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Abstract. We shall show that there is only one (resp. two) rational log Enriques
surface(s) of Dynkin type Z)-eighteen (resp. Λ-eighteen).

Introduction. This is a sequel to our paper [OZ1], where we characterized the
unique K3 surface of Picard number 20 and discriminant 3 or 4, and also showed that
there is only one rational log Enriques surface of type D19 and one of type Aί9; this
uniqueness result is an affirmative answer to a question raised by Reid and Naruki (see
[R, Example 6]). In the present paper, we shall show that there is exactly one (resp.
two) rational log Enriques surface of type Dl8 (resp. Al8).

We begin with some definitions. Let Z be a normal projective surface defined
over the complex number field C and with at worst quotient singularities. Z is a log
Enriques surface if, by definition, the irregularity dimH1(Z,Θz) = 0 and a positive
multiple IKZ of the canonical Weil divisor Kz is linearly equivalent to zero [Zl,
Definition 1.1].

Let Z be a log Enriques surface and let /(Z): =min{neZ>0 \ Θz(nKz)^Θz) be the
index. The canonical cover of Z is defined as

π: Sc β n:

REMARK 1. (1) A log Enriques surface Z of index / is nothing but the quotient
space of a surface Scan which is either an abelian surface or a K3 surface with at worst
Du Val singular points, modulo the group Z/IZ each of whose non-trivial element
neither acts trivially on a non-zero holomorphic 2-form of <Scan nor point-wise fixes a
curve.

(2) A log Enriques surface Z is irrational if and only if Z is a K3 or Enriques
surface with at worst Du Val singular points [Zl, Proposition 1.3].

A log Enriques surface Z is of type Dl8 (resp. of type Aί8) if, by definition, its
canonical cover Scan has a singular point of Dynkin type D18 (resp. A18).

Log Enriques surfaces, which have been intensively studied by Alexeev, Blache,
Reid and the authors, are closely related to the study of fibered Calabi-Yau threefolds
[Ol, 2, 3, 4; Vo, W].

Key words and phrases: Automorphisms of K3 surfaces, Quotients of K3 surfaces, Rational surfaces

with quotient singularities.
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Our main results are as follows.

THEOREM 1. There is only one rational log Enriques surface of type Dί8 up to
isomorphism.

THEOREM 2. There are exactly two rational log Enriques surfaces of type A18 up
to isomorphism.

The procedure to prove the theorems above is as follows. Let Z be a rational log
Enriques surface of type D18orAί8,π: Scan -• Z the canonical cover of Z and v: S -* *Scan

the minimal resolution of Scan. Let <#> be the automorphism group of S induced from
the Galois group of π, and A the exceptional locus of v.

First, we shall prove that (5, <#» is isomorphic to Shioda-Inose's pair (S3, <g3»
(cf. Example 1.1 below and [OZ1, Example 1]). So we can and will identify (S, <g»
with Shioda-Inose's pair. Next we will reduce ourselves to type D19 case.

More precisely, we shall prove:

THEOREM 3. Let A be α reduced divisor of Dynkίn type D18 on S3. Then there is
α smooth rational curve Cγ on S3 such that Cγ + A has Dynkin type Dl9. Moreover,
(5*3, <03>, Cx+Δ) is isomorphic to Shioda-Inose's triple (S3, <#3>, A3) in [6>Z1, Example
1]

THEOREM 4. Let A be a reduced divisor of Dynkin type A18 on S3. Then there is
a smooth rational curve F on S3 such that A+F has Dynkin type Dl9. Moreover,
(S3, <03>, A +F) is isomorphic to Shioda-Inose's triple (S3, <#3>, A3).

REMARK 2. There is no divisors of Dynkin type A19 on S3. See Lemma 1.4 in §1.

To show Theorems 3 and 4, we will first find a curve on S3/(g3} so that its strict
transform E' on S3, together with Δ, either forms a graph of Dynkin type Dl9 or
contains a singular elliptic fiber. In the latter case, we will find a smooth rational curve
F in another singular elliptic fiber so that F-\-A has Dynkin type D19.

Note that there are two symmetric ways to get a graph of Dynkin type Aί8 by
deleting a vertex in a graph of Dynkin type Z)19. This explains intuitively why we have
two isomorphism classes Zα i, Zα2 of rational log Enriques surfaces of type Al8 (see
Example 1.3). One hard part of the paper is to prove that Zα i and Zα2 are not isomorphic
to each other, though constructed extremely symmetrically (see Theorem 1.6).

From the proofs of Theorems 1 and 2 in §4, we obtain:

COROLLARY 1. Let Z be a rational log Enriques surface of type Dί8 or A18. Then
the minimal resolution S of the (global) canonical cover Scan of Z is isomorphic to the
unique K3 surface of Picard number 20 and discriminant 3.

REMARK 3. If Z is a rational log Enriques surface of type D19 (resp. Aί9) then
the minimal resolution S of the canonical cover Scan of Z is isomorphic to the unique
K3 surface of Picard number 20 and discriminant 3 (resp. 4) (cf. [OZ1]). Normally,
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more K3 surfaces like S above, should appear when we decrease the "weight" 19 of D19

or Aί9. So Corollary 1 is a surprise. However, we shall see in our forthcoming paper

that the case AίΊ will produce a K3 surface of Picard number 18 and discriminant 5.

From some different aspect, Kato and Naruki [KN] constructed a quartic surface

in P3 with Du Val singular point of Dynkin type Dί8 or Aί8. We believe that the

canonical covers of our log Enriques surfaces of tyep Dl8 and Aί8 are not isomorphic

to theirs.

ACKNOWLEDGEMENT. The authors would like to thank the referee for suggestions

which made the paper more compact.

1. Rational log Enriques surfaces of type Dl8 or A18. In this section we shall

construct one rational log Enriques surface of type Dl8 and two of type A18. It will

turn out that these three are all of rational log Enriques surfaces of type Dl8 or Aί8

by Theorems 1, 2 and 1.6.

EXAMPLE 1.1 (a log Enriques surface of type Z)1 9, compare [Zl, Example 6.11]

and [R, Example 6]). In [OZ1, Example 1], we constructed the triple (*S3, <#3>, Δ3),

where S3 is the unique A3 surface of Picard number 20 and discriminant 3, g3 is an

order 3 automorphism on S3 satisfying gξωS3 = ζωS3 for a non-zero holomorphic 2-form

ω on S3 and the primitive cubic root C = exp(2πΛ/—1/3) of unity, and Δ3 is a rational

tree of Dynkin type Dί9 on S3.

As described in [OZ1, Example 1], the fixed locus (S3)
93 is contained in Δ3, except

one point P32. Let v3 : S3 -+S3 c a n be the contraction of Δ3 to a point Q3. Then g3 acts

on S3,c a n so that {S3^n)
9i = {Q3, v3(P3 2)} Now the quotient surface Z 3 : = S3 i C a n/<#3>

is a rational log Enriques surface of type Dί9 and of index 3. Note that Z 3 has exactly

two singular points: one is of type D'9 and the other is of type (1/3)(1, 1) under the two

03-fixed points Q3 and v3(P3 2), respectively (see [R, Example 6] for the notation).

EXAMPLE 1.2 (a rational log Enriques surface of type D18). We use the notation

in Example 1.1 above and [OZ1, Example 1]. We rename the components of Δ3 in the

following way:

c 1 8

So C1=E[3, C2 = Fl9...,CίΊ = Gί9 Cls = Ell9 Cl9 = E2l. Let δ: S3-• Sδ be the

contraction of the rational tree Δ3~Cι of Dynkin type Dί8 to a point Qδ. Then g3 acts

on Sδ so that (SδY* = {Qδ, Q'δ9 δ(P32)}, where Q'δ is the 03-fixed point on δ{C1)-δ(C2).

Now the quotient surface Zδ: = Sδ/(g3} is a rational log Enriques surface of type D18



422 K. OGUISO AND D.-Q. ZHANG

and of index 3. Note that Sing(Zδ) consists of exactly one singular point of type D8

and two of type (1/3)(1, 1) under the three #3-nxed points Qδ, Q'δ and δ(P32), respectively.

EXAMPLE 1.3 (two rational log Enriques surfaces of type Aί8). We use the nota-

tion in Examples 1.1 and 1.2. For z = l (resp. z = 2), let α f: S3-+Sa. be the contraction

of the rational tree Δ3 — C18 (resp. A3 — C1 9) of Dynkin type Aί8 to a point βα.. Then

g3 acts on Sai so that (SaiY* = {Qat, β ; , σ(P32)} where β ^ (resp. ^ 2 ) is the #3-nxed

point on ^ί(Cί8) — (xί(C17) (resp. M Q ^ ^ Q ? ) ) - Now the quotient surfaces Zα. : =

^αί/<^3> a r e rational log Enriques surfaces of type ^418 and of index 3. Note that

Sing(Zα.) consists of exactly one singular point of type A'8 and two of type (1/3)(1, 1)

under the three #3-fixed points βα., Q'a., α i(P 3 2), respectively.

We shall prove that Z α i is not isomorphic to Zα 2. First, we need the following

Proposition 1.5. We also prove Lemma 1.4 below which implies Remark 2 in the

Introduction.

LEMMA 1.4. (1) Let A be a reduced divisor of Dynkin type D19 (resp. Dί8 or A18)

on S3. Let v: S3-+Scan be the contraction of A to a point q. Then g3 acts on Scan with

(Sc*n)93 = {<?> <?o} (resP- (Scai/3 = {<?> 4o> 419}) w n e r e α i i s α point. Hence the quotient surface

ScaJ(g3y is a rational log Enriques surface of index 3 and type Dί9 (resp. Dί8 or A18).

(2) There is no divisors of Dynkin type Aί9 on S3.

PROOF. (1) We consider the case where A is of Dynkin type Aί8, while the other

two cases are similar. Write A = C1 + C 2 + + C 1 8 so that Ci.Ci + 1 = 1 (1 < i < 17). By

[OZ1, Lemmas 2.2 and 2.3 and Remark 3 in §1], (S3)
93 is equal to

Supp(C2 + C5 + Cs + Cίl + C1A + CίΊ)\}{q0, qί9 q3A, qβJ, q9Λ0, q12,i3> ^i5,i6» 0i

where qiίi + 1 = Cf n C ί + l J qk is a point on Ck (k= 1, 18) and q0, q19 are points not on A.

Now (1) follows after we identify qt with v(qt) (/ = 0, 19).

(2) Suppose to the contrary that A = Q + C 2 + + C 1 9 is a reduced divisor of

Dynkin type ^ 1 9 on 5 3 , where C f . C i + 1 = l ( l < i < 1 8 ) . By [ibid.], either C1 +

C 4 + CΊ + Q 0 + C13 + Q 6 + Q 9 or C2 + C 5 + C 8 + Cγ t + C 1 4 + Cγ 7 is contained in (53)^3,

after relabelling J if necessary. The first case is impossible because (S3)
97> consists of

exactly six irreducible curves and nine isolated points [OZ1, Lemma 2.3]. In the

second case, there must be a g3-fixed curve C 2 0 such that C 2 0 . C 1 9 = 1 by [OZ1, Lemma

2.2]. This leads to the conclusion that (S3)
93 contains at least seven fixed curves Ct (/ =

2, 5, 8, 11, 14, 17, 20), again a contradiction. So (2) is true. q.e.d.

PROPOSITION 1.5. Suppose that the two rational log Enriques surfaces Zα. (/= 1, 2)

in Example 1.3 are isomorphic to each other. Then there is a common integer solution to

the following system of four quadratic equations:
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(1)

(2)

(3)

(4)±

PROOF. Claim (1). (1) Cί9 C 2 , . . . , C 1 9 , C20 \ = E'2l -Eί3 form a Z-basis of Pic(S3).

(2) There exists an isometry ^ of the lattice Pic(S3) such that

ψ(Cx) = C199 ιA(Q=C1 9_ i(2</<17), φ(Cl8) = E[u φ(C19) = Cu φ(C20)=-C20.

The assertion (1) can be verified by computing that the determinant of the inter-

section matrix of the twenty curves in (1) equals —3, which is also the determinant of

that of Pic(S3).

By (1), there exists a group-automorphism φ of Pic(*S3) satisfying the equalities in

(2). A direct checking shows that φ(Ci).^(Cj)=Ci.Cj (U = l, 2, . . . , 20). So φ is an

isometry of the lattics Pic(5'3). Claim (1) is proved.

Suppose that Z α i is isomorphic to Zα 2 . Then there exists an automorphism φ such

that g3°φ = φ°g3 and φ(A3 — Cί9) = A3 — C18. So either

(*) φ(Ci)=Ci(l<i<17), φ(C 1 8 )=C 1 9 , or

(**) φ(Cί)=C19, φ(Ci)=C19_i(2<ί<lS).

Replacing φ by φ ° φ if necessary, we may assume that there exists an isometry φ of

the lattice Pic(S3) satisfying the hypothesis (*).

Set M: = φ(Cί9), N: = φ(C20). Since φ is a lattice isometry, there are integers ab b,

*i9 β such that M = Σ ^ 1 f l i C i + 6C 2 0 , N=Yj\iι0LiCi + βC20.

Note that M.Ci = C19.Ci is equal to 1 if /=17, and 0 if 1</<16, and that

M.C19 = C 1 9 . Cγ 8 = 0. On the other hand, M.Ci can be written as a linear combination

of ah b. So we get eighteen linear equations in ah b. Solving them, we obtain:

Substituting these into the calculation 2 = - C 2

9 = - M2 = - (£\11 aΛ C{ + bC 2 0 ) 2 , we get:

From the expression of a18 in terms of au b, we see that aγ is an even integer. Write

a1=2a. Then (x, y) = (a, b) satisfies the equation (1) of Proposition 1.5.

Note that N.Ci=C20. Ct is equal to — 1 if i = 1, 11, equal to 1 if / = 8, and equal to

Oif iΦ\, 8, 11 and 1</<17, that N.C19 = C20.Cl8 = 0 and that N2 = Ci0= - 4 . As in



424 K. OGUISO AND D.-Q. ZHANG

the case for M, we obtain the following equalities, where we set βγ: =β— 1:

ί (y = 9, 10, 11),

The expression of α 1 8 implies that ocί is an odd integer. Write α 1 = 2 α + l . The last
equation shows that (z, w) = (α, jSx) satisfies the equation (2) of Proposition 1.5.

Now each αf is a function in α l5 βt. Substituting these into the calculation
l = C19.C20 = M.N=(Σ^1aiCi + bC20)(Σ1

i*1aiCi + βC20\ we see that (x,y,z,w) =
(a, b, α, βγ) satisfies the equation (3) of Proposition 1.5.

To finish the proof, we still need to show that the quadruple (x, y, z, w) satisfies
the equation (4) + . Note that φ, regarded as an automorphism of the lattice Pic(*S3), has
the following transition matrix, with repect to the basis C l 5 C2, . . ., C 2 0 in Claim (1)

717 0

O O 0

1 9

Now the equation (4)+ follows from the observation ±l=detAφ = b(x18 — βa18 and
the substitutions of α1 8, al8 in x, y, z, w. This proves Proposition 1.5. q.e.d.

THEOREM 1.6. The two rational log Enrίques surfaces Zα i and ZΆl in Example 1.3
αre «o/ isomorphίc to each other.

PROOF. In view of Proposition 1.5, we have only to show that there are no common
integer solutions to the system there.

First we consider the system ( + ) consisting of four eqautions (1), (2), (3), (4) + ,
where we choose " + 1 " on the right of the equation (4)± in Proposition 1.5. One can
verify that (—1/4, 1/2, 0, —1), ( — 5/2, 7, 2, —7) are common rational solutions of the
system ( + ). One can also check that (-5, - 9 , 0, -1), (7, 7, 2, -7) are the only
solutions of the system ( + ) modulo 19.

We apply Cramer's rule to the equations (3) and (4)+ and write x, y in terms of z, w:

x = (6z-w+l)/(171z + 57w + 49), y = (-38z-4w-8)/(171z + 57w + 49).

Here we note that the denominator function in z, w, in the above expression has no
integer zeros because 19 divides 171 and 57 but not 49.

Substituting the above solutions of x, y into the equation (1), we obtain, by getting
rid of the denominator, the following:

+ 1748zw+1332z + 492w+182 = 0.
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Using (Γ) and (2), one can write z in terms of w:

z = (180w 2-93w-273)/(-513w+1008).

Now substituting this into the equation (2) multiplied by the denominator and divided

by 18, we get

One can verify that

Thus, only w = — 1, —7 are integer zeros of f(w). Substituting them into the functions

z, x, y, we see that (x, y, z, w) = (-1/4, 1/2, 0, -1) , (-5/2, 7, 2, - 7 ) are the only solutions

of the system ( + ) with integer w. Thus there is no integer solutions to the system ( + ).

This proves Theorem 1.6 in the present case.

Nex we consider the system ( —) consisting of four equations (1), (2), (3), (4)_,

where we choose " — 1" on the right of the equation (4)+ in Propositon 1.5. One can

check that (x, y, z, w) = (0, —1/2, 0, — 1), (—1/2, 5/4, 2, —7) are common solutions to the

system ( —), and that (0, 9, 0, — 1), (9, 6, 2, —7) are the only solutions of the system ( —)

modulo 19.

As in the previous case, one can solve the system (—) in the following procedure:

15w+19)/(171z + 57w + 49),

(1') 2470z2 + 310w2+1748zw+1332z + 492w+182 = 0,

z = (180w 2-93w-273)/(-513w+1008),

As in the case of system ( + ), we see that (x, y, z, w) = (0, —1/2, 0, — 1), (—1/2, 5/4, 2,

— 7) are the only solutions of the system ( —) with integer w. Thus there is no integer

solutions to the system ( —). This completes the proof of Theorem 1.6. q.e.d.

We prove the following lemma to be used in §4.

LEMMA 1.7. Let S be a K3 surface with at worst Du Val singular points. Suppose

that σ is an order I (/>2) automorphism of S such that no curve on S is point-wise

fixed by any non-trivial element of <σ> and that σ:¥ωs = ζIωsfor a primitive 1-th root ζI

of unity and a nowhere vanishing holomorphic 2-form ωs on S. Suppose further that S

contains a singular point p0 of Dynkin type Ar or Drfor some r> 10. Then the quotient

surface 5/<σ> is a rational log Enrίques surface of index I with S as its canonical cover.

PROOF. Clearly, *S/<σ> is a log Enriques surface of index / with the quotient

morphism π: *S->*S/<σ> as its canonical cover. We only need to show the rationality

of S/(σ}. Let T^S be a minimal resolution of S. Then T is a K3 surface. We first

prove the following:
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Claim (1). The singular point p0 e S is σ-ίixed.

If Claim (1) is false, then p0 and σ(p0) are two distinct Du Val singular points of

Dynkin type Ar or Dr for some r> 10. This leads to the conclusion that the minimal

resolution Γof S has Picard number >2r + 1 >21, a contradiction. So Claim (1) is true.

Now suppose to the contrary that £/<σ> is not rational. Then, by the classifica-

tion of surfaces, £/<σ> is an Enriques surface with at worst Du Val singular points and

1=2. By Claim (1), the inverse image A on T of the σ-fixed point p0 is stable under the

induced σ-action on T. It is easy to see that A contains a point fixed by the involution σ.

On the other hand, σ * ω τ = — ωτ implies that σ has no isolated σ-fixed points, and

that the fixed locus Tσ is a disjoint union of smooth rational curves by the hypothesis

on the σ-action on S. Thus Γ/<σ> is smooth and rational by the ramification formula.

But then the Enriques surface S/(σ} with Du Val singularities, is birational to the

rational surface Γ/<σ>, a contradiction. This proves Lemma 1.7. q.e.d.

2. Extend D18 to D19 on S3. In this section, we shall prove the following, where

S 3 is given in Example 1.1.

PROPOSITION 2.1. Let A be a reduced divisor of Dynkin type D18 on S3. Then there

exists a smooth rational curve Cί on S3 such that Cί-\-A has Dynkin type Dί9.

The proof of Proposition 2.1 consists of the following Lemmas 2.4, 2.6-2.10.

We write A = Σ *= 2 ^ w n o s e dual graph is the same as the one given at the beginning

of §4. By [OZ1, Lemmas 2.2 and 2.3] the fixed locus (S3)
93 consists of exactly six curves

C2, C5, C8, C n , C 1 4 , C 1 7 and nine isolated points. To be precise, (S3)
93 is equal to

Supp(C2 + C5 + C8 + Clt + C14-\~Cl7)\l{p3A,p67,p9Λ0,pί2Λ3,p15Λ6,p18,Pig, In h) *

where Pij+ί is the intersection point C tn Ci + U Pj (j= 18, 19) is a point on Cj and lu

12 are points not on A.

Let v: S3 -• S c a n be the contraction of A to a point q3. Then <#3> acts on Scan with

(Scan)93 = {#3> vf/i), v(/2)}. Put Z = 5can/<gf3> and let π : S c a n -• Zbe the quotient morphism.

Then Z is a rational log Enriques surface of type D 1 8 and index 3. This Z has one

singular point π(q3) of type Z>8, two singular points πv(/t) (z=l, 2) of type (1/3)(1, 1)

and no other singular points.

Let μ: X^Z be the minimal resolution of Z and denote the exceptional locus of

μby Γ =

Πί8

n
19
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Here Γ f = - 4 , Γ2=-2 (z = 5, 8, 11, 14, 17), 77/=-2 (7= 18, 19), Al=-3

=1,2), and Γ ^

The following result follows from the construction of Z (see [Zl, Table 1, p. 449]).

LEMMA 2.2. (1) 3(Kx + Γ*) = μ*(3Kz)~0, w/iere Γ* = 2(Γ2 + Γ 5 + Γ 8 + Γ 1 1 + Γ 1 4 +

(2) Let vι: S3 ->S 3 £e ί/ze blowing up of four points p18, pί9, lί9 l2 on S3 to four

(— 1)-curves P 1 8 , P 1 9 , Lί9 L2. Then there exists a degree three morphism ft: S3 -^ X such

that π°v°vί=μ°π and

π*(Ci) = 3Γi (i = 2, 5, 8, 11, 14, 17), π^Pj) = 3Πj (j= 18, 19), π^Lk) = 3Λk (k= 1, 2).

In the following lemma, by a ( — «)-curve on I w e mean a smooth rational curve

of self-intersection number — n.

LEMMA 2.3. (1) rankPic(Z) = 2, rankPic(Z) =12 and K%=-2.

(2) .For α«y (— l)-curve E on X we have E.Γ* = 1. If H is an irreducible curve on

X with H2 <0, then H is either a component of Γ or a (— l)-curve.

PROOF. By Lemma 2.2, K% = (Γ*)2= - 2 . Thus (1) follows. Now 3(i^ + r * ) ~ 0

in Lemma 2.2 and the genus formula imply the first half of (2) and that H with H2<0

either satisfies (2), or is a ( —2)-curve disjoint from Γ. The latter case is impossible

because gξ Ip ic^^id (cf [OZ1> Lemma 2.3]). q.e.d.

LEMMA 2.4. There exists one (-l)-curve E or two disjoint (-l)-curves Eu E2 on

X such that one of the following cases occurs (after exchanging the roles ofΠ18 with Π19

and Λί with Λ2 if necessary):

Case ((51) E.Λ1=E.Γi=lforeitheroneofi = 2,5,8, 11, 14 or 17,

Case (52) E.Λι=E.Πγs=E.Π19 = l,

Case ((53) EΛX =E.Λ2 = E.Πί9= 1,

Case ((54) £ i.(Λ i + 7718 + 7719) = 3 and E^e{19 2} for both Ϊ = 1 , 2 , 0/irf

Case ((55) ^-.y^ e {1, 2} am/ ^ Ί . ^ ! +77 1 9) = £ 2 .(Λ 1 +Λ 2 ) = 3 for both i= 1, 2.

PROOF. Let / : A ^ I 1 , , be a smooth contraction of smooth rational curves to

points on some Hirzebruch surface Σn of degree n. Since KΣn+f^Γ* = 0 (Lemma 2.2

(1)), f^Γ contains at least one horizontal component and is connected.

Claim (1). Supp/(Γ) = Supp/^Γ, that is, no connected component of Γ is con-

tracted to a point not lying on f^Γ.

Suppose to the contrary that a maximal union Γ' of connected components of Γ

is contracted to a point/? not lying on f^Γ so that f(Γ')nf(Γ — Γf) = 0. Decompose

f=f3of2°fi so that / iCO is a (—l)-curve and f2 is the blowing down of /i(Γ'). Then

we have 0 = f1(Γ') fί*(Kx + Γ*)=-l-<x<0, where α is the coefficient in Γ* of the

proper transform /Ί(/i(Γ')). This is a contradiction. Claim (1) is proved.
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Claim (1) and its preceding argument imply that f(Γ) is connected. So f~ιf{Γ)
is connected. We can write f~1f(Γ) = Γ-\-E_ί + C_2 where E__γ is a union of (— 1)-
curves, and C_2 is a union of ( —2)-curves disjoint from Γ (Lemma 2.3 (2)). Since
E_! + C_ 2 is /-exceptional and hence has negative definite intersection matrix, each
connected component of C_2 is a twig of/" ίf(Γ) sprouting from a (— l)-curve in E_x.
So Γ + E_1 is connected. Now Lemma 2.4 follows from Lemma 2.3 (2) and the fact
that £ _ ! consists of disjoint (—l)-curves. q.e.d.

We need the following lemma which is a consequence of Kodaira's classification
of singular elliptic fibers, "Three Go" Lemma [OZ1, Lemma 2.2] and the fact that
θ*|pic(s3) = id in [OZ1, Lemma 2.3]. The condition «<18 (resp. n<\Ί) in the type (2)
(resp. the type (3)) comes from the fact that rank Pic(S3)<21.

LEMMA 2.5. Let ξ be a singular fiber of an elliptic fibration Φ: S3^P1. Suppose
that all curves of(S3)

93 are contained in fibers of Φ and ξ contains at least one curve of
(S3)

93. Then ξ has one of the following types:
(1) ξ = Hi+H2 + H3, where H?s share one and the same point. After relabelling

the components of ξ if necessary, Hι is the only common component of' ξ with (S3f
3.

(2) ξ = H1+H2+-.+Hn is a loop with H^H^^H^H^l ( l < i < n - l ) . n is
one of 3, 6, 9, 12, 15, 18. After relabelling the components of ξ if necessary, Hί,
//4, HΊ, . . . , //„_ 2 are the only common components of ζ with (S3)

g3.
(3) ξ = H1+H2 + 2(H3 + H4+ + # n _ 2 ) + # „ _ ! + # „ , where H^H^H^H^^

Hn-2Hn=\ (2<ί<n-2). n is one of 5, 8, 11, 14, 17. H3, H6, H9,..., Hn_2 are
the only common components of ξ with (S3)

93.
(4) ξ = 3H1+2H2 + H3-)r2H4 + H5 + 2H6 + HΊ, where H^H^H^H^^l (i= •

2, 4, 6). Hι is the only common component of ξ with (S3)
93.

(5) ξ = 4Hί+2H2 + 3H3 + 2H4 +H5 + 3H6 + 2HΊ + H8, whereH^Hi = Hj_ί.Hj =
Hj.Hj+1 = 1 (i = 2, 3, 6;j = 4, 7). Hu H5, H8 are the only common components ofζ with

(6) ξ = 6Hι + 3H2+4H3 + 2H4 + 5H5+4H6 + 3HΊ + 2Hs + H9, where H^H^
H3.H4. = Hj.Hj+ί = l (i = 2, 3, 5; 5<7<8). Hu HΊ are the only common components of
ξ with {S3)

93.

We now treat the cases in Lemma 2.4 separately to conclude Proposition 2.1.

LEMMA 2.6. If Case (δl) of Lemma 2.4 occurs then Proposition 2.1 is true.

PROOF. Let Ebe as in Case (δl). By Lemma 2.2 (2), we see that the strict transform
E' on S3 of E is a smooth rational curve such that E'.Δ =E'.Ct = 1 for / = 2, 5, 8, 11, 14
or 17. If / = 2, we let C\ =E' and Proposition 2.1 is proved.

So we may assume that /=5, 8, 11, 14 or 17. Let ξo:=Ef + Ci_1+2γJkliCk +
C 1 8 + C1 9. Applying the Riemann-Roch theorem to this nef divisor ξ0 we see that there
exists an elliptic fibration Φ: S3^P1 with ξ0 as its singular fiber. Let ξγ be the singular
fiber of Φ containing £j,~ \ Ck. Then ξ1 fits one of the six types in Lemma 2.5. If ξx
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has either of the type (1), (2), (3), (4) or (6) then, after relabelling, we can take H2 or

H8 (only for the type (6)) as C l 5 which satisfies the condition of Proposition 2.1.

We may assume now that ξx is of the type (5). So /=11 and ξγ=AC5 + 2H2 +

3C 4 + 2C 3 + C2 + 3C6 + 2C 7 + C 8 where H2.C5 = \. Consider a new elliptic fibration

Ψ: S3 -• P1 with ηo = H2 + C 4 + 2 ^ 1 5 Q + C 1 8 + C 1 9 as a singular fiber. Let ηx be the

singular fiber of Ψ containing C2. Then ηί has one of the six types in Lemma 2.5. Since

the Euler number χ(ηo) = 18, one has ^(f71)<χ(iS3)—18 = 6. Hence ηγ is not of the type

(5). (Actually ηι has the type (2) with n = 3.) Now we can find from ηl9 as in the previous

paragraph, a smooth rational curve Cx which satisfies the condition of Proposition 2.1.

This proves Lemma 2.6. q.e.d.

LEMMA 2.7. If Case (δ2) of Lemma 2.4 occurs then Proposition 2.1 is true.

PROOF. Let E be as in Case ((52). Then the strict transform E' on S3 of £ is a

smooth elliptic curve such that E'.A = 2 and E'.Ct = 1 for both /= 18, 19 (cf. Lemma 2.2

(2)).

Consider the elliptic fibration Φ: S3^>P1 with E' as a fiber. Let £x be the

singular fiber of Φ containing YJk12 Ck. Then ξί fits the type (2) of Lemma 2.5 with

n= 18. Now let Cί ( ^ C3) be the curve in ξx meeting C 2. This Cί satisfies the condition

of Proposition 2.1. Lemma 2.7 is proved. q.e.d.

LEMMA 2.8. If Case (δ3) of Lemma 2.4 occurs then Proposition 2.1 is true.

PROOF. Let E be as in Case (<53). Then the strict transform E' on S3 of E is a

smooth elliptic curve such that E'.Δ =E'.Cί9 = 1.

Claim (1). There is a smooth rational curve H2 on S3 such that H2.A=H2.C5 = l.

By Lemma 2.5, there exists a smooth rational curve Gλ such that Gί.C2 =

G 1 . C 1 8 = 1 and Gί + Σ**2Ci is a singular fiber of type (2) of the elliptic fibration

Φ\E'\' S3-*Pί. By the same lemma, we see that there is a smooth rational curve H2

satisfying the conditions in Claim (1) such that 6C 5 + 3 # 2 + 4C4 + 2C 3 + 5C 6 + 4C 7 +

3 C 8 + 2 C 9 + C 1 O and 6 C 1 7 + 3C 1 9 + 4 C 1 8 + 2G1 + 5C 1 6 + 4 C 1 5 + 3 C 1 4 + 2 C 1 3 + C 1 2 are

two distinct fibers of an elliptic fibration on S3. This proves Claim (1).

Now letting ξ0: = H2 + C 4 + 2(C5 + + Cί 7) + Cί 8 + C19 and arguing as in Lemma

2.6, we can see that Proposition 2.1 is true. This proves Lemma 2.8. q.e.d.

LEMMA 2.9. Case (<54) of Lemma 2.4 does not occur.

PROOF. Consider Case (<54). Denote by E[ the strict transform on S 3 of Et. Then

E[ is a nodal elliptic or type-(2.5)-cuspidal rational curve of self intersection number 2.

Set Gi-ί: = Ci (2</<19), G18 + i: = E't ( f=l,2) . Since the discriminant of S3 is 3,

det(G!

ί.GJ )= —In1 for a non-negative integer n. Here n is the index of the sublattice

Xff! ZGt in Pic(5r

3) if Gf's are linearly independent, and zero otherwise. After exchang-

ing the roles of 7718 with Π19 or Is l 5 ylj with £"2, τl 2 if necessary, one of the follow-
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ing subcases occurs. Here we use also the fact that E[.E2>0 for both E[, E'2 are nef

and big divisors.

Case (54.1) Ei.Ul9 = 2 and E^A^X for both z = l , 2 . Then E[.C19 = 2 ( ι = l , 2)

and E[.E2=4. Now — 3«2 = det(Gi.GJ )= —336, which is impossible.

Case (M.2) E1.Π19 = 2, E2.Π19 = l, Eί.Λί = l9 E2.Λ2 = 2. Then E[.C19 = 2,

E'2.Cί9=l, E[.E2 = 2. Now —3n2 = dQt(Gi.Gj) = 36, which is impossible.

Case (34.3) Et.Π19=\ and Ei.Λi = 2 for both / = 1 , 2 . Then E[.Cl9 = \ ( ι = l , 2 )

and E[.E2 = l. N o w — 3w2 = det(G i.G</ ) = 48, which is impossible. q.e.d.

LEMMA 2.10. If Case (δ5) of Lemma 2.4 occurs then Proposition 2.1 w ίrwe.

PROOF. Let Eγ, E2 be as in Case (<55). Then the strict transform G 1 8 + i on S3 of

Et is a curve of self intersection number 2. Set Gi_1: = Ci (2</<19). Then

det(Gι .GJ ) = — 3n2 for a non-negative integer n. This implies, as in Lemma 2.9, that

£ t

1 . i7 1 9 = £'2.yl2 = l, a n d £ ί . y l 1 = 2 for both /=1,2 . Moreover, det(G t .G,)=-12.

L e t η o : = 2 ( £ ' 1 + i 7 1 9 + Γ 1 7 ) + i 7 1 8 + Γ 1 4 a n d Ψ: X-+P1 the /^-fibration with η0 as

a fiber. Let ηί be the fiber containing E2-\-A2. By Lemma 2.3, there are (—l)-curves

E3, E^ such that either E3.Γ11=Ej.Λ2 = l (7 = 3, 4), E^.Λί=2 and rjι=Λ2 + YJ^=2^p

or £ τ

3 .Γ 2 -£ τ

3 .y l 2 = £ ' 4 . Γ 5 = £ ί

4 . y l 1 - l and ^ 1 = 2 ( £ I

3 + £ ' 4 + Γ5) + £'2 + /l2 + Γ 2 + Γ 8 . In

both cases, we are reduced to Case (δl) with /l2 (resp. E) replaced by Λί (resp. £ 3 ) . So

Proposition 2.1 is true by Lemma 2.6. q.e.d.

3. Extend A18to D19 on S3. In this section, we shall prove the following, where

S3 is given in Example 1.1.

PROPOSITION 3.1. Let Δ be a reduced divisor of Dynkin type A18 on S3. Then

there exists a smooth rational curve F on S3 such that Δ -\-F has Dynkin type DlQ.

The proof of Proposition 3.1 consists of the following Lemmas 3.5-3.9.

Write Δ = Σl*t Q where C f.C i + ί = 1. By [OZ1, Lemmas 2.2 and 2.3], (S3)»3 equals

/7 3 5 4 ,^ 6 5 7 ,/7 9 5 l 0 ,/7 1 2 4 3,/7 1 5 α 6 ,/7 1 8 , lί9 l2} ,

where piti+1 is the intersection point Ct nC i + l 5 pj (7= 1, 18) is a point on Cy, and lu l2

are points not on Δ.

Let v: S3 -^ Scan be the contraction of Δ to a point # 3 . Then <^3> acts on *Scan with

(^can)53 = {#3> v(/i), v(/2)}. Put Z = 5can/<gf3> and let π : S c a n -• Zbe the quotient morphism.

Then Z is a rational log Enriques surface of type Aί8 and index 3. Z has one

singular point π(q3) of type A8, two singular points πv(/f) (/ = 1, 2) of type (1/3)(1,1) and

no other singular points.

Let μ: X^Z be the minimal resolution of Z and denote the exceptional locus

Π18-Γ1Ί-Γ14~Γlί-Γ8-Γ5-Γ2-Π1 ,
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Here Πf=-2 (i = l, 18), Γ / = - 3 0 = 2,17), Γ t

2 = - 2 (i = 5,8, 11, 14), Λ?=-3
(r=l,2), and Πj + Γ 2 + Γ 5 + Γ8 + Γ 1 1 + Γ 1 4 + r i 7 + Π18=μ-1(π(tf3)), /!; = //" Hπv^))
(i= 1, 2).

The following Lemmas 3.2, 3.3 and 3.4 can be proved similarly as in Lemmas 2.2,
2.3 and 2.4.

LEMMA 3.2. (1) 3{Kx + Γ*) = μ*(3Kz)~0, w

(2) Le/ Vj: S3-+S3 fee ί/ze blowing up offour points pί, p18, ll9 l2 on S3 to four

( — l)-curves Pί9 Pί8, Lί9 L2. Then there exists a degree three morphίsm π: S3^X such

that πovov1=μoπ and

3Γ i (ϊ = 2, 5, 8, 11, 14, 17), π*(Pj) = 3Πj (j= I 18), π*(Lk) = 3Λk (*= 1, 2).

LEMMA 3.3. (1) rank Pic(Z) = 2, rank Pic(X) =12 and K%=-2.

(2) For any (— \)-curve E on X we have E.Γ* = \. If H is an irreducible curve

on X with H2 <0, then H is either a component of Γ or a (— \)-curve.

LEMMA 3.4. There exists a (-l)-curve E or two disjoint (-l)-curves Eu E2 on X

such that one of the following cases occurs (after exchanging the roles of Λ1 with Λ2

and relabelling μ ^ π ^ ) ) if necessary):

Case (αl) E.Λ^E.Γ^l for either /=11, 14, or 17,

Case (<x2) E.Λί=E.Π1 =E.Π18 = 1,

Case(α3) E.Λί=E.Λ2 = E.Πί8 = l,

Case (α4) Ei.(Λi + Πί+Πί8) = 3 and E^A^e {1,2} for both i=l,2, and

Case (α5) E^eil, 2} and E1.{Λι+Π18) = E2.{Λ1 +Λ2) = 3for both z = l , 2 .

We now treat the cases in Lemma 3.4 separately to conclude Proposition 3.1.

LEMMA 3.5. If Case (αl) of Lemma 3.4 occurs then Proposition 3.1 is true.

PROOF. Let £be as in Case (αl). By Lemma 3.2 (2), we see that the strict transform
E' on S3 of E is a smooth rational curve such that E'.Δ =E'.Ct= 1 for /= 11, 14 or 17.
If i= 17, we let F=E' and Proposition 3.1 is proved.

So we may assume that E'.Ct= 1 for /= 11 or 14.

Claim (1). Assume that E'.C14= 1. Then either Proposition 3.1 is true or there is
a (-2)-curve E[ such that E'ί.(Δ+E') = E'i.(C2 + C18), E'1.C2 = E[.C18 = l.

Let ξ0: =4C14r + 2E' + 3C13 + 2C12 + C n + 3C15 +2C 1 6 + C17. Applying the Riemann-
Roch theorem to this nef divisor ξ0 we see that there is an elliptic fibration Φ: S^^P1

with ξ0 as its singular fiber. Let ξί be the singular fiber of Φ containing Σf=i^ί
Then ξx must have the type (3) with n=ll in Lemma 2.5. So there are two smooth
rational curves E[, E'2 such that ξi=E'1 + C1+2Yd*i = 2Ci + C9 + E'2 where ^ . C 2 =
E'2.C8 = l. Note that the cross-section C 1 8 meets either ^ o r ^ i Thus, Claim (1) is
true. Indeed, if C 1 8 meets ^ t n e n Qs ^ i ^ ^ a n d ^ + ^ 1 has Dynkin type Dί9 and
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hence Proposition 3.1 is true, otherwise the second case in Claim (1) occurs.

Claim (2). If the second case in Claim (1) occurs then Proposition 3.1 is true.

Let E[ be as in Claim (1). Let J/o:=£ί + C1 + 2 Σ ^ 2 C i + C 1 5 + £ / and let
Ψ: S3^P1 be the elliptic fibration with η0 as its singular fiber. Let ηλ be the singular
fiber of Ψ containing C1 7. Then Y\X fits one of the six types in Lemma 2.5. (Actually η1

is of the type (1) or (2) there.) Taking as F a component in ηt adjacent to C1 7, we see
that Δ +F is of Dynkin type Dl9.

To finish the proof of Lemma 3.5, we have only to show the following Claim (3).
In fact, if Claim (3) is true then by relabelling Δ and replacing E' by E[ in Claim (3),
we are reduced to the case where £".C 1 4 = 1.

Claim (3). Assume that E'.C11 = \. Then either Proposition 3.1 is true or we can
find a smooth rational curve E[ such that E[.Δ=E[.C5 = \.

Let 0o = 4C 1 1 +2£' + 3C1o + 2C9 + C8 + 3C1 2 + 2C1 3 + C 1 4 and let Θ: S3-^P1 be
the elliptic fibration with θ0 as its singular fiber. Let θ1 be the singular fiber of Θ
containing Σf=i ^Ί' Then θ1 must have the type (3) in Lemma 2.5. More precisely, if
Σ ^ 1 6 C f is not contained in θx then θx = £ i; + C6 + 2£f= 2 Ci + Cι+E2 where E[, E'2
are smooth rational curves with E[.C5 = E2.Cί = l; if ]Γf=i ^ι *s contained in θx then
θ1=JE

ti + C6 + 2(Σf= 1C I -h£t2 + C17) + C 1 6 + C 1 8 where E'u E'2 are smooth rational
curves with E[. C5 = E'2. Cί = E'2. Cί 7 = 1. (Actually the first case here does not occur by
counting the number of g3-fixed points in the fiber of Θ containing ]ζ*=16 Ct.) If the
cross-section C 1 5 intersects E[ then the first case here occurs and Proposition 3.1 is
true because now Cί5.E'2 = 0 and Δ+E'2 has Dynkin type D19. If C 1 5 does not intersect
E[ then the second case in Claim (3) occurs. This proves Claim (3) and also Lemma
3.5. D

LEMMA 3.6. If Case (α2) of Lemma 3.4 occurs then Proposition 3.1 is true.

PROOF. Let E be as in Case (α2). Then the strict transform E' on S3 of E is a
smooth elliptic curve such that E\Δ =2 and E'.C—l for both /= 1, 18 (cf. Lemma 3.2

Consider the elliptic fibration Φ: S3^P1 with £" as a fiber. Let ξί be the singular
fiber of Φ containing YJ\12 Cf. Then ξ : fits the type (2) of Lemma 2.5 with n= 18. Now
let F(^C16) be the curve in ξλ meeting C 1 7. Then Δ +Fhas Dynkin type Dίg. Lemma
3.6 is proved. q.e.d.

LEMMA 3.7. If Case (α3) of Lemma 3.4 occurs then Proposition 3.1 w true.

PROOF. Let E be as in Case (α3). Then the strict transform E' on S3 of E is a
smooth elliptic curve such that Ef.Δ=E'.Cί8 = 1 (cf. Lemma 3.2 (2)).

Consider the elliptic fibration Φ: S3-+Px with E' as a fiber. Let ξί be the singular
fiber of Φ containing Yu\l1 Q. Then ξ1 has the type (2) in Lemma 2.5 with n= 18. To
be precise, ί i = ^ Ί + Σ I

1 J 1 Q where E[ is a smooth rational curve with E[.Cί =
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E'ι.ClΊ= 1. In order to finish the proof of Lemma 3.7, it suffices to show the following

Claim (1). Indeed, replacing E' by E'3 in Claim (1), we are reduced to the case of Lemma

3.5.

Claim (1). There is a smooth rational curve E3 such that E3.A=E'3.C11 = l.

Letf/o = 4 C 1 7 + 2 C 1 8 + 3£ i ;+2C 1 + C 2 + 3C 1 6 + 2C 1 5 + C 1 4 a n d l e t Ψ: S3^PX be

the elliptic fibration with η0 as a fiber. Let η1 be the singular fiber of Ψ containing

Σ I

1 i 4 C i Then γ\x has the type (3) in Lemma 2.5 with « = 11. To be precise,

ηι=E'2-\-C4r + 2Yj\l5 Ci-\-C12 + E'3 where E'2, E3 are smooth rational curves with

E2.C5=E'3.C11 = 1. This proves Claim (1) and also Lemma 3.7. q.e.d.

LEMMA 3.8. Case (α4) of Lemma 3.4 does not occur.

PROOF. Consider Case (α4). Denote by E[ the strict transform on S3 of Et. Then

E[ is a nodal elliptic or type-(2.5)-cuspidal rational curve of self intersection number 2.

As in Lemma 2.9, after switching the roles of Eu Ax with E2, Λ2 or relabelling C, as

C1 9_j if necessary, one of the following subcases occurs, where CiS+j:=Ej O'=l, 2).

Case (α4.1) Ei.Πl8 = 2,Ei.Λi = 1. T h e n £ ; . C 1 8 = 2(z = 1, 2) and ^ . ^ = 4 for both

/= 1, 2. Now — 3«2 = det(C i.C7 )= —516, which is impossible.

Case (α4.2) E1.Π18 = 2, E2.Π18 = l, E1.Λί = l9 E2.Λ2 = 2. Then £ ; C 1 8 = 2,

i ? 2 . C 1 8 = l , E[.E'2 = 2. Now — 3/?2 = det(CI.C/ ) = 36, which is impossible.

Case (α4.3) Ei.Π18 = l9 E^A — l for both /=1,2 . Then £ ; . C 1 8 = 1 (/= 1, 2) and

E[.E'2 = \. Now — 3«2 = det(Q.C7) = 93, which is impossible. q.e.d.

LEMMA 3.9. If Case (α5) of Lemma 3.4 occurs then Proposition 3.1 w ίrw .̂

PROOF. Let El9 E2 be as in Case (α5). As in Lemma 2.10, by calculating

det(Cί.CJ) where C18+j is the strict transform on S3 of Ep we can prove that

E1.Πl8 = E2.Λ2=\ and £'7.,yl1=2 for b o t h j = 1,2. Moreover, det(C i.C_ /)=-192.

Let τ : X-^Xί be the smooth blowing down of E2, Eu Π18. Let vι: Xι-^Z1

be the contraction of τ(Λ2), τ ( i 7 1 + Γ 2 + Γ 5 + Γ 8 + Γ 1 1 + Γ 1 4 + Γ 1 7 ) into cyclic quotient

singularities of type <2, 1>, <13, 9>, respectively. A:x + Γ* = 0 and p(Z) = 2 imply that

^Ar

1 +
 vi(τ(yli))/^ = 0 and p(Z 1 )= 1. So Z : is a log del Pezzo surface.

By [Z3, Appendix], Zi fits Case No. 75 there and there is a P^fibration Ψ": Xγ -+ P1

such that the vx -exceptional divisor and all singular fibers of Ψ" are precisely described

in Figure (75) there. Using Lemma 3.3, we see that Ψ" induces a /^-fibration Ψ: X-^> P1

such that ηo:=4E4 + 2(E2 + Λ2 + Γ2) + Π1+Γ5 and ηγ : = 2{E3 + Γl4) + E14-i718 +

ΓίΊ + Γίl are the only singular fibers of Ψ. Here E3 and E4 are (—l)-curves satisfying

E3.Γ14r = E3.A1=EAr.Γ2=E4r.A2 = \. Now we are reduced to Case (αl) with ^replaced

by E3. So Proposition 3.1 is true by Lemma 3.5. q.e.d.

4. Proofs of the Theorems. We first prove Theorems 1 and 3.

Let Z be a rational log Enriques surface of type D18 and of index /. Let π : S c a n -• Z
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be the canonical cover of Z and we denote by (g}^Z/IZ the Galois group of π. Let

v: 5-> 5 c a n be the minimal resolution of the surface Scan. By the hypothesis on Z, Scan

has a rational double point p1 of Dynkin type DίS. Since rank Pic(S)<20, Sing*Scan is

equal to either {p^ or {pι,p2}, where p2 is a Du Val singular point of type Ax.

Write Δ:=-v~ι{pι) = YJ\l1 Q, which is of Dynkin type 7) 1 8 :

C 1 9

Let us begin with the following:

LEMMA 4.1. 7 = 3 .

PROOF. Since # acts on S as g*ω = ζIω for an 7-th primitive root ζj of unity, the

Euler function φ(I) satisfies φ(7)<rank Ts = 22 — rankPic(S)<3, where Ts is the

transcendental lattice. Thus 7 is one of 2, 3, 4, 6, for 7>2 by the rationality of S.

Now it suffices to show that 2 is not a divisor of 7. Suppose to the contrary that

217. Then Scan/(gI/2} is a rational log Enriques surface of index 2 (cf. Lemma 1.7).

This forces that each singular point of 5 c a n must be of Dynkin type A2n+i (cf. [Zl,

Lemma 3.1]), a contradiction to the assumption. Thus Lemma 4.1 is proved. q.e.d.

Note that the action of <g> on Scan induces a faithful action on S. We want to

apply Theorem 3 in [OZ1]. For this we need to show the following:

LEMMA 4.2. (1) S9 consists of exactly six curves C2, C5, C8, C l l 5 C 1 4 , C 1 7 in A

and nine isolated points.

(2) The pair (S, <#» is ίsomorphic to the pair (*S3, < # 3 » in Example 1.1.

(3) Sing(ScβI1) = {/JJ .

PROOF. Since the order 3 element g acts on the dual graph of v~1(Sing(5can)) as

the identity, we can apply "Three G o " Lemma (Lemma 2.2 in [OZ1]) or [Zl, Table

1, p. 449] to conclude that six curves C2, C5, C8, C 1 1 ? C 1 4 , C 1 7 in A are g-fixed

curves. Now (1) and (2) follow from [OZ1, Theorem 3 and Lemma 2.3].

Suppose (3) is false. Then Sing(5r

can) = {^1,/72}. Now v~1(p2) is a #3-stable but not

03-fixed curve. By [OZ1, Lemma 2.2(2)], v~1(/?2) meets one of the six g3-fixed curves in

A =v~i(pι). This is absurd. So (3) is true. q.e.d.

By Lemma 4.2, we shall, from now on, identify (S, <#» with (S3, < # 3 » .

By Proposition 2.1, we can find a smooth rational curve Q on S3 such that C1 + Δ

has Dynkin type D19. Let S3-+S3tCΆn be the contraction of Cx + A. Then <g3> acts on

S'3can with no fixed curves and Sf

3can/(g} is a rational log Enriques surface of type D19
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and index 3 (cf. Lemmas 4.2 and 1.4). Thus by [OZ1, Theorem 1], S3tCaJ(g)^Z3,

$3,can = 3̂,can a n d there exists an automorphism φ of S3 such that φ(C1-\-Δ) = Λ3

and g3

oφ = φ°g3 This implies Theorem 3.

Clearly, φ(Δ) = Δ3 — Q and hence φ induces an isomorphism Z = ScaJ(g3} =

Sδ/(g3}=Zδ (see Example 1.2 for the notation). This proves Theorem 1.

We now prove Theorems 2 and 4.

Let Z be a rational log Enriques surface of type A x 8 and of index /. Let π: Scan -• Z

be the canonical cover of Z and we denote by (g)^Z/IZ the Galois group of π. Let

v: S->Scan be the minimal resolution of the surface Scan and A the inverse by v, of

the singular point on 5 c a n of Dynkin type AίS. Write Δ=Yj]lι Ci9 where Ct.Ci+l = 1

(1 </< 17).

The following lemma can be proved similarly as in Lemmas 4.1 and 4.2.

LEMMA 4.3. (1) 1=3.

(2) Sβ consists of exactly six curves C2, C 5, C8, C 1 1 ? C 1 4 , C 1 7 /« zl and nine isolated

points.

(3) The pair (S, <#» is isomorphic to the pair (S3, <g 3 » in Example 1.1.

(4) Sing(AScan) consists of a single point, which is of Dynkin type Aί8.

In view of Lemma 4.3, we shall, from now on, identify (5, <#» with (5 3,

By Proposition 3.1, we can find a smooth rational curve F on S 3 such that Δ +F

has Dynkin type D19. Let S3-+S'3tCΛn be the contraction of Δ -\-F. Then <#3> acts on

5 3 c a n with no fixed curves and S3tCaJ(g} is a rational log Enriques surface of type Dl9

and index 3 (cf. Lemmas 4.3 and 1.4). Thus by [OZ1, Theorem 1], S3,caJ(g}^Z3,

S3yCan = S3tCan and there exists an automorphism φ of S3 such that φ(Δ+F) = Δ3 and

g3°φ = φ°g3. This implies Theorem 4.

Clearly, φ(Δ) is equal to either Δ3 — C 1 8 or J 3 — C 1 9 . Hence we get Z = ScaJ(g3}^

SΛJ(g3} = Zαi for ι"=l or z" = 2 (see Example 1.2 for the notation). Now Theorem 2

follows from Theorem 1.6.
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