h^{1}\left(\mathcal{O}_{A_{2}}\left(L-A_{3}-A_{2}\right)\right) \\
& =2+3+1=6 .
\end{aligned}
$$

Hence $\delta_{5}(X, x)=1$. By Lemma 4.2, $\delta_{m}(X, x)=1$ for $m=1, \ldots, 5$.
(4.6) Let (X, x) be an elliptic du Bois singularity and $f:(M, A) \rightarrow(X, x)$ the minimal resolution. Since $H^{1}\left(\mathcal{O}_{A}\right)=1$, the divisor A is decomposed as $A=E_{1}+E_{2}$, where E_{1} is either a non-singular elliptic curve or a cycle of r rational curves with $r \geq 1$ (a cycle of one rational curve means a rational curve with an ordinary double point), and E_{2} is void or a disjoint union of trees of non-singular rational curves. If $E_{2}=0$, then (X, x) is a simple elliptic or a cusp singularity.

We will use this notation in Lemma 4.7, Lemma 4.8 and Proposition 4.9 below.
Lemma 4.7. If E_{2} is a rational curve with $E_{2} \cdot E_{2} \leq-3$, then $\delta_{3}(X, x) \geq 2$.
Proof. For any component A_{i} of A, we have $\left(2 K+2 A-E_{2}\right) \cdot A_{i} \geq 0$. By Theorem 2.6, $H^{1}\left(\mathcal{O}_{M}(3 K+2 A)\right) \cong H^{1}\left(\mathcal{O}_{E_{2}}(3 K+2 A)\right)$. Since $(3 K+2 A) \cdot E_{2}=K \cdot E_{2}-2 \geq-1$, we
have $H^{1}\left(\mathcal{O}_{M}(3 K+2 A)\right)=0$. Let $L=3 K+2 A$. Then we get

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{M}(L)\right) \rightarrow H^{0}\left(\mathcal{O}_{M}\left(L+E_{1}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{E_{1}}\left(L+E_{1}\right)\right) \rightarrow 0,
$$

and

$$
\operatorname{dim}_{\boldsymbol{C}} H^{0}\left(\mathcal{O}_{M}\left(L+E_{1}\right)\right) / H^{0}\left(\mathcal{O}_{M}(L)\right)=h^{0}\left(\mathcal{O}_{E_{1}}\left(L+E_{1}\right)\right) \geq \chi\left(\mathcal{O}_{E_{1}}\left(L+E_{1}\right)\right)=2 .
$$

Since

$$
\delta_{3}(X, x)=\operatorname{dim}_{C} H^{0}\left(\mathcal{O}_{M-A}(3 K)\right) / H^{0}\left(\mathcal{O}_{M}(L)\right)
$$

and

$$
H^{0}\left(\mathcal{O}_{M-A}(3 K)\right) \supset H^{0}\left(\mathcal{O}_{M}\left(L+E_{1}\right)\right) \supset H^{0}\left(\mathcal{O}_{M}(L)\right),
$$

we have $\delta_{3}(X, x) \geq 2$.
Lemma 4.8. If E_{2} is a rational curve with $E_{2} \cdot E_{2}=-2$, then $\delta_{4}(X, x) \geq 2$.
Proof. As above, we have $H^{1}\left(\mathcal{O}_{M}(4 K+3 A)\right) \cong H^{1}\left(\mathcal{O}_{2 E_{2}}(4 K+3 A)\right)$. Let $L=4 K+$ $3 A$. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{E_{2}}\left(L-E_{2}\right) \rightarrow \mathcal{O}_{2 E_{2}}(L) \rightarrow \mathcal{O}_{E_{2}}(L) \rightarrow 0
$$

we have $h^{1}\left(\mathcal{O}_{2 E_{2}}(L)\right)=2$. Consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{M}(L) \rightarrow \mathcal{O}_{M}\left(L+E_{1}\right) \rightarrow \mathcal{O}_{E_{1}}\left(L+E_{1}\right) \rightarrow 0 .
$$

As in the proof of Lemma 4.7,

$$
\delta_{4}(X, x) \geq \operatorname{dim}_{\boldsymbol{C}} H^{0}\left(\mathcal{O}_{M}\left(L+E_{1}\right)\right) / H^{0}\left(\mathcal{O}_{M}(L)\right)=1+h^{1}\left(\mathcal{O}_{M}\left(L+E_{1}\right)\right) .
$$

Since $h^{1}\left(\mathcal{O}_{M}\left(L+E_{1}\right)\right) \geq h^{1}\left(\mathcal{O}_{E_{2}}\left(L+E_{1}\right)\right)=1$, we have $\delta_{4}(X, x) \geq 2$.
Proposition 4.9. Let (X, x) be an elliptic du Bois singularity such that $E_{2} \neq 0$. Then $\delta_{3}(X, x) \geq 2$ or $\delta_{4}(X, x) \geq 2$.

Proof. Let A_{1} be a curve in E_{2} intersecting E_{1}. Then $h^{1}\left(\mathcal{O}_{E_{1}+A_{1}}\right)=1$. Let $\left(X^{\prime}, x^{\prime}\right)$ be the singularity obtained by contracting $E_{1}+A_{1}$ in M. By Theorem 2.4 , we have $p_{g}\left(X^{\prime}, x^{\prime}\right) \leq 1$. Hence $p_{g}\left(X^{\prime}, x^{\prime}\right)=h^{1}\left(\mathcal{O}_{E_{1}+A_{1}}\right)=1$. By Proposition 1.10, the singularity (X^{\prime}, x^{\prime}) is an elliptic du Bois singularity. Thus the result is an immediate consequence of Theorem 2.4 and Lemmas 4.7 and 4.8.

Theorem 4.10. Let (X, x) be a singularity with $\delta_{m}(X, x)=1$ for $m=1,4,6$. Then (X, x) is a simple elliptic or cusp singularity.

Proof. Note that $\delta_{1}(X, x)=\delta_{6}(X, x)=1$ implies $\delta_{3}(X, x)=1$. By Proposition 4.4, (X, x) is an elliptic du Bois singularity. Then Proposition 4.9 implies the assertion (cf. (4.6)).

References

[1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[3] S. Ishir, Du Bois singularities on a normal surface, in Complex Analytic Singularities (T. Suwa and P. Wagreich, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, pp. 153-163.
[4] S. Ishis, Isolated \boldsymbol{Q}-Gorenstein singularities of dimension three, in Complex Analytic Singularities (T. Suwa and P. Wagreich, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, pp. 165-198.
[5] S. Ishir, Small deformation of normal singularities, Math. Ann. 275 (1986), 139-148.
[6] S. Ishil, Two dimensional singularities with bounded plurigenera δ_{m} are Q-Gorenstein singularities, Contemporary Math. 90 (1989), 135-145.
[7] U. Karras, On pencils of curves and deformations of minimally elliptic singularities, Math. Ann. 247 (1980), 43-65.
[8] M. Kato, Riemann-Roch theorem for strongly pseudoconvex manifolds of dimension 2, Math. Ann. 222 (1976), 243-250.
[9] H. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
[10] M. Morales, Calcul de quelques invariants des singularités de surface normale, Enseign. Math. 31 (1983), 191-203.
[11] T. Okuma, A criterion for a normal surface singularity to be a quotient singularity, preprint.
[12] H. Pinkham, Normal surface singularities with C^{*}-action, Math. Ann. 227 (1977), 183-193.
[13] J. Steenbrink, Mixed Hodge structure associated with isolated singularities, in Singularities (P. Orlik, ed.), Proc. Sympos, Pure Math. 40, Part 2, Amer. Math. Soc., Providence, R.I., 1983, pp. 513-536.
[14] T. Tomaru, H. Saito and T. Higuchi, Pluri-genera δ_{m} of normal surface singularities with C^{*}-action, Sci. Rep. Yokohama Nat. Univ. Sect. I No. 28 (1981), 35-43.
[15] K. Watanabe, On plurigenera of normal isolated singularities, I, Math. Ann. 250 (1980), 65-94.
[16] K. Watanabe, A revised version of "On plurigenera of normal isolated singularities, I, Math. Ann. 250 (1980), 65-94", RIMS kokyuroku, Kyoto Univ. No. 415 (1981).

Gunma National College of Technology
580 Toriba-machi, Maebashi
Gunma 371-0845
Japan

