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ON A GENERALIZED BESSEL FUNCTION OF TWO VARIABLES II.

CASE OF COALESCING SADDLE POINTS

SHUN SHIMOMURA

(Received December 19, 1996, revised March 6, 1997)

Abstract. A generalized Bessel function of two variables satisfies a system of partial

differential equations. Two of the singular loci of the system are of irregular type. Near

one of them we study the asymptotic behavior of suitably chosen linearly independent

solutions. In our calculation coalescing saddle points are treated.

Introduction. Let z* be a function of (x, y)eC2 defined by

(0.1)
Jc*_)c

where α (φZ) is a complex constant and

C*=(t: oo—> oo; argt: —π—•π)

is a loop starting from t= oo, encircling / = 0 in the positive sense and returning to t= oo

along which aτgt varies from — π to π. It is known that (0.1) is a solution of a system

of partial differential equations

dχiι = xdxu —ydyu — ecu ,

(0.2) dxdyu = u,

ydyU = — dxu — (α + 1 )dyu + xu

(see [6]), which is equivalent to a completely integrable Pfaffian system of the form

(0.3) dV= (P(x, y)dx + Q(x, y)dy/y) V

with

/ 0 1 0 \ / 0 0 y

P(χ,y)=l -« x -y ) , Q(χ,y)=l y o o
\ 1 0 0 / \ x - 1 - ( α + l )

System (0.2) or (0.3) possesses the singular loci x=oo, y=co of irregular type,

and y = 0 of regular type. For a fixed point (xo,yo)eCxCx (Cx =C— {0}), the
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solutions analytic in a neighborhood of (xθ9 y0) are continued analytically to the region

C x ^ ( C x ) and constitute a three-dimensional vector space, where ^ ( C x ) is the universal

covering of C x . In fact every solution u(x, y) of (0.2) is written in the form

u(x, y) = u(x0, yo)vo(x, y) + dxu(x0, y^υ^x, y) + dyu(x0, yo)υ2{x, y\ where Vj(x9 y) (j=0, 1, 2)

are the first entries of the solution vectors Vj(x,y) of (0.3) satisfying Vj(xo,yo) =

Xδoj, δίj9 δ2j). Consider the power series expansion u(x, y) = Σm n>0cmtnξ
mηn/(m\n\) with

(ξ,η) = (x-xo,y-yol Co,o = u(*o,yo\ cίtO = dxu(xθ9yo)9 cOtί=dyu(xθ9yo)9 which con-

verges for I ξ I < oo, I η | < | y 0 | . From the second equation of (0.2), we have cm+ln + 1 = cmn

for every pair (m, n) of nonnegative integers. This implies that u(x9 y), and hence (0.1),

is written in the form

(0.4) cOtOΛo{ξη)+ Σ (cp9θξ
p + co,pηηΛp(ξη) .

p=l

Here Λμ(τ) (μ e C) is a power series expressible in terms of the modified Bessel function

(see [5, §7.2]):

τ*
(0.5) Λμ(τ)= Σ

k = O

Furthermore it is easy to see that

Γ / s2\
(0.6) lim λ-'IJi-λ, s2/(4λ))= exp t )Γ"-1dt

ϊz s Jc- v 4tJ

= 2πi(s/2)-'JJίs).

Considering the facts above and comparing the integrands of (0.1) and (0.6), we can

regard the function z? =/α(x, y) as a generalization of the Bessel function (x/2)~ΛJa(x).

(Other generalizations of the Bessel function JΛ(x) are found in [1], [2], [3], [4].) In

[7] we studied the behavior of linearly independent solutions of (0.2) near y = 0 and

>>= oo. In addition to z ϊ , recall solutions of (0.2) expressed as

zo=\ fdt, z+=\ fdt, z _ = fdt9

C-

zo*= fdt, z'_ = fdt,
Jc0 Jc'_

in which the integrand and the paths of integration are given by
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(0.7) f=f(χ,y,t)
2 /

C0 = (t: 0—• oo; arg/: arg j—>0),

C+=(/: 0—> oo; arg/: argj—>π),

C_ = (/: 0—• oo; arg/: arg>>—• —π),

(0)
Cg=(t: 0—>0; arg/:

C'_ = (/: oo — • oo; arg/: —π—>0)

(cf. [7, §1]). Here, for example, C+ denotes a path starting from / = 0 and tending

to ί=oo along which arg/ varies from argj to π, and Cξ a loop starting from / = 0,

encircling / = 0 in the positive sense and returning to / = 0 along which arg / varies from

arg y to arg y + 2π. There exist relations of the form

(OR) 7* = 7 —p~2πi(*7 7^—7 —7 7' =7 —7

The triples of linearly independent solutions (z^,z%,zl) and (zo,z+,z_) (with

z% =(l— e2πi<x)z0 + e2πtCίz+— z_) are expressed respectively by convergent power series

in the domain Cx&(Cx) and by asymptotic expansions near the singular locus y= 00

(see [7]). By (0.8) we know the asymptotic behavior of the generalized Bessel function

z* near .y=oo.

The purpose of this paper is to study the asymptotic behavior of linearly in-

dependent solutions of (0.2) in the domain 0<\y/x\<R around another singular locus

x= 00 of irregular type, where R denotes an arbitrary fixed positive constant. We write

(0.7) in the form

(0.9) f(x9y,t) = Γ*-

t2 y

where Im log / = arg /. In the calculation of asymptotic expansions, we treat the saddle

points of g(t) or of h(t), namely the zeroes of g\t) or of h'(t), which are approximately

equal to —x, — (y/x)1/2, (.y/x)1/2. Since two points —(y/x)1/2, (^/x)1/2 coalesce as x-> 00,

we consider the two cases where they are close to each other and where they are

separated. To do so we define two domains

the union of which covers the domain 0<|^/x|<7^, \x\>Ra0 around x=oo. Here Ro

and R^ are sufficiently large positive constants. In each domain we choose a suitable
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triple of linearly independent solutions and discuss the asymptotic behavior of it. We

state the main results on asymptotic expansions in Section 1, and the ones on Stokes

multipliers in Z)_ and D+ in Section 2. By the use of preparatory lemmas in Section 3,

they are proved in Sections 4 and 5. The constants Ro and RO0 = max{R{J;\ R{^\ R^},

which depend on an arbitrary small positive constant δ in the main results, are chosen

in the proofs of Lemmas 4.1, 4.3 and 4.5. Throughout this paper, we assume that

OLEC—Z and use the following notation:

(y)k = Γ(y + k)/Γ(γ),

for y e C, k e Z.

ACKNOWLEDGEMENTS. The author is deeply grateful to the referee for valuable

comments, especially for the one which was helpful in improving earlier proofs of

Theorems 1.1 and 1.2, and for suggesting convergent solution (0.4).

1. Asymptotic expansions. By Hn(ξ) and by L[a\ξ) we denote the Hermite

polynomial

JξJ m=o m\{n-2m)\

and the Laguerre polynomial

J = o\v~jJ j \

(cf. [5, §§10.12, 10.13]). Let δ be an arbitrary small positive constant.

THEOREM 1.1. The solution z+ admits an asymptotic expression

with

- ^ £ hm(y/(2x))(xyΓm'2

2X )

uniformly for \ y/x \<R, as x and xy tend to oo through the sector \ arg x — π | < 3π/4 — <5,

|arg(jcy) — 2π |<3π — δ. Here the sum on the right-hand side is a formal power series in

(xy)~1/2, and hju) is a polynomial in u of degree 2m expressed as

*„<»>= Σ , •
k\ M = o (2m — k — nμn\

THEOREM 1.2. The solution z'_ admits an asymptotic expression

with
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2

uniformly for \y/x\<R, as x tends to oo through the sector |argx — π/2|<3π/4 — <5,

where the sum on the right-hand side is a formal power series in x~2.

THEOREM 1.3. The solution z_ admits an asymptotic expression

with

uniformly for \y/x \<R, as x and xy tend to oo through the sector | argx — π | < 3π/4 —5,

I arg(x^) I < 3π — δ.

THEOREM 1.4. The solution z* admits an asymptotic expression

with

£ A^xy) (-2x2ym

m=o ml

uniformly for \xy\<2R0, as x tends to oo through the sector |argx — π |<3π/4 — δ.

Here the sum on the right-hand side is a formal power series in ( — 2x2)~1, and Λμ(τ)

is the function defined by (0.5).

2. Stokes multipliers.

2.1. Stokes multipliers in the domain D + . By Theorems 1.1, 1.2 and 1.3, in the

domain Z) + ,

z'_ ^ W^x, y ) , z+^ W+(x, y ) , z_^ W_(x, y )

uniformly for | y/x \ < R, as x and xy tend to oo through the sector | arg x — 3π/41 < π/2 — δ,

I arg(xy) — π | < 2π — δ. It is easy to see that z'_, z + , z _ are linearly independent solutions of

(0.2). Let S = S+(θί9 θ2) denote a sector denned by

S+(θl9θ2) = {(x9y)eD+\\2Lτgx-θ1\<π/2-δ9 \avg(xy)-θ2\<2π-δ} .

We call a matrix T(S) (e GL(3, C)) a Stokes multiplier corresponding to the sector S with

respect to (z'_, z + , z_), if linearly independent solutions z£\ z(

s

2\ z{

s

3) such that

satisfy

z<X) - Wx(x9 y),
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uniformly for | yjx \ < R, as x and xy tend to oo through the sector S. In this sector we have

YiWάx, y), W+(x, y\ W-(x, y)).

THEOREM 2.1. We have Stokes multipliers corresponding to the sectors

S+((2j— l)π/4, π) (j= 1, 2, 3, 4) with respect to (z'_, z + , z_) written in the form

/ 1 0 O N

Γ ( 5 + ( π / 4 , π ) ) = ί - e ( ' α ) 1 0 , Γ ( S + ( 3 π / 4 , π)) = 7 ,

\ - 1 0 1 /

/ I 1 - 1 \ / *<•> 1 - I N

Γ ( S + ( 5 π / 4 , π ) ) = ί 0 1 0 , Γ ( 5 + ( 7 π / 4 , π)) = ί - 1 1 0 .

\ 0 0 1 / \ - e ( α ) 0 1 /

Moreover, Γ ( 5 + ( ( 2 / - l ) π / 4 , - π ) ) = M 0 " ^ ( S + d l j - l ) π / 4 , π ) ) β ( y = l , 2, 3,4), wλέ?rέ?

/ 1 0 °\ / 1 0 ° \
M0 = ί 0 0 ^(~α) j , Ω = ί 0 0 ^(~α) ) .

\ 0 - 1 l + ^ ( - α ) / \0 -1 0 /

2.2. Stokes multipliers in the domain 7)_. In the domain Z)_, we choose linearly

independent solutions z'_, z ί , z*. It is known that z* is represented by the convergent

power series

. _ ^ A2m-a(xy) ( y2

z* = 2πie α7"y α ^ 1
_ Q ^ ! V 2

in Z>_ (cf. (0.5) and [7, Theorem 2.1]). Hence it is sufficient to consider the solutions

z'_, z ϊ . By Theorems 1.2 and 1.4, in the domain D_,

uniformly for \xy\<2R^ \y/x\<R, as x tends to 00 through the sector

|argx — 3π/4|<π/2 — δ. For a sector 5 = 5_(θ) expressed as

S_(θ)={xeC\\sLTgx-θ\<π/2-δ}

we call a matrix U(S) (e GL(2, C)) α Stokes multiplier corresponding to the sector S with

respect to (z'_, zί), if linearly independent solutions z£υ, z^2) such that

satisfy

uniformly for | xy \ < 2R0, \ yjx \ < R, as x tends to 00 through the sector S. In this sector,

we have
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YiW^x, y), W^x, y)).

THEOREM 2.2. We have Stokes multipliers corresponding to the sectors S_((2j— l)π/4)

(j= 1, 2, 3,4) with respect to (z'_, z*) written in the form

°\ <7(S_(3π/4))=/,

3. Preliminaries. Consider the functions

t2

(3.1) 0O(O= — y - χ ί »

Clearly the zero of g'0(t) is —x, and those of g[(t) are

Simple computation leads us to the following lemma concerning the saddle points of

g(t) and h(t).

LEMMA 3.1. Under the condition \ y/x \<R,\x\>R\ the zeroes ofg \t) are given by

C/ = 0, 1), and those of h'(t) by

ξg=-x+O(χ-1), ηf =

ij=0, 1), where R' is a sufficiently large positive constant.

In the series of lemmas stated below, r denotes an arbitrary constant satisfying

0 < r < r o ( < l ) .

LEMMA 3.2. Under the condition \y/x\<R, \x\>R', we have the following:

(3.2) gι(t)-2(xy)ι'2=x3l2y-1'2(l + O{r)){t-μ0)
2

for\t-μ0\<r\y/x\1'2;

(3.3) h{t)-h(ξt)= -(1/2)(1 + O(χ-2))(t-ξξ)2 ,

(3.4) h'(t)=-(l + O{χ-2))(t-ξt)

for\t-ξ$\<r\x\;and

(3.5) h(ξ$)=x2/2-(a+l)logx + O(l).

LEMMA 3.3. Under the condition \y/x\<R, \xy\>Ru \x\>R', we have the fol-

lowing:
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(3.6)

(3.7)

for\t-ηf\<r\ylx\ιl2;and

(3.8) h(ηf)-2(-iy(xy)ιl2= - ( α + l)\ogμj + O(l)= O(logx).

Here Rt is a sufficiently large positive constant.

LEMMA 3.4. Under the condition \y/x\<R, \x\>R'9 we have the following:

(3.9) g(t)-g(ξo)= -(

(3.10)

for\t-ξ0\<r\x\;

(3.11)

(3.12) ^

and

(3.13) g(t)=-xt(l + O(x~1/2)), g'(t) = -

4. Proofs of the theorems in Section 1. In the calculation of an asymptotic series
of z+ (or z'_), we modify the path C+ (or C"_) in such a way that it passes through the
point μ0 (or —x). A major contribution comes from the integral along a part of C+

(or C"_) near μ0 (or —x). To evaluate the integral along the remaining part of C+, we
have to use h(t) because of the multiplier (y/xya/2 (cf. Theorem 1.1 and Lemma 4.2).
On the other hand, in the corresponding evaluation concerning C'_, we need g(t), because
(3.8) is not always valid without the condition \xy\>R1. For the same reason we use
g(t) in the proof of Theorem 1.4 as well.

4.1. Modification of the path C+. We need to modify the path C+ in such a
way that it has the following properties.

(a) C+ consists of three curves Γ_, Γo, Γ+ such that
(a.l) Γo is an arc passing through t = μ0 and lying inside the circle Ko defined by

\t-μo\=£xy\y/x\1/\ where βx, = |x>>Γ1/6;
(a.2) Both ends a+, a_ of Γo are located on Ko;
(a. 3) Γ_ (or Γ+) is a curve starting from β_ (or β+) and tending to oo (or 0).
(b) C+ lies outside the circles | t — ηf \ = εxy\y/xI1 /2, | t — ξ% \ = zxy\x\, and Γ_ and

Γ + outside the circle \t-ηg\ = εxy\y/x\ 1/2/4.
(c) Re(^1(0-2(xy)1/2)<0, Im^1(0-2(xj)1/2) = 0 for ίeΓ 0 .
(d) {d/dp)Reh{t)<-c for ίeF_ (or ίeΓ+), in which c is a positive constant

and ρ = ρ{t) denotes the length of a part of λ(Γ_) (or h(Γ+)) from Λ(α_) (or h(a+)) to
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LEMMA 4.1. As long as (x, y)(eCx M{CX)) satisfies \ y/x \ < R, \ xy \ > Ro, \ x \ > R™
and

(4.1) |argx-π|<3π/4-(5, \arg(xy)-2π\<3π-δ,

we can modify the path C+ continuously with respect to (x, y) preserving the properties

above, where R0 = R0(δ) and R^ = R^\δ) are sufficiently large positive constants.

PROOF. Consider (x9y) (eCx^(C x )) satisfying \y/x\<R9 \xy\>R0, \x\>R£\
where the constants Ro and R^ are chosen in the following argument. We may assume
that R0>R1, R{^>R' and that Lemmas 3.1, 3.2 and 3.3 are applicable. We begin with
the special case where argx = arg;μ = π and cceR — Z. By Lemma 3.1, if Ro and R^ are
sufficiently large, the saddle points of h(t) and gγ(t) are so located that η*<®<rlΐ<ζ*
and μ o <0<μ 1 . Now we take the path C + = Γ _ u Γ o u Γ + to be the negative real axis
with Γ _ : ί < α _ , Γ0:a^<t<a + , Γ+: a+<t<0, where α_ =α° =μo-εxy\y/x\112,
a+=a°+=μo + εxy\y/x\ι/2. Then the images S0 = gi{Γ0), T°_=h(Γ_), Γ?=A(Γ+) are
included in the negative real axis in the τ-plane, and are written as So: mm^^a0.),
#1(tf2)}<τ<2(jcy)1/2 (<0), T°_: τ<h{a°_\ T% : τ<h(a%\ respectively. It is easy to see
that conditions (a), (b), (c) and (d) are satisfied.

In the case where the condition argx = arg^ = π is not necessarily satisfied and
cceC—Z, the path C+ is constructed in the following way. Take the segment S
defined by -2|xj | 1 / 6<Re(τ-2(xj;) 1 / 2)<0, Im(τ-2(xj;)1/2) = 0 in the τ-plane. By (3.2)
the inverse image Q\ 1{S) passes through μ0 and intersects the circle 11 — μ0 \ =εxy\y/x | 1 / 2

at α_, a + , which, in case argx = arg^ = π, coincide with a0-, α+, respectively. Thus we
obtain an arc

with the properties (a.l), (a.2) and (c). Then G0 = gί(a±) — gi(μ0) = g1(a±) —

-\xy\ί/6(\ + O(εxy)). Note that a±-η$ ={a±-μo)(\ + 0&y)). We obtain, from (3.2) and

(3.6), that/*(α^-%o*) = G o ( ^
and, from (3.8), that h(η$)-h{η?) = 4(xy)ll2(\ + 0(|xy Γ1/2)). In view of (3.5) and these
estimates, we can take R0 = R0(δ) and R^^R^δ) so large that, for \y/x\<R,
\xy\>R0,\x\>R£\

\<δ/49

(4.2) h{a±)-h(η*)=-\xyn+θ(x,y)), \ θ(x, y)\< 1/2 .

Hence, as long as (4.1) is satisfied, we can draw curves Γ_ and T+ in the τ-plane which
are continuous modifications of T°_ and T+, respectively, with properties below (see
Figures 4.1 and 4.2):

( i ) Γ_ (or T+) is a curve starting from h{aJ) (or h(a+)) and tending to oo, and
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)

•
h{ϊ\ *

4.1.

SHIMOMURA

o

•

arg/ί(£J) = 2π, a

Ha-)

FIGURE 4.2. 5π/2 < arg h(ξ ξ) < Ίπ/2, - π/2 < arg h(ηg) < 0

= εϊ\x\2 | τ - ^ f ) |lies outside the circles \τ-h(ξ£)\ = εϊy\x

(ii) (d/dρ)Reτ< —c for τeT_ (or τeΓ + ), where β = β(τ) denotes the length of

the part of Γ_ (or T+) from A(α_) (or A(Λ+)) to τ.

Note that T_ and Γ+ lie outside the circle \τ-h(ηg)\ = \xy\1/6/2. The function τ = h(t)

is biholomorphic at each point t = tQ(Φξξ, ηf, 0, oo), and is continuous in α. Now take

the inverse images Γ_=A"1(Γ_) and Γ+=A~1(Γ+) tending to ί=oo and ί = 0,

respectively, and put C + = Γ _ u Γ o u Γ + . Then this new path satisfies the desired

conditions. •

LEMMA 4.2. We have

exph(t)dt = (x/yY/2{xy)-ί/3 exp(2{xy)1/2)E(x, y)
JΓ-UΓ+

with

PROOF. Note that 1/A'(f) is analytic at tΦξ$9 ηf. From (b), (3.4), (3.7) combin-

ed with the maximal modulus principle, it follows that \dt\ = \\/h\t)\\dh/dp\dp =

Oiε'y^xΓ^dp for teΓ_. The property (d) yields Re(A(ί)-A(α_))< -cp. Using (3.8),

(4.2) and this inequality, we obtain

<e-Cf>\(x/y)ia+1)/2exp(2(^)1/2)|exp(-1xy\1/6/2),

namely

[(x/yT/2(xyΓ1/3 exp(2(xy)ι/2)l ~' exp h{t) = O{εxy\x \ exp( -
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for teΓ'_. From this estimate and a similar one for teΓ + , the lemma immediately
follows. •

4.2. Proof of Theorem 1.1. Under condition (4.1), take the path C+ with the
properties (a),.. ., (d). To calculate the asymptotic expansion we divide the integral z +

into two parts

Λ= fdt, I2=\ fdt.
JΓ0 JΓ-UΓ +

By Lemma 4.2, it is sufficient to show that Iγ admits the same asymptotic expansion
as that of Theorem 1.1. Observing that argf-»π as t (eC+) ->oo, and considering the
case where argx = argjμ = π, we have argμo = π + (l/2)arg(>>/*) In lγ we put
t = eκi(y/x)1/2(l+σ) (\σ\<exy), where |arg(l +σ)|<π/2 for teΓ0. Then gι(t) = 2(xy)ί/2 +
(xy)1/2σ2 — (xy)ί/2σ3/(\ + σ). By (c) the variable τ = (xy)1/2σ2 moves along arcs which are
tangent to the negative real axis at τ = 0 and are contained in the left half plane Re τ < 0.
Further change of variables s = e~πi/2(xy)1/*σ yields

S

with

where w=y/(2x), v= — Ϊ(XJ/)1/4. The path of integration is a curve passing through s = 0,
on which | Im s |/| Re s | = O{ \ xy | ~ 1 / 6 ). The variable s moves along it in such a way that
Re s monotonically increases. Putting u = w1/2, z = — wί/2υ~ xs in the generating function

-z2) (see [5, §10.13, (19)]), we have

exp(w(l-(l+ιΓ's)2))= £ φn{w)(-iyv-»S"/n\, φn(W) = w"'2Hn(w1l2).
n = 0

Hence, by the estimates |W|<JR/2, v~1s3 = O(l) and v~1s=O(\xy|"1/6), the integrand
is written in the form

N f 5 C

xl V ( l + t ; ~ 1 j ) " k " α " 1 + O((t;"1j3)Λ Γ + 1) W"s2

\fc=o k\

N N N

Σ Σ Σ



400 S. SHIMOMURA

with

s2) (j= 1 , 2 ) ,

N being an arbitrary positive integer. Substitute this into (4.3). Note that, for each
qeN, $x_xs

qe-82ds = yfπ(l/2)q/2 + O{Xq-1e-χ2) (if q is even), =O(Xq-1e~χ2) (if q is
odd), as ReZ-^+oo (|ImX|/|ReX|=:<9(l)). If n + k + l is odd, the coefficient of

v-n-k-ι vanishes Putting n + k + l=2m, M=[N/2~], we have

/ l = y π Σ ( 4-0 ki k (2m-k-nV.nl

Thus we arrive at the asymptotic expansion of z+.

4.3. Proof of Theorem 1.2. In the proof of Theorem 1.2, we use the path C"_
modified in such a way that it has the following properties.

(a') C"_ consists of three curves Γ'_, Γf

0, Γ + . Here Γ'o is a segment defined by
|Re(/-(-x)) |<|x |/2, Im(/-(-x)) = 0, and Γ'_ (or Γ'+) is a curve starting from ί =
b_ = —x — \x\/2 (or ί = 6 + = — x + \x\/2), tending to ί=oo, and satisfying argt-> — π
(or arg r -> 0) as ί -• oo.

(W) C'_ lies outside the circle |/ | = |χ | 1 / 2 , and Γ'_ and Γ'+ outside the circle

(c') Re(^0(0-^2/2)<0, Im(^0(0-x2/2)-0 for teΓ'o.
(dr) (ί//Jp)Re g(t)< — c for teΓ'_ (or teΓ'+), in which c is a positive constant and

p = ρ{t) denotes the length of a part of g{Γ'_) (or g{Γ'+)) from g(b_) (or #(b+)) to gf(ί)

LEMMA 4.3. As long as (x,y) (eCx^(Cx)) satisfies \y/x\<R, \x\>Ri£) and
I argx —π/21 <3π/4 —(5, we can modify the path C'_ continuously with respect to (x, y)
preserving the properties above, where R^ = R^\δ) is a sufficiently large positive constant.

PROOF. Assume that |y/x\<R, \x\>R{2)>R'. The constant Ri2) is chosen in the
following argument. Since go(t) = x2/2 — (t + x)2/2, the image go(Γ'o) is expressed as
- |x | 2 /8<Re(τ-x 2 /2)<0, Im(τ-x 2/2)-0, which means the property (cr). Observing
that ξo= — x + Oix'1), by the same argument as in the verification of (4.2), we derive
from (3.9) that g{b±)-g{ξ0)=-\x\2β + O{\\ where g(ξ0) = x2/2 + O(\) (cf. (3.11)).
Denote by T'o^ (or T'Ot+) the half line defined by Re(τ-#(&_))<(), lm(τ -g(b_)) = 0 (or
Re(τ-g(b+))<0, lm(τ-g(b+)) = 0). We can take R{2) = Ri2\δ) so large that, as long as
\g(ξo)-π\<3π/2-δ, \x\>R{2\ \y/x\<R, there exist curves T_ and T'+ in the τ-plane
which are continuous modifications of T'Q__ and Tf

Όt + , respectively, with the properties
below:

( i ) T'_ (or T'+) is a curve starting from g(b_) (or g(b+)) and tending to oo, and
lies outside the circle | τ | = 2| x | 3 / 2. In particular, when argx = π/2, T'_ (or T"+) coincides
with T'o%_ (or T'Ot+);
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(ii) (d/dβ)Reτ< —c for τeΓ'_ (or τeT'+), where β = β(τ) denotes the length of

the part of Γ'_ (or T+) from g(bJ) (or g(b+)) to τ.

Observe that ηj = 0(1), g(η}) = 0(x) (/= 0, 1) (cf. (3.12)), and that τ = #(ί) is biholomorphic

at each point in the domain | x | 1 / 2 < | t|< -f oo, ί^ξ o Let Γ'_ (or Γ'+) be a curve in the

ί-plane satisfying g(Γ'_) = T'_ (or g(Γ'+) = T'+\ along which argί-^ — π (or argί-^0) as

ί->cx). When argx = π/2, we may assume that the original path C'_ is given by

C'_>0: - o o < R e ( / - ( - x ) ) < +oo, Im(ί-(-x)) = 0. We put C'_ =Γ'_ ΌΓ'0\JΓ'+. Then it

is a continuous modification of C'_ 0 , and has the desired properties. •

By Cardano'sformula, r β " 1 = 0((|x| +1flf(ί)l1/2) |Reβ|)for ίeC'_. Using(3.9), (3.10),

(3.11), (3.13), (br), (d'), and the maximal modulus principle, we have

Γa~ι expg(t)dt = x"Qxp{x2/2)E1{x, y)
Γ'_UΓ'+

with

Hence it is sufficient to show that the integral

/o=ί fdt

admits the asymptotic expansion of the theorem. In view of the case where arg x = π/2

combined with the fact that arg/ varies from — π to 0 along C"_, we have

arg( — x)= —π + argx. Put t = e~πix + s in /0. By (cr) the integral 70 becomes

(4.4) -e«™χ-«-ie

χ212 exp - — + —^ V l - j / x ) " " - ^ ,
J-|χ|/2 V 2 l-s/xj

where |arg(l-s/x)|<π/2 for |^ |< |x |/2. The generating function Σ?=0L\ΛXu)zι =

eu(l-zΓ«-ιexp(-u/(l-z)) (\z\<\) (see [5, §10.12, (17)]) yields

f = eylx(
l-s/x

= ey

for I s I < I x |/2, where TV is an arbitrary positive integer. Substituting this into (4.4),

and using J!!T O^2 m^" s 2 / 2Λ = λ/2π2m(l/2)m = 72π2-w(2m)!/m! (meJVu {0}), we obtain the

asymptotic expansion of z'_.

4.4. Proof of Theorem 1.3. Theorem 1.3 immediately follows from Theorem 1.1

and the relations below.

LEMMA 4.4 (cf. [7, Proposition 1.2]). We have

z+(x,y) = e-«πizo(-x,e-πίy), z_(x, y) = e«πiz0(-x, eπiy).
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4.5. Proof of Theorem 1.4. We wish to modify the path C? in such a way that it

fulfills the following conditions.

(a*) C? consists of three curves — K, Γu +K with the properties:

(a*.l) — Kis a curve starting from t= oo and ending at / = ?! =exp( — zargx);

(a*.2) J\ is a circle expressed as t = eiσ, where σ varies from σ = — a r g x to

σ = 2π — arg x;

(a*.3) +A^is a curve, congruent with — K, starting from t = e2πit1 and ending at

t=cc;

(a*.4) arg?-> — π as ί-*oo along —K, and a r g / - > π as ί-»oo along + K

(b*) C!_ lies outside the circle \t-ξo\ = \x\ίl2, and — K and + A : outside the

circle | ί | = l/2.

(c*) The points τ/7 (7 = 0,1) are located inside the circle \t\ = 1/2.

(d *) (d/dp) Reg(t)<—cfoτte—K(oτte+ K), where c is a positive constant and

p denotes the length of a part of g( — K) (or #( + £)) from ^(ί^ (or g(elnit^) to

LEMMA 4.5. As long as (x,y) ( e C x ^ ( C x ) ) satisfies \xy\<2R0, \x\>R£] and

| argx — π | <3π/4 — δ, we can modify the path C ί continuously with respect to (x, y)

preserving the conditions above, where R^ = R(^\δ) is a sufficiently large positive constant.

PROOF. Since ηj=O(\y/x\1/2) = O(R^/2\x\-1) (R0 = R0(δ\ j=Q, 1), the condition

(c*) is satisfied for \x\>Rg\ provided that Rg) = Rg)(δ)>R' is sufficiently large. We

first consider the special case where argx = arg j = π. Take a curve — K (or +K) to be

the interval — oo<t< — 1. The image g( — K) (or g( + K)) coincides with the interval

To: —co<τ<x—\/2+y contained in the negative real axis. Then all the conditions

above are fufilled.

Next consider the general case. Note that g(t1) = g(e2πit1)= — \x\(l + O(x~1)),

g(η.)=O(\) 0 = 0, 1), and g(ξ0) = (x2/2)(l + O(χ-2)) (cf. (3.11), (3.12)). We can retake

R^^R^Xδ) so large that, as long as \argg(ζo)-2π\<3π/2-δ, \xy\<2R0, \x\>R£\

there exists a curve T in the τ-plane which is a continuous modification of To with the

properties:

(1) T starts from τ = g(t1) and tends to τ= oo;

(2) T is located outside the circles | τ | = | ̂ (ίx) |, | τ — g(ξ0) \ = \x\;

(3) (d/dp) Re τ < — c along T, where p denotes the length of a part of T from g(t x)

to τ.

Taking the inverse images of Γ, we obtain the curves ~K, +K. It is easy to see that

the curve C ϊ = ( - K) u Γx u ( + K) fulfills the conditions ( a * ) , . . . , (d*). •

Using (3.10), (b*), (d*), Cardano's formula, and the maximal modulus principle,

we have

fdt=θ(\xΓll2\expg(t1)\
±κ \ Jo
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We calculate the asymptotic expansion of

(4.5) /*
-xΓί

~*~xds

(s = e πιxt), where — xΓλ denotes the circle defined by s = | x \eiσ, — π < σ < π. Now replace

the path — xΓί by the curve Γ2 consisting of the segment \x\e~ni<s<e~n\ the circle

s = eισ ( — π<σ<π) and the segment | x\eπι<s<eπι. For an arbitrary integer iV> | Reα |,

substitution of ^" s 2 / ( 2 χ 2 ) = Σ^ = 0 (-2x 2 )- m s 2 m /rn\ + O(χ-2(N+1)s2{N+1)) (seΓ2) into (4.5)

yields

J -

ml

1 expl s + —)ds + RN(x, y)
s

with

Observing that, for |xy |<27? 0 ,

| s | = l

XV

expl s-\

exp s +

\ds\ +

xy \ds\\.

|2N-Reα+ l

and substituting

r2

( + — )

(cf. [5, p. 15]), we obtain the asymptotic expansion of z*.

5. Proofs of the theorems in Section 2.

5.1. Preliminaries. In this section we use Lemma 4.4 and the following.

LEMMA 5.1 (cf. [7, Proposition 2.2]). For z(x,y) = t(z0,z + ,z_), we have

z(x,e2πιy) = Mz(x,y), where

/ I -1 e(-a)

M=l 0 0 e (~α )

\0 -1 l+e(-°

/ 1 eia) -1

= [ 0 l + e ( α ) - 1

\ 0 e{Λ) 0

LEMMA 5.2. We have
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W+(eπix, e-πiy) = eaπίW+(x, y), W+(x9 e2πiy) = e{-*)W_(x, y),

W_(eπix, e~niy) = eaniW_(x, y), W_(x, e2πiy) = - W+(x, y),

Wάe'% e~πiy) = -e'^W^ y), Wx{x9 e
2πiy)= Wt(x9 y),

Wχ(eπix, e~πiy) = eaπiW^(x9 y).

For simplicity, to indicate sectors, we use the notation below;

Σ0(θ) = {xeC\\argx-θ\<3π/4-δ} .

5.2. Proof of Theorem 2.1. By Theorems 1.1, 1.2 and 1.3, for \y/x\<R,

(5.1) z'^W^y) (inΓ0(π/2)),

(5.2) z+^W+(x,y) (inΣ(π,2π))9

(5.3) z^W_(x,y) (in £(π, 0)).

In addition to these relations, we need the following formulas.

LEMMA 5.3. For \ y/x \ <R,

(5.4) z'_ -z+ + z _ - W^x, y) (in Σ0(3π/2)),

(5.5) e<-αV_ + z + - W+(x9 y) (in Σ(09 2π)),

(5.6) z'_ + z _ - FF+(x, y) (in Σ(2π9 In)),

(5.7) z'_+z_^W_(*,y) (i>iΣ(0,0)),

(5.8) ^(α)z'_ - ^ ( α ) z + +(1 +e{a))z_ - PF_(x, y) (/« Γ(2π, 0)).

PROOF. We show (5.4) and (5.8). The others are similarly derived. Suppose that

|arg(έ>~ π i x)-π/2 |Hargx-3π/2|<3π/4-(5. By (5.1) and Lemma 5.2,

(5.9) z'_(e-πix, eπίy)~ W^e'^x, eπiy)= -e™Wγ{x9 y).

On the other hand, by (0.8), Lemmas 4.4 and 5.1,

z'_(<rπιx, eπiy) = zo(e-πix, eπiy)-z_(e-πix, eπίy)

= e~aπiz4x, y)-eaπiz0(x, e2πiy) = eaπiz+(x, y)-e«πίz0(x, y)

+(x, y)-z-(x9 y)).

The formula (5.4) follows from this and (5.9). Note that Σ(2π9 0) is written in the

form \<ϊrg(e-πix)-π\<3π/4-δ, \?Lτg(e-πixeπiy)\<3π-δ. By (5.3) and Lemma 5.2,

(5.10) z_(e~πix, eπiy)~ W_(e~πix, eπiy) = e-«πiW_(x, y).
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By (0.8), Lemmas 4.4 and 5.1,

z_(e~πix, eπiy) = e"πiz0(x, e2πiy) = e«πi(z0(x, y)-z+(x, y) + e^Λ)z_(x, y))

Combining this with (5.10), we obtain (5.8). •

Using (5.4), (5.6) and (5.8), we have

Sx\zf.9 z + 9 z_) ^ \W,(x, y)9 W+(x9 y\ W.(x9 y))

in the sector S+(7π/4, π), where

/ 1 -1 I X

SM 1 0 1 .
\e(«) -e(«) ί+eM )

Thus T(S+(Ίπ/4,π)) = S;1 follows. Similarly we derive T(S+(π/49 π)) from (5.1), (5.5)

and (5.7), and Γ(S+(5π/4, π)) from (5.2), (5.3) and (5.4). Next consider the case where

(x, y)eS+((2j-l)π/4, -π) (j= 1, 2, 3, 4). Since (x, e2πiy)eS+((2j-l)π/4, π), we have

(5.11) «(x, e^y) * T(S+((2j- l)π/4, π))W(x, e2πίy)

with u(x, y) = \zf4x, y\ z + (x, y\ z_(x, y)\ W(x, y) = \W1(x, y\ W+(x, y\ W.(x, y)\ By

(0.8), Lemmas 5.1 and 5.2, we have u(x, e2πiy) = M0u(x, y), W(x, e2πiy) = ΩW(x, y). From

these relations combined with (5.11), T(S+((2j- l)π/4, -π)) (j= 1, 2, 3, 4) immediately

follow.

5.3. Proof of Theorem 2.2. Note that (5.1) and (5.4) are valid in D__ as well.

Theorem 1.4 implies that

(5.12) zϊ*W+(x9y) (inΣ 0(π)).

Furthermore we have the following relations.

LEMMA 5.4. For |yjx \<R, \xy\<2R0,

(5.

(5.

(5.

13)

14)

15)

(*<"">-l)z

(l-e ( α ))z'_ + eMz* -. v ( X ) v)

(« X0(3π/2)),

(* «£o(0)),

(w ίo(2π)).

PROOF. Putting z*=z+—z_ in (5.4) we obtain (5.13). Since | a rgx | =
lx) —π|<3π/4-(5, it follows from (5.12) and Lemma 5.2 that

z*(eπ% e~πiy) - W*(eπίx, e-πiy) = exπίW^(x, y).

By Lemmas 4.4 and 5.1,
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z*(eπix, e-πiy) = z+(eπix, e'πiy)-z4eπix, e~πiy)

+ ( x > y)-z_(x, y))

Hence we have (5.14). The formula (5.15) is obtained by an analogous argument. •

If (x,y)eS4π/4), then, by (5.1) and (5.14), we have £V(z-, z*)^\Wι(x,y),

(Λ. :
from which t/(5_(π/4))= t/f1 follows. Similarly we obtain C/(S_(5π/4)) from (5.12) and
(5.13), and U(S.(7π/Λ)) from (5.13) and (5.15).
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