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NUMBER OF ZEROS OF SOLUTIONS TO SINGULAR
INITIAL VALUE PROBLEMS
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Abstract. The behavior of solutions of singular initial value problems is studied
for a second order ordinary differential equation. The main purpose of this paper is to
obtain sharp sufficient conditions so that any solution has a finite number of zeros or
infinitely many zeros. We treat them systematically and generalize previous results by
using the Pohozaev identity. As an application, we investigate the number of zeros of
radially symmetric solutions to generalized Laplace equations.

1. Introduction. The asymptotic behavior of solutions is one of the main topics
in the theory of ordinary differential equations. In particular, the ίiniteness of the
number of zeros of solutions is a fundamental question. In this paper we consider the
behavior of solutions to an equation of the form

(1.1)

where

m>\

Here, we introduce the following assumptions on f(υ):

ί
f(v)€C(R)nC\R\{0}),
vf(v)>0 for

(/•I)

if.2)
f(v)
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The conditions (/.I) and (/.2) imply the "super-linearity" and "polynomial growth" of

/ , respectively. A typical example satisfying (/.0), (/.I) and (f.2) is f(v) = \v\q~ίv

with q > m — 1.

Concerning k(t), we introduce the hypotheses

(kΛ) k(t) > 0 on (0, oo), k(t) e C\(0, oo)),

(kΛ) φ~4 p°k(τ)dτ)ds<oo,
Jί \Js /

(k.2) k(τ) I f(cτ) \dτ < oo for any c φ 0 ,

Jo
where φ ~ x(0 = | ζ | 1 / ( m~ υ sgn £. Note that (/:. 1) implies k(t) e Lι(l, oo) under the condition

(kΛ).

Under the standing assumptions (/.0) and (kΛ), we will consider the following

singular initial value problems

ί M^X + ̂ O / ^ H O , f e(0, oo),
(P) <

= 0, ίe(0, oo),

(Pβ)

lim v(t) — c

(φ(υt))t + k(t)f(v) = 09 ί6(0, oo),

ί j O

where ίx >0 and the initial data a, b, α, j8 are arbitrarily given. Our interest here is to

classify solutions of the above problems according to their asymptotic behavior and

their zeros.

We note that the above problems are closely related to radial solutions of m-Laplace

equations in Rn. Let us consider the m-Laplace equation of the form

(1.2)

Any radial solution to this equation satisfies

(1.3) l

Changing the variables by

v(t) =
n-m

we can reduce the above equation to (1.1).
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When m = 2, the structure of positive solutions to (Pα) which correspond to radial
solutions to (1.2) is precisely investigated by many authors (see, e.g., Li-Ni [12],
Yanagida-Yotsutani [17] and the references therein). Concerning solutions with zeros,
there are a lot of existence and non-existence results such as Atkinson [1], Coffman-
Uhllich [2], Kiguradze [8], Ni [13], Ding-Ni [3], Kusano-Naito [10] and Yanagida
[16].

On the other hand, when mφl, a sharp structure theorem of positive solutions to
(Pα) is obtained for (1.3) by Kawano-Yanagida-Yotsutani [7], which is a generalization
of Ni-Serrin [14], Kawano-Ni-Yotsutani [5] and Kawano-Yanagida-Yotsutani [6].
Concerning solutions with an infinite number of zeros, however, there are few results
for the existence and non-existence of solutions to (Pα) except for Kusano-Ogata-Usami
[11]. It seems that there is no systematic treatments to (P^), which corresponds to the
problem of finding radial solutions with u~\x\~{n~m)l{m~l) at x=co to ra-Laplace
equations (1.2) in /?M\{0}.

The main purpose of this paper is to give sharp sufficient conditions so that any
solution to (1.1) has a finite number of zeros or infinitely many zeros near ί = 0 or
t=co. We systematically use the Pohozaev type identity by which we not only give
comprehensive proofs but also generalize the previous results.

The Pohozaev type identity was first introduced in Pohozaev [15], in which the
non-existence of positive solutions to some class of nonlinear elliptic equations was
shown. This identity is a fundamental and sharp energy equality, and has been used
to investigate properties of solutions after suitable rearrangement of the equality. We
show that the identity is also very effective to give answers to our problem by introducing
its various rearrangements.

In order to classify solutions, we define the type of a solution according to its
behavior at t = 0 and t= oo.

At t = 0 we say that
( i ) υ(t) is of type R if υ(t) has at most a finite number of zeros in (0, 1) and

lim, 10 v(t)/t exists and is finite,
(ii) v(t) is of type S if v(t) has at most a finite number of zeros in (0, 1) and

lim f l o |i;(ί)|/ί=oo,
(iii) v(t) is of type O if i (ί) has infinitely many zeros in (0, 1).

Similarly, at t= oo, we say that
( i ) v(t) is of type R if v(t) has at most a finite number of zeros in (1, oo) and

l im,^ v(t) exists and is finite,
(ii) v(t) is of type S if v(t) has at most finite number of zeros in (1, oo) and

(iii) v(t) is of type O if v(t) has infinitely many zeros in (1, oo).
As we will see in Proposition 2.1 in the next section, there is no other type of solutions.

First of all, we consider the existence and uniqueness of solutions to (P), and
investigate their possible behavior at t = 0 and t= oo. The first theorem is a modification
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of the results by Coffman-Uhllich [2], Kawano-Ni-Yotsutani [5], Kawano-Yanagida-

Yotsutani [7], Kitano-Kusano [9] and Ni-Serrin [14].

THEOREM 1. Suppose that (/.0) and (k.0) hold. Then for any tx >0, a and b, there

exists a unique solution v = v(t) to (P) satisfying

(1.4) ^ J
lc2((0,oo)) if

and

(1.5) φt)eC\(09ao)).

In general, it is not easy to determine the type of solutions to (P). However, if the

singularity of k(t) is sufficiently "strong" at f = 0 (resp. ί=oo), then any solution must

be of type O (resp. type O). The following result is a generalization of Atkinson [1]

and Ni [13], who treated the case m = 2.

THEOREM 2. Suppose that (/.0), (/.I) and (k.0) hold.

(i) If J J k(τ) I f(cτ) \dτ = oo for all c φ 0, ί/ze?z any solution v to (P) is of type O.

(ii) If]™ φ~ \$™ k{τ)dτ)ds= oo, then any solution v to (P) is of type O.

In view of (i) (resp. (ii)) of Theorem 2, any solution to (P) is type O (resp. type

(5), if (k.2) (resp. (k.l)) does not hold in the case where f(v)~\ v\q~1v at v = 0 for some #.

As an immediate consequence of Theorem 2, we obtain the following result.

COROLLARY 1. Suppose that f(v) = \v\q~1v with q>m—\ and that k(t) satisfies

(k.0). Let v be a solution to (P) with (a, b)φ(0, 0).

(i) Ifk(t)~tσ at t = 0 with some σ< - ( # + 1 ) , then v is of type O.

(ii) Ifk(t)~tp at r=oo with some p> —m, then v is of type O.

By virtue of the above corollary, the type of solutions is determined only by the

asymptotic behavior of k(t) if σ< — (q +1) and p>—m. The numbers — (#+1) and — m

are optimal in the sense that if σ> —(q+X) and p<— m, the types of solutions

delicately depend on the property of k(t) and initial values (see Corollary 3 and [4, 6,

7, 16, 17, 18]).

On the contrary to Theorem 2, if the singularity of k(t) is sufficiently "weak" at

t = 0 (resp. t = oo), then any solution must be of type S or of type R (resp. of type S

or of it type R). Let us define

(1.6)
m

We note that m<μ(q)<q+l if q>m—\ with m>\. The following theorem is a

generalization of Kiguradze [8].
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THEOREM 3. Suppose that (/.0), (/.I), (/.2) and (k.O) hold. Let v be a solution to

(P) with (a, b)^ (0,0).

(i) // supvΦ0{\f(v) I/I v I*1} < oo and liminff^0 {tkt(t)/k(t)} > -μ(q1), then v is of

type S or type R.

(ii) IfsvφvΦ0{\f{v)\l\v\q2}<cQ and limsup^^ {tkt(t)/k(t)} < -μ(q2), then v is of

type S or type R.

As a consequence of Theorem 3, we obtain the following result.

COROLLARY 2. Suppose that f(v) = \v\q~ίv with q>m — \ and that k(t) satisfies

(k.O). Let v be a solution to (P) with (a, b)Φ(O, 0).

(i) If(t~σk(t))t>0 near t = 0 with some σ> — μ(q\ then v is of type S or type R.

(ii) If (t~ pk(t)\<0 near t=oo with some p< — μ(q), then v is of type S or type R.

The number — μ(q) is "critical" in the sense that the structure of solutions changes

sensitively at k(t) = ct~μ{q) with a constant c>0 when f(v) = \v\q~ίv (see, Corollaries 3

and 4).

Now we focus on the initial value problems (Pα) and (P^). In view of a remark after

Theorem 2, the assumptions (fc.l) and (k.2) are necessary for the solvability of the initial

value problems (Pα) and (P^), respectively, when f(υ)~\ v \q~1υ at v = 0 for some q. We

will show that (/c.l) and (k.2) are sufficient for the existence of solutions to the problems

(Pα) and (Pβ)9 respectively. The next result is a generalization of [5], [7] and [14].

THEOREM 4. Suppose that (f.O) and (k.O) hold.

(i) If (/c.l) holds, then for any α > 0 , there exists a unique solution v(t; α) to (Pα)

satisfying (1.4) and (1.5).

(ii) If (k.2) holds, then for any β>0, there exists a unique solution v(t; β) to (Pβ)

satisfying (1.4) and (1.5).

Let us consider the behavior of solutions to (Pα) and (P^). A solution to (Pα) is of

type O if the assumption of (i) of Theorem 2 holds, and a solution to (P )̂ is of type

O if the assumption of (ii) of Theorem 2 holds. However, if the assumptions of Theorem

2 do not hold, the structure of solutions becomes more complicated.

In fact, when f(v) = \ v\q~ίv with q>m — \, the structure of solutions crucially

depends on m, q and k(t). We can give sharp sufficient conditions so that any solution

is of type O, type S or type R. To state the sufficient conditions, we introduce some

auxiliary functions

(1.7) σ ( ί ) : = — ^ - t f ί O - — - \™k(s)ds

and

1 1 H
(1.8) H(t):= tq + 2k(t) sq+ιk(s)ds.

4+1 m Jo
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We note that G(t) (resp. H(t)) is well-defined under the conditions (/c.O) and (fc.l) (resp.

(fc.2)). We also note that

q+\ { k(t) J

and

(1.10)

where μ = μ(q) is defined by (1.6).

If G(t) (resp. H(t)) is identically equal to zero in (0, oo), then

for some positive constant c and v(t; α) (resp. v(t; β)) is of type R (resp. R) for any α

(resp. β). In fact, all solutions to (Pα) and (P^) are explicitly obtained as

(1.11) v(t;oc) = oct{f + l(*)}-ί'\ ί*ί;/Q =

where γ = (q — m + 1 )/m and

ί me

The following result is a generalization of [3], [5], [7] and [10].

THEOREM 5. Suppose that f(v) = \v\q~1v with q>m — \, (/c.O), (k. 1) (resp. (fc.2)),

G(t) (resp. H(t)) is not identically equal to zero in (0, oo). Let v(t; α) (resp. v(t; β)) be

the unique solution to (Pα).

( i ) If G(t)>0 on (0, oo), then v(t; α) has at least one zero in (0, oo). Moreover, if

Gt(t)<0 on (0, oo), then v(t; α) is of type O.

(ii) IfG(t)<0 on (0, oo), then v(t; α) is positive and tf/type S.

(iii) If H(t)>0 on (0, oo), then v(t; β) has at least one zero in (0, oo). Moreover, if

Ht(t)>0 on (0, oo) and Ht(t) is not identically equal to zero, then v(t; β) is tf/type O.

(iv) IfH(t)<0 on (0, oo), then v(t; β) is positive and tf/type S.

The above theorems will play important roles in generalizing the results in [17]

and [18] for the existence and the structure of radial solutions to the m-Laplace

equations. We discuss these problems in [4].

As an easy application of Theorem 5, we consider the case where f(v) = \υ\q~1v

and k(t) = tσ. In this case, G(t) and H(t) are explicitly expressed as



SINGULAR INITIAL VALUE PROBLEMS 7

Hence, by applying Theorems 1, 2, 3, 4 and 5, we can completely classify the behavior

of solutions.

COROLLARY 3. Suppose that f(v) = \v\q~1v with q>m — \. Let k(t) = tσ.

( I ) The structure of solution to (Pα) is as follows.

( i ) Ifσ>—m, then (Pα) has no solutions for any α > 0 .

(ii) If —μ(q)<σ< —m, then v(t; α) is positive and of type S for any α > 0 .

(iii) Ifσ= —μ{q), then v(t; α) is positive and of type Rfor any α > 0 .

(iv) Ifσ< —μ(q), then v(t; α) is of type O for any α>0.

(II) The structure of solutions to (Pβ) is as follows.

( i ) If o< — (q+ 1), then (Pβ) has no solutions for any β>0.

(ii) If — (q+ l ) < σ < — μ(q), then v{t; β) is positive and of type Sfor any β>0.

(iii) Ifσ= —μ(q), then ΰ(t; β) is positive and of type Rfor any β>0.

(iv) If σ> —μ(q), then v(t; β) is of type O for any β>0.

We see from this corollary that the case k(t) : = ct~μiq) with a constant c>0 is critical.

Let us consider the perturbation around k(t): = ct~μ{q). Let η(t) be a smooth bounded

positive function, and k(t): = η(t)t~μ{q). In this situation, G(t) and H(t) are well-defined

by virtue of 1 <m<μ(q)<q+ 1, and expressed as

i -j f* oo

G(t) = t^^ηit) s~μ{q)η{s)ds
+ 1 }

1 1 Γ ι

H(t) = tq + 2-μiq)η(t) sq + 1-μiq)η(s)ds.
q + l m J o

We see that G(t)-+O as /->oo, i/(ί)->0 as ί->0, and that

By Theorem 5, we obtain the following result, which implies that the type of solutions

drastically changes according to the sign of ηt (see also [3] and [14]).

COROLLARY 4. Suppose that f(v) = \v\q~1v with q>m—\. Let k(t) = η(t)t~μiq\

where η(t) is a positive non-constant function such that η(t)ε C 1 ^ , oo) and η(t) converges

to some positive number as t -> 0 and t -• oo.

( I ) The structure to solutions o/(Pα) is as follows.

( i ) Ifηt(t)<0, then v(t; α) is of type O for any α > 0 .

(ii) Ifηt(t)>0, then v(t; α) is positive and of type S for any α > 0 .

(II) The structure to solutions of(Pβ) is as follows.

( i ) If ηt(t) > 0, then v(t\ β) is of type O for any β>0.

(ii) Ifηt(t)<0, then v(t; β) is positive and of type S for any β>0.

This paper consists of six sections: Section 2 contains basic properties of solutions
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to the initial value problems (Pα) and (P^). Section 3 is devoted to the proof of Theorem

2. In Section 4 we prove Theorem 3. Proofs of (i) and (ii) of Theorem 5 are given in

Section 5. A proof of (iii) and (iv) of Theorem 5 is given in Section 6. Characterizations

of solutions in terms of the Pohozaev identity play an essential role in the proofs in

Sections 5 and 6. The outline of proofs of the existence of solutions to the initial value

problems (i.e., Theorems 1 and 4) is given in the Appendix.

ACKNOWLEDGMENT. The authors express their sincere gratitude to the referee for

giving them valuable comments and suggestions.

2. Preliminaries. In this section we show basic properties of (P), (Pα) and (P^).

First, we collect basic properties of a solution to (1.1).

LEMMA 2.1. Suppose that (/.0), (/c.O) hold and let v be a solution to (1.1) satisfying

(1.4) and (1.5). Then the following hold:

(a) Ifv(t)>0 (resp. v(t)<0) near t = 0, then vt(t) is decreasing (resp. increasing) and

υt(t)φ§ near t = 0.

(b) Ifv(t)>0 (resp. z;(f)<0) near t=ao, then vt(t) is positive and decreasing (resp.

negative and increasing) near t=oo.

(c) If v(t) —> (x as t —• oo for some α, then vt(t) -> 0 as ί —• oo.

(d) v(t) satisfies the Pohozaev identity

where

(2.2) Pit;V) = ̂ ±9iVt){tVt-v} + tk(t)F(v), F{v)=[ f(ξ)dξ.

m J o

REMARK 2.1. In particular, if f(υ) = | v \q ~1 v with q > m — 1, then

(2.3) ~P(t;υ) = Gt(t)\υl«+1 = Γ
dt

where Gt(t), Ht(t) are defined by (1.9), (1.10) and

(2.4) P(t;v)=
n^\Vtr-2Vt{tVt_v]

m

PROOF OF LEMMA 2.1. First, we may assume that v(t)>0 near t = 0. From (1.1),

we have (φ(vt))t= -k(t)f(v)<0. Thus vt is decreasing. Hence ^ < 0 near t = 0 or ^ > 0

near t = 0, which implies (a).

As for (b), similarly to the proof of (a), vt is decreasing. Hence ^ > 0 near t= oo

in view of ί;>0 near t= oo. Thus we get (b).
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We obtain (c) by the positivity and the monotonicity of vt.

Finally we show (d). We obtain (2.1) for / with vt(t)Φ0 by differentiating (2.2) and

using (1.1). On the other hand, P(t; v) is written as

P(t; υ) = ̂ —- t\ φJFito-V-Hϊzλ- φ(vt)v + tk(t)F(v).
m m

We see that P{t; v)eC1 by virtue of φ{vt)eCι. Thus (2.1) holds for all t. •

Now we show several properties of solutions to (P), (Pα) and (P^).

PROPOSITION 2.1. Suppose that (/.0) and (/c.O) hold. Let v(t) be a solution to (P)

satisfying (1.4) and (1.5). Then υ(t) is classified into one o/type R, type S and type O at

t = 0, and v(t) is classified into one o/type R, type S and type O at t— oo. Moreover, the

following hold.

(a) Ifv{t)>0 (resp. v(t)<0) near t = 0, then (v(t)t~l)t<0 (resp. (v^Γ^^O) near

t = 0. In particular, ifυ(t)>0 on (0, oo), then (ι;(ί)ί~*),<() on (0, oo).

(b) If liniί! o v(t) = 0 and v(t) Φ 0 near t = 0, then tvt(t) -> 0 as 110, and
/ \ / (* 1 \

lim — — = limvt(t) = φ~1ί φ(vt(l))+ k(s)f{v(s))ds ).
ί|0 t ίjO V Jo /

(c) Suppose that J* φ~x(J^ k(τ)dτ)ds = oo. If vΦO near t = 0, ί/zew tw,>0 near t = 0.

(d) Suppose that $f k(τ)\f(cτ)\dτ =oo for any cφO. If v(t)Φ0 near f=oo,

(2.5)

REMARK 2.2. If vt(t)φ0, then vtt(t) exists and

k(t)f(υ) k(t)f(v)

φ'(υt) (m-ί)\υt

ιm-2

REMARK 2.3. If v(t) = O, then ι; ί(ί)^0. This comes from Lemma A.2 in the

Appendix.

PROOF OF PROPOSITION 2.1. To prove (a), (b) and (c), we may assume that t;>0

near t = 0 since υf(v)>0 for vφO. Then

(2.6) φ'(vt) — it2 — —\[> = tφ\vt)υtt=-tk(t)f(υ)<0
dt I dt \t ))

by (1.1), t\vjt)t is monotone decreasing and t2(v/t)t>0 or t2(v/t)t<0 near t = 0.

Now we prove (a). Suppose that v(t)>0 and t2(v/t)t>0 near / = 0. Then there exist

c>0 and t*>0 such that t2(υ/t)t>c for ίe(0, ί*]. Hence we have

f(ί*) ι;(ί*) ι (ί)

as /-•O. This is a contradiction. Thus the first part of (a) is proved. The second part
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is proved in a similar way.

As for (b), it follows from the assumption l im r i O f(ί) = 0 that vt(t)>0 near / = 0.

Combining this with (a), there exists ^ > 0 such that 0<tvt{t)<v(t) on (0, ί j . Since

υ -• 0 as 110, tvt -» 0 as t J, 0. The last part of (b) comes from LΉospitaΓs rule and (1.1).

Next we prove (c). It follows from (2.6) that vt never vanishes near t = 0. If vt<0

in an interval (0, t{] with some tί>Q, then there exist constants c>0 and f # > 0 such

that v(t)>c on (0, t^]. Hence we see from (/.I) and the assumption on k(t) that

Γ Γ k(τ)f(v)dτ

P -if p* \
~vt* ~ I φ \Vtt* c js 7

as t[0. This is a contradiction. Thus ^ > 0 near t = 0.

As for (d), we may assume that v>0 near t= oo. It follows from (2.6) that (v/t)t>0

or (ι;/ί)ί<0 near t= oo. If the former holds, then there exist (5>0 and 7\ > 0 such that

ιVί>(5>0 on [7\, oo). Integrating (1.1) over [7\, ί]> we have

k(s)f(v)ds>

as / -^ oo by assumption. This is a contradiction. Thus the latter holds.

Finally we prove the classification of solutions. Let v be not of type O. We may

assume that v(t)>0 near t = 0. Then we have (v/t)t<0 near t = 0 by (a). Hence lin^^0 v/t

exists or liπ^ 1 0 i /ί = oo. Thus v(t) is of type R or type S. We can also obtain the

classification of solutions near t= oo in view of (b) of Lemma 2.1. •

As for (Pα) and (P^), we have the following propositions in view of Lemma 2.1.

PROPOSITION 2.2. Suppose that (/.0), (k.Q) and (k.l) hold. Let v(t) be a solution to

(Pα) satisfying (1.4) and (1.5). Then the following properties hold:

(a) limf_>QOι;f(ί) = 0.

(b) vt(t) = φ~ x(Jj00 k(s)f(v(s))ds).

(c) v(t) is increasing near t=co and J J° | vt(t) \dt< oo.

(d) v(t) is a solution to (Pα) satisfying (1.4) and (1.5) if and only if v(t)e

C((0, oo))nL°°(l, oo) satisfies

\{τ)f{v{τ))dτ\ds.

PROPOSITION 2.3. Suppose that (/.0), (A .0) β«ίi (fc.2) hold. Let v(t) be a solution to

(Pβ) satisfying (1.4) and (1.5). 77ze/z the following properties hold:

(a) ίyθ) = j8.

(b) Ifvt(t)φ0on (0, τ ύ for some τx>Q, then for
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[* sk{s)f{ΰ)
2 I ,~x d S '

t2 Jo ψiPt)
(c) tf(ί) w increasing near t = 0 αra/ JQ | fJf |Λ< oo.
(d) ΰ(t) is a solution to (Pβ) satisfying (1.4) and (1.5), if and only if veC((0, oo))

v(t) =
J o V " J o • " • " ' /

3. Proof of Theorem 2. In this section we give a proof of Theorem 2.
(i) Employing the idea of the proof of Theorem 2.2 of [11], we will prove (i) by

contradiction. We may suppose that v>0 near t = 0. Since (ι;/ί)t<0 near t = 0 by (a) of
Proposition 2.1, we have tvt(t)<v(t) on (0, ί0) and v>ct on (0, t0) for some to>0 and
c>0. We note that f(v) and f(v)/vq are increasing in i;>0 for some q>m — 1 by virtue
of the assumption (/.I). Integrating (1.1) over [ί, ί0], we have

ί
ίo Γίo

k(s)f(v)ds > φ(vt(t0)) + k(s)f(cs)ds ,

which implies that φ(t;ί(ί))>0 near t — 0 by assumption. Hence we have

(3.1) 0<ίι; ί<t; in (0,^)

for some tί >0. Thus we get

g —m+l
(3.2)

(ct)q cq

by (1.1), (3.1) and the monotonicity of f(v)/vq. Integrating (3.2) over [ε, /] and letting
ε -• 0, we obtain

(m—l)cq Γί

^-(φW0))^ / ( m - 1 ) + 1 > «s)f(cs)ds= co
q-m+l Jo

by assumption. This is a contradiction. •

(ii) We prove (ii) by contradiction. Suppose that #>0 on [Γo, oo). We note that

vt(t) >0 on [Γo, oo)

by (b) of Lemma 2.1. Integrating (1.1) over [ί, T\ (<=[Γ0, oo)), we have

(3-3)
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The right-hand side of (3.3) yields

#) T LJ
φ(vt(T)) | yfflt)) ^ φ(vt(t))

f(v(t)) f(v(t)) ~f(v(T0))

for some q>m — \ in view of the assumption (/.I). Using the above inequality in (3.3)

and letting Γ-> oo, we have

(3.4)

where c = φ ι(v{T0)
qlf(v{T0))). Integrating (3.4) over [Γ o, oo), we have

This is a contradiction. •

4. Proof of Theorem 3. (i) For simplicity, we put μ = μ(q1). We note that μ> 1

since ^ x > 1 from (/.I).

By assumption, there exist sufficiently small numbers εe(O, μ— 1) and / * > 0 such

that

(4.1) ^L + μ>£ on (0, ί*).

By (d) of Lemma 2.1 and the definition of qγ we have

(4-2)

k(t)

Now we suppose that v has infinitely many zeros on (0, t*) and let {tj} be a sequence

of zeros of υ with 0 < < tj< • • • < t2 < tγ < t *. Integrating (4.2) over [/,-, ί 0 ] , we have

ε k(τ)F(υ)dτ < P(t0; υ(t0)) - P{tf v(tj)) < P(t0; v(t0)),
Jtj

since P(ί;-; υ(tj)) = {{m-\)lm)tj\υt{tj)\m>0. Letting tj J.0, we have

f
Jo
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which implies that

(4.3) k(τ)f{v)vdτ< oo

in view of (/.2). Now let ξ<t0 be a point such that v(ξ) = γ>0 and vt(ζ) = O, and let

z < £ be a zero of υ such that v>0 on (z, {] and ι;(z)=0. Integrating (1.1), we have

(4A) »(t) = y - 9~M k{τ)f{v{τ))dτ\ds.

We see from Holder's inequality, the boundedness of f{v)/υq and (4.3) that

i Cζίυf(v)\m/iq+1)

k{τ)f{v)dτ=\ ( )

(4.5)
/ fξ \ml(q+l)

where
γq-m+ί)/(q+l)

\Cx = \ sup ^ i ^ ^ { k(τ)vf(v)dτ

Moreover, we have

{f-βΛ(ί)} t>0 on (0,ί0)

by (4.1). Thus we get

ί°k(τ)dτ<
μ — ε—l

by noting ε — μ< — 1, where C2 = (t0)
μ~εk(t0). Hence we have

to \m/(q+iy

k(τ)dτ

for some positive constant C 3 independent of t. Consequently, we obtain

0 = ϋ(z) = y - I φ " 1 ^ I

from (4.4) and (4.5), where C 4 is a positive constant independent of γ and z. If z > 0 is

small enough, we get a contradiction. •

(ii) We can show (ii) by an argument similar to that of (i). •

5. Proof of Theorem 5 (i), (ii). The purpose of this section is to prove (i) and

(ii) of Theorem 5, in which the special case f(u) = \u\q~1u is treated.
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Before giving the proofs, we state characterization of solutions in terms of the

Pohozaev identity.

LEMMA 5.1. Suppose that (/.0), (/c.O), and (kΛ) are satisfied. Then for any solution

v(t; α) to (Pα), there exists a sequence {Tj} such that Γ, -> oo, Tjk(Tj)^>0 and P(Tp v)-+0

as j -* oo, where P(t; v) is defined by (2.4).

PROOF. By using (fc.O), (kΛ) and (c) of Proposition 2.2, we get k(t) + \ vt | e L ^ l , oo).

Thus we can choose a sequence {Tj} such that Γ, -> oo, 7^(7}) -•() and Tj | vt(Tj) | ->0

as j -• oo. Hence we have ^(T^ ; )̂ -• 0 as j -> oo. •

The following characterizations of solutions to (Pα) in terms of P(t; v) are useful.

PROPOSITION 5.1. Suppose that (/.O), (/.I), (/c.O) and (kΛ) are satisfied. Then the

following hold:

(a) Ifv = v(t;oc) is tf/type R, then there exists a positive sequence {tj} such that

tj->0 and P(tj\ v)^0 asy-> oo.

(b) Ifv = v(t; α) is tf/type S and vvt>0 in a neighborhood oft = 0, then there exists

a positive sequence {ij} such that ij^O as j ^ oo and P(ΐf9 v)<Ofor every j .

(c) Ifv = v(t;oή is of type O, then there exists a positive sequence {tj} such that

tj -• 0 0S y -• oo and P(tf, v) > 0 for every j .

PROOF. If v = v(t; α) is of type R, then it follows from (b) of Proposition 2.1 that

L

k(s)f(v)ds < oo .

Moreover, by (/. 1), we have F(v) < vf(v) for v > 0. Because v is of type R, we have v(0) = 0

and there exists ε o > 0 such that v(t)< 1 on [0, ε 0 ] . Hence we have

°k(s)F(v)ds<
Jo Jo

εo

k(s)f(v)ds < oo .

Thus there exists a positive sequence {tj} such that f/-»0 and tjk(tj)F(v(tj;oί))^O as

j->ao. On the other hand, using (b) of Proposition 2.1 we have

lim I vt Γ"2v t{ - tvt + v} = 0 .

This implies that P(tf, v)-*0 asy-^ oo, and (a) is proved.

As for (b), we may assume that i;>0 and ^ > 0 near / = 0. The other case is proved

in the same way. If />0 is sufficiently small, we have
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P(t; υ) = ̂ —^- t2φ(υt)(~ ) +t(k(t)F(v))
m \t

i ,2,Jt2φ(v,)[-
m \t Λ f(v)

tF(v)

= tvφ(vt)

t Λ f(v)

m-\ (v/t), F(v) (φ(v,))t

m (υ/t) f(v)v φt)

'\m (v/t) f(v)v v,

by (1.1) and the definition of φ. From (/.I), there exists q>m— 1 such that

F(υ) < 1

f(v)v q + ί

Noting that vtt<0 near 7 = 0 by (2.5), we have

P(t; v)<(m- ί)tvφ(υt) — \— log! — ) —
dt {m "\tj q+ί

= {m-l)tΌφt) — \( )log(—j+—1-logl
Λ IVm « + l / Vί/ 9+1 Vί»,

By (a) of Proposition 2.1, we get

for small ί > 0. Since u is of type 5 and q+l>m, we obtain

log — + -log — U oo
\ t j +l \ t j

log + l o g
m q + lj \tj q+l \tv

as 110. Thus we can choose a sequence {?,-} such that ?j->0 as j-+oo and Ẑ ίy, ι;)<0

for all j. The assertion (b) is proved.

Finally, let v = v(t; α) be of type O and let z/α) be the7th zero of ι;(ί; α). If φ 7 (α); α) =

0, then vt(Zj(oL); a)/0 by virtue of Remark 2.3. Then

P(zj(oc); φ / α ) ; α)) = ̂ - z/α)| vt | " > 0 .

Thus (c) holds by taking tj = zj(<x). •



16 Y. KABEYA, E. YANAGIDA AND S. YOTSUTANI

PROOF OF THEOREM 5 (i). Consider the case G(t)>0. If v>0 on (0, oo), then we
have ^ > 0 on (0, oo) by (b) of Proposition 2.2. Thus there exist c>0 and τ>0 such that

P(t;v) = G(t)\v\q+1+(q+l) G(s)\v\q-ιvvtds>c

for t e (0, τ] in view of the assumption on G. Hence v can be neither of type R nor of
type S. Thus v must have a zero on (0, oo).

Now we consider the case Gr(ί)<0 and Gt is not identically equal to zero. It follows
from (2.3) and Lemma 5.1 that P(t; v) is non-increasing and not identically equal to
zero. Thus there exist δ and τ>0 such that

(5.1) P(t;v)>δ on (0, τ).

Hence v is not of type R by Proposition 5.1. On the other hand, Gt<0 implies that

tk
— - < - μ on (0, oo).

k

Thus we get

k(t)>cΓμ on (0,1]

with some constant c>0. Hence we have

φ-'ί Γk{τ)dτ\>φ-\c)φ-4 ['τ^dλ^φ-
\J J \J J

which implies that

φ~H \ k(τ)dτ)ds=oo
Jo VJs /

in view of (μ — 1 )/(m — 1) = (q + 1 )/m > 1. By (c) of Proposition 2.1, if v Φ 0 near t = 0, then
i;ι;f >0 near t = 0. Thus v is not of type S by virtue of (5.1) and (b) of Proposition 5.1.
Consequently, v must be of type O. •

PROOF OF THEOREM 5 (ii). Suppose that v has a zero. Let z be the largest zero of
v. It holds that vt>0 on [z, oo) by (b) of Proposition 2.2. Hence we see from the
assumption G<0 that

•ίP(z;v) = (q+1) G(s)\ vf'hv^sKO,
J

which contradicts P(z; v) = (m—l)zn\vt \m/m>0. Therefore we have v>0 and ι;,>0 on
(0, oo). Thus there exist (5>0 and τ>0 such that, for any te(0, τ),



SINGULAR INITIAL VALUE PROBLEMS 17

t,v) = G(t)\v\q+1+(q+l) G{s)\υ\q-ιυυtds
J

-Γ G{s)\v\q-ιυvtds<-δ<Q

in view of the assumption that G < 0 and G is not identically equal to zero. By Proposition

5.1, v is neither of type R nor of type O. Hence v must be of type S. •

6. Proof of Theorem 5 (iii), (iv). In the case m = 2, we can obtain (iii) and (iv)

of Theorem 5 by virtue of (i) and (ii) of Theorem 5 and the Kelvin transformation

W(s) = υ(t)/t and s = \/t. However, in the case mφl, the transformation does not work

well. Thus we need the following proposition similar to Proposition 5.1.

LEMMA 6.1. Suppose that (/ 0), (/.2), (fc.O), and (fc.2) hold. Then for any solution

v(t; β) to (Pβ), there exists a positive sequence {ε7-} such that ε,—•(), εJ fc(εJ )/Γ(t;(εJ ))->0,

and P(εy, v) -»0 as j-> oo.

PROOF. Let H>(r) = t;(i)/i. From (/.2), we have

k(t)F(ϋ)<k(t)tI w/(rw) I <Mtk(t)\ f(Mt) I

near ί = 0, where M = s u p ί 6 [ 0 , i ] | w(ί)|. Using (k.2), we have /c(ί) |/(M0|eL 1(0, 1), which

implies k(t)F(v)eLl(0, 1). Thus, we get k{t)F(v) + \ ϋt \ eL^O, 1) by virtue of (fc.O), (fc.2)

and (c) of Proposition 2.3. Thus there exists a positive sequence {ε7} such that ε7 ->0,

εJ fc(εJ )F(i;(εJ )) -• 0 and ε7-1 vt(εj) \ -> 0 as 7 -• 00. Hence we have P(ε7 ; ϋ) -• 0 as j -• 00. •

Similarly to Proposition 5.1, there are characterizations of solutions at ί = 0.

PROPOSITION 6.1. Suppose that (/.0), (/.I), (/c.0), and (k.2) hold. Then the following

hold:

(a) If v = v(t; β) is of type i?, then there exists a sequence { Tj} such that Tj —• oo

j

(b) Ifv = v(t; β) is o/type iSαm/ί lί / f ^ O near t=cc, then there exists a sequence

{fj} such that tj-* oo as j - * oo tfttd P(tj', v)<Ofor every j .

(c) Ifv = v(t;β) is of type (5, //ze« //zere exists a sequence {fj} such that fj->ao

as j—> oo β«ί/ A?}; v)>0 for every j .

PROOF. By (2.10), we have

φ(vt(t)) = φ(β)-Ϊk(s)f(v)ds,
Jo

which implies that

™ k(s)f(v)ds =
o
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by (c) of Lemma 2.1. On the other hand, from (b) of Lemma 2.1 and the fact that v is

of type R, we have

vt \ds = vtds = lim v(t) - v(T) < oo
T JT ί-*00

for some Γ > 0 . Hence we can choose {Tj} with Tj-* oo a s 7 ^ 00 so that

^ 0 and T;vt(Ti:β)^0

as j —• 00. Consequently (a) is proved.

As for (b), suppose that v(t)>0 near t=co. We see from (b) of Lemma 2.1 that

vt(t)>0 near t= 00. By assumption we have

near t= oo, which implies

(6.1) 0<
ΰ(t)

near ί = oo. Thus, we have

P{t; ΰ) = -Hlzλ φ(ΰjχ _ fy + ΰ) + tk(t)F(v)
m

φ(ΰt)(-tΰt + ΰ) + t ^ - k(t)f(v)
m " ' ' f(v)

L 11;,Γ"2v,(~tϋt + v)-(m-l)tF^\v\">-2v
m f(v) '

= — (m — 1)I vt \
m~ 2v( — tvt + ί

ϋ f(ΰ)v —tvt

by (2.5). From (/.I), there exists q>m — 1 such that

/(0)ΰ q+ί

Noting that — tvt + v>0, we have

+ i ^ i o g i
v J at lm q+\

ϋ J dt l\m q+\ ) q+\ \ v
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From (6.1), 1/m— l/(q+ l )>0 and l i rn,^ z;(ί)=oo, we can take a sequence {7}}

with 7}-> oo as7-* oo such that P(fy; t;)<0 for all/

The proof of (c) is similar to that of Proposition 5.1 (c). •

PROOF OF THEOREM 5 (iii). Consider the case H(t)>0 on (0, oo). Suppose that

v(t;β)>0 on (0, oo). Then we have (φ(vt))t<0 on (0, oo) by (1.1). Thus φ{ΰt) is strictly

decreasing and φ(vt)>0 on (0, oo), which implies vt>0 on (0, oo). Then by (b) of

Proposition 2.3, {v/t)t<0 on (0, oo). Hence by the assumption H>0, there exists a

constant c>0 such that

— )ds>c>0

near t= oo. Consequently, v(t; β) is neither of type R nor S by Proposition 6.1. Thus v

has a zero on (0, oo).

Consider the case Ht(t)>0 and Ht is not identically equal to zero. It follows from

(2.3) and Lemma 6.1 that P(t, v) is non-decreasing and P(t; v)>0 and not identically

equal to zero. Thus there exist δ>0 and Γ>0 such that

(6.2) P(t;v)>δ>0

on (Γ, oo). Hence v is not of type R by (a) of Proposition 6.1. On the other hand,

Ht(t)>0 implies that k(t)>ct~μ on [1, oo). Hence, we have

sqk(s)ds>c s
Jo Jo

in view of — 2 + (g + l)/m> —1. Therefore we get ΰ{v/t}t<0 by (d) of Proposition 2.1.

Hence ϋ is not of type § by (6.2) and (b) of Proposition 6.1. Consequently ϋ is of

type O. M

PROOF OF THEOREM 5 (iv). Suppose that v(t; β) has a zero. Then there must exist

a critical point. Let z0 be the smallest critical point of ϋ. Then we have

1
P(z0; v) = zok(zo)I v(z0; β)\q + 1>0.

On the other hand, we get

(*z

lyZβl V J == ZQ JJL \ZQ)I V I yq -r 1 ) I -ti yt)

Jo
by H(t)<0 and (b) of Proposition 2.3. This is a contradiction. Hence v has no critical

point on (0, oo) and thus tf^O on (0, oo) by vt(0) = β>0. Consequently, v>0 on (0, oo).

Thus there exist δ>0 and Γ>0 such that, for any te[T, oo),
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= Γ<q+1)H(t)\v\q+ί-(q+l) H(s)
o

V

s
-\ds

<-(q+\)\ H(s) — )ds<-δ<0

in view of the assumption that H<0 and His not identically equal to zero. By Proposi-

tion 6.1, v can be neither of type R nor type O. Consequently, v is of type S. •

Appendix. Here we give the outline of the proofs of Theorems 1 and 4 since they

are based on a standard argument. See Coίfman-Ullrich [2] and Kitano-Kusano [9].

LEMMA A. 1. Suppose that (/.0) and (fe.O) hold. Then for any tί>0 there exists ε > 0

such that (P) has a unique solution satisfying (1.4) and (1.5) on [t^—ε, tx + ε] .

To show the global existence of solutions, we need a priori estimate. We put

m

LEMMA A.2. Let v(t) be a solution to (P). Then it holds that

E(t) < E(t0) expf - ίί0 min jo, ~^\ds) t e (0, ί0] ,

<^i)expί Γ maxjo, ^ ( |-Ids) te[tθ9 oo)

and

for any t0 > 0.

Now we consider (Pα). We see the following fact by (c) of Lemma 2.1.

LEMMA A.3. Suppose that (/.0), (fe.O) and (fe.l) hold. Then the following conditions

are equivalent.

(i) v is a solution of(PJ satisfying (1.4), (1.5).

(ii) ve C((0, oo)) n L°°(l, oo) satisfies

ι;(ί; α) = α - φ
Jί

We obtain the following lemma similar to Lemma A.I.

LEMMA A.4. Suppose that (/.0), (fe.O) and (fe.l) hold. Then there exists To>0 such

that (Pα) has a unique solutions on [JΓ0, OO).

On the other hand, we consider (PΛ



SINGULAR INITIAL VALUE PROBLEMS 21

LEMMA A.5. Suppose that (/.0), (/c.O) and (/c.2) hold. Then the following conditions

are equivalent:

(i) v is a unique solution of(Pβ) satisfying (1.4), (1.5) with v = v.

(ii) ve C((0, oo)) satisfies

v(t; β)=ίφ-1L(β)-fk(τ)f(ϋ(τ; β))dτ)ds .

LEMMA A.6. Suppose that (/.O), (k.O) and (k.2) hold. Then there exists to>0 such

that (Pβ) has a unique solution on [0, / 0 ] .

Now we are in a position to prove Theorems 1 and 4.

PROOF OF THEOREM 1. By Lemma A.I, (P) has a local unique solution satisfying

(1.4) and (1.5). The solution can be uniquely prolonged to (0, oo) by Lemma A.2. Thus

the existence and the uniqueness of solutions are proved. •

PROOF OF THEOREM 4. The local solvability and uniqueness of (Pα) (resp. (P^)) are

ensured by Lemma A. 1 and Lemma A.4 (resp. Lemma A. 1 and Lemma A.6). The global

solvability is obtained by Lemma A.2. •
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