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Abstract. Using the functional equation of the local zeta function attached to the

quadratic form due to Rallis and Schiffmann and the ί-representation introduced by

Bikulov, we obtain an asymptotic expansion of the Green function defined on the

even-dimensional space of/7-adic numbers.

Introduction. Let Q be the field of rational numbers, and p a fixed prime number.

The completion of Q with respect to the /?-adic norm gives the field of/?-adic numbers

Qp. Any xeQp can be expressed as x=pvΣ7=oajPJ with integers a^ satisfying

0<<2j<p— 1, apΦ0. To define the Fourier transform, the standard character χp(kx) =

Qxp(2πί{kx}p) is used. Here {x}p=pvΣj=o * ajPj is the decimal part of a/?-adic number

x. We use the theory of C-valued distributions on Qp. For example, the distribution

I x \a

p9 (α e C) and the /7-adic Dirac (5-distribution δ(x) are defined. Their Fourier trans-

forms are

\x\«pχp(kx)dx = Γp(oι+l)\k\;«-1 and ί δ(x)χp(kx)dx = 1,
QP JQP

where Γp(ct) = (\—p(ι~i)l{\—p~<x) is the/?-adic Γ-function and dx is the Haar measure

on Qp such that the volume of the unit ball {x e Qp \ \ x \p < 1} is 1.

The ^-dimensional ^-adic space Qp has the standard norm | x | p = max 1< 7 < n | x J |p,

x = (xu ...,xn)eQp. The Fourier transform is defined with respect to the character

χp{(k,x)) = Y[n

j=ίχp(kjXj), where (fc, x) = £" = 1 &A-. We consider a propagator which is

the inverse Fourier transform of a kinetic operator ( Π + ^ 2 ) , meR. We have the

following possible choice of the scalar propagators in Qp:

(1.1)

' \ k 1 \ 2

p + - +\kH\2

p + m 2 ' \k\2

p

w h e r e k e Q n

p a n d \ k , m \ p = m a x ( | k \ p 9 \ m \ p ) .

In the one-dimensional case, the second, third and fourth propagators coincide; it

is this version that was applied in quantum mechanics [8]. In the massless 2-dimensional

case, the fourth version was proposed in [5], using another ̂ -adic norm | k \p: = | Σj^j \p

The fifth version was calculated in [7]..
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In particular, the second version was proposed for /7-adic quantum field theory:

Let Ap be Vladimirov's operator in [8], which is defined by

(1.2) (Δ,φXx) = \(k, k) | Λ ((/c, x))φ(k)dk , φ e S{Qn

p) ,

where S(Qp) is the space of Schwartz-Bruhat functions on Qp and φ is the Fourier

transform of φ. Vladimirov and Volovich [9] proposed the Green Function G(x) that

satisfies (Ap + rn2)G(x) = δ(x):

(1.3) G(x)=\ Jfϊf 2dk, meR>0.
J \(K k)\ + 2\p

The properties of the Green function for n= 1 are studied in [8]. Since

1

)=lim ί Zp((fc,χ))(lim Γexp(-m20-|(/c, k)\pθ)dθ)dk .

exp(-m2θ-\(k,k)\pθ)dθ, θeR>0,

we have

G(x)

Since \χp{{k,x))faexp(-m2θ-\(k,k)\pθ)dθ\<\/(\(k,k)\p + m2)eL\(p-NZp)
n), by

Lebesgue's theorem and Fubini's theorem, we obtain

G(x) = lim exp( - m 2Θ)\ χp((k, x)) exp( -1 (k, fc) |p0)dfcd0 .

Expanding exp( — | (k, k) |p0) into the Taylor series and using Weierstrass' criterion, we

obtain

(1.4) G(x) = ̂ lim^ Γeχp(-m2θ) f ^ ί z ^ l Q \(k,k)\p)

For convenience, we put

(1.5) J=J(cc, ή)= I(k, k) |*χJ(k, x))dfc.

Bikulov [1] studied the properties of the Green function for n = 2 and p>3 by

calculating (1.5) in a new method (he call it the t-representatίoή). More generally,

Kochubei [4] introduced the Green function of the pseudodifferential operator with

the symbol |β(f)IJ> where α > 0 , pφl, and Q(ξ) = Q(ξι,..., ξn) is a nondegenerate

quadratic form on Qp with coefficients in Qp that satisfies the condition

(1.6) <2(<D*o if \ξί\p+ -+\ξn\p*o.
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It is given by the inverse Fourier transform of the function (Q(ζ)Λ-λ)~1, λeR>0.

However, as is well known, quadratic forms that satisfy the condition (1.6) exist only

for n<4. Thus he gave the asymptotic expansion of the Green function (1.3) for n = 2

and n = 4.

On the other hand, Rallis and Schiffmann [6] investigated a distribution

,oc)= f φ(x)χ(Q(x))\ Q(x) Γn/2dx ,
J E

where αeC, E is an ̂ -dimensional vector space over the local field K of characteristic

different from 2, Q is the quadratic form on E, and χ is a unitary character of

K* = K\{0}.

In this paper, using the functional equation (2.11) of the local zeta function

ZQ(φ,χ,s), we calculate (1.5) for any even dimension n and prime number p>3.

Furthermore, using the ^-representation, we directly calculate (1.5) for any even

dimension n andp = 2. By using the results of (1.5), we obtain an asymptotic expansion

of G(x) for any even-dimensional space. In §2, we summarize the fundamental properties

of the local zeta function. We prove the main theorems in §3 and §4.

In the original manuscript, the author used the method of ^-representation and

proved Lemma 3.3 by estimating a complicated integral. Then, Professor Fumihiro Sato

suggested to simplify the proof by using the local functional equation of the prehomo-

geneous vector space. His advice gave a new proof of Lemma 3.3, a nice perspective

and the possibility of a generalization. The author is very grateful to Professor Sato.

Finally, thanks are due to Professor Yasuo Morita for invaluable advice.

2. The functional equation of the local zata function. In this section, we summarize

well-known classical results on the local zeta function attached to a quadratic form.

For the proofs and more details, see [2], [6] and [11].

Let G be a locally compact abelian group and G* the Pontrjagin dual of G. For

xeG and x* e G*, we write <x, x*> = x*(x). Let dx be the Haar measure on G and dx*

the Haar measure on G* which is dual to dx. A continuous mapping φ from G to the

group T= {zeC\\z\ = \} is a quadratic character of G if the mapping

(2.1) (x,y)^φ(x + y)φ(x)-1φ(yy1 , x,yeG

is a bicharacter of G x G. Then we can put

(2.2) φ(x + y) = φ(x)φ(y)<x, py} ,

where p = pφ is a symmetric continuous homomorphism of G to G*. The quadratic

character φ is nondegenerate if p is an isomorphism of G onto G*. If φ is nondegenerate,

the modulus \ p \ of p is defined by the formula
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(2.3) | p | I u(px)dx = u(x*)dx*, ueL\G*).
JG JG*

Note that the modulus of p depends on the choice of dx.

Let Λ(G) be the space consisting of continuous functions u in Lι(G) such that the

Fourier transform ύ is in //(G*).

THEOREM 2.1 (cf. [11, p. 161], [2, p. 95]). If φ is a nondegenerate quadratic

character of G, then there exists a complex constant r(φ) of modulus 1 {called the Weil

constant) such that

(2.4) φ(x)ύ(px)dx = r(φ)\p\~ι/2 φ(x)u(x)dx , for any ueΛ(G).
J G J G

This means that the Fourier transform of the quadratic character φ is
r(ψ)\ PI ~ ί/2φ(x)' From now on, we choose the unique Haar measure dx such that | p \ — 1;

this measure is said to be adapted for φ. We identify G with G* by means of p.

PROPOSITION 2.2 (cf. [11, p. 170]). Let Gλ (resp. G2) be a locally compact group

and φ^resp. φ2) a nondegenerate quadratic character ofG1 (resp. G2). Then the mapping

is a nondegenerate quadratic character of Gγ x G2, and r(φγ ®φ2) = r(φι)r(φ2).

Now, let K be a local field of characteristic different from 2, and τ a nontrivial

additive character of K. Let E be an ^-dimensional vector space over K, and E* the

algebraic dual of E. If Q is a nondegenerate quadratic form on E, then τ ° β is a

nondegenerate quadratic character of E. Let B(x, y) = {Q(x + y) — Q(x) — Q(y)} be the

nondegenerate symmetric bilinear form associated with Q. Then the isomorphism p of

E onto E* with respect to τoQ is defined by (x, py) =τ(B(x, y)). Let dx be the Haar

measure on E which is adapted for τ o Q. Then the Fourier transform is defined by

(2.5) ύ(y)=\ u(x)τ(B(x, y))dx, ueL\E).
JE

By Theorem 2.1, there exists a constant r(Q) = r(τ°Q) such that

(2.6) ύ(x)τ(Q(x))dx = r(Q) \ u(x)τ(-Q(x))dx .
JE JE

This formula is valid for any UGΛ(E) and, in particular, for any Schwartz-Bruhat

function u on E. The constant r(Q) depends on the choice of τ. Let ( , ) H be the Hubert

symbol. If we put

then a\—>ha is an isomorphism of the finite abelian group K*/(K*)2 onto its dual. We
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can find a coordinate system on E such that

(2.7) Q{x) = aιx
2

ι + • + anx
2 (ajeK*9j=l9..., ή).

Suppose Kis ultrametric. Then the quadratic form Q is characterized by three invariants:

The dimension n, the discriminant D = aί an(K*)2 and the Hasse-Minkowski

character Y\k<j(aki dj)H. We put Δ = (— l) [ n / 2 ] A where the symbol [x] denotes the

greatest integer not exceeding x. By Proposition 2.2 and (2.6), we have the following

proposition.

PROPOSITION 2.3 (cf. [6, pp. 499-504]). Let q(x) = x2 be the quadratic form on K\

put f(a) = r(aq)for asK*\ and let Q be as in (2.7). Then we have:

( i ) φ(χ)=f(χ)/f(l) is a nondegenerate quadratic character ofK*/(K*)2 associated

to the isomorphism a\—>ha;

(ii) (d
(iii) r(Q)=f(lΓ1f(D)Y\k<j(ak, aj)H.

For teK*, we calculate the number r(tQ). As a function of ί, r(tQ) is invariant

under the subgroup (K*)2 of K*. Thus we can put

(2.8) r(tQ)= Σ βJίQMt), (βa(Q)eQ.
aeK*l(K*)2

PROPOSITION 2.4 (cf. [6, p. 505]). If K is ultrametric, then we have

( r(Q)hΔ{t) if n is even
(2.9) r{tQ) = { r(Q)r(φ)f(l) Σ IWAMt) if n is odd.

v. aeK*/(K*)2

Let χ be a unitary character of K* and α a complex number. For φ e S(E), we

define the local zeta function ZQ(φ, χ, α) by

(2.10) ZQ(φ, χ, α)= ί φ(x)χ[Q(x))\ Q(x)Γn/2dx .
JE

THEOREM 2.5 (cf. [6, p. 521]). The integral (2.10) is absolutely convergent for

Re(α)>0 (resp. Re(α)>π/2—1) if Q is anisotropic (resp. if Q is isotropic). Further, as a

function of a, ZQ(φ, χ, α) has an analytic continuation to a meromorphic function on C,

and satisfies the functional equation

(2.11)

ZQ(φ, χ, α) = p(χ, α - n/2 + 1) Σ βJίQM ~ l)p(χAβ, oc)ZQ(φ, χ " % \n/2-oc),
aeK*/(K*)2

where βa(Q) is defined in (2.8) and p(χ, α) is the gamma factor of Tate. Hence for all

φεS(K), we have
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(2.12) φ{t)χ{t)\t\*d*t = p{χ,a)\ φ(t)χ-1(t)\t\1-"d*t, 0<Re(α)<l.
J K* JK*

3. Calculation of J=J(oc,ή) for an odd prime p. In this section, we use the

functional equation of the local zeta function and calculate /. From now on, we choose

the standard quadratic form Q(x) = (x, x) on Qp, and apply the results of the preceding

section.

For a unitary character χ of β * and a test function φeS(Qp), the local zeta

function ZQ(φ, χ, α) is given by

(3.1) ZQ(φ, χ, α) = f φ(k)χ((k, k))\ (fc, k) \p'
nlldk .

J{*eQ;|(k,fc)*O}

When χ is trivial, we simply write ZQ(φ, α). For any integer TV and yεQp, let chN y(k)

denote the characteristic function of y + (p~NZp)
n. Fix an element xeQl and put

(3.2) Ψ

Then φNtX(k) is in S(Qp) and we have

(3.3) / = / ( α , n) = ZQ(ψNtX, α + n/2).

By the functional equation (2.11), we have

(3.4) 7=p(l,α+l) Σ βa(Q)K(-l)p(ha,a + n/2)ZQ(ψN,x,K\ - α ) .

Note that

Hence we have

zQ(ψN,x, K\ -«) = ί ΦNΛQK\(K k))\(K k)\;«+*ι»dk
J{keQ"p\(k,k)ΦO}

\{K k))\(K k)\^

=PnN K \(K k))\ (k, k) \^
J{ke-x + (pNZpr}

= ha((x, x))\{x, x)\~(α+π/2) for any Â  sufficiently large .

On the other hand, by calculating (2.12) for the trivial character χ, we easily obtain

l, α + l) = Γ p (α+1). Thus, for any TV sufficiently large, we have

(3.5) / = / > + 1 ) | (x, x)|;<«+»/2> X βa(Q)K(-(x, x))p(Λβ, α + n/2).
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PROPOSITION 3.1 (cf. [10, p. 130]). Letpφl and let ε be a unit, εφ(Q*)2. Then

hE(χ) = (x, ε)H = 1 if and only if v(x) is even ,

where \x\p=pΌ(x\ v(x)eZ.

PROPOSITION 3.2. For the trivial character χ, we have

(3.6) ^ ( O f c ) , !
I—I if p = 3 (mod4)

(3.7) «h-l9*)J
lil+p'-'W+p-") if p = 3 (mod*).

PROOF. Since p= 1 (mod4) if and only if — 1 e ( β * ) 2 , h_ί(t) = 1 and p(h-ί9 α) =

Γp(α). Assume p = 3 (mod4). If A_i(ί)=l, then te(Q*)2 and t = a2 + b2 for some

0j beQ*. Thus ίZo +^o Ξ 0 (mod/7)? i e., —1 is a quadratic residue modulo /?. Thus the

Legendre symbol (— l/p)=l. This is a contradiction. Hence A_ 1 (ί)=— 1. Next let

ga(t) = I ί I*" ̂ _ t(ί). Then ^α(ί) is a multiplicative character of Q* and is a homogeneous

generalized function of degree ga(t). Since ga(tk) = \t\; ̂ ^l/ήg^k) = \ t \;ah _ iίO^fc), the

Fourier transform ga of ga is a homogeneous generalized function of degree 111 ~α/i_ x(ί),

i.e., ga(k) is proportional to degree \k\~Cίh-1(k). Hence we can write

(3.8) Uk) = Γp(ga)\ k |;αA_ x(k) (Γp(ga) e C).

Putting k= 1 in (3.8), we obtain

Γp(ga)=-g«(l)=-\ g*(t)xfi)dt.

Since A _ 1 ( ί ) = - 1 for all teQ*, g^ή^-1 and by Proposition 3.1, we can write

In the formula (2.12), let φ(t) = χp(t)eS(Qp). Then

Ut)h-Mt\l~'d*t= ί χp(t)g-x+1(t)dt

= -(1+/>"*)/(!+Pα"1) ί χp{t)h_Mt\«pd*t.
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Thus p(Λ_l9 α)= - ( 1 + J p
α - 1 )/( l+p- α ) . •

Now we calculate J = J(oc, n). From (2.8) and (2.9), we observe the following: If n

is even, we have βa(Q) = O if a # Δ and jβΔ(β) = r(β), where Δ = ( - l ) " / 2 ; if « is odd, we

have βfl(β) = r(β)r(φ)/(l)/(αΔ), where Δ = ( - l) [ n / 2 ] . Thus, for any N sufficiently large,

(3.5) can be rewritten as follows: If n is even,

(3.9) J = r ( β ) / > + l)ftΔ(-(x, x))p(ftΔ, α + n/2)|(x,

if « is odd,

(3.10) J = Kβ) Kφ)Γp(α + l)ftΔ(-(x, x))p(ΛΔ, α + n/2)\ (x, x) \:(α+n/2) + Φ((x, x)),
p\ ' / ΔV V ' Λ / / r \ U Δ ' ' / /I V^' / \p

where

Φ((x, x)) = K 0 Hψ) - /U)Γp(α+1)|(x, x

x Σ /(flΔ)M - (x, x))p(K, * + nβ).
aeQ*p/(Q*p)

2;aΦA

By Proposition 3.2, we obtain the following lemma.

LEMMA 3.3. Let Q be the standard quadratic form (x, x) on Qp. For an arbitrary

oceC and any N sufficiently large,

(a) if either n = 0 (mod 4) or [n = 2 (mod 4) and p=\ (mod 4)], then

(b) ifn = 2 (mod 4) and p = 3 (mod 4), then

J(α, n) = r(Q)Γ p (α+l) < / _ ( . + M / 2 ) \(x,

For convenience, we denoted by Cond. 1 the condition either n = 0 (mod 4) or

[/2 = 2(mod4)and/?ΞΞl (mod 4)]; Cond. 2 the condition n = 2 (mod 4) and/?^3 (mod 4).

THEOREM 3.4. For any even dimension n andp>3, the Green function G(x) defined

by (1.3) has the following asymptotic expansion:

i C o n d l

\(x,x)\l+n/2

Γ T ^ Cond. 2 .

PROOF. Suppose that n and p satisfy Cond. 1. We substitute the formula (a) of

Lemma 3.3 into the expression for the Green function (1.4):

(3.11) G(x) = HQ) I exp(-m20) ξ i ^
J α=o α!
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For further simplification of (3.11), we substitute the following expansion

Γ p (α+l)Γ p (α + rc/2)= £ arp~nr/2[p~m — (l+pn/2~1)p~{r~1)a+pn/2~ίp~{r~2)cί] ,

where ar=
zYJj=0P

{nl2~l)\ into the expression (3.11). We can change the order of

summations because the double series of α and r are absolutely convergent. Thus we

have

exp(-m20) £ - ^

The above series converges uniformly, so that by term by term integration and passage

to limit, we obtain

Thus we have

lim

m

LAL P

Similarly, in the case Cond. 2, we obtain the desired result if we use the expansion

where Z>r=
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4. An alternative method for p = 2. In this section, we calculate J(α, ή) for any

even dimension n and /? = 2 by using the ^-representation introduced by Bikulov [1]

and obtain an asymptotic expansion of the Green function.

4.1. Gaussian integrals on an arbitrary locally abelian group were considered by

Weil in 1964. In the theory of/?-adic quantum mechanics which is based on the calcula-

tion of Gaussian integrals, explicit calculations in special cases were performed by

Vladimirov, Volovich, Zelenov, etc. in 1988.

Integrals of the form jχp(ax2 + br)dx are called Gaussian integrals. In order to

calculate Gaussian integrals on Qp, we will use the following formulas, (see [8], [9],

[10], [12] for the proofs):

(4.1)
)\x\P<Pr

(4.2) χp(kx)dx = P

rΩ(pr\k\p),

where Ω(x) is 1 if 0 < x < l and 0 if x>l;

Cp\\-p-i) for \k\p<p-r

(4.3) XP(kx)dx = ] -f~X for \k\p=p~r+ί

J\χ\P = pr l o for \k\p>p~r+1

and we use an arithmetic function λp\ (>*-> C defined as follows: I fpφ2,

ί
l if r is even

(ao/p) if r is odd, p = 1 (mod 4)

i{ao/p) if r is odd, p = 3 (mod 4),
where a = pr(a0 + aιp + a2p

2+ •), i = ̂ f^J and (αo/p) is the Legendre symbol; if/? = 2,
2 " 1 / 2 ( l + ( - l ) α i 0 if r is even(4.5) 2()
2" 1 / 2 (— i r i + α2(l + ( — l)α i0 if r is odd,

where tf = 2 r(l +aι2 + a22
2+ •). This symbol λp(a) has the following properties: For

( i ) 1 ^ ) 1 = 1 and λp(a)λp(-a) = l; (ii) λp(a2b) = λp(a);

(iii) λp(a)λp(b) = λp(a + b)λp(- + ±-) (iv) f[ λp(a)=l .
\a bj p = 2

REMARK. A function similar to λp(a) was considered by Weil for locally compact

fields, and the function λp(a) is connected with the Hubert symbol ( , )H by

λp(a)λp(b) = (a, b)Hλp(ab) for α, b e Qf, p Φ 2 .
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A Gaussian integral on the disc \x\p<pr is given as follows: If pφ2 and aφO,

(4.6)

χ Jax2 + bx)dx =
2^A,-)PrQWW ϊor\a\p<p-2'

P) for

if p = 2 and α^O,

(4.7) I χ2(ax2

\x\i<2r

2rΩ(2r\b\2) for \a\2<2~2r

λ2(a)\2a\2-
i'2χ2(-b2/4a)δ(\b\2-21-r) for \a\2 = 2~2'+1

λ2(a)\2a\2

ί/2χ2(-b2/4a)Ω(2r\b\2) for \a\2=2~2r + 2

λ2(a)\2a\2

ll2χ2(-b2μa)Ω(2-2'\b/2a\2) for M 2 > 2 - 2 ' + 3 ,

where <5(|b\p-pr) is 1 if |6 | P =/; Γ and 0 if \b\φpr.

REMARK. The Gaussian integrals on Qp are derived from (4.6) and (4.7) by r-> oo.

Thus

(4.8)
QP \ 4 a

4.2. Bikulov [1] used the following formula to split the double integral /(α, ή) into

two one-dimensional Gaussian integrals: For α>0 andp~M<\z\p<pm (zeQp, MeZ),

(4.9) |z|J = Γ p(α+l) lim

His method called the /-representation can be used for any prime number p. We use it

to calculate the integral /(α, ή) for any even dimension n and/? = 2. The results are given

by the following lemma.

LEMMA 4.1. For an even n, p = 2 and cceC.

(a) ifn = 0 (mod 4), then

2 - (2α + n) + 1 _ 2 - (α + n/2)

/(a,n) = (20"/22"1r2(a + l) ^T^ϊ) l(x, x)li < o t +"/ 2 )

(b) //« = 2(mod4), then

where y1 is the second digit of the canonical representation of(x,x)eQ2, i.e., (x,x) =

2-»(l+yι2+---),0<yj<l,βeZ.
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PROOF. Let n be even and p = 2. In order to use the ^-representation, setting

= (k, k)eQ$ in (4.9) and substituting it into (1.5), we obtain

\t\2

ia+ί\χ2(zt)-l)dt)χ2((K x))dk,(4.10) Γ2(α+l)f ( l i m
J (2 - NZ2)

n \ M ' m ^ °° J 2 -

for 2 - M < | z | 2 < 2 " \ Since χ2((fc, x ) )J 2 - m ί , | f | 2 ^ 2 Λ c\ t \^ + 1\χ2{zt)-\)dt (see (4.9)) con-

verges uniformly as M->oo for any ke(2~NZ2)
n, (4.10) can be rewritten in the form

Γ 2 (α+1) lim

Π Z2(ίfc/ + xjkj) - Π X2(^ fci) K d/c« Γ Λ

l l J

Using the expressions (4.2), (4.7) and integrating it with respect to ΐ, and taking the

limit for M-»oo, we obtain

/=/(α,n)=

= Γ 2(α+l)

l2 l_)A, )-2N+2

= 2 z < 2 N + r - 1 , we obtain

Λ

(4.11) J = 2"/2

Let {x,x) = 2~β(y,yl \(y,y)\2 = l. After the change of variable t=-(y, y)/2rs ( | s | 2 =
at = 2rds), we obtain

(4.12) J = 2"/2Γ2(α + 2) Σ 2 - ( α + π / 2 ) r ί
r > - i V + Z + l J | s | 2 = l

Since \ — {y, y)/2rs \2 = 2\ we can write
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(4.13) <^- = 2-r(l + t12 + t22
2+ •), 0<ί,< 1 .

— 2rs

Since n is even, by the definition of λ2 (see (4.5)), we have

-Ts) 2"12

On the other hand, comparison of the second digits of the canonical representation
on both sides in (4.13) gives ίt = —(3Ί+ίi) (mod2), where s^ and yγ are the second
digits of the canonical representation of 5 and (y, y), respectively. So we have

2"'2

Substitution of the value (4.14) into (4.12) and the change of variable
(|s ' | 2<2~ 2, O<S!<1 and ds' = ds) gives

(4.15) J=Γ2(<x+\) Σ '•
r> - N + l+ί

where, by (4.2),

X=\ n(2-^-2s'W = <l/4 ί θ ΐ ^ β '
for r < β ,

1 for r>β + 2

i for r = β ,

1 for r>/? + 2

- i for r = β.

Consider the condition —N+l+\<β (since — N+l<l, we have 2~2 N<|(x, x)|2)
Substitution of the values X and C; 0 = 1, 3) into (4.15) gives

(4.16) /=Γ 2 (α+l)<

where

0, « = 2 (mod4),

_ ( l + ( l ) 0 ( l ( l ) 0 . _ | 0 , « = 0(mod4)
l22-1 , « = 2(mod4).
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Substitution of the values A and B into (4.16) gives the formulas (a) and (b). •

THEOREM 4.2. For any even dimension n andp = 2, the Green function G(x) has the

asymptotic expansion

— —(-^—ZλΛ 1 for n = 0 (mod4)

G(x)
) for n^l (mod4).

3m4 I M I i + M/2

PROOF. We substitute the formulas (a) and (b) in Lemma 4.1 into the expression

for the Green function (1.4) and use the expansions

= 2~n/2 Y c 2~nr/2[2~r<x — n+2
r = 0

where cr = Σr

j=02
inl2~l)j; Γ2(α + \) = Σ™=02-r(2-ra-2-(r-1)0ί). Then the proof of the

theorem follows the same process as in Theorem 3.4. •
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