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EISENSTEIN SERIES ON WEAKLY SPHERICAL
HOMOGENEOUS SPACES OF GL(n)
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Abstract. A homogeneous space of a reductive group is called weakly spherical if
the action of some proper parabolic subgroup is prehomogeneous. We associate Dirichlet
series with weakly spherical homogeneous spaces defined over the rational number field
and prove their functional equations in the case where the space under consideration is
a homogeneous space of the general linear group.

Introduction.

0.1. Let G be a connected reductive algebraic group and P a proper parabolic
subgroup. A homogeneous space X= G/H of G is said to be P-spherίcal if there exists
a Zariski-open P-orbit in X. In this case we also say that (G, H, P) is a spherical triple.
We call X spherical (resp. weakly spherical) if X is B-spherical (resp. P-spherical) for a
Borel subgroup B (resp. for some proper parabolic subgroup P). It is well-known that
symmetric spaces are spherical (cf. [V]).

In [S3], [S5], [S6] and [HS], we introduced generalized Eisenstein series attached
to (not necessarily Riemannian) symmetric spaces with β-structure and proved that, in
a number of cases, the generalized Eisenstein series have nice analytic properties (analytic
continuation, functional equations) similar to the properties of the Selberg-Langlands
Eisenstein series. However, in the definition of the generalized Eisenstein series given
in [HS], the assumption that a homogeneous space in question is a symmetric space is
irrelevant and what is essential is that it is (weakly) spherical. Therefore one can naturally
ask to what extent the results in the papers cited above can be generalized to general
weakly spherical homogeneous spaces.

In [S7], we have shown that the theory of zeta functions in one variable associated
with prehomogeneous vector spaces developed in [SS] gives an affirmative answer to
the question above in the case where G = GL(ή) and P is its maximal parabolic subgroup.

In the present paper, we consider the case where G is a product of several general
linear groups and P is its (not necessarily maximal) parabolic subgroup.

0.2. Set G = GL(mί) x x GL(mϊ) and Γ = SL{mu Z) x x SL(mh Z). Let P
be a standard parabolic subgroup and H a reductive (J-subgroup of G such that X= G/H
is P-spherical. Let Ω be the open P-orbit in X. We put αjίc = HomQ(P, Gm)®C. Then
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an element λeap*c defines a quasi-character p \-+pλ of the identity component P+ of

P(R). We denote by δP the half sum of negative roots, which we regard as an element

in αjS c.

Let Ω!,..., Ωv be the connected components of Ω(R). Put ΓP = ΓnP+. Under a

certain assumption (Assumption (1.2)) on the isotropy subgroup Px = {peP\p x = x},

we can define the density μ(x) for each ΓP-orbit ΓP x (xeΩ(Q)). Then, for xe X(Q) and

Λ. e α£ c , the Eisenstein series are defined to be the infinite series

EiiP\x,λ)= Σ Ky)\f(Pιy)r{λ+δp) (/= l , . . . , v),
yeΓp\(Γ-xnΩi)

where | / ( P ; y ) | Λ is the function on Ω(R) satisfying \f(P; p-y)\λ=pλ\f(P; y)\λ (for the

reason why we call the Dirichlet series Eisenstein series, see [S7, §2.1, Remark (1)]).

We assume the convergence of these series, (a sufficient condition for convergence

is given in Theorem 3.1). Then we can obtain the following theorem (Theorem 3.2) on

analytic continuation of the Eisenstein series:

THEOREM A. Suppose that

Px (XEΩ) are reductive and H is a reductive subgroup of SL(mx) x x SL(mt) .

Then the Eisenstein series Et(P', x, λ) have analytic continuations to meromorphic functions

on α£ c .

To formulate the functional equations, we need the notion of "Z-associatedness"

of parabolic subgroups (for the definition, see §3.2). Let 0* be an X-associated class of

parabolic subgroups. For P, P'eέP, we define a certain subset Wx(c$, ap) of the Weyl

group of G (§3.2). Then we have the following (Theorem 3.5):

THEOREM B. Under the same assumptions as in Theorem A, the following functional

equation holds for xeX(Q), P9 P'e^ and we Wx(af;ap):

/ E^P' x, wλ) \ / EX(P\ x, λ)

! ) = CBph(w,λ)l :

\ EV(P'; x, wλ) ) \ EV(P; x, λ)

where Csph(w, λ) is a v by v matrix whose entries have an elementary expression in terms

of the gamma function and the exponential function, and CEis(w, λ) has an expression

as a product of the Riemann zeta function and the gamma function.

Let AT be a maximal compact subgroup of G(R). It will turn out that Csch(w, λ) has

its origin in the functional equation satisfied by the ΛT-invariant spherical functions on

X(R), hence it depends only on P and the real structure of the homogeneous space X

(Theorem 3.7). On the other hand, CEis(w, λ) comes from the functional equation satisfied

by the Selberg Eisenstein series of Γ and is independent of H.

0.3. There exists an intimate relation between prehomogeneous vector spaces and
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weakly spherical homogeneous spaces of GL(ή) and the proof of the theorems above

is based on the theory of prehomogeneous vector spaces ([SI], [S2]). As is discussed

in [S7], in some sense, the theory of zeta functions associated with prehomogeneous

vector spaces is nothing but the theory of Eisenstein series on weakly spherical

homogeneous spaces of ^w-type in disguise. To extend the theorems to other G than

GL(ή), we can no longer appeal to the theory of prehomogeneous vector spaces. The

functional equations in Theorem B suggest another possible way of proving the theorems,

namely, the use of the Rankin-Selberg method applied to functions of non-rapid decay.

It is quite probable that our generalized Eisenstein series can be obtained by regularizing

the so-called Eisenstein periods. We shall discuss this topic in [S9].

0.4. The organization of the present paper is as follows. In §1, following [S7],

we give a definition of the Eisenstein series on weakly spherical homogeneous spaces.

In §2, we associate to a spherical triple (G,H,P) with G = GL(m1)x xG^m^ a

prehomogeneous vector space, which plays a crucial role in the later part of the present

paper. In §3, we present a precise formulation of our main results (Theorem 3.1, Theorem

3.2, Theorem 3.5, Theorem 3.6, Theorem 3.7) and discuss the following examples:

1. (G, H, P) = (GL{n\ O(n), P), P = a parabolic subgroup,

2. (G, H, P) = (GL(2)3, SL(2\ P), P = the Borel subgroup,

3. (G, H, P) = {GL(n), N, P), P = the Borel subgroup and N=its unipotent radical.

The first example is a generalization of the result in [S3] to the case of not necessarily

minimal parabolic subgroups. Another example will be given in [S8], where we make

a detailed investigation of the Eisenstein series on a weakly spherical homogeneous

space related to the half-spin representation of Spinί0. In §4, we prove a convergence

criterion of the Eisenstein series and the theorem on analytic continuation. The proof

of the functional equations satisfied by our Eisenstein series is given in §5. In Appendix

we show how to calculate the explicit formulas for the functional equations in the

case of (GL(n\ 0{n\ P).

NOTATION. AS usual, Z, Q, R, and C stand for the ring of rational integers, the

field of rational numbers, the field of real numbers, and the field of complex numbers,

respectively. For a linear algebraic group G defined over the rational number field Q,

we denote by G° the identity component of G and by X(G) the group of rational

characters of G defined over Q. The unipotent radical of G is denoted by RU(G). For a

real vector space V, £f( V) stands for the space of rapidly decreasing functions on V.

The symmetric group in n letters is denoted by Sπ . We denote by lm the identity matrix

of size m and by 0 m n the mxn zero matrix. For a matrix A, we denote by ιA the

transposed matrix.

1. Eisenstein series on weakly spherical homogeneous spaces. Following §1 of

[S7], we recall the definition of Eisenstein series on weakly spherical homogeneous

spaces.
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Let G be a connected reductive algebraic group defined over Q and H a g-subgroup

of G. Put X= G/H. Let P be a proper ^-parabolic subgroup of G and assume that

(1.1) (G, //, P) w α spherical triple, namely, there exists a Zariski-open P-orbit Ω in X.

For anxeβ, we put

We also assume that

(1.2) for any xeΩ(Q), Px is unimodular and the identity component of Px has no non-

trivial Q-rational characters.

We denote by X(P) the group of rational characters of P defined over Q. Put

Then, for any χeXx(P), there exists a non-zero rational function feQ(XY satisfying

f(p x) = χ(p)f(x) (peP,xeX),

which is unique up to a constant factor. The group XX(P) is a free abelian group

of finite rank. Let / be the rank of %X(P). Choose a system of generators {χ l 5..., χz}

of XX(P). For each /= 1,...,/, fix a relative invariant f e Q(X)X satisfying f(p x) =

Xt(p)fi(x).

For K=Q, R or C, we put a$fK = Xx(P)®zK. By Assumption (1.2), XX(P) is of

finite index in X(P); hence we may identify a$κ with X(P)®ZK.

For vl = Σ L ! i ^ e α? c , we define a function | f(P\ x) \λ on Ω(R) and | χ(^) |Λ on P{R)

by

(1.3) \f(P; x)\λ=f\ \f(x)\λί, |Z(^)|A= Π IZ^)lλi

i = 1 i = 1

Then we have

\f(P;p-χ)\λ = \χ(p)\λ\f(P;χ)\λ.

Let P+ be an open subgroup of the real Lie group P(R) and

Ω(R) = Ωί\j •• u Ω v

the P+-orbit decomposition of Ω(R).

We fix a right invariant g-rational gauge form ωP on P and let dωP(p) the right

invariant measure on P+ induced by ωP. Let ΔP be the module of P, namely, the

character of P given by ωP(gp) = AP(g)ωP(p) (p,geP). By Assumption (1.2), there exists

a relatively P-invariant g-rational gauge form ωΩ on Ω such that

MΩ(P *X) = Δ P(p)ωΩ(x) (peP,xeΩ).

We denote by dωΩ(x) the relatively P+-invariant measure on Ω(R) induced by ωΩ. For

an xeΩ(Q), we define an invariant g-rational gauge form ωx on Px by ωx = ωP/ωΩ. Let
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ιP: Px-+Pp.x be the isomorphism defined by ιp(g) = pgp~1. Then we have

(1.4) ι*(ωp.x) = ωx.

This identity characterizes the invariant gauge forms ωx (x e Ω) uniquely up to a constant

factor independent of x. We denote by dμx the Haar measure on Px =P+ nPx induced

by ωx. Thus we can specify the normalization of the Haar measure on Px for all x e Ω(Q)

uniquely (up to a constant factor depending only on the normalization of ωP and ωΩ).

We consider ΔP as an element of α£ R and put

1

Take an arithmetic subgroup Γ of G(Q) and put ΓP = ΓnP+. For an xeX(Q\ we

define the Eisenstein series Et(P\ x, λ) (1 </<v) by

(1.5) Et(P; x,λ)= Σ Ky)/\ f(P; y) \λ+δp,

where

Jp,r/p,r
μ(y)=\ dμy.

nΓp

Assumption (1.2) implies the finiteness of the volume μ( y).

REMARKS. (1) In [HS, §3], on the basis of a measure theoretic interpretation of

μ{x\ we gave an apparently different definition of Eisenstein series. The relation of these

two definitions is given in [HS, Proposition 3.2]. Note that, in the argument in [HS,

§3], the assumption that Z i s a symmetric space is not necessary.

(2) We have defined the Eisenstein series only for rational points x. We can not

expect the convergence of the infinite series (1.5) for irrational points unless the group

Gx(R) = {geG(R)\g-x = x} is compact. To see this, let us consider the case where

G = GL(n), H= 0{ή) and X is the space of nondegenerate symmetric matrices of size n.

Then, if x e X(R) is indefinite and is not a multiple of a rational symmetric matrix, the

generalized Raghunathan conjucture proved by Ratner implies the divergence of the

Eisenstein series (see [R, §5], and [Mar, §5.2, Remark]).

We also define local zeta functions by

(1.6) Ψi(P;φ9λ)=[ \f(P;x)\λ+δpφ(x)dωΩ(x) (φeC%(X(R))).
JΩt

Let £X(P)+ be the subset of £X(P) of characters corresponding to relative P-

invariants that are regular everywhere on X. Let α£jj be the interior of the cone in

generated by XX(P)+. We put

*pχ =
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The local zeta functions Ψi(P\ φ, λ) (1 <i<v) converge absolutely for λe — (5P + αj££.
The following is the conjecture posed in [S7].

CONJECTURE 1.1. Under certain mild assumptions (including Assumption (1.2)),
the Eisenstein series E^P; x, λ) (1 </<v) have the following properties:

(1) Ei(P; x, λ) are absolutely convergent on (5P + α££.
(2) Ei(P; x, λ) have analytic continuations to meromorphic functions on α£c.
(3) Under the action of (some subquotient of) the Weyl group of G, the Eisenstein

series E^P; x, λ) satisfy functional equations of the form of the tensor product of the
functional equations of the Langlands Eisenstein series and those of the local zeta
functions Ψ^P; φ, λ) for functions φ that are invariant under the action of a maximal
compact subgroup of G(R).

At present we do not have any precise formulation of the conditions for general
(G, H, P) that guarantee the validity of the conjecture. Therefore it might be better to
understand the conjecture as a problem of finding a good condition under which the
three properties above hold. In the rest of this paper we give an affirmative answer to
this problem in the case where G = GL(mi) x x Gl^rn^ and Γ = SL(mί, Z) x x
SL(mh Z).

2. Weakly spherical homogeneous spaces of GL(m) and prehomogeneous vector

spaces.

2.1. Since our whole argument is based on the relation between weakly spherical
homogeneous spaces of GL(m) and prehomogeneous vector spaces, we begin by recalling
some basic definitions in the theory of prehomogeneous vector spaces.

Let k be a field of characteristic 0. Let G be a connected linear algebraic group
defined over k and p: G-+ GL(V) a rational representation of G on a finite dimensional
vector space. Assume that V has a ^-structure for which p is defined over k. Denote
by k the algebraic closure of k. The triple (G, p, V) is called a prehomogeneous vector
space if there exists a proper algebraic subset S such that the complement V(k) — S(k)
is a single G(&)-orbit.

A rational function / o n Fis called a relative (G-)invarίant if there exists a rational
character χ of G such that f(p(g)v) = χ(g)f(v) (geG,ve V). In this case we say that /
(resp. χ) corresponds to χ (resp. / ) . If χ is defined over k, then one can choose the
corresponding relative invariant / from k(V).

Let Su . . . , Sr be the /:-irreducible hypersurfaces contained in S. For /= 1,..., r,
let fι be a ^-irreducible polynomial on V defining S{. The polynomial / is unique up
to a non-zero constant factor in k. Then fu . .. ,/r are relative invariants and any relative
invariant / in k{V) is of the form f = cf[1 - f; (cek, ijeZ). We call f ί 9 . . . , fr the
fundamental relative invariants over k.

A prehomogeneous vector space (G, p, V) is called regular if there exists a
relative invariant polynomial f(v) such that the Hessian det(d2f/dVidVj) does not
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vanish identically.

For further details, we refer to [SK] and [SI].

2.2. For an ordered partition exΛ \-er = n of n, let Peu...,er be the standard

parabolic subgroup of GL(ή) consisting of matrices in block form g = {gij)ι<ij<r where

g(j is an ei by e} matrix and gi} = 0 for / <j. For a standard parabolic subgroup P = Peu...,er>

we denote by LP the standard Levi subgroup of P consisting of matrices of diagonal

form. In the following, parabolic subgroups are always standard in this sense.

Let G = GL(mί) x x GUjn^ and P = Pχ x x Λ its standard parabolic sub-

group. Let eik) + + elk) = mk be the ordered partition of mk corresponding to the

standard parabolic subgroup Pk of GL(mk). Put n\k) = e{k)-\ \-e\k) (\<i<rk). We
p k n nut M( IC' — π(/c) — m T pt
aiso pui nrk+ι —n

rk — mk ^Ql

Γ k - 1

GP = GPι x x GPι for G P k = [ ] GL(n\k)),
i = 1

GP = GPlx • x GPl for G P k = Π GL(n\k))
i= 1

and

Fp = VPι Θ ' ® VPι for F P k = ' φ M(Λ/k), /i/? J ,
ί = 1

F,, = VPl Θ Θ VP, for FP(< = 0 A/(n|k), Λ/5? i ) .
ί = l

Then we have GP = GP x G and F P = F p Φ ί M ^ J © ®M(mι)). For a

and a

ί = 1 ,V.V,Vk k = 1 i = 1

set

Pp{g)υ={g\ )vik)glk+i )k=i /

Then pp define a rational representation of GP x G on VP. The subspace F P is an invariant

subspace and WP = M(mι)® φM(wjj) is the complementary subspace. We denote

the subrepresentations of VP and WP by p P and p P , respectively.

Let H be a closed subgroup of G and consider the triples (GP x H, pP, VP) and

(GP x //, pP, Fp), where we regard GPxH and GP x // as subgroups of GP x G and GF,

respectively.
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PROPOSITION 2.1. The following three assertions are equivalent:

(1) (G, H, P) is a spherical triple.

(2) (GP x H, pP, VP) is a prehomogeneous vector space.

(3) (GP x H, pP, Vp) is a prehomogeneous vector space.

PROOF. Both of the following two conditions are equivalent to the third assertion:

(2.1) ( i) (GP, pp, Vp) is a prehomogeneous vector space, and

(ii) for a point v in the open orbit of (GP, ρP, VP), denote by GPv the isotropy

subgroup at v. Then (GPv x H, ρ'P, WP) is also a prehomogeneous vector space.

(2.2) ( i) (GP x H, p'p, WP) is a prehomogeneous vector space, and

(ii) for a point w in the open orbit of (GP x H, p'P, WP), denote by (GP x H)w

the isotropy subgroup at w. Then ((GP x #)„,, p P , FP) is also a prehomo-

geneous vector space.

We prove that (2.1) (resp. (2.2)) is equivalent the first (resp. second) assertion. First

consider (2.1). It is obvious that (GP, p P , VP) is a prehomogeneous vector space and

( 2 3 ) » = (4<k>,π!k+>1)k=l,...,I , Jm.» = 0m>0m.,i-J
ϊ = l rk-l

belongs to the open orbit. Then we have an isomorphism of P onto GPv given by

(2.4) S

where \_p{k)~\i is the upper left n\k) by n\k) block of p(k). Hence GPv x H acts on WP through

the left action of P and the right action of H. This implies that (2.1) is equivalent to

the first assertion. Now we consider (2.2). In this case it is again obvious that (GP x H, p P ,

WP) is a prehomogeneous vector space and the isotropy subgroup (GP x H)w at a point

w in the open orbit is isomorphic to GpXwHw'1. Moreover ((GPxH)w, pP, VP) is a

prehomogeneous vector space if and only if (GP x H, pP, VP) is a prehomogeneous vector

space. This shows that (2.2) is equivalent to the second assertion. I

DEFINITION 2.2. (i) The prehomogeneous vector space (GP x H, p P , VP) is called

the prehomogeneous vector space of flag type attached to the spherical triple (G, H, P).

(ii) A spherical triple (G, H, P) is called regular if the prehomogeneous vector space

(GP x H, pp, Vp) is regular.

A prehomogeneous vector spaces of flag type was introduced in [S3] for G = GL(n)

and H= O(n) in order to understand descending chains of quadratic forms of Selberg

[Se] from the viewpoint of the theory of prehomogeneous vector spaces. The relation

between Eisenstein series on G/H and the zeta functions associated to the pre-

homogeneous vector space of flag type is the key of our whole argument.

From the proof of Proposition 2.1, it follows that generic isotropy subgroups of

(GP x H, pp, VP) and (GP x H, pP, VP) and Px (x e Ω) are all isomorphic. Hence, by [SK,

§4, Remark 26], we have the following lemma.
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LEMMA 2.3. Assume that H is reductive. Then, a spherical triple (G, H, P) is regular

if and only if Px is reductive for an xeΩ.

3. Statement of the main results. In this section, we describe our main results

(§3.1, Theorems 3.1, 3.2, §3.2, Theorems 3.5, 3.6), whose proofs will be given in §4 and

§5. In §3.3, we present several examples. We keep the notation in §2.2.

3.1. Let (G, H, P) be a spherical triple satisfying Assumption (1.2).

F o r p = (p{1\ ...,p{l))eP = P1 x xPb we write

P {p\f), pl?(l\eV), p ^ = 0 for

We put

Λlk\p) = detp$' -det/^eίίPfc), /= 1,..., rk.

Then, {Λ\k)}k=lΛ forms a basis of CL*,C= =a*ί,c®''' ®aPι,c- ^ *s obvious that
i = l , . . . , r k

$ k = itm^j gives another basis of αj£c. For λea$c, we write
/ = i,V.'.Vrk

ί = 1 i = 1

We write simply z\k) instead of z\k\λ), if there is no fear of confusion.

Using the symbols above, we have

(3-D <5P= ί δPk, δPk=± Σ ( f + « , M ! k ) ,
fc=l 2 i=i

where we understand that e%\ 1 = — mk. Put

(3.2) α?.ί+ = U | R e ( λ ί * > ) > O , A : = l , . . . , / , / = l , . . . , r J k - l } .

As is easily seen, we have

aP,C — aP,C

Let P + be the identity component of the real Lie group P(R) and put Γ

SL{mu Z) x x SL{mh Z). Put

Then we have the following sufficient condition for the convergence and the existence

of the analytic continuations of the Eisenstein series attached to (G, H, P, Γ).

THEOREM 3.1. If the identity component H° of H has no non-trivial rational

characters and P^^P^nPx is connected semisimple or trivial for some xeΩ, then
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Eι(P; x, λ) are absolutely convergent on <5P + a*£.

Let ζ(s) be the Riemann zeta function and put

(3.3) ζP(λ)=ήι<n< "rfc(

For our later purpose, we also put

(3.4) ΓP(λ)= Π Π Π r R ( Z f»-z f + ̂  μ

and

(3.5)

where ΓR(z) = π-z/2Γ(z/2).

THEOREM 3.2. jy/f w a reductive subgroup of SL(mx) x x 5L(wz), (G, J7, P) w

regular, and Et(P\ x, λ) are absolutely convergent in δ + a^ for some δea$R, then

E^P; x, λ) have analytic continuations to meromorphic functions of λ on α* c . Moreover,

there exist a finite number of linear forms Lu . . . , Ld on α * c with Z-values on X(P) and

rational numbers aί9 . . . , ad such that the functions

are entire functions on α* c .

REMARK. There exists a relation between Πj=i(^A/' ^> + βj) a n d ^-functions of

relative invariants (see the proof of Theorem 3.2 in §4, and Proposition 5.13).

Combining two theorems above, we obtain the following:

COROLLARY 3.3. If H is semisimple and P{

x

1] is connected semisimple or trivial for

some XGΩ, then E^P; x, λ) are absolutely convergent on <5P + αjS£ and have analytic

continuations to meromorphic functions of λ on α* c .

3.2. To formulate the functional equation, we need some preliminaries. In the

following (except in Example 3 in §3.3), we always assume that H is reductive and

(G, H, P) is regular. Then, by Lemma 2.3, Px (xeΩ) is also reductive.

Take a parabolic subgroup Q containing P and let LQ be the standard Levi subgroup

of Q. Put PQ = PΠLQ. The group PQ is a standard parabolic subgroup of LQ.

Let w = wQ be the permutation matrix that represents the longest element of the

Weyl group of LQ. We define a parabolic subgroup WP associated to P by

wP = wtPQw~ι Ru(Q).

Since the inner automorphism defined by w maps the standard Levi subgroup of P onto
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that of WP, w also defines a canonical linear isomorphism α£ c -* α£P c, which we denote
by the same symbol w.

Fix an xeΩ and put Qx={heQ\hx = x). Since Px is reductive, the canonical
surjection Q^>LQ^Q/RU(Q) maps Qx isomorphically into LQ. Let HQ be the image of
Qx in LQ.

PROPOSITION 3.4. (i) (LQ, HQ, PQ) is a spherical triple.

(ii) Suppose that (LQ, HQ, PQ) is a regular spherical triple. Then (G, H, WP) is also a

regular spherical triple and Px (xeΩ) is isomorphic to (WP)X> (xf ewΩ), where WΩ is the

open ™P-orbit in X.

We postpone the proof of the proposition above until §5.1.

REMARK. Let P and P' be parabolic subgroups of G associated to each other,
namely, the partition corresponding to P is a permutation of the partition corresponding
to P'. In general it may happen that (G, H, P) is a spherical triple and (G, H, P') is not.
For example, let G = GL(m) (m = n(2n +1)) and H the image of the second skew symmetric
tensor representation of SX(2n +1). Then (G, H, Λn-2,1,1) is a spherical triple, however
(G, H, PUm-2,i) is not (cf. [KKO, Proposition 2.3]).

We say that two parabolic subgroups P and P' of G are (X, Q)-associated if Q is
a parabolic subgroup containing P, (LQ, HQ, PQ) is regular and P' = WP (w = wQ). Note
that this condition does not depend on the choice of the point x e Ω. We say that P
and P' are X-associated if there exists a sequence Qί9 ..., Qs of parabolic subgroups
satisfying

( i ) β i ^ Λ : = Λ
(ii) f o r a n y / = l , . . . , j - l , β i + 1 3 P i + 1 : = w ^ W £ = w β l )andP' = P β + 1 : = w Pβ,
(iii) for any / = 1,..., s, Pt and Pi+ί are (X, (^-associated.

W e d e n o t e b y Wx(o$, af>) t h e s e t o f t h e m a p p i n g s w = wso\vs_ίo - > - oWί: afc^a%x

obtained from sequences Qί9..., Qs satisfying the conditions above. The set Wx(a%, a%)
is empty, if P and P' are not X-associated.

Let & be an X-associated class of standard parabolic subgroups of G.
We formulate our main results under the same assumption as in Theorem 3.2.

Namely, we assume that

(3.6) H is a reductive subgroup of SL{m^)x x SLim^. Moreover, for any
(G, H, P) is a regular spherical triple and the Eisenstein series E^P; x, λ) are
absolutely convergent in δ + α£ £ for some δ e αj R.

The assumption implies the meromorphic continuation of the Eisenstein series.
It follows from Proposition 3.4 that, if (G, H, P) is regular for some ? e ^ , then

(G, H, P) is regular for any P' e& and if (G, H, P) satisfies the assumption in Theorem
3.1 for some Pe0>, then so does (G, H, P') for any P'e&.

Let G+ be the identity component of G(R) and fix a G+-orbit Xi0) in X(R). Let
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Ω l 5 . . . , Ωv be the connected components of A^0) n Ω, which are P+-orbits. The number

v of the connected components depends only on the X-associated class &> (cf. Lemma

5.4). We may restrict our attention to the Eisenstein series defined for these P+-orbits,

which we denote by Eγ(P\ x, λ),..., EV(P; x, λ), since the functional equations are re-

lations between the Eisenstein series corresponding to the open P+-orbits in a fixed

G+-orbit (for various Pe&).

For P, P'eέ? and we Wx(a^, α£/), we define CEis(w, λ) as follows. First assume that

P and P' are (X, β)-associated. Then, for w = wQe Wx(af, ap)9 we put

(j./J ^Eisi^O? Λj — ^ ϊ

(for the definition of ζP<2, see (3.5)). Here we can define ζPQ(λ) for λea%c, since afQ c

can naturally be identified with α$ c. For general P, P'eέ? and w e Wx(a$9 a%), we define

CEis(w, λ) by the identity

CEis(wΉ>, λ) = CEiβ(w', wλ)CEis(w, λ) (wG Wx(a^ ap), We Wx(ap, ap)).

THEOREM 3.5. For P, P eέ? and we Wx(af, a%), the following functional equation

holds:

; x, wλ) \ / E.iP; x, λ)

'; x, wλ) ) \ EV(P; x, λ)

where Csph(w, λ) is a v by v matrix whose entries have an elementary expression in terms

of the gamma function and the exponential function.

Put K^SOim^ x x 56>(mz). The matrix Csph(w, λ) appearing in the functional

equation above has its origin in the functional equation satisfied by the AΓ-invariant

spherical functions on X(0) and depends only on the real structure of X= G/H. Namely

we have the following theorem.

THEOREM 3.6. For any K-invariant function φeC^(X), the local zeta functions

Ψi(P\ φ, λ) have analytic continuations to meromorphic functions of λ in α* c and the

following functional equation holds for any P, P' eΘ> and we Wx(a*, α*):

/ Ψ!(P; φ,λ)\ / Ψ^P ; φ, wλ) \

': ='C s p h(w,A) :

V ΨV(P; φ,λ) / V ΨV(P'; φ, wλ) /

For /= 1,..., v, we define the function | f(P; x) If by

1 o t h e r w i s e .

Put
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ω,(P;x,Λ) =
JK

The integrals ω, (P; x, λ) (i, . . . , v) are absolutely convergent for λeδP-\-a^. Since the
integrals are analogous to the Harish Chandra integral representation of the zonal
spherical function of a semisimple Lie group, we call them the K-ίnvarίant spherical
functions on Xi0) ^ G+/H+.

Now Theorem 3.6 has the following reformulation:

THEOREM 3.7. The spherical functions ωt(P; x, λ) have analytic continuations to
meromorphic functions of λ in α* c and the following functional equation holds for any

and we Wx(a$, a£):

ωi(P;x,λ)\ /ωι(P';x,wλ)

\ ωv(P; x,λ) / \ ωv(Pf; x, wλ) )

If the G+-orbit Xi0) is a Riemannian symmetric space, then v=l and associated
parabolic subgroups are ^-associated. In this case, the integral ω^P; x, λ) gives the
zonal spherical function of G+ and the Eisenstein series E^P x λ) is the series
investigated in [L], [M], [T]. Since the zonal spherical function is invariant under the
action of the Weyl group, we have Csph(w, λ)=\ and the functional equation in Theorem
3.5 coincides with the one given in [M] and [T]. This shows that the origin of CEis(w, λ)
is the functional equation of the Selberg-Langlands Eisenstein series.

Thus we see that the functional equations of E^P; x, λ) are of the form of the
tensor products of the functional equations of the ^-invariant spherical functions
and those of the Langlands Eisenstein series as alluded to in the third part of Conjecture
1.1.

We expect that there exists a generalization of the notion of regular spherical triple
to weakly spherical homogeneous spaces of other reductive groups than GL(m) and the
two theorems above remain valid. In the case of reductive symmetric spaces, the regularity
seems closely related to the notion of "σ-split" parabolic subgroups in the sense of
[He] ("σ-anisotropic" in [V], "σ#-stable" in [Ba]). In this case Theorem 3.7 has been
already known and is contained in the functional equations satisfied by the Eisenstein
integrals given in [Ba, Proposition 16.4], while Theorem 3.5 has been proved only in
some special cases other than the case of G = GL(n) (cf. [S5], [S6]).

3.3. In this subsection we keep the notation in the preceding subsections except
that we omit the superscript{k) when /= 1 and G=GL(m).

EXAMPLE 1. (G, H, P) = (GL{m\ O(m\ Peι J (eί + +er = m).

We identify the homogeneous space X=GL(m)/O(m) with the set of symmetric
matrices of size m with non-zero determinant. The action of G on X is then given by

x = gxtg. For any 1 </<r, let f(P; x) be the determinant of the upper left nt by
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nt block of x. Then we have

x) = Ai(p)2fi(P;x) (peP,xeX).

The semigroup %X(P) + is generated by A\,..., A2_ UA2,A~2 and we have dpχ =

It is easy to check that the open P-orbit Ω is given by

Ω = {xeX\fi(P;x)Φ0 (l</<r-l)}.

The point xo=\m9 the identity matrix, is in Ω and PXQ^O(e^) x x O(er). Hence, by

Lemma 2.3, the spherical triple (G, H, P) is regular for any el9 . . . , er.

Since Px

1

0

)^SO(eί) x x SO(er), the triple (G, H, P) satisfies the assumptions in

Theorem 3.2 if etφ2 for any /= 1,. . . , r. In this case, the convergence of the Eisenstein

series is an immediate consequence of Theorem 3.1 in the case m>3. In the case m = 2,

the convergence of the Eisenstein series is well-known, since the series coincide with

the zeta functions of binary quadratic forms up to the Riemann zeta function factor. If

et = 2 for some /, then Assumption (1.2) is not necessarily satisfied for indefinite x e Ω(Q)

and the situation becomes rather complicated (cf. [S4] and [S6]). In the following we

assume that e{φ2 for any /.

Let ^ n m ~ " ) be the set of real nondegenerate symmetric matrices with exactly n

positive and m — n negative eigenvalues. Then

m

X(R)= U χ^n>m~n)

gives the G+-orbit decomposition of X(R).

The P+-orbit decomposition of Ω(R) is given by

Ω(R)= U Ωε,
ε = (εi,...,εr)

0 < ε, < et

where x = (jci7 )i < Uj<r e Ω{R) (x l 7 e M(eh ey9 R)) is in Ωε if and only if xH e X{εi^~εΰ (1 < i<r).

We write sgn(ε) = (π, m — ή) if Ωε is contained in ^m~n\ equivalently, βi-h

For XGX(Q)Π Xin'm ~n) and ε with sgn(ε) = (n,m — ri), the Eisenstein series is defined by

EJiP;x,λ)= Σ ^
yeΓP\Γ xnΩE ΓT , f ( τ > . Λ ι ( 2 z i - 2 z i + i + e f + e i + i )/4

1 1 l / ί l / ί 3̂ J I

where zr+ι=0 and e r + x = — m. The coefficients μ(y) are quantities just like the measure

of representation in the theory of quadratic forms. In fact, ifr = 2 and eί = 1, e2 = m — 1,

then ζP(λ)Eε(P; x, λ) coincides with the Epstein or Siegel zeta function of x according

as x is definite or indefinite (cf. [Si], [SS]).

In another special case where r = ra, e1 = - - =em=l, the Eisenstein series were

investigated in [S3] (and in [S5, §6]).
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Theorems 3.1 and 3.2 imply that Et{P; x, λ) are absolutely convergent for

Re(z i )-Re(z i + 1 )>(e i

and have meromorphic continuations in a% c s C
Put

\( , i-μ-l

Note that the function 6ί7-(^) is the ^-function of the prehomogeneous vector space

(SO(i) x GL(j\ M(U ])) (see [Ki]). Then we can obtain the following result:

THEOREM 3.8. The functions ζP(λ)Eε(P; x, λ) multiplied by

are entire functions of λ in α* c .

For any parabolic subgroup Q containing P, the triple (LQ, HQ, PQ) is a product

of spherical triples of the same type as (G, H, P), hence regular. Therefore the ^-associated

class <? containing P = Pei e/is given by

Note that, if β = β i = Λli....ei-1.el + βί + 1.ei + 2f....βΓ and w = wQi, then w P = σ P with σ =

(ι, i + l). From Theorem 3.5 it follows that there exists a functional equation that

connects Eε(P; x, λ) to Eη(
σP; x, σλ) for any σe ®Γ. The functional equation is of the form

^ ( ' P ; x, σλ) = CEis(σ, A) Σ CsPh(*, Λ),.A(^ ^ ^) >
sgn(ε) = (n,m — n)

where σe S r is identified with σe ^(αjf, α?P) given by

r

The calculation of Csph(σ, A) ε̂ and CEis(σ, A) can be reduced to the case where σ is

the transposition (i, ΐ +1) (i= 1, . . . , r— 1). In this case, by (3.5) and (3.7), CEis(σ, λ) is

given by

C E i e ( ( i , i + l M ) =

To give an explicit formula for Csph(σ, λ)ηε for σ = (i, i+ 1), we prepare the following

notation.

For an / = ! , . . . , r—1, we put
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(H° = ( ε i , •, fii-1, e, + i - 1 , «,•+ U ^ + 2, , ε r ) ,

(_? = ( ε l 9 . . . , εt-u ε ί + 1 + 1, ε , - ! , εi + 2, . . . , ε r).

We also put

/ μ

(j + —

\ 2

Π(
μ=l \ V 2

if ei+ι=εi+1 (mod2),

Π cosπίs
= ε* + 1 \

if

inπ

V
sinπ

V 2

inπί —
s i n π V 2

c o s π s

cos π s

0

(mod 2) ,

*_Lc*

Π c o s π 'y + - i

2
if εt. = 0 (mod 2),

if εt = 1 (mod 2),

cosπ (
+ί \ 2

if εf = O ( m o d 2 ) ,

if e£* = l (mod 2),

where ε^ = ei — εt.

Now we can give an explicit formula for Csph((ί, i + 1)? ^)

THEOREM 3.9. Fi?r σ = (f, i-f 1) ( l < i < r — 1 ) , we Λύfve

i - 2zt +ί-ei-ei

0

if if = βίί)

otherwise.

We give a proof of Theorems 3.8 and 3.9 in Appendix.

The space X=GL(m)/O(m) we have just investigated is a typical example of

symmetric spaces. Now let us consider a non-symmetric spherical homogeneous space.

EXAMPLE 2. (G, H, P) = (GL(2) x GL(2) x GL(2), , B(2) x £(2) x 5(2)).
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Here B(2) = P1Λ, the group of 2 x 2 nondegenerate lower triangular matrices and
we identify SL(2) with the subgroup H= {(h, h,h)eG\he SL(2)} of G.

For any g = (a b)eGL(2\ we put g = ( d ~b\ For x = (xl9 x2, x3)HeX=G/H,
\c d) \-c a )

we define

UP; x) = det xx , /5(P; x) = det x2 , /6(P; x) = det x3 ,

where ^ 1 2 denotes the (l,2)-entry of a matrix A. Then these fi(P x) ( 1 < I < 6 ) are
relative P-invariants and the corresponding characters are given by

The semigroup XX(P)+ is generated by χu χ2, χ3, χ4, χl \ χs, χ5" \ χ6, χ6"
J and we have

.ί + = <U= Σ
3 2

The open P-orbit Ω is given by

i1^ > Re(λ[2))

For an xeΩ, we have PX={{12, 12, 12), ( - 1 2 , - 1 2 , -12)} and /^^{(la, 12, 12)}.
Hence, by Lemma 2.3, the spherical triple (G, /f, P) is regular and satisfies the assumptions
in Theorems 3.1 and 3.2.

The set of real points X{R) is a single G(/?)-orbit and decomposes into eight G+-orbits
as follows:

X(R)=

Since the structure of these eight G+-orbits are quite the same, we consider only AΓ(l f l f l )

and denote it by X{0\ The P+-orbit decomposition of X(0) is given by

Let (z\k\=ιt2,3 be the coordinate system on αj£c introduced in §3.1. Then, for
i = i,2

xe Xm n X(Q) and η e {± 1 }3, the Eisenstein series is denned by
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Σ Π
*=1 yeΓP\Γ-xnX™i=l

where (5l7 is the Kronecker delta. The series does not depend on the signature η; hence

we simply write E(P; x, λ). By Theorems 3.1 and 3.2, we have the following result:

THEOREM 3.10. The series E{P; x, λ) is absolutely convergent for

t (-Φ(RΦΨ)-^ΦΨ))> 1 (/= 1, 2, 3)

and the function ζP(λ) E(P; x, λ), ζP(λ) = U^=1 ζ(zψ-zψ + 1) multiplied by

Σ {zψ-zψ)-\\ Π j Σ (-

w α« entire function in α* c .

For any parabolic subgroup Q containing P, the triple (LQ, HQ, PQ) is regular and
WP coincides with P. Hence we have & = {P}. Moreover Wx(a%, a$) can be identified

with the Weyl group of G and is isomorphic to S 2 x S 2 x S 2 . In the case Q = G, the

prehomogeneous vector space of flag type attached to (G, H, P) is given by

Λ V1

(SL(2)xGL(l)\p,M(2,3)), p(h,tί,t1,φ = hυl t2 1 .

This is the space studied in [SI, §7.1]. The results obtained there contain essentially a

proof of Theorem 3.10 and an explicit formula for Csph(w; λ). The functional equation

satisfied by E(P; x, λ) can be formulated as follows:

THEOREM 3.11. The function ζP{λ)E(P; x, λ) multiplied by

A
=

is invariant under the action of S 2 x S 2 x S 2 . Here the action of σ = (σ1? σ2, CΓ3)G

S 2 x 6 2 x S 2 on α?>c is given by

σ (^))i=1.2.3=(Oi=1.2.3.
j = l , 2 .7=1,2

We now discuss an example of spherical homogeneous space with non-reductive H.

EXAMPLE 3. (G, H, P) = {GL{m\ N(m), B{m)).

Here B(m) = P1 1 ? the group of m by m nondegenerate lower triangular matrices,

and N(m) = Ru(B(m)), the group of m by m lower triangular unipotent matrices.

We put
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Then xo = w H is in the open P-orbit and PXo = {\}. Hence Theorem 3.1 holds for

(G, H, P) and the Eisenstein series converges absolutely in <5P+ (*££. However (G, H, P)

is not regular. Even (LQ, HQ, PQ) is not regular for any parabolic subgroup Q containing

P properly. Moreover His not reductive. Therefore our results on analytic continuation

and functional equations do not apply to the Eisenstein series attached to (G, H, P, Γ).

Let us examine the situation more closely.

For /= 1, 2 , . . . , m, denote by /i(P; x) (x = gHeX = G/H) the determinant of the

upper right / by i block of g. Then / ( P ; x) is the relative invariant corresponding to

the character At. The semigroup 3EX(P)+ is generated by Au...,Am. Hence α££ =

The open P-orbit Ω is given by

Ω={xeX\fi(P;x)Φ0(i=\,...,m-\)}.

The G+-orbit decomposition of X(R) is given by

fJP\χ)
X(R)= U

ε= ± 1

and the P+-decomposition of Ω(R) is given by

Ω(R)= U
η

if=(iίi.....iϊm)6{±ir

For xeX(Q) and >/6{±l}m, the Eisenstein series is defined by

m - l

Eη(P;x,λ) = \fm(P;x)\-"»+<" -l)l2 £ Π l/iί^; y)Γ ( x <""< + 1 + 1) -
y e Γ P \ Γ x n β ^ i = l

It is easy to see that Eη(P; x, λ) = 0 unless ^m = /m(P;x)/|/m(P;x)|, and non-vanishing

Eisenstein series do not depend on η. Hence it is better to consider the series

m-ί

yeΓp\Γ-xnΩ i = l

Since any Γ-orbit in X(Q) contains a unique element of the form

x=[ •• \ H9 tl9...9tmeQ*9

\tm /

we have

E(P; x,λ)=Y\\ U |-««-(»-2'+D/2 E(P; lm, λ).

The series E(P; lm9 λ) coincides with the series D(lm; λ) studied in [S5, §3] and, by [S5,

Proposition 3.3], we have
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E{P;lm,λ) = 2m Π T Γ ^ Γ T Γ
l<i<j<m Ls[Zi — Zj+ϊ)

Thus we obtain the following explicit formula for the Eisenstein series:

, l ) = 2 m Π U i Γ
z ' " ( m " 2 i + 1 ) / 2 Π r ,

C ( Z '~ Z j )

n •
^(Z Z + )This proves the first and the second parts of Conjecture 1.1.

As for functional equation, it is obvious from the explicit formula that there exist

no functional equations that are valid for all xeX(Q). This reflects the fact that there

exist no parabolic subgroups Q other than P for which (LQ, HQ, PQ) is regular. Since

the little Weyl group of the horospherical homogeneous space GL(m)/N(m) is considered

to be trivial (cf. [Kn, Satz 9.1]), we may say that even the third part of Conjecture 1.1

is true for the present example.

4. Proof of Theorems 3.1 and 3.2. In this section, to avoid the complicated

notation, we give a proof of Theorems 3.1, 3.2, 3.5 and 3.6 under the assumption that

1=1, hence G = GL(m). Therefore we omit the superscript {k) used in §2, and §3. For

example, we write et for e\k) and ni for n\k). The proof of the theorems for general / is

quite the same.

For the proof of Theorems 3.1 and 3.2, we need precise information on the structure

of the prehomogeneous vector space of flag type (GP x H, pP, VP) attached to (G, H, P).

For the moment, we assume that

(4.1) H is a reductive subgroup of SL(m),

as well as (1.1) and (1.2).

For a geG = GL(ή), we put

(4.2) v(g) = ((lnι, 0), (1M2, 0 ) , . . . , (lΠ r_1 ? (%)e VP .

For &pePeu e. (1 <i<r\ we denote by [/?], (1 <j<i) the upper left rij by Πj block of

p. We define an embedding of Pei e. into GP by

(4.3) Peu...,ei3P I >P

Fix a rational point xeX(Q) and put Hx={geG\g mx = x}. Then Hx is conjugate

to H in G and we can consider the prehomogeneous vector space (GP x H°, pP, VP). Let

Ωv be the open GP x H^-orbit in VP. Note that Ωv is GP x //^-stable.

Take a goeGQ such that Pg0Hx is open in G and put Pgo = PngoHxgQ1, which is

the isotropy subgroup of P at g0- xeX. We also put P'go = Pr\goH°gQl. Then v(g0) is

in Ωv and the isotropy subgroup (GP x H°)vigo) is isomorphic to /^0. The isomorphism

is given by
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Pgo sp I > (p, go V#o) e (GP x ^ x

o ) ι ; ( & 0 ) .

Let αf be the smallest positive integer such that the character detgf"* is trivial on

(GPxH°)v(go). Since Pgo is isomorphic to (GPxHx)v{go), Assumption (1.2) implies the

existence of such an αt . Then, by [SK, §4, Proposition 19], the character χ^g, h) = dQtg"i

corresponds to a relative invariant iΓ

i(i?)eβ(Fp)x. The relative invariant Ft is unique

up to a rational constant factor.

For λ = YJi = 1λiAiea%x, we define a function \χ\λ on GP(R)xHx(R) and | F | A on

ΩV(R) by setting

) IΛ = ϊ ί I Ziίflf, Λ) IA i / α f = Γ f ί I d e t 9i \
λi,

ί = l i = l

Note that Ft differs only by a factor equal to ± 1 under the action of HX(R), hence we have

I F(pP(g, h)υ) \λ = \ χ(g, h) \λ\ F(υ) \λ {(g, h) e GP(R) x HX(R), υ e ΩV(R)).

For geG,wQ have

FMpgh))" = Λ^pr'FMg))" {peP,heHx),

where d= [Hx: Hζ\. Hence we can choose the relative invariants Fί9..., Fr_ x so that

(4.4) |det^|^ |^ϋto)) | λ = | / ( P ; ^ x)|A (geGL(m;R), g-xeΩ(R))9

where the right hand side of the identity is the function on Ω(R) defined by (1.3).

Let GP be the identity component of GP(R) and Hx =Hx(R)nGL{m; R) + .

LEMMA 4.1. Let x be a rational point ofXandX{0) the GL(m; R)+-orbit containing

x. Let

be the P+-orbit decomposition. Then the pP(GP xHx)-orbit decomposition of ΩV(R) is

given by

i) u u pP(GΪ x H:)v{gv).

PROOF. Put

R)+ x x GL(nr_x\ R)+ x GL(nr; R)+ .

Then, any veV'P can be written as v = pP(g)υ0 (geGP). Hence, under the action of GP,

any v e V'P is moved to a point of the form v(g) (geG+). Two points v(g), v(gf) (g,gf EG+)

belong to the same ρP{GP x #x

+)-orbit if and only if P+gHx =P+gΉx. Moreover the
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pP(GP x//^)-orbits in ΩV(R) correspond to the open double cosets P+gHx. It is easy

to see that the open double cosets P+gHx correspond to the P+-orbits in Ω(R) n X{0).

I

By Assumption (4.1), | detg | is identically equal to 1 on H(R). Hence we can define

the function |detx | on X{0) by

Put Γ G p = ££(«!; Z) x x SL{nr_γ\ Z) and Γx = H^nΓ.

Using this notation, we have the following proposition giving a relation between

the Eisenstein series Et(P; x, λ) attached to (G, H, P, Γ) and the zeta functions associated

with(GPxH°x,pP,VP).

PROPOSITION 4.2. Let x be a point in X(Q) and X{0) as in Lemma 4.1. For φe

nVP(R)\put

ί \χ(g, h)\λ + δ*> £ φ(pP(g, h)υ)dgdh,
veLnΩv(R)

\F(υ)\λ-i-φ(v)dv,

where L = 0 r

i= * M(nh nr+1; Z) and dv is the standard Euclidean measure on VP(R). Then,

under a suitable normalization of the Haar measure dgdh on GP x H*, we have

ZP(x, φ, λ) = ζP(λ) Σ Et{P\ x, λ)ΨPti(φ; λ)

(for the definition ofζP(λ), see (3.3)). The absolute convergence of one side of the identity

implies the absolute convergence of the other side.

Once Proposition 4.2 is established, then Theorems 3.1 and 3.2 are immediate

consequences of the general theory of zeta functions associated with prehomogeneous

vector spaces.

PROOF OF THEOREMS 3.1 AND 3.2. By Proposition 4.2, ζp(A)£f(P; x, λ) can be con-

sidered as the zeta functions associated to the prehomogeneous vector space {GPx

H°x,pP,VP) (cf. [SI, §4]). Since P(

gVx is isomorphic to (G>x J / J ^ n ί S L f a J x • •

xSL{nr-^)xHx\ the assumption of Theorem 3.1 implies that (GPxH°, ρP, VP) is Q-

split and (GPx//°)ι;(g)n(ASL(«1)x x SLin^JxH^) is connected semisimple. Hence

[S2, Theorem 1] can be applied to (GP x Hx, pP, VP). It is easy to see that

detpptei, ...,gr-l9 gr)= f[ d e t ^ < + e i + 1 (g = {gl9 , flfr)e<?P),

where er+1= —m. From this identity and (3.1) it follows that the domain of absolute
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convergence given in [S2, Theorem 1] coincides with δP + af^. The assumption of

Theorem 3.2 implies that GP x H° is reductive and (GP x i/°, p P , VP) is regular. Hence

Theorem 3.2 follows immediately from [SI, §6, Corollary 1 to Theorem 2]. The product

Π?=i(^»5 ^) + fli) of linear forms describing the singularities of the Eisenstein series is

given by the ^-function of the prehomogeneous vector space (GP x i/°, p P , VP). The

rationality of L} and α7 is due to Sabbah [Sab] and Gyoja [G]. I

REMARK. In general, the ^-function of the prehomogeneous vector space

(GPxH°, pP, VP) does not give the best possible result on the singularities of the

Eisenstein series. A much better result will often be obtained by looking at the functional

equations for various Q (cf. §5.5, Proposition 5.13).

Put ΓP = ΓnP+ as in §1. For the proof of the proposition, we need the following

lemma (cf. [M, §17, pp. 280-282]).

LEMMA 4.3. Put

L = {{vu . . . , υr_x)e VP(Z) | r a n k υ k = nk (k= 1 , . . . , r-1)}

( i = l r—1)

Fix a complete set of representatives of ΓP\Γ. Then the set

gives a complete set of representatives of ΓGp-equivalence classes in L.

PROOF OF PROPOSITION 4.2. Let Ωί9..., Ωv be the P+-orbits in Ω(R)n I ( 0 ) and

Ωvtl,..., ΩF v be the corresponding pP(Gp x J^Γ^-orbits in ΩV(R) (cf. Lemma 4.1). Since

((Dl9 0), . . . , (Z)r-2, 0), (Dr_u

(for the definitions of Dt and v(ί/), see (4.3) and (4.2), respectively), the point

belongs to ΩvΛ if and only if U x G Ωf. We further note that L n ΩF f = L' n Ωv t and Γ G p

acts on L freely. Therefore, by Lemma 4.3, we have

• Σ Φ(pP(g,h)v(U))dgdh,
UeΓP\Γ
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Since Xj(Dh \) = dn.(Di) or 1 according a s / < / or j>i, we have

Σ iz(A A-i,i)rμ+ip)=ri Σ Πι<.(A )r
D i , . . . , D r - i i = l DieάM 7 = 1

= Π Σ «?i"1«2"
i"2- β.(-l I ! (flΓ S ) - ^

i = 1 α i , . . . , α Π f = 1 j = 1

r - 1 i e, - 1 oo
= Π Π Π π β(Zj~Zi+1+(ej+eί+1)/2~fc)

i = l j=l k = 0 a=l

Hence

x Σ Σ ί \χ(g,h)\λ+δpφ(pP(g,h)v(U))dgdh
i=l UeΓP\Γ/Γx J

U-xeΩi Gp x(HxIU-χΓP,u xU)

= \detx\-(λ+δpHP(λ)

x Σ Σ ί \χ(g,h)\λ+δpφ(pP(g,h)v(U))dgdh

KPW L Σ — Vp ί(Φ; X)
i=ι\u,rp\rιrx \F(v(U))\λ + δ"J P'ιΨ

Here μ(v(U)) is the density defined to be the volume of the fundamental domain of

(Gp x H+Xw with respect to (ΓGp x ΓX)V(U) (cf. [SI, §4], or [S7, §1]). Since the normaliza-

tion of the Haar measures on (Gp x HX)V{U) satisfies the invariance similar to (1.4) and

(GpxHx)v{U) is isomorphic to P^x, the density μ(v(U)) differs from μ(U'x\ the

coefficients of the Eisenstein series, only by a constant factor independent of U. We

may normalize dgdh so that μ(v(U)) = μ(U x). Moreover, by (4.4), we have

Hence we have

α ^ Σ

 μ{V{U)]+* =Et(P;x,λ).
\F(v(U))\λ+δp

5. Proof of Theorems 3.5 and 3.6. In this subsection, we always assume (3.6)

and the notation is the same as in §3.

5.1. First we prove Proposition 3.4. For this purpose we need the following two

lemmas.
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LEMMA 5.1. Let the notation be as in Proposition 2.1. Let V* be the vector space

dual to VP and pp* the representation ofGPxH on Vp* contragredίent to pP. Let w be the

permutation matrix that represents the longest element of the Weyl group ofG. Then the

following three conditions are equivalent:

(1) (G, H, WP) is a spherical triple.

(2) (G, H, Ψ) is a spherical triple.

(3) (GP x H, p *, Vp) is a prehomogeneous vector space.

PROOF. Since wP = wtPw~ί, the first assertion is equivalent to the second. Let us

prove that the second assertion is equivalent to the third. We identify the vector space

VP with its dual vector space Vp* via the symmetric bilinear form (v, v*) = Σk .trty^vf™.

Let i: GPxH^GpxΉbe the isomorphism defined by ι((g\k)\ h) = ((tglk)~\V1). Then

the contragredient representation pp* is given by pp*(g,h) = pP(i(g,h)). Therefore

(GP xH, p$, Vp) is a prehomogeneous vector space if and only if (GP x tH, pP, VP) is a

prehomogeneous vector space. By Proposition 2.1, this is equivalent to that (G, *H9 P)

is a spherical triple. It is obvious that the latter condition is equivalent to the second

assertion in the lemma. I

LEMMA 5.2. Let P and Q be parabolic subgroups. Assume that Q contains P and

(G, H, Q) is a spherical triple. We further assume that Ru(Q)nQx = {\} for a point x in

the open Q-orbit in X= G/H. Let HQ be the image of Qx under the canonical surjection

Q -• LQ. Then (G, H, P) is a spherical triple if and only if(LQ, HQ, PQ) is a spherical triple.

PROOF. We may assume that H is the isotropy subgroup at x. Then QH is

Zariski-open in G and Qx = QnH. Since RU(Q) n Qx = {1}, Qx is isomorphic to HQ. Hence

dimG = dimQ +dimH—dimHQ. From this identity, we see that P x is open in A'if

and only if dim LQ = dim HQ + dim PQ — dim P n H. Denote by HP the isomorphic image

of PnH in HQ. Then it is easy to see that HP = HQnPQ. Hence P x is open in X if

and only if (LQ, HQ, PQ) is a spherical triple and the base point of LQ/HQ is in the open

Pρ-orbit. This proves the lemma. I

PROOF OF PROPOSITION 3.4. (i) Since Px is assumed to be reductive, Ru(Q)n Qx

is trivial. Hence Proposition 3.4 (i) follows immediately from the "only if" part of the

lemma above.

(ii) Since WP is contained in g, (G, H, WP) is a spherical triple if and only if

(LQ, HQ.WΨQW'1) is a spherical triple. The latter condition is equivalent to that

(LQ, HQ, ΨQ) is a spherical triple. By Lemma 5.1, this is again equivalent to the condition

that the triple (GPQ X HQ, pp*Q, Vp*Q) dual to the prehomogeneous vector space of flag

type attached to (LQ, HQ, PQ) is a prehomogeneous vector space. Since the regularity

of (LQ, HQ, PQ) implies the last condition (cf. [SK, §4, Remark 11]), we see that (G, H, WP)

is a spherical triple. It is easy to see that Px (resp. (WP)X>) is isomorphic to the generic

isotropy subgroup of (GPQ X HQ, pPQ, VPQ) (resp. (GPQ X HQ, p$Q, V$Q)). Hence, by [SI,

Lemma 2.4 (ii)], we see that Px is isomorphic to (WP)X>. The regularity of (G, H, WP) is
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now an immediate consequence of Lemma 2.3. I

5.2. It is sufficient to prove Theorems 3.5 and 3.6 in the case where P and P' are
(X, Q)-associated. In the following, we always assume that w = wQe Wx(a$, ap) and
pr_wp p o r ^ p r o o f of the theorems, we need a new integral representation of the
Eisenstein series, which is a generalization of the integral representation used in [S5].

Since LQ is a product of general linear groups and PQ is its standard parabolic
subgroup, we can define GPQ and VPQ as in §2.2. Put

GQ\P=QXGPQ and XQIP = XXVPQ.

Let π 0 : Q^LQ^Q/RU(Q) be the canonical surjection and define a homomorphism
π : GQ,P = Q x GPQ -• GPQ = GPQ X L Q by π(q, g) = (g, πΌ{q)). Then GQ,F acts o n I Q | P by

(q, g) (x, υ) = (q x, pPQ(π(q, g))v).

It is easy to see that there exists an open GQjp-orbit ΩQ\P in XQ\P.
Let Q+, LQ and GQ ( P be the identity components of Q(R), LQ(R) and GQ\P(R),

respectively. Since Q contains P, there exists an open β-orbit ΩQ in X. Let

be the Q+-orbit decomposition. Each open Q+-orbit is decomposed into a union of
P+-orbits. Let

P+hiίgix0Ό "ΌP+hiVίgix0

be the open P+-orbits in Q+gtx0. Then we have vί-\ h vα = v, the number of open
P+-orbits in X{0\ and the P+-orbit decomposition of Ω{R)nX{0) is given by

Ω(R)nX{0)= U Ωi}, Ω^P+hφXv.
1 < i < a.
l<j<vi

We can take htj from LQ .

Let v be the point of VPQ given by (2.3). Considering LQ as a subgroup of

GpQ = GpQ

xLQ> we put

# ) = P P Q ( Λ ~ > for hsLQ.

Then the proof of the following lemma is similar to that of Lemma 4.1.

LEMMA 5.3. The G^p-orbit decomposition ofΩQlPn(X(0) x VPQ(R)) is given by

ΩQlPn(X^xVPQ(R))= U ΩQlPtij9 Ωap^Ghp faXoMhij)).
l < ί < α

1 <j<Vί

We put XQ\P = XX VpQ. Let us define the dual action * of GQ\P on XQ\? by

(q, g) * (x, ι>) = (g x, ρp*Q(π(q, g))v).
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LEMMA 5.4. Assume that {LQ, HQ, PQ) is a regular spherical triple.

(1) The dual action * of GQ\P on XQ\P has an open orbit.

(2) Let w = wQ be the permutation matrix that represents the longest element of

the Weyl group of LQ. Then there exists a natural one to one correspondence between the

open WP+-orbits and the open P+-orbits in a Q+-orbit Q

PROOF. By Lemma 5.3, the open P+-orbits in Q+giX0 correspond bijectively to

the G£|p-orbits in ΩQlPn(Q+gix0 x VPQ(R)). Note that (giXθ9υ) and (giX0,v')

(v,vf e VPQ(R)) belong to the same G^p-orbit if and only if v and υ' belong to the same

PpQ(GpQ xno(Q+ n gff~
 1//gfί))-orbit. Hence there exists a one to one correspondence

between the open P+-orbits in Q+gιX0 and the open PPQ(GPQ x πo(Q+ n g^Hg^-orbits

in VPQ(R). Using the realization of ppQ given in the proof of Lemma 5.1, we can see

that there exists a one to one correspondence between the open WP+-orbits in Q+gtXo

and the open ρp*Q(GpQ x πo(Q+ n gj~ 1//gfί))-orbits in Vp*Q(R). Since (LQ, HQ, PQ) is assum-

ed to be regular, the prehomogeneous vector space {GPQxπ0(Q(\g^ιHgi\ ρPQ, VPQ)

is regular. Hence, by [SI, Lemma 5.1], the open PPQ(GPQ xπo(Q+ ng^Hg^-orbits

in VPQ(R) correspond bijectively to the open pp*Q(GPQx πo(Q+ ng^Hgi))-oτbits in

VpQ(R). I

By the lemma above, there exist A* ( l < i < α , l < j < v t ) in LQ with which the
WP+-orbit decomposition of wΩ(R)r\X0 is given by

1 < i < a.
l j

Let Ω$\P be the open GQ(P-orbit in XQ\P. Identifying V$Q with VPQ as in the proof

of Lemma 5.1, we put

where w is the permutation matrix that represents the longest element of the Weyl group

of GPQ. We also put

v*(h) = pfQ(h-1)υ* for heLQ.

LEMMA 5.5. The G^p-orbit decomposition ofΩ^Pn(X{0) x VpQ(R)) is given by

Let ε: PQ-+ GPQ be the injective homomorphism defined to be the composition of the

mapping given by (2.4) and the projection of GPQ onto GPQ. Denote by π 0 : Q-+LQ the

canonical surjection as before. We define an embedding of P into GQ\P by

>p = (p, ε(πo(p)))eGQ]P .

We also define an embedding of WP into GQ\P by
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By pulling back characters of GQ\P to P and WP, we obtain isomorphisms between

X(GQlP) and X(P) and between X(GQ{P) and X(WP). Then it is easy to see that the linear

isomorphism

• **p,c

given by the identification of £(P), £(WP) and 3E(GQ|P) coincides with the isomor-

phism w: α ? c - • αί P C . introduced in §3.2.

By abuse of notation, we denote by detp P Q the character of P given by

P9/7I—•detppQ(ε(π0(/?)), no{p)). Then the following lemma can easily be proved by direct

computation.

LEMMA 5.6. We have

By the same discussion as the one leading to the construction of | ify) | λ in §4, we

can define functions \FQ\P(x, v)\λ (λeap*tC) on ΩQ\P(R) and \F^P(x, v*)\λ* (λ*satPtC) on

ΩξlP(R) satisfying

and

Let drq be the right invariant measure on Q+ and dg the Haar measure on GPQ. Put

ΓQ]P = ΓQXΓGPQCZQ+ xGΪQ = G+\P.

Let έF0(XQ\P) (resp. ^O(XQ\P)) be the space of C00-functions φ(x, v) (resp. φ*(x, v*)) on

X(0) x VPQ(R) (resp. X{0) x VfQ(R)) satisfying that

(i) as a function of x, the support of φ(x, v) (resp. φ*(x, v*)) is contained in a

compact subset of X{0) independent of v (resp. v*)9 and

(ii) as a function of v (resp. i;*), φ(x, v) (resp. φ*(x, v*)) is rapidly decreasing.

For φe^0(XQlP\ xeX(Q)nX(0) and λeα?tC, we put

zQlP(φ; x,λ)=\ IχQΪP(q, g)\λ+δp Σ 0te ? g) (^ ^ ) K ^ ,
J (y,υ)

where the summation with respect to (y, υ) is taken over (Γ x x VPQ(Z)) nΩQ\P, and

yy(βIP; 0, λ)= f
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where dωx is the G+-invariant measure on X{0) and dv is the standard Euclidean measure

on VPQ(R). For φ * e ^ 0 ( X £ | P ) , xeX(Q)nX{0) and Λ*eα*P, c, we put

where the summation with respect to (y, v*) is taken over (Γ-xx Vp*Q(Z))nΩξlP, and

; Φ*> λ*)= ί \F$lP(y, v*)f-*»»>φ*(y9 v*)dωx(y)dv* ,

where du* is the standard Euclidean measure on VpQ(R). The integrals ΨU(Q\P; φ, λ)

(resp. Ψf (Q\P\ 0*, A*)) are absolutely convergent in δP + af^ (resp. (5wP + α£ P C ).

Now we have the following new integral representations of the Eisenstein series.

The proof is similar to that of Proposition 4.2 and is omitted.

PROPOSITION 5.7. The integral ZQ\P(φ; x9 λ) (resp. Z£\P(φ*; x, λ*)) is absolutely

convergent in δ + αJtJ (resp. δ* + aZPX) for some δeafc (resp. δ*eaZPC). Moreover,

under a suitable normalization of the measures drq, dg, dωx, we have

ZQ,P(φ; x, λ) = ζPQ(λ) Σ Eιj(Pl x, X)Ψi3{Q IP; φ, λ)
l i

and

5.3. In this and the next subsections, we introduce two prehomogeneous vector

spaces which play an important role in the proof of the functional equations of the

Eisenstein series. The first one is the prehomogeneous vector space of flag type

corresponding to the Eisenstein series of the Riemannian symmetric space of LQ(R).

Since LQ is a direct product of general linear groups, we can write LQ =

GLfaJ x x Gljmt). Put KQ = SO(m^ x x SOfaJ and let (GPQ X KQ, PPQ, VPQ)

be the prehomogeneous vector space of flag type attached to the spherical triple

(LQ, KQ, PQ). We consider the standard real structure of this prehomogeneous vector

space, for which KQ(R) is compact. Then there exists a unique real open GPQ X ̂ Q(J?)-orbit

V'PQ in VPQ(R), which is characterized by the same rank condition as in the definition

of Vf

P in the proof of Lemma 4.1. We denote by \dPQ(v)\λ (λeaP

t

QfC = aP

t

 c) the function

on V'PQ satisfying

I dPQ(pPQ(g, k)v) \λ = \χQlP(/c, g) \λ\ dPQ(v) \λ .

For φeS?(VPQ(R)), we put

Ψ0(φ,λ)={ \dPQ(v)\λ-δ-φ(v)dv.
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The integral is the local zeta function attached to (GPQ X KQ, pP<2, VPQ) defined in

Proposition 4.2.

We define the local zeta function also for (GPQ X KQ, p$Q, Vp*Q), the prehomo-

geneous vector space contragredient to (GPQ X KQ, pPQ, VPQ). Let VfQ be the unique

real open G^Q x KQ(R)-orbit in V$Q(R). We denote by \d$Q(v)f (λ*eαϊp Q f C = αϊP i C)

the function on VψQ satisfying

I dtQ(pfQ{g9 k)v*) f = I χQlP(K g) \λm\dtQ(v*) f .

Forφ*ey(V$Q(R)\ we put

ψg(φ*,λ*)=

If we identify V$Q with VPQ as in the proof of Lemma 5.1, then VfQ— V'PQ and

(5.1) \d* (v)I~wλ = Id (v)\λ .

PROPOSITION 5.8. The integral Ψ0(φ, X) (resp. Ψ*(φ*, λ*)) is absolutely convergent

for λeδPQ-{-a^c(resp. λ*eδwPQ + aZ£(^c) and has an analytic continuation to a mero-

morphic function of λ (resp. λ*) in a* c (resp. a*P c). Moreover they satisfy the functional

equation

Γ (λ)

Ψ0(φ*, λ)= pf ' Ψ*(φ*, wλ),
Pn\ /

where

Φ*(v)= </>*(ι;*)exp(2π/<(ί;, v*})dv* .

REMARK. Note that, if we identify α£Q c with α | c , then we have δPQ + df^c

αj£ and δ^

PROOF OF PROPOSITION 5.8. The proof can be easily reduced to the case where

Q = G and PQ = P = Peι er. In this case, we have

For i= 1, 2,..., r, we put

ίPl o
Λi(p)=det(Pl)--det(pi) for I ' - .

\ * pr

and write



EISENSTEIN SERIES 53

Then we have

It is clear that the integral is absolutely convergent for Re(λi)>(ei + ei + 1)/2 (i= 1, . . . ,

r— 1), namely, for Λ. e (5P + α££ + We identify Vp*Q with F P Q via the inner product

<u, ι;*> = Σ^Zi \xViV*. Since w<5P = — (5wP, the identity (5.1) implies that

Ψg(φ,λ*) = Ψ0(φ9 -w-χλ*) (λ e α ί P f C ) .

It is easy to check that atp^ = — H>αj5t£
 + . Hence Ψg(φ*, λ*) is absolutely convergent

for λ*eδwp + atpc From the general theory of prehomogeneous vector spaces ([SI,

Theorem 1]), there exists a meromorphic function γ(λ) such that the functional

equation

Ψ0{φ*,λ) = γ(λ)Ψg{φ*,wλ)

holds for any φ*eyp(Vp*Q(R)). To obtain the explicit formula for γ(λ), it is enough to

calculate the integrals in the both sides of the functional equation for the function

φ *(i;) = exp( — π(υ, v}). This can be done by using the well known formulas

and

I det v | s exp( — π tr v^^v = -—
;R) Π

i = l

In fact we can obtain the identities

Hence we havey(l) = ΓP(λ)/ΓP{-λ). I

The following proposition is the key to the proof of Theorem 3.6.

PROPOSITION 5.9. Let ^ e Q ^ 0 ' ) , φ2e^(VPQ{R)) and φ$eSf{V$Q{R)). Let

K=SOm(R), the maximal compact subgroup ofG + . Ifφt is K-invariant, then we have

(5.2) ΨU(Q \P;φι®φ2,λ)= ψtJ(P; φlt λ)Ψ0(φ2, λ)

and

(5.3) Ψ$(Q\p> Φi®Φt λ*)=ΨtjΓP; φl9 λ*)Ψg{φξ, λ*),

where Ψij(P; φl9 λ) (resp. Ψij(wP; φl9 λ*)) are the integrals defined for the P+-orbits Qtj
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(resp. the WP+-orbits WΩU) by (1.6).

PROOF. We prove only (5.2), since the proof of (5.3) is quite the same. For any

v e VpQ, there exists (g, k) e GPQ x KQ(R) such that pPQ(g, k)υ = v. Then we have

Hence

ΨU(QIP; φ, λ)= ί I f(P; k^-y) \λ~a"\ dPQ{υ)r^OO^ΦWy, v)
J&Q\P,ij

\dPo(v)\λ-δ-φ2(v)dv
Q

-2δP

VPQ JΩίj

Since dωΩ(y) = \ f(P; y) | 2δpdωx(y\ this implies the required identity

ΨώQIP; φ, λ)=^Ψij(P; φ l 9 λ)Ψ0(φ2, λ).

•
5.4. For the proof of Theorem 3.6, we need another prehomogeneous vector space.

We consider the prehomogeneous vector space (GQ\PxH, pQ\P, M(m)@ VPQ) de-

fined by

PQ i p(<7, 9, h)(x, v) = (qxh " x , ρPQ(π{q, g))v) {qeQ,ge G P Q , heH,xe M{m\ v e VPQ) .

Then the PQ\P(GQ\P X i/+)-open orbits contained in G+ x VPQ(R) correspond bijectively

to the GQ I p-orbits in ΩQ, P n (Ar(0) x KP Q(/?)). In fact, with the same notation as in Lemma

5.3, we see that

δQ\p,ij = pQ\p(GQ\p x #+)(0ί> # o ) ) (1 < ϊ < α , 1 <j<v, )

are the pQ |P(GQ|Px/Γ+)-open orbits contained in G + x F P Q ( / ? ) .

We note that the direct summand VPQ is a regular subspace (in the sense of [SI,

§2]) of (GQlPxH,pQlP,M(rn)®VPQ). Hence, by [SI, Lemma 2.4], the partial dual

(GQ I p x H, p £ i P, M(m) © FjίQ) with respect to F P Q is also a prehomogeneous vector space.

With the notation as in Lemma 5.5, the p£| P (G£| P xi/ + )-open orbits contained in

G+ x VPQ(R) are given by

and correspond bijectively to the Gg|P-orbits in Ω^Pn(Xi0)x V

It is easy to see that generic isotropy subgroups of these prehomogeneous vector

spaces are isomorphic to Px (XGΩ\ which is reductive by Assumption (3.6) and Lemma

2.3. Hence the singular set of (GQlP x H, p Q ( P , M(m)® VPQ) is a hypersurface and we
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may apply the theory of functional equations of local zeta functions in [SI, §5].

In the present case, the local zeta functions are defined as follows:

ΨtJ(Q\P; φ, λ)= ί \FQ]P(x, v)\λ-δoφ(x, v)d*xdv ,
J ΩQ\P,ΪJ

Ψ*(Q\P;Φ*,λ*)= [ \Fξ{P(x,v*)\λ'-δ-φ*(x,v*)dxxdv*,
* &Q\P,ίj

where φ e Sf(M{m; R) ® VPQ(R)\ φ * e &(M(m\ R) ® VfQ(R)),

,v)\ {λ euwpCj,

dxx = \άQtx\~mY\rjtj=ίdxij and the other notation is the same as in §5.2.

For 0* e ^(M(m; R) © VpQ(R)), we define its partial Fourier transform with respect

to VPQ by setting

r
K, v*)exp(2πi(v, v*y)dv* .

Then Theorem 1 of [SI] gives the following functional equation.

PROPOSITION 5.10. The integrals Ψij(Q\P\φ,λ) (resp. Ψ*(Q\P\ φ*, λ*)) have

analytic continuations to meromorphic functions of λ (resp. λ*) in α£tC (resp. atPC) and

satisfy the functional equation

Ψu(Q\P;Φ*9λ)= Σ y$WΦ?AQ\P',Φ*> wλ),

where yfyiλ) are meromorphic functions independent of φ* with elementary expression in

terms of the gamma function and exponential functions.

REMARK. The calculation of the gamma matrix (y$*(λ)) is reduced to the calculation

of the gamma matrix of the local functional equation for the prehomogeneous vector

space (GPQ X HQ, PPQ, VPQ) (see [SI, §5.2]).

We rewrite the functional equation in Proposition 5.10 into the functional equation

satisfied by Ψtj and Ψ*.

Let dh be the Haar measure on H+ normalized by

f f(x)dxx=[ dωx(xH)[
JG+ Jχ(°> J

f(x)dxx=[ dωx(xH)[ f(xh)dh.

For φe^0(XQlP) (resp. φ*e&r

0(Xξ\P)), take a φeSf(M(m; R)® VPQ(R)) (resp.

Sf{M(m; R)@ VfQ(R))) such that
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1φ(xh, v)dh = φ(xH, v) r e s p . φ*(xh, v*)dh = φ*(xH, v*)\.
H+ V JH+ J

Then we have

ΨijίQ\P; Φ; λ)=Ψij(Q\P; φ; λ), Ψ*(Q\P; φ*; λ*)=Ψ?j(Q\P; φ*;λ*).

Therefore, if we put for φ *

J
φ *(xH, v)=\ φ *(xH, v *) exp(2πι <ι>, v *))dv * ,

then Proposition 5.10 gives the following functional equation satisfied by Ψtj and Ψ*.

PROPOSITION 5.11. For φe^0(XQlP) (resp. φ*e^0(X$lP)\ the integrals Ψij(Q\

P; φ, λ) (resp. Ψ*(Q \P;φ*9 A*)) have analytic continuations to meromorphic functions of

λ (resp. 2*) in α* c (resp. atP c) and satisfy the functional equation

Ψ (ΠlP'/b* 2\ — V v^OλΨ* (Π\ P rh* w2λ ίrh^^^ίY W
1 <j*<Vi

where yf]*(λ) are meromorphic functions independent of φ* with elementary expression in

terms of the gamma function and exponential functions.

5.5. Now we are in a position to prove Theorems 3.5 and 3.6.

PROOF OF THEOREM 3.6. Let φ1 e C£(Xi0)l φ2 e^(VPQ(R)) and φ$ e S?(V$Q(R)). If

φγ is ^-invariant, then it follows from Propositions 5.8, 5.9 and 5.11 that the integrals

Ψij(P; 0 i , λ) (resp. Ψij(wP; φl9 A*)) have analytic continuations to meromorphic functions

of λ (resp. λ*) in α £ c (resp. atPC) and satisfy the functional equation

Therefore, putting

(5.4) CSph(w» ^\i*J*)ΛiJ)= < P ^ '

I 0 if iφi*,

we obtain Theorem 3.6. •

REMARK. Analytic continuations of the integrals Ψtj(P; φι,λ) and Ψij(wP; Φι,λ*)

can be proved for any φί e CQ(X(0)) without the assumption that 0X is AΓ-invariant.

The proof of Theorem 3.5 is based on the following lemma.

LEMMA 5.12. Assume that φ*e^0(X£\P) satisfies the condition that
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φ* vanishes outside Ω^P and φ* vanishes outside ΩQ\P .

Then the integral ZQlP(φ*; x, λ) (resp. Z$\P(φ*; x, λ*)) has an analytic continuation to a

meromorphic function of λ (resp. Λ,*) in α £ c (resp. &ZPX) and is holomorphic in the convex

hull of(δ + α££) u (5 * + α£p c ) , where δ and δ * are the same as in Proposition 5.7. Moreover

they satisfy the functional equation

; X, λ) = Z$lP(φ*; x, wλ).

By using Lemma 5.6, we can prove the lemma in the same manner as in the proof

of [SI, Lemma 6.1]; hence we omit the proof.

PROOF OF THEOREM 3.5. Take a φ g e Q ^ Ω ^ p ^ ) and a χeα££ n3E(JP). Let

Φ*GCO(Ω£\PJJ*) be the function satisfying

φ*(x,v) = \FQlP(x,v)\*φ*(x,v).

Then the function φ* satisfies the assumption in Lemma 5.12 (cf. [SI, Lemma 6.2]).

Hence, by Proposition 5.7 and Lemma 5.12, we have

\P;φ*9 wλ)

= ZQlP(φ*;x,λ)

Σ Ekj(P;x,λ)ΨkJ{Q\P 9φ*9λ).
l<k<x
l

Since the support of φ* is assumed to be contained in Ω^Ptij*9 Proposition 5.11 and

(5.4) yield the identity

i ,wA) if k = i,

if kΦi.

Note that we can choose φ% and χ so that Ψfj*(Q\P; wλ) does not vanish identically.

Therefore, combining these two identities, we obtain

"oW V /~i ί... i\ 7 /n. n; , ) f \
ζPQ(-λ)

By (3.7), this proves Theorem 3.5. •

For χ e aZPX n X(WP), let F£fP(x, v*) be the relative invariant o n l | | p corresponding

to χ. Then FζfP is regular on X^P and hence a polynomial function of v*.

Let F$fP(x, d/dv) be the linear partial differential operator in C[X][d/<3ι;] satisfying
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(x,v*).

Then there exists a polynomial function bχ(λ) on α? c such that the identity

JC, v)\λ~δp= +b (λ)\F0\P(x, t ; ) | λ ~ 5 p + w ~ l χ

holds on ΩQ\Pij, where the sign in the right hand side of the identity depends on

/, / The polynomial bχ(λ) is the ^-function of the prehomogeneous vector space

(GPQXHQ,PPQ, VPQ).

Let bQ(λ) be the greatest common divisor of bχ(λ) for all χ e a%PX n X(WP).

PROPOSITION 5.13. The functions bQ(X)CpQ(X)Eij(P; x, λ) are holomorphic in the

convex hull of (δ + afx) u (δ * + atPιC).

The proof is quite the same as in the case of zeta functions associated with

prehomogeneous vector spaces (see the proof of Theorem 2 in [SI, §6]) and is omitted.

Applying the proposition to various β, we often get fairly satisfactory information on

the location of poles of the Eisenstein series (cf. Appendix, Proof of Theorem 3.8).

Appendix: The proof of the analytic continuation and the functional equations of

the Eisenstein series on GL(n)/O(n). In this appendix we give proofs of Theorems

3.8 and 3.9 in §3.4.

First, assuming the functional equations for σf = (i5 ί + l)e S r (/ = 1,. . . , r— 1), we

prove Theorem 3.8.

PROOF OF THEOREM 3.8. For Pe0>, we put CP = δP + aP

i

x. For σ e 6 r , let l(σ) be

the length of σ with respect to the generator system {σ1? . . . , σ r_x}. We denote by S)ψ

the convex hull of the union of σ~ιCσp for all σ e S r with /(σ)</. Here we consider

σ as an element in Wx(a%, α?P). It is easy to see that 2ψ coincides with α £ c for sufficiently

large /. Therefore it is enough to prove the following:

The functions ζP(λ)Eε(P; x, λ) multiplied by

= π w/2 Z i~2 2p~eO
l<i<j<r \ 4 /

j i l

are holomorphic in

We prove this assertion by induction on /. We put Pi = σiP. The case 1=1 is

an easy consequence of Proposition 5.13 and the fact that the product Πμ^o1 ζ(zί~zj +

(ei + e^β — μ) (i<j) is holomorphic in o^γCPh unless (ij) = (k, k+1).

Now consider the case />2. Note that 2)ψ is the convex hull of
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Hence it is sufficient to prove that BP

l)ζP(λ)Eε(P; x, λ) is holomorphic in ^~ υ u σ," 1@P7 1 }

for any i. Since B{p~1] divides B(p\ it is obvious that BψζP(λ)Eε(P\ x, λ) is holomorphic

in @pl~ι\ To prove the holomorphy in σ ^ 1 ^ ^ " 1 ^ one can use the functional equation

for σf:

π:=ό - i « Z l + 1 -2 ί +(β l + e ι + 1 )/2-v)

x C^σΓ1; MίΣQphίσΓ1; M),,,iF,(M)W; x, σ,λ).
η

By the induction hypothesis, the function

viewed as a function of λ is holomorphic in σ^3ιP

ι~l). Since B(

P~
ι\σιλ) is a divisor of

BP

l)(λ), the explicit form of the functional equation given in Theorem 3.9 implies that

BP\X)ζj{X)Eε(P\x,X) is holomorphic in σ i "
1 ^ ~ 1 ) except at possible poles zi — zi + 1 = c

(c = some constant). Any hyperplane of this form intersects with @P

ι\ in which

Bpl\λ)ζP(λ)Eε{P; x, λ) is holomorphic. Hence Bpl\λ)ζP{λ)Eε(P; x9 λ) is holomorphic in

PROOF OF THEOREM 3.9. By (5.4) and the remark to Proposition 5.10, the cal-

culation of Csph(σh λ) can be reduced to the calculation of the gamma matrix of the

local functional equation for the prehomogeneous vector space (S0(e£ + e i + 1 ) x GL(e^),

M(ei + ei+u £;)). Namely, Theorem 3.9 follows from the functional equation (A.I) below

together with Theorem A.I.

To simplify the notation, we write m and n for eι + ei + 1 and eh respectively. We

also put

έ?[z]=exp(2π/z),

P

lx]) = {i,j)} 9 i+j=n ,

) = ± } ,

V{lf± = {xe V\ϊ$\sgn(Ip,qlxΊ) = (i-lJ) or (ίj-l) according as + or - } ,

where, for xeM(m, n\ /?), /p,^[x] = ίx/p^x, Xγ is the first row vector of x and x' is the m

by n — 1 matrix obtained from x by removing xx. The set V[f^ is not empty if and only

if max{0, n — q} </<min{/?, n}. If m, n, p, q are fixed and there exists no fear of con-

fusion, we write Vt Vf, Vf* for Vtftf9 F?£g):t, V

For / e y(M(m, n; R)\ we put
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ΦAf;s)=

Φΐif\s) =
Vά

Then we have

Φkf\ s)= Φΐ if I s) + ΦΓ if I s) ~ ^ΐ*+(fl s)-\-Φ*~ (f\ s).

We define the Fourier transform of feSf(M(m, n; R)) by setting

/W=ί /(yKtrf̂ )]rfv -
J M(m,n;R)

Then, by the general theory of prehomogeneous vector spaces ([SS]), we have the

following functional equation:

(A.i) Φt.(/; s)= Σ ymMc[ΐ:PVp« *)**(/'>- ™r-s) >
max{O,n-g}<ί*<min{p,n} \ 2 /

where

n

Our problem is to calculate C£jp(Ipq; s) explicitly.

THEOREM A.I. The coefficients C^*)p(Ip^s) (i+j=i*+j*=ri) vanishes unless

I /—/* I < 1. In the case | i—i* \ < 1, we have the following explicit formulas:

Π

2 /

=J (mod 2),

if qφj (mod 2),

II cosπl J + — — I II cosπl.
μ=l \ 2 /μ=j+ί \

if i==0 (mod 2),

0 if ι = l (mod 2),
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c o s π \ s + —— ) Π cosπ s + -—— I

0 if 7=1 (mod 2).

The theorem was obtained by T. Suzuki in his master thesis except the case where
max{p, q}>n>mm{p, q). His calculation is based on the method of the microlocal
calculus. Here we give an elementary proof.

PROOF. TO determine Cf*^*\Ip^ s), let us calculate the integral Φi(f, s) under
the assumption that the support of/ is contained in {xeM(m, n\ /?)|det/p^[s]/O}
and Re(s)>0.

Our calculation is done by induction on m. For simplicity we put

1 n - l

We introduce a parametrization of Ff. For xe V*, we write x = (xl9 x' ). Put W=
{v E Rm |<r, x1 > : = tvlp,qxί = 0}. Since /p,g[xi] Φ 0, we have Rm = Rxί ® W. We can choose
a basis wu . . ., wm_ x such that

λ" /T ΓV I n \

if + ,

if - ,

where w = (wu ... ,wm^.1)eM(m,n — \;R). It is obvious that det{xι,w)2 = \IM[xι]\.
Writing

1

we take xί9 a, A as a coordinate system on F^. Then

•χieF(<f;g>, AeVtflίf if + ,

.V if -

For simplicity we put

p _ ί / , - i , if + .

Since

/ p J x ] " V o / 'AU ^yJLVo I . ^
we have
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We change the variable y on M(m, n; R) into

B = [ \ = (χ w y ι

y bteR, b2eRn~ι , b.eR"1'1 , B.eM(m-l, n - 1 ; R),

Then we have

We also have

Put

ί
I T/

Jj 7M

iP,q[χι]>o

, 7 M [ Λ l ] + tri'AI^^

Then, using the parameter introduced above, we have

f
\IPa[xΔ\s+n~ll2dx1 \άQiIΌ-l(XA]\sdA I da

JM(m,n;«)

I ΊΛp — 1 ,ζf)
qOl]>0 J ^ ( i - l , j )

,4[x 1] 'b2d]dB

1 n - l

Let D be the subset of Rm x M(m, n; R) of elements (x l 5 j ) = (Xi, (yt, >»' )) satisfying

= 0 in
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The last integral above can be viewed as an integral on D with respect to the measure
ω = dx1db1db3dB4r. In fact, since bιΊpq[x{\=txιIpqyι and /j,-i f β[£ 4]=/pj>'], the
integral is rewritten as follows:

(A.2) ί \IpA[_x{\ Γ 1 / 2 |det/pJ>'] \-{m-l)/2-sf(y)eίtxίIp,qyίlω(xuy).
JD

We introduce another coordinate system on D. For (xί9 y) = {x1, (yu y'))eD, fix
y'eM(m, n—l R) and choose zeM(m, m — n+l R) such that

0 Iϊ

The row vectors of z forms a basis of the orthogonal complement of the space spaned
by the row vectors of y' with respect to the inner product <ι;, v*} = tvlpqv*. Hence we
can write

xx=zu for some ueRm~n + 1

and

Since

we see that

D3(x,y)

LEMMA A.2. W

PROOF. Consider the mapping Rmx M(m, n;R)^>Rnl defined by (xu 0>i,}>'))h

xy'Iv,q

χ\' The image tyΊpqx1 can be written as

{ /p ^[xj Z?2 for the parameter system xu B,

h.jLy']" f o r t h e P a r a m e t e r system ί U j = (z, 3;')" ^ 1 , j5, j ; ' .

Hence we have

. / ^ , = I / M [^i] Γ"/2 + ίdxidbidbzdBA = dudy'dβ .
d('y ip,qχι)
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Using the parameter w, β, y', we can rewrite the integral (A.2) as follows:

Integral (A.2)=

±

where σ( + ) = (l, 0) and σ( —) = (0, 1). The domain of integration can be identified with

V$\%+ or F ^ -. + D according as + or - . Thus we obtain

( 1 \ / m \
^- i +l.g-j jί^ ^ ]ψi* l / ί Z S]

2 / \ 2 /

Similarly we obtain

φ-f?-ri —Yi/ίi - i . / Vi cϊ/y(1'0)l T - ? i n ~ * V * + l Λ _ m _
^i U J ^ — ZjU(i,j-l) \2p,q-l> S;W(0,l)\ Ip-i*+ίtq-j*9 S^ Z J^i \ J •> ~Z~ S

i* \ 2 / \ 2

i*

From these two formulas, it follows that

(A.3) <*>,(/; s) = ΣluUs)Φf* + (f; - y - ;

where

/ n —1 \
W ί M ^ ) = U ( i - 1, j ) V ^ p - 1,4? ^ ) W ( 1 , 0 ) [ * p - i * + l t q - j*l S "I Z )
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-i*tq-j*+ί9 S~\

t(i*,j*-l)ίj . p^iy,ij| j ι',S +

Choose the test function / so that its support is contained in V\l;f}*± and compare
(A.3) with (A.I). Then we have the following recursion formula.

LEMMA A.3. We have

(A.4)

i I / ί ) (I ) C ( /

j l )

2

Ifi*,j*Φ0, then

(A.6) C[N

ί) ( ^ l S ) ^ ( O Ί ) l I-i*+l,q-j*> S H "

T

χ,_ ί M_, *+1;s + -

If n = 1, then it is known (cf. [GS]) that

Z

We note that

Using Lemma A.3 and (A.8), we prove Theorem A.I. We begin by calculating

some special cases.
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LEMMA A.4. If p>n, then we have

PROOF. In the formula (A.4), substitute j by 0. Then the first factor of the second
term vanishes. Hence

~

μ=l \ 2

By (A.8), this implies the required identity.

LEMMA A.5. If p>n, then we have

sin--- Π cosπ(j + — —
I μ=2 \ I J

0

PROOF. By repeated use of (A.4), we have

if n is odd

if n is even

1

1 ' 0 )

l 0 )
^Γ ZJ 1

2 fc=lμ
/
p-n+l,q>

Hence, by Lemma A.4 and (A.8), we obtain

Π cosπί 5
μ = 0 V2 U~Γ ' JμV0 V 2

Since Σ£ = 1 (— l)"~fc= 1 orO according as n is odd or even, this proves the lemma. I

The following lemma proves the first assertion of Theorem A.I.

LEMMA A.6.

C(l*j)*\Ip,ql s) = 0 unless | /—/* | < 1 .

PROOF. We prove the lemma by induction on n. The lemma is obvious for n= 1.
Assume that n>2. First consider the case where /*,y*#0. Then, by the induction
hypothesis, if the right hand side of (A.6) (resp. (A.7)) does not vanish, then we have
I/-(/*-1)1 <1 (resp. | ι * - ( ι ' - l ) | < l ) . Since (A.6) and (A.7) give the same value, this
implies that i = i*. Jfj* = O and C^f\Ip^s)φ0, then, by (A.4) and the induction
hypothesis, we have 7 = 0, 1 or 2. If7 = 2, then
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The identity (A. 8) implies that the second factor of the right hand side vanishes if q is

even. On the other hand, Lemma A.5 implies that the first factor of the right hand side

vanishes if q is odd. Hence we obtain Cfi-l^ilp^ s) = 0. The case /* = 0 reduces to the

case j * = 0 by the identity (A.9). I

By the lemma above, what remains to be done is the calculation of C(

( j / 1 1 0 for the

cases /* = / + l and /* = /. The case /* = ι — 1 reduces to the case /* = / + l by (A.9).

LEMMA A.7.

ίV ( Λ TΊ ( Λ
Π cosπ s

J \

Π Π cosπ s + l
V 2 Jμ = t V 2 Jμ=j+1 \ 2 )

if i = 0 (mod 2),

if i=\ (mod2).

PROOF. Since the calculation for the case 7 = 1 has been done in Lemma A.5, we

assume here t h a t y > l . In the present case the first factor of the first term of (A.7)

vanishes by Lemma A.6. Hence (A.7) yields the identity

n-μ

The identity together with Lemma A.5 and (A.8) implies the lemma.

LEMMA A.8.

PROOF. Since the calculation for the casey = 0 has been done in Lemma A.4, we

assume that j>0. First consider the case where q—j is odd. Then, by Lemma A.7, the

first factor of the first term of (A.7) vanishes; hence we have
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The identity together with Lemma A.4 and (A.8) implies the lemma in the case where

q—j is odd. Using the recursion formula (A.6), we can prove quite similarly the lemma

in the case where q—j is even. I
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