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Abstract. We shall show that there is only one (resp. two) rational log Enriques
surface(s) of Dynkin type D-eighteen (resp. A-eighteen).

Introduction. This is a sequel to our paper [OZ1], where we characterized the
unique K3 surface of Picard number 20 and discriminant 3 or 4, and also showed that
there is only one rational log Enriques surface of type D, and one of type A4,; this
uniqueness result is an affirmative answer to a question raised by Reid and Naruki (see
[R, Example 6]). In the present paper, we shall show that there is exactly one (resp.
two) rational log Enriques surface of type D;g (resp. 4,g).

We begin with some definitions. Let Z be a normal projective surface defined
over the complex number field C and with at worst quotient singularities. Z is a log
Enriques surface if, by definition, the irregularity dim H(Z, ©,)=0 and a positive
multiple /K, of the canonical Weil divisor K, is linearly equivalent to zero [Z1,
Definition 1.1].

Let Z be a log Enriques surface and let /(Z):=min{ne Z. ;| 0,(nK;)=~0,} be the
index. The canonical cover of Z is defined as

T Scan =yﬁ“wz(®:é (92(_IKZ)) -Z.

Remark 1. (1) A log Enriques surface Z of index [ is nothing but the quotient
space of a surface S.,, which is either an abelian surface or a K3 surface with at worst
Du Val singular points, modulo the group Z/IZ each of whose non-trivial element
neither acts trivially on a non-zero holomorphic 2-form of S_,, nor point-wise fixes a
curve.

(2) A log Enriques surface Z is irrational if and only if Z is a K3 or Enriques
surface with at worst Du Val singular points [Z1, Proposition 1.3].

A log Enriques surface Z is of type D,g (resp. of type A,g) if, by definition, its
canonical cover S,, has a singular point of Dynkin type D,g (resp. 4;s).

Log Enriques surfaces, which have been intensively studied by Alexeev, Blache,
Reid and the authors, are closely related to the study of fibered Calabi-Yau threefolds
[O1, 2, 3, 4; Vo, W].

Key words and phrases: Automorphisms of K3 surfaces, Quotients of K3 surfaces, Rational surfaces
with quotient singularities.
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Our main results are as follows.

THEOREM 1. There is only one rational log Enriques surface of type D g up to
isomorphism.

THEOREM 2. There are exactly two rational log Enriques surfaces of type Ag up
to isomorphism.

The procedure to prove the theorems above is as follows. Let Z be a rational log
Enriques surface of type D g or A,g, m: S.,, = Z the canonical coverof Zand v: S-S,
the minimal resolution of S.,,. Let {g)> be the automorphism group of S induced from
the Galois group of n, and 4 the exceptional locus of v.

First, we shall prove that (S, {g)) is isomorphic to Shioda-Inose’s pair (S3, {g3))
(cf. Example 1.1 below and [OZ1, Example 1]). So we can and will identify (S, <g)>)
with Shioda-Inose’s pair. Next we will reduce ourselves to type D, case.

More precisely, we shall prove:

THEOREM 3. Let A be a reduced divisor of Dynkin type D,g on S;. Then there is
a smooth rational curve C, on S such that Ci+ A4 has Dynkin type Dy. Moreover,
(S5, <g3y, C, + 4) is isomorphic to Shioda-Inose’s triple (S;, (g3, 43) in [OZ1, Example
1].

THEOREM 4. Let A be a reduced divisor of Dynkin type A g on S;. Then there is
a smooth rational curve F on S5 such that A+ F has Dynkin type D,. Moreover,
(S5, g3y, 4+F) is isomorphic to Shioda-Inose’s triple (S5, {g3), 43).

REMARK 2. There is no divisors of Dynkin type 4,4 on S;. See Lemma 1.4 in §1.

To show Theorems 3 and 4, we will first find a curve on S5/{g3) so that its strict
transform E’ on Sj;, together with 4, either forms a graph of Dynkin type Do or
contains a singular elliptic fiber. In the latter case, we will find a smooth rational curve
F in another singular elliptic fiber so that F+ A4 has Dynkin type D,.

Note that there are two symmetric ways to get a graph of Dynkin type 4,5 by
deleting a vertex in a graph of Dynkin type D,,. This explains intuitively why we have
two isomorphism classes Z,,, Z,, of rational log Enriques surfaces of type 4,5 (see
Example 1.3). One hard part of the paper is to prove that Z, and Z,, are not isomorphic
to each other, though constructed extremely symmetrically (see Theorem 1.6).

From the proofs of Theorems 1 and 2 in §4, we obtain:

COROLLARY 1. Let Z be a rational log Enriques surface of type Dg or A,g. Then
the minimal resolution S of the (global) canonical cover S.,, of Z is isomorphic to the
unique K3 surface of Picard number 20 and discriminant 3.

can

ReMark 3. If Z is a rational log Enriques surface of type D, (resp. 4,5) then
the minimal resolution S of the canonical cover S,,, of Z is isomorphic to the unique
K3 surface of Picard number 20 and discriminant 3 (resp. 4) (cf. [OZ1]). Normally,
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more K3 surfaces like S above, should appear when we decrease the “weight” 19 of D,
or A,,. So Corollary 1 is a surprise. However, we shall see in our forthcoming paper
that the case 4, will produce a K3 surface of Picard number 18 and discriminant 5.

From some different aspect, Kato and Naruki [KNT] constructed a quartic surface
in P* with Du Val singular point of Dynkin type D,g or 4,5. We believe that the
canonical covers of our log Enriques surfaces of tyep D, and 4, are not isomorphic
to theirs.

ACKNOWLEDGEMENT. The authors would like to thank the referee for suggestions
which made the paper more compact.

1. Rational log Enriques surfaces of type D,z or 4,5. In this section we shall
construct one rational log Enriques surface of type D, and two of type A,q. It will
turn out that these three are all of rational log Enriques surfaces of type D, or 4,4
by Theorems 1, 2 and 1.6.

ExampPLE 1.1 (a log Enriques surface of type D,,, compare [Z1, Example 6.11]
and [R, Example 6]). In [OZI1, Example 1], we constructed the triple (S;, {g3), 43),
where S; is the unique K3 surface of Picard number 20 and discriminant 3, g5 is an
order 3 automorphism on S} satisfying g 3w, = {ws, for a non-zero holomorphic 2-form
w on S5 and the primitive cubic root { =exp(27t\/:-1 /3) of unity, and 45 is a rational
tree of Dynkin type D,q on S;.

As described in [OZ1, Example 1], the fixed locus (S;)?* is contained in 45, except
one point Pj,. Let v3: S35 — S5 .., be the contraction of 45 to a point Q5. Then g5 acts
on S; .., 80 that (S5 .,)° ={03, v3(P3,)}. Now the quotient surface Z5:=S; .,,/<93)
is a rational log Enriques surface of type D4 and of index 3. Note that Z, has exactly
two singular points: one is of type Dy and the other is of type (1/3)(1, 1) under the two
gs-fixed points Q5 and v;(P3,), respectively (see [R, Example 6] for the notation).

ExAaMPLE 1.2 (a rational log Enriques surface of type D;g). We use the notation
in Example 1.1 above and [OZ1, Example 1]. We rename the components of 45 in the
following way:

Cis
|
Cl7_C16*C15_C14_C13_C12_C1l_CIO_CQ_CB_C7_C6_C5—C4_C3_C2_Cl .
|
Cio

SO Cl =Ei3, C2=F1, ceey C17=G1, C18=E11’ C19=E21. Let 6: S3 “‘)Sé bC the
contraction of the rational tree 4; — C, of Dynkin type D, to a point Q;. Then g5 acts
on S; so that (S;)*={Q;, Q;, d(P3,)}, where Qj is the g,-fixed point on &(C,)—(C,).
Now the quotient surface Z;:=.S;/{g;) is a rational log Enriques surface of type D,
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and of index 3. Note that Sing(Z;) consists of exactly one singular point of type Dg
and two of type (1/3)(1, 1) under the three g;-fixed points Q;, Q; and d(P5,), respectively.

ExaMpLE 1.3 (two rational log Enriques surfaces of type 4,5). We use the nota-
tion in Examples 1.1 and 1.2. For i=1 (resp. i=2), let o;: S5 — S, be the contraction
of the rational tree 4;—C,; (resp. 45— C;,) of Dynkin type 4,5 to a point Q,.. Then
gs acts on S, so that (S, ) ={Q,, Q.. d(P3,)} where Q, (resp. Q,) is the g,-fixed
point on o (C,g)—a,(Cy-) (resp. a,(Cyg)—a,(C,)). Now the quotient surfaces Z, :=
S../{gs> are rational log Enriques surfaces of type 4,5 and of index 3. Note that
Sing(Z,,) consists of exactly one singular point of type 45 and two of type (1/3)(1, 1)
under the three g;-fixed points Q,,, Q,., ®;(P3,), respectively.

We shall prove that Z, is not isomorphic to Z,,. First, we need the following
Proposition 1.5. We also prove Lemma 1.4 below which implies Remark 2 in the

Introduction.

LemMMA 1.4. (1) Let 4 be a reduced divisor of Dynkin type D4 (resp. Dyg or Ayg)
on S5. Let v: 83— S, be the contraction of A to a point q. Then g5 acts on S, with
(Sean)? ={q, g0} (resp. (Sean)? =1{4, 4o, q10}) Where q; is a point. Hence the quotient surface
S.../<gs> is a rational log Enriques surface of index 3 and type D,q (resp. D g or Ayg).

(2) There is no divisors of Dynkin type A,y on S;.

Proor. (1) We consider the case where 4 is of Dynkin type 4,4, while the other
two cases are similar. Write A=C;+ C,+ - - -+ Cyg so that C,.C;, ;=1 (1<i<17). By
[OZ1, Lemmas 2.2 and 2.3 and Remark 3 in §1], (S5)?* is equal to

Supp(C,+ Cs+Cg+Cy; +Ciy+ C17)H{‘I0, 91> 93,4> 96,75 99,10> 912,13 915,165 918> d1o)»

where ¢; ;1 =C;nC;4, g, is a point on C, (k=1, 18) and ¢q,, g, are points not on 4.
Now (1) follows after we identify g; with v(g;) (i=0, 19).

(2) Suppose to the contrary that A=C, +C,+ - - -+ C,, is a reduced divisor of
Dynkin type 4, on S;, where C;.C;,;=1 (1<i<18). By [ibid.], either C,+
Ci+Cr+Ciy+Ci3+Cis+Cigor Cy+ Cs+Cyg+ Cyy+ Cy 4+ Cy 4 is contained in (S3)%,
after relabelling 4 if necessary. The first case is impossible because (S;)?* consists of
exactly six irreducible curves and nine isolated points [OZ1, Lemma 2.3]. In the
second case, there must be a g;-fixed curve C,, such that C,,.C,5=1 by [OZ1, Lemma
2.2]. This leads to the conclusion that (S5)?* contains at least seven fixed curves C; (i=
2, 5,8, 11, 14, 17, 20), again a contradiction. So (2) is true. q.e.d.

PRrOPOSITION 1.5.  Suppose that the two rational log Enriques surfaces Z, (i=1, 2)
in Example 1.3 are isomorphic to each other. Then there is a common integer solution to
the following system of four quadratic equations:
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1 38x2+2y?+19xy+4x+y=0

2 38224+ 2w?+ 192w+ 362+ 9w +7=0

(3) 76xz+19xw+19yz+4yw+27x+ 6y +4z+w+2=0
4+ —19xw+19yz—19x+2y—w—1=+1.

Proor. Claim(l). (1) Cy,C,, ..., Cyq, Cyo:=FE’ — E,; form a Z-basis of Pic(S;).
(2) There exists an isometry ¥ of the lattice Pic(S;) such that

Y(C)=Cig, Y(C)=Cio_; 2<i<1T), Y(Cig)=E1;, Y(Ci9)=Cy, Y(Cy0)=—Cyp .

The assertion (1) can be verified by computing that the determinant of the inter-
section matrix of the twenty curves in (1) equals — 3, which is also the determinant of
that of Pic(S5).

By (1), there exists a group-automorphism ¥ of Pic(S;) satisfying the equalities in
(2). A direct checking shows that Y(C;).y(C;)=C,.C; (i,j=1,2,...,20). So ¥ is an
isometry of the lattics Pic(S;). Claim (1) is proved.

Suppose that Z,, is isomorphic to Z,,. Then there exists an automorphism ¢ such
that g;0@p=¢og; and (45— C,9)=43—C,g. So either
(%) o(C)=C; (1<i<17), o¢(Cig)=C,yy, or
(**) P(C)=Clro, @(C)=Cio_; (2<i<18).

Replacing ¢ by ¥ o if necessary, we may assume that there exists an isometry ¢ of
the lattice Pic(S;) satisfying the hypothesis ().

Set M :=¢(C,), N:=¢(C,0). Since ¢ is a lattice isometry, there are integers a;, b,
%, f such that M=Y ! a,C;+bCyo, N=Y /2, 2,C;+ BC,.

Note that M.C;=C,,.C; is equal to 1 if i=17, and 0 if 1<i<16, and that

M.C,9=C4.Ci3=0. On the other hand, M.C; can be written as a linear combination
of a;, b. So we get eighteen linear equations in a;, b. Solving them, we obtain:

a;=ia, +(i—1)b (1<i<8), a;=ja,+7b(j=9,10,11),
ay=ka, +(k—4b (12<k<17),
a;s=(19a,+14b+2)/2, a,9=(17a,+14b)/2 .
Substituting these into the calculation2 = — C3g= — M? = —(Zi1 ? L 4;C;+bCy)%, we get:
19af+4b>+19a,b+4a, +2b=0.

From the expression of a,g in terms of a,, b, we see that a, is an even integer. Write
a;=2a. Then (x, y)=(a, b) satisfies the equation (1) of Proposition 1.5.

Note that N.C;=C,,.C; is equal to —1if i=1, 11, equal to 1 if =8, and equal to
0ifi#1, 8, 11 and 1<i<17, that N.C;g=C,,.C;3=0 and that N>=C?},= —4. As in
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the case for M, we obtain the following equalities, where we set f; :=f—1:
o=l +(i—1)B, 1<i<8), o;=jo; +7, (j=9,10,11),
oy =ka, +(k—4)p, (12<k<17),
g=(19% +14p,—1)/2, oo=(170;+148,+1)/2,
1907 +4B,%+ 192, 8, — 20, — B, —3=0.

The expression of ;g implies that «, is an odd integer. Write o; =2+ 1. The last
equation shows that (z, w)=(a, f,) satisfies the equation (2) of Proposition 1.5.

Now each o; is a function in «,, B;. Substituting these into the calculation
1=Clo.Coo=M.N=(}.[2, a;Ci+bCyo)(Y.}2, 0:Ci+ BC,0), we see that (x,y,z,w)=
(a, b, a, B,) satisfies the equation (3) of Proposition 1.5.

To finish the proof, we still need to show that the quadruple (x, y, z, w) satisfies
the equation (4).. Note that ¢, regarded as an automorphism of the lattice Pic(S;), has
the following transition matrix, with repect to the basis C;, C,, ..., C,, in Claim (1)

I, 0 0 O
0---0 0 1 O
ay " cay; dyg Ay b

Opt Oy Oy %o B

A =

]

Now the equation (4), follows from the observation +1=detA,=ba,;s—pa,s and
the substitutions of a,g, a,4 in X, y, z, w. This proves Proposition 1.5. g.e.d.

THEOREM 1.6. The two rational log Enriques surfaces Z, and Z,, in Example 1.3
are not isomorphic to each other.

PrOOF. In view of Proposition 1.5, we have only to show that there are no common
integer solutions to the system there.

First we consider the system (+) consisting of four eqautions (1), (2), (3), 4)+,
where we choose “+ 17’ on the right of the equation (4), in Proposition 1.5. One can
verify that (—1/4, 1/2, 0, —1), (—5/2, 7, 2, —7) are common rational solutions of the
system (+). One can also check that (—5, —9, 0, —1), (7, 7, 2, —7) are the only
solutions of the system (+) modulo 19.

We apply Cramer’s rule to the equations (3) and (4) , and write x, y in terms of z, w:

x=(6z—w+1)/(171z+5Tw+49), y=(—38z—4w—8)/(171z+5Tw+49).

Here we note that the denominator function in z, w, in the above expression has no
integer zeros because 19 divides 171 and 57 but not 49.

Substituting the above solutions of x, y into the equation (1), we obtain, by getting
rid of the denominator, the following:

1) 2470z% + 310w+ 1748zw + 13322+ 492w+ 182=0.
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Using (1') and (2), one can write z in terms of w:
z=(180w?—93w—273)/(— 513w+ 1008) .

Now substituting this into the equation (2) multiplied by the denominator and divided
by 18, we get

Sw)=171w*+3192w>+16090w? + 15176w +2107=0 .
One can verify that
Sw)=(w+1)(w+7)(171w?+ 1824w +301)..

Thus, only w= —1, —7 are integer zeros of f(w). Substituting them into the functions
z, X, y, we see that (x, y, z, w)=(—1/4,1/2,0, —1), (—5/2, 7, 2, —7) are the only solutions
of the system (+) with integer w. Thus there is no integer solutions to the system (+).
This proves Theorem 1.6 in the present case.

Nex we consider the system (—) consisting of four equations (1), (2), (3), (4)_,
where we choose “—1” on the right of the equation (4), in Propositon 1.5. One can
check that (x, y, z, w)=(0, —1/2,0, —1), (—1/2, 5/4, 2, —7) are common solutions to the
system (—), and that (0,9, 0, —1), (9, 6, 2, —7) are the only solutions of the system (—)
modulo 19.

Asin the previous case, one can solve the system (—) in the following procedure:

x=—(13z+5w+5)/(171z+5Tw+49), y=(38z+ 15w+ 19)/(171z+ 57w +49),
(1) 247022 4310w 2+ 17482zw+ 133224+ 492w+ 182 =0,
z=(180w2—93w—273)/(— 513w+ 1008) ,
F(w)=(w+ 1)(w+T)(171w? + 1824w +301)=0 .

As in the case of system (+), we see that (x, y, z, w)=(0, —1/2,0, — 1), (—1/2, 5/4, 2,
—7) are the only solutions of the system (—) with integer w. Thus there is no integer
solutions to the system (—). This completes the proof of Theorem 1.6. q.e.d.

We prove the following lemma to be used in §4.

Lemma 1.7. Let S be a K3 surface with at worst Du Val singular points. Suppose
that o is an order I (I=2) automorphism of S such that no curve on S is point-wise
fixed by any non-trivial element of {a) and that c*wg={,wg for a primitive I-th root {;
of unity and a nowhere vanishing holomorphic 2-form wg on S. Suppose further that S
contains a singular point p, of Dynkin type A, or D, for some r>10. Then the quotient
surface S/{o) is a rational log Enriques surface of index I with S as its canonical cover.

Proor. Clearly, S/{(c) is a log Enriques surface of index I with the quotient
morphism n: S— S/{c) as its canonical cover. We only need to show the rationality
of S/{a)>. Let T—> S be a minimal resolution of S. Then T is a K3 surface. We first
prove the following:
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Claim (1). The singular point p, € S is o-fixed.

If Claim (1) is false, then p, and o(p,) are two distinct Du Val singular points of
Dynkin type A, or D, for some r>10. This leads to the conclusion that the minimal
resolution 7 of S has Picard number >2r+1>21, a contradiction. So Claim (1) is true.

Now suppose to the contrary that S/{c) is not rational. Then, by the classifica-
tion of surfaces, S/{o) is an Enriques surface with at worst Du Val singular points and
I=2. By Claim (1), the inverse image 4 on T of the o-fixed point p, is stable under the
induced g-action on T. It is easy to see that 4 contains a point fixed by the involution o.

On the other hand, 6*w= —w implies that ¢ has no isolated o-fixed points, and
that the fixed locus 7 is a disjoint union of smooth rational curves by the hypothesis
on the g-action on S. Thus 7/{a) is smooth and rational by the ramification formula.
But then the Enriques surface S/{g) with Du Val singularities, is birational to the
rational surface 7/{a), a contradiction. This proves Lemma 1.7. g.e.d.

2. Extend D,z to D;,0n S;. In this section, we shall prove the following, where
S5 is given in Example 1.1.

ProOPOSITION 2.1. Let A be a reduced divisor of Dynkin type D g on Ss. Then there
exists a smooth rational curve C, on S; such that C,+ A has Dynkin type D,,.

The proof of Proposition 2.1 consists of the following Lemmas 2.4, 2.6-2.10.

We write 4= ij , C; whose dual graph is the same as the one given at the beginning
of §4. By [OZ1, Lemmas 2.2 and 2.3] the fixed locus (S3)?* consists of exactly six curves
C,, Cs, Cg, Cy4, Cy4, C,, and nine isolated points. To be precise, (S5)?® is equal to

Supp(C, +Cs+Cg+Cy +Cry+ C17)H {1’3.4,‘”6.7’1’9,10,1712.13’P15.167P18,1719o l, 12} >

where p; ;4 is the intersection point C;n C;,,, p; (j=18, 19) is a point on C; and /,,
/, are points not on 4.

Let v: S3—S.,, be the contraction of 4 to a point ¢5. Then {g3) acts on S,,, with
(Sean)? =1{q3, V1)), (I,)}. Put Z=S_,,/<g3>andletn: S.,, — Z be the quotient morphism.
Then Z is a rational log Enriques surface of type D,g and index 3. This Z has one
singular point n(g;) of type Dg, two singular points nv(/;) (i=1, 2) of type (1/3)(1, 1)
and no other singular points.

Let u: X — Z be the minimal resolution of Z and denote the exceptional locus of
uby '=sI,+ s+ Tg+ T+ T+ ,+ g+ g+A,+A4,:

g

|

F17_F14_r11_F8—F5_F2 s Al ’ A2 .

l

;s
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Here I';=—4, I''=-2 (i=5, 8, 11, 14, 17), OI}=-2 (j=18,19), A}=-3
(k=1,2), and Fy+Ts+Tg+T 1+ T4+ + g+ To=p"'(n(gs)), A;=p" (av(l)
(i=1,2).

The following result follows from the construction of Z (see [Z1, Table 1, p. 449]).

LemmA 2.2. (1) 3(Kx+IT*)=u*(3K,)~0, where T'*=2,+ s+ g+ +T 4+
F17)/3+(H18+H13+A1 +45)/3.

(2) Let vy: S;3— S5 be the blowing up of four points p,g, P19, 11, I, on S5 to four
(—1)-curves Pyg, Pio, L,, L,. Then there exists a degree three morphism #: S, — X such
that movev,=poft and

#,(C)=3T; (i=2,5,8,11,14,17), #,(P,)=311, (j=18,19), & (L)=34, (k=1,2).

In the following lemma, by a (—n)-curve on X we mean a smooth rational curve
of self-intersection number —n.

LemMa 2.3. (1) rankPic(Z)=2, rank Pic(X)=12 and K3= —2.
(2) For any (—1)-curve E on X we have E.-I'*=1. If H is an irreducible curve on
X with H* <0, then H is either a component of T or a (—1)-curve.

Proor. By Lemma 2.2, Ki=(I'*)>= —2. Thus (1) follows. Now 3(Ky+I'*)~0
in Lemma 2.2 and the genus formula imply the first half of (2) and that H with H*<0
either satisfies (2), or is a (—2)-curve disjoint from I'. The latter case is impossible
because g [pis, =1d (cf. [OZ1, Lemma 2.3]). q.e.d.

LemMMA 2.4. There exists one (—1)-curve E or two disjoint (— 1)-curves E{, E, on
X such that one of the following cases occurs (after exchanging the roles of Il g with I1,,
and A, with A, if necessary):

Case (01) E.A,=E.I'y=1 for either one of i=2,5,8, 11, 14 or 17,

Case (62) E. A =EIl,g=E.Il 4=1,

Case (03) E.A,=E.A,=E.Il,4=1,

Case (04) E.(A;+H,g+1I15)=3 and E;.A;e {1, 2} for both i=1,2, and

Case (05) E;.A,€{1,2} and E| (A, +II1,5)=E,.(A; + A,)=3 for both i=1, 2.

Proor. Let f: X—ZX, be a smooth contraction of smooth rational curves to
points on some Hirzebruch surface X, of degree n. Since Ky +f, I'*=0 (Lemma 2.2
(1)), f, I’ contains at least one horizontal component and is connected.

Claim (1). Supp f(I')=Supp f, I, that is, no connected component of I" is con-
tracted to a point not lying on f,I.

Suppose to the contrary that a maximal union I'’ of connected components of I’
is contracted to a point p not lying on f,I" so that f(I'')n f(I'—I'")= . Decompose
f=/f5°f,0f; so that fi(I'") is a (—1)-curve and f, is the blowing down of f{(I'"). Then
we have 0= f(I''). f1,(Kx+T*)=—1—a<0, where a is the coefficient in I'* of the
proper transform f|(f;(I"')). This is a contradiction. Claim (1) is proved.
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Claim (1) and its preceding argument imply that f(I') is connected. So f ~'f(I')
is connected. We can write f~'f(I'=I+E_,+C_, where E_, is a union of (—1)-
curves, and C_, is a union of (—2)-curves disjoint from I' (Lemma 2.3 (2)). Since
E_,+C_, is f-exceptional and hence has negative definite intersection matrix, each
connected component of C_, is a twig of /! f(I') sprouting from a (—1)-curve in E_,.
So I'+ E_, is connected. Now Lemma 2.4 follows from Lemma 2.3 (2) and the fact
that E_, consists of disjoint (— 1)-curves. q.e.d.

We need the following lemma which is a consequence of Kodaira’s classification
of singular elliptic fibers, “Three Go” Lemma [OZ1, Lemma 2.2] and the fact that
9% |picsy=1d in [OZ1, Lemma 2.3]. The condition n< 18 (resp. n<17) in the type (2)
(resp. the type (3)) comes from the fact that rank Pic(S;)<21.

LEMMA 2.5. Let & be a singular fiber of an elliptic fibration ®: Sy — P*. Suppose
that all curves of (S3)?* are contained in fibers of ® and & contains at least one curve of
(S5)?2. Then & has one of the following types:

(1) &¢=H{+H,+ H,, where H}s share one and the same point. After relabelling
the components of ¢ if necessary, H, is the only common component of & with (S5)%.

) ¢=H,+H,+---+H,isaloop with H.H,, ,=H,.H, =1 (1<i<n—1). nis
one of 3, 6, 9, 12, 15, 18. After relabelling the components of & if necessary, H,,
H, H,, ..., H,_, are the only common components of & with (S5)?>.

(3) ¢(=H\+H,+2H;+H,+---+H,_,)+H,_ +H, where H,. Hy=H;.H;, =
H, ,H,=1 (2<i<n—2). nis one of 5, 8, 11, 14, 17. H3,Hs, H,, ..., H,_, are
the only common components of & with (S5)%*.

4) ¢=3H,+2H,+H,+2H,+Hs+2H¢+ H,, where H.H;=H;. H;, =1 (i=
2,4,6). H, is the only common component of & with (S5)%.

(5) ¢=4H,+2H,+3H;+2H,+Hs+3Hs+2H,+ Hg, where H,.H;=H;_,.H;=
H.H;,  =1(i=2,3,6;j=4,7). H,, Hs, Hg are the only common components of £ with
(S3)%.

(6) ¢=6H,+3H,+4H,+2H,+5H;+4H,+3H,+2Hg+ H,, where H,.H;=
Hy, H,=H;H; =1 (i=2,3,55<j<8). H,, H; are the only common components of
& with (S3)%.

We now treat the cases in Lemma 2.4 separately to conclude Proposition 2.1.
LEmMMA 2.6. If Case (61) of Lemma 2.4 occurs then Proposition 2.1 is true.

ProoOF. Let Ebe as in Case (61). By Lemma 2.2 (2), we see that the strict transform
E’ on S; of E is a smooth rational curve such that E'.A=E'.C;=1 for i=2, 5,8, 11, 14
or 17. If i=2, we let C; =F’ and Proposition 2.1 is proved.

So we may assume that i=5, §, 11, 14 or 17. Let 60:=E’+Ci_1+2z,:liCk+
C,s+ C,o. Applying the Riemann-Roch theorem to this nef divisor £, we see that there
exists an elliptic fibration @ : S; — P! with &, as its singular fiber. Let ¢, be the singular
fiber of & containing Z,’;; C,. Then ¢, fits one of the six types in Lemma 2.5. If ¢,
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has either of the type (1), (2), (3), (4) or (6) then, after relabelling, we can take H, or
Hjg (only for the type (6)) as C,, which satisfies the condition of Proposition 2.1.

We may assume now that £, is of the type (5). So i=11 and &, =4Cs+2H,+
3C4+2C3+ C,+3Ce+2C,+ Cg where H,.Cs=1. Consider a new elliptic fibration
.S, P withn,=H,+ C4+22,fls C.+ Cig+ Cyq as a singular fiber. Let 1, be the
singular fiber of ¥ containing C,. Then 5, has one of the six types in Lemma 2.5. Since
the Euler number yx(r,)=18, one has y(1,) < x(S5)— 18 =6. Hence 5, is not of the type
(5). (Actually n, has the type (2) with n=3.) Now we can find from #,, as in the previous
paragraph, a smooth rational curve C; which satisfies the condition of Proposition 2.1.
This proves Lemma 2.6. q.e.d.

Lemma 2.7. If Case (62) of Lemma 2.4 occurs then Proposition 2.1 is true.

PrOOF. Let E be as in Case (62). Then the strict transform E’ on S; of E is a
smooth elliptic curve such that E'.4=2 and E'.C;=1 for both i=18, 19 (cf. Lemma 2.2
(2).

Consider the elliptic fibration @: S;—»P' with E’ as a fiber. Let ¢; be the
singular fiber of @ containing Z,:Z C,. Then ¢, fits the type (2) of Lemma 2.5 with
n=18. Now let C, (# Cj;) be the curve in ¢, meeting C,. This C, satisfies the condition
of Proposition 2.1. Lemma 2.7 is proved. q.e.d.

LemMa 2.8. If Case (63) of Lemma 2.4 occurs then Proposition 2.1 is true.

Proor. Let E be as in Case (03). Then the strict transform E’ on S; of E is a
smooth elliptic curve such that E'.A=E'.C,,=1.

Claim (1). Thereis a smooth rational curve H, on S; such that H,.4=H,.Cs=1.

By Lemma 2.5, there exists a smooth rational curve G, such that G,.C,=
G,.Cig=1 and G1+}:,.1=82 C; is a singular fiber of type (2) of the elliptic fibration
@ : S3— P'. By the same lemma, we see that there is a smooth rational curve H,
satisfying the conditions in Claim (1) such that 6Cs+3H,+4C,+2C;+5Cs+4C,+
3Cg+2Cy+Cyp and 6C;+3C4+4C,5+2G,+5C,+4C,5s+3C,,+2C,5+C,, are
two distinct fibers of an elliptic fibration on S;. This proves Claim (1).

Now letting £y :=H,+ C4+2(Cs+ - - - + C;7)+ C; g+ C, o and arguing as in Lemma
2.6, we can see that Proposition 2.1 is true. This proves Lemma 2.8. q.e.d.

LEMMA 2.9. Case (64) of Lemma 2.4 does not occur.

Proor. Consider Case (64). Denote by E| the strict transform on S5 of E;. Then
E! is a nodal elliptic or type-(2.5)-cuspidal rational curve of self intersection number 2.
Set G,_,:=C;, 2<i<19), G,5,;:=FE] (i=1,2). Since the discriminant of S; is 3,
det(G;.G;)= —3n” for a non-negative integer n. Here n is the index of the sublattice
fol ZG; in Pic(S,) if G;’s are linearly independent, and zero otherwise. After exchang-
ing the roles of 1,5 with IT,4 or E,, A, with E,, A, if necessary, one of the follow-
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ing subcases occurs. Here we use also the fact that E{.E, >0 for both E{, E; are nef
and big divisors.

Case (04.1) E,.IlI,4=2 and E;. A;=1 for both i=1,2. Then E;.C,,=2 (i=1,2)
and E;.E;=4. Now —3n”*=det(G;.G;)= — 336, which is impossible.

Case (04.2) E,.Il,4=2, E,.Il, =1, E,. A;=1, E,. A,=2. Then E;.C,5=2,
E;.Ci9=1, E{.E;=2. Now —3n?=det(G,.G;)=36, which is impossible.

Case (04.3) E,.I,4=1 and E; A;=2 for both i=1,2. Then E;.C;4=1 (i=1,2)
and E{.E;=1. Now ——3n2=det(G,-.Gj)=48, which is impossible. q.e.d.

LemMA 2.10. If Case (65) of Lemma 2.4 occurs then Proposition 2.1 is true.

Proor. Let E,, E, be as in Case (65). Then the strict transform G,g,; on S5 of
E; is a curve of self intersection number 2. Set G;,_,:=C; (2<i<19). Then
det(G;.G;)= —3n? for a non-negative integer n. This implies, as in Lemma 2.9, that
E,.Il,4=F,.A,=1, and E;. A, =2 for both i=1, 2. Moreover, det(G;.G;)= —12.

Letno:=2E,+Ho+T;;)+I,4+T,,and ¥: X — P! the P'-fibration with 5, as
a fiber. Let #, be the fiber containing E,+ A,. By Lemma 2.3, there are (— 1)-curves
E,, E, such that either E5.I'y,=E; A,=1(j=3,4), E,. A;=2 and n,=4,+ Z, ,E;
or E;.I,=FE;. A,=FE, I's=E, A;=1 and n,=2(E, +E4+F )+ E,+A,+T,+Tg In
both cases, we are reduced to Case (61) with A, (resp. E) replaced by A, (resp. E3). So
Proposition 2.1 is true by Lemma 2.6. q.e.d.

3. Extend A5 to D;, 0n S;. In this section, we shall prove the following, where
S5 is given in Example 1.1.

ProprosITION 3.1. Let A be a reduced divisor of Dynkin type A,z on S;. Then
there exists a smooth rational curve F on Sy such that A+ F has Dynkin type D .

The proof of Proposition 3.1 consists of the following Lemmas 3.5-3.9.
Write 4= Zilfl C;where C,.C;,;=1. By [OZ1, Lemmas 2.2 and 2.3], (S3)?* equals

Supp(C,+ Cs+ Cg+ Cy 1+ Cia+ Cy9) [[{P1> P3.45 P67 Po.10s P12.135 Pis.ies Prss Lis o) »

where p; ;. is the intersection point C;nC;, , p; (j=1, 18) is a point on C;, and /,, [,
are points not on 4.

Let v: S3 > S.,, be the contraction of 4 to a point g5. Then {g3) acts on S_,, with
(Sean)?=1{q3, v(l)), v(l,)}. Put Z=S_,./{g;yandlet: S, — Z be the quotient morphism.
Then Z is a rational log Enriques surface of type 4,3 and index 3. Z has one
singular point n(g;) of type Ag, two singular points nv(/;) (i=1, 2) of type (1/3)(1,1) and
no other singular points.

Let u: X— Z be the minimal resolution of Z and denote the exceptional locus
of uby I'=sl+T,+T's+ g+ + T4+, + g+ A+ A4,

HIS_F17_F14_F1I_FS_FS—FZ_HI s Ai ’ AZ .
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Here II7=-2 (i=1,18), I'}'=-3 (j=2,17), I'}=-2 (i=5,8,11,14), A}=-3
(r=1,2), and I +T,+Ts+Ts+ T+ T+ 1+ Hig=p" Y(nlgs), A;=p (L)
i=1,2).

The following Lemmas 3.2, 3.3 and 3.4 can be proved similarly as in Lemmas 2.2,
2.3 and 2.4.

Lemma 3.2, (1) 3(Kx+T'*)=pu*(3Kz)~0, where I'*=2(I,+Is+Tg+T+
I'i,+ 1“17)/3+(H1~+H,8+A1 +4,)/3.

(2) Letv,:S;—S; be the blowing up of four points py, pys, l1, [, on S5 to four
(—1)-curves Py, P,g, Ly, L,. Then there exists a degree three morphism 7: 83 — X such
that movev, =pof and

#,(C)=3T; (i=2,5,8,11,14,17), #,(P;)=3M,(j=1,18), #(L)=34, k=1,2).

LemMA 3.3. (1) rank Pic(Z)=2, rank Pic(X)=12 and K3 = —2.
(2) For any (—1)-curve E on X we have E.I'*=1. If H is an irreducible curve
on X with H*> <0, then H is either a component of T’ or a (—1)-curve.

LEMMA 3.4, There exists a (—1)-curve E or two disjoint (—1)-curves E,, E, on X
such that one of the following cases occurs (after exchanging the roles of A, with A,
and relabelling 1~ '(n(q;)) if necessary):

Case (1) E.A,=E.I';=1 for either i=11, 14, or 17,

Case (x2) E.A=FEJl,=E.Il,3=1,

Case (3) E.A,=E.A,=E.Il,g=1,

Case (04) E;.(A;+1I,+11,5)=3 and E;. A;€{1, 2} for both i=1, 2, and

Case (@5) E;.A;€{1,2} and E\ (A, +I1,g)=E,.(A, + A,)=3 for both i=1, 2.

We now treat the cases in Lemma 3.4 separately to conclude Proposition 3.1.
LeEMMA 3.5. If Case (x1) of Lemma 3.4 occurs then Proposition 3.1 is true.

Proor. Let E be as in Case (x1). By Lemma 3.2 (2), we see that the strict transform
E’ on S; of E is a smooth rational curve such that E’.A=FE’.C;=1 for i=11, 14 or 17.
If i=17, we let F=E’ and Proposition 3.1 is proved.

So we may assume that £'.C;=1 for i=11 or 14.

Claim (1). Assume that E'.C,,=1. Then either Proposition 3.1 is true or there is
a (—2)-curve E; such that E{ .(A+E)=E{.(C,+Cys), E{.C,=E].Cig=1.

Let&y:=4C 4, +2E'+3C,3+2C,+C;1+3C;5+2C;+ C,. Applying the Riemann-
Roch theorem to this nef divisor &, we see that there is an elliptic fibration @: S5 — P*
with &, as its singular fiber. Let £; be the singular fiber of @ containing Z?:l C,.
Then ¢, must have the type (3) with n=11 in Lemma 2.5. So there are two smooth
rational curves Ej, Ej such that ¢, =E;+C,+2) }_ , C;+Cy+Ej5 where E;.C,=
E;.Cg=1. Note that the cross-section C,g meets either £} or Ej. Thus, Claim (1) is
true. Indeed, if C,g meets E; then C,4.E{=0 and 4+ E| has Dynkin type D, and
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hence Proposition 3.1 is true, otherwise the second case in Claim (1) occurs.
Claim (2). If the second case in Claim (1) occurs then Proposition 3.1 is true.

Let E; be as in Claim (1). Let no:=E{+C;+2Y /%, C;i+C;s+E and let
¥: S, — P! be the elliptic fibration with #, as its singular fiber. Let 5, be the singular
fiber of ¥ containing C,,. Then #, fits one of the six types in Lemma 2.5. (Actually #,
is of the type (1) or (2) there.) Taking as F a component in 7, adjacent to C,,, we see
that 4+ F is of Dynkin type D,,.

To finish the proof of Lemma 3.5, we have only to show the following Claim (3).
In fact, if Claim (3) is true then by relabelling 4 and replacing E’ by E} in Claim (3),
we are reduced to the case where E'.Cy,=1.

Claim (3). Assume that £'.C;, =1. Then either Proposition 3.1 is true or we can
find a smooth rational curve E{ such that F{.A=E].Cs=1.

Let 0p=4C,,+2E'+3C,o+2Cy+Cg+3C,,+2C,3+C,, and let ©: S; - P! be
the elliptic fibration with 8, as its singular fiber. Let 0, be the singular fiber of @
containing Z?:I C;. Then 6, must have the type (3) in Lemma 2.5. More precisely, if
Y18 ¢ Ciis not contained in 0, then 0, =E{+C¢+2Y.>_, C;+C, + Ej; where Ej, E}
are smooth rational curves with E{.Cs=FE;.C,=1; if Zle C; is contained in 0, then
0,=E + C6+2(Zi5:1 CH+E,+C;)+Ci6+C,g where E{, E; are smooth rational
curves with E{.Cs=E,.C;=FE;.C,;;=1. (Actually the first case here.does not occur by
counting the number of g;-fixed points in the fiber of @ containing ). ilf 16 Ci) If the
cross-section C;s intersects E{ then the first case here occurs and Proposition 3.1 is
true because now C,5.E5=0 and 4+ E; has Dynkin type D,,. If C;5 does not intersect
E; then the second case in Claim (3) occurs. This proves Claim (3) and also Lemma

3.5. O
LemMa 3.6. If Case (22) of Lemima 3.4 occurs then Proposition 3.1 is true.

ProoF. Let E be as in Case («2). Then the strict transform E’ on S5 of E is a
smooth elliptic curve such that E’.4=2 and E'.C;=1 for both i=1, 18 (cf. Lemma 3.2
(2)).

Consider the elliptic fibration @: S; — P! with E’ as a fiber. Let &, be the singular
fiber of ® containing ), ,1:7 , Ci. Then &, fits the type (2) of Lemma 2.5 with n=18. Now
let F (# C¢) be the curve in &, meeting C,,. Then 4 + F has Dynkin type D,,. Lemma
3.6 is proved. q.e.d.

LemMMA 3.7. If Case (23) of Lemma 3.4 occurs then Proposition 3.1 is true.

Proor. Let E be as in Case («3). Then the strict transform E’ on S; of E is a
smooth elliptic curve such that E'.A=FE'.C,g=1 (cf. Lemma 3.2 (2)).

Consider the elliptic fibration @: S; — P! with E’ as a fiber. Let &, be the singular
fiber of @ containing Y/, C.. Then ¢, has the type (2) in Lemma 2.5 with n=18. To
be precise, & =E{+). :=7 . C; where Ej is a smooth rational curve with E|.C,=
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E;.C;;=1.In order to finish the proof of Lemma 3.7, it suffices to show the following
Claim (1). Indeed, replacing E’ by Ej in Claim (1), we are reduced to the case of Lemma
3.5.

Claim (1). There is a smooth rational curve Ej such that 5. A=F;.C;,;=1.

Let 7y:=4C,;+2Cg+3E{+2C,+C,+3C,4+2C,5+C;, and let ¥: S; > P* be
the elliptic fibration with 7, as a fiber. Let 5, be the singular fiber of ¥ containing
Z}f . Ci. Then n, has the type (3) in Lemma 2.5 with n=11. To be precise,
m=E+C,+2 ilslsCi—F C,,+E; where E;, Ej are smooth rational curves with
E,.Cs=FE;.C,,=1. This proves Claim (1) and also Lemma 3.7. q.e.d.

Lemma 3.8. Case (24) of Lemma 3.4 does not occur.

Proor. Consider Case (#4). Denote by E; the strict transform on S5 of E;. Then
E! is a nodal elliptic or type-(2.5)-cuspidal rational curve of self intersection number 2.
As in Lemma 2.9, after switching the roles of E,, A, with E,, A, or relabelling C; as
C,o-; if necessary, one of the following subcases occurs, where C,g,;:=E; (j=1, 2).

Case (a4.1) E;.II,3=2,FE;. A;=1.Then E{.C,3=2(i=1, 2) and E{.E’, =4 for both
i=1, 2. Now —3n?=det(C;.C;)= —516, which is impossible.

Case (04.2) E,.II3=2, E, II,g=1, E;.A,=1, E, . A,=2. Then E{C,3=2,
E,.Cyg=1, E{.E;=2. Now —3n?=det(C;.C;)=36, which is impossible.

Case (04.3) E;.Il,3=1, E;.A;=2 for both i=1,2. Then E|.C,g=1 (i=1, 2) and
E{.E;=1. Now —3n*=det(C;.C;)=93, which is impossible. g.e.d.

LemMa 3.9. If Case (xS) of Lemma 3.4 occurs then Proposition 3.1 is true.

ProoF. Let E,, E, be as in Case (x5). As in Lemma 2.10, by calculating
det(C;.C;) where Cg,; is the strict transform on S; of E;, we can prove that
E\.Il;g=E,.A,=1 and E;. A, =2 for both j=1, 2. Moreover, det(C;.C;)= —192.

Let t: X— X, be the smooth blowing down of E,, E,, II,g. Let v;: X, >Z,
be the contraction of t(A,), Tl +I,+ s+ g+, +I4+1,) into cyclic quotient
singularities of type <2, 1), {13, 9), respectively. Kx+I'*=0 and p(Z)=2 imply that
Ky, +v1(t(4,))/3=0 and p(Z,)=1. So Z, is a log del Pezzo surface.

By[Z3, Appendix], Z, fits Case No. 75 there and there is a P!-fibration ¥": X, — P!
such that the v,-exceptional divisor and all singular fibers of ¥" are precisely described
in Figure (75) there. Using Lemma 3.3, we see that ¥” induces a P!-fibration ¥ : X — P’
such that ny:=4F,+2(E,+A,+T,)+1I,+TI's and n,:=2(E;+T,)+E+I,g+
I',+TI,, are the only singular fibers of ¥. Here E; and E, are (— 1)-curves satisfying
E,I',=FE;. A =E,I',=FE, . A,=1. Now we are reduced to Case («1) with E replaced
by E;. So Proposition 3.1 is true by Lemma 3.5. q.e.d.

4. Proofs of the Theorems. We first prove Theorems 1 and 3.
Let Z be a rational log Enriques surface of type D, and of index I. Let n: S,,, = Z
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be the canonical cover of Z and we denote by {g)=~Z/IZ the Galois group of 7. Let

v: §—S,,, be the minimal resolution of the surface S_,,. By the hypothesis on Z, S,,,

has a rational double point p; of Dynkin type D,g. Since rank Pic(S) <20, Sing S,,, is

equal to either {p,} or {p,, p,}, where p, is a Du Val singular point of type 4,.
Write 4:=v~(p,)=Y.;2, C;, which is of Dynkin type D,:

ClS

Ci7=Ci6=Cis— - —Cy-C3-C;.

C19
Let us begin with the following:
Lemma 4.1. I=3.

Proor. Since g acts on S as g*w={_,;w for an I-th primitive root {; of unity, the
Euler function ¢(I) satisfies @(/)<rank 75=22—rank Pic(S)<3, where 7T is the
transcendental lattice. Thus / is one of 2, 3, 4, 6, for />2 by the rationality of S.

Now it suffices to show that 2 is not a divisor of /. Suppose to the contrary that
2|I. Then S.,,/<g"*) is a rational log Enriques surface of index 2 (cf. Lemma 1.7).
This forces that each singular point of S_,, must be of Dynkin type 4,,,, (cf. [Z1,
Lemma 3.1]), a contradiction to the assumption. Thus Lemma 4.1 is proved. q.e.d.

Note that the action of {g) on S_,, induces a faithful action on S. We want to
apply Theorem 3 in [OZ1]. For this we need to show the following:

LemMmA 4.2. (1) SY consists of exactly six curves C,, Cs, Cg, Cyy, C14, C17in 4
and nine isolated points.
(2) The pair (S, {g)) is isomorphic to the pair (S5, {g3)) in Example 1.1.

(3) Sing(Scan) = {pl}

PrROOF. Since the order 3 element g acts on the dual graph of v~ (Sing(S.,,)) as
the identity, we can apply “Three Go” Lemma (Lemma 2.2 in [OZ1]) or [Z1, Table
1, p. 449] to conclude that six curves C,, Cs, Cg, C;y, Ci4, Ci;7 in 4 are g-fixed
curves. Now (1) and (2) follow from [OZ1, Theorem 3 and Lemma 2.3].

Suppose (3) is false. Then Sing(S..,)={p, p»}- Now v~ (p,) is a g5-stable but not
gs-fixed curve. By [OZ1, Lemma 2.2(2)], v~ !(p,) meets one of the six g;-fixed curves in
A=v~Y(p,). This is absurd. So (3) is true. q.ed.

By Lemma 4.2, we shall, from now on, identify (S, {(g)) with (S3, {g3)).

By Proposition 2.1, we can find a smooth rational curve C, on S5 such that C, + 4
has Dynkin type D,,. Let S3 — S5 ... be the contraction of C; + 4. Then {g;) acts on
S3.can With no fixed curves and S5 ,,/<g) is a rational log Enriques surface of type Do

3,can
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and index 3 (cf. Lemmas 4.2 and 1.4). Thus by [OZ1, Theorem 1], S} .../<9)>=Z;,
83.can = S3.can and there exists an automorphism ¢ of S3 such that ¢(C,+4)=4;
and g3o0@=¢og;. This implies Theorem 3.

Clearly, ¢(4)=4;—C; and hence ¢ induces an isomorphism Z=S,,./{g;> =
S;/{g3y =25 (see Example 1.2 for the notation). This proves Theorem 1.

We now prove Theorems 2 and 4.

Let Z be a rational log Enriques surface of type 4,4 and of index I. Let n: S,, > Z
be the canonical cover of Z and we denote by {g) =~ Z/IZ the Galois group of 7. Let
v: S—S,,, be the minimal resolution of the surface S.,, and 4 the inverse by v, of
the singular point on S,,, of Dynkin type A;5. Write 4= ,1=8 , Ci, where C,.C;, =1
(1<i<17).

The following lemma can be proved similarly as in Lemmas 4.1 and 4.2.

Lemma 4.3. (1) I=3.

(2) SY consists of exactly six curves C,, Cs, Cg, Cy4, Cy4, Cy4 in 4 and nine isolated
points.

(3) The pair (S, {g)) is isomorphic to the pair (S5, {g3)) in Example 1.1.

(4) Sing(S.,,) consists of a single point, which is of Dynkin type A,g.

In view of Lemma 4.3, we shall, from now on, identify (S, {g)) with (S3, {g3)).

By Proposition 3.1, we can find a smooth rational curve F on S5 such that 4+ F
has Dynkin type D,o. Let S3— 3 .., be the contraction of 4+ F. Then {g;) acts on
S%.can With no fixed curves and S; .,,/<g) is a rational log Enriques surface of type D,
and index 3 (cf. Lemmas 4.3 and 1.4). Thus by [OZ1, Theorem 1], S5 c.n/<9> =Z3,
S3.can=S3.can and there exists an automorphism ¢ of S5 such that ¢(4+F)=4; and
gsz°@=@ogs. This implies Theorem 4.

Clearly, ¢(4) is equal to either 45— C;g or 4;—C,4. Hence we get Z=3S_,,/<{g;)=
S../<9:)=2,, for i=1 or i=2 (see Example 1.2 for the notation). Now Theorem 2
follows from Theorem 1.6.
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