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MAXIMAL OPERATORS ASSOCIATED WITH
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Abstract. In this paper, we prove that L2 boundedness for the maximal operators
associated with the commutators generated by BMO functions and some multiplier
operators. And we also study the LP boundedness for the maximal operator associated
with the commutators of spherical means and a function in BMO or Lipschitz space.

1. Introduction. Coifman and Meyer observed that the LP boundedness for the

commutator [b, T] defined by

\b9 nf(x) = b(x)Tf(x)-T(bf)(x)

could be obtained from the weighted LP estimate for T with Ap weight when b e BMO

and T is a standard Calderόn-Zygmund singular integral operator (see [4]), where Ap

is the weight function class of Muckenhoupt (see [14, chapter V] for the definition and

properties of Ap). In 1993, Alvarez, Babgy, Kurtz and Perez [1] developed the idea of

Coifman and Meyer, and established a general boundedness criterion for the com-

mutators of linear operators. Their result can be stated as follows.

THEOREM A. Let E be a Banach spaceι, 1 </?, q<co. Suppose that the linear operator

T: Co(R")^>M(E) satisfies the weight estimates

\\Tf\\LUE)<C\\f\\p,w

for all weAq and C depends only on n, p and Cq(w) (the Aq constant ofw), but not on the

weight w. Then for any positive integer k and b(x) e BMO(/?"), the commutator

Tb,kf(x)=T((b(x)-b( ))kf)(x)

is bounded from Lp

u(Rn) to Lp(E)for all ueAq with norm C(p, n, k, Cq(u))\\b\\k

BMO.

This result is of great importance and is suitable for many classical operators in

harmonic analysis. But for some important operators, the criterion of Alvarez-Babgy-

Kurtz-Perez breaks down. Let us consider the maximal operator of the spherical means

defined by
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(1.1) M^f{x) = sup\MJ(x)\ for fe&
ί > 0

with

(1.2) MJ(x)=( f(x-ty')dy',

where S"" 1 is the unit sphere in Rn and dy' is the rotationally invariant measure of

total mass 1 on the unit sphere. This operator M^, which is studied by Stein in [12],

is of interest by itself and is very useful in the study of partial differential equations.

In [12], Stein showed that the operator M^ is bounded on ΊJ provided that n>3 and

p>n/(n—\). We do not know whether the operator M^ enjoys weighted Lp estimates

with general Aq weights for some q> 1. Thus Theorem A seems not to be well adapted

to this operator.

Meanwhile, let meLco(Rn) be a multiplier. Define the operator {T*}t>0 by

(1.3) (Ttf)A(ξ) =

and the associated maximal operator by

(1.4) T*f(x)
ί > 0

where / denotes the Fourier transform of /. It is well-known that the operator Γ*

plays a fundamental role in the study of the pointwise convergence of the averages

along hypersurfaces (see [10] and [11]). A result of Rubio de Francia [10], Sogge and

Stein [11] states that if meC™(Rn) and

(1.5) \m(ξ)\<C\ξ\-a>, \Vrn(ξ)\<C\ξΓa>

for some positive constants C and aί9 a2 with a1 +a2 > 1, then Γ* is bounded on L2(Rn).

If the multiplier m satisfies only the decay estimate (1.5), we do not know any weighted

L2 estimate with general Aq (q>l) weights for T*. Thus in this case the boundedness

criterion for the commutators of linear operators does not apply to obtaining the L2

boundedness of the maximal operator associated with commutators of T\

The purpose of this paper is to consider the LP boundedness for the maximal

operator associated to the commutator of the spherical means. Let k be a positive

integer. For a function b in BMO, the £>th order commutators of spherical means, Mt;b k

are defined to be

(1.6) MtΦJ{x)= I (b{x)-b{x-ty'))kf{x-tyf)dyf

and the maximal operator associated with them is defined by M^.bk,

(1.7) M+.btJ(x) = sup I Mt.bJ(x) I.
ί > 0
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We also consider the commutator generated by Mt and b in Aβ, the Lipschitz space.

Denote by Δ\ the /c-th difference operator, that is

Ak

h

+ ιf(x) = Δ\f{x + h)-ΔkJ(x), k>\.

For β>0, the Lipschitz space Λβ is the space of functions / such that

11/11,,= -r - ^ " ^ < » .

For b in Aβ9 0<β<k<n/2, as in [9], the k-th order commutator of spherical means,

denoted by Mt;btk, is defined by

(1.8) MtibtJ(x) = Δk

tyΊkb{x)f{x - ty')dy'

and M#.btk is the maximal operator associated with Mvhk.

We will consider a general result for L2 boundedness. Let meLco(Rn) and the

operators { Γ ' J ^ Q be as in (1.3). For a positive integer k and beBMO(Rn). Define the

k-th order commutator of V by

(1.9) KJ(x)= T\(b(x)-b( )ff){x),

The maximal operator associated with {Tb\k}t>0 is defined by

(110) T J J
ί > 0

Now we state our main results in this paper.

THEOREM 1. Let k, j (j>2) be positive integers and b e BMO(/Γ). Suppose that the

multiplier me C°°(/?") enjoys the property (1.5) and

Σ \D«m(ξ)\<C(l + \ξ\)\

for some positive constants C and N. Then Tb*k is bounded on L2(Rn) with bound C\\b\\^MO.

THEOREM 2. Let k be a positive integer and b in BMO(/?"). If n>3 and

n/(n— \)<p< oo, then M^.bk is bounded on Lp with norm C||Z?||j}MO.

THEOREM 3. Let k be a positive integer. Suppose b in Λβ with 0<β<k<(n — 2)/2.

Then M^;hk is bounded from Lp into Lq with \/q = l/p — β/n provided that n>3 and

n/(n -\)<p< n/β - n2/((n - l)β(n - 2β)).

The paper is arranged as follows. We give the proof of Theorem 1 and Theorem

2 in Section 2. In Section 3, we prove Theorem 3.
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2. Estimates for commutators generated by a BMO function. In this section, we

give the estimates for L2 boundedness of the operator T£k. We begin with some

preliminary lemmas.

LEMMA 2.1 (see [5]). Let k be a positive integer and b e BMO(/?"). Denote by Mbtk

the k-th order commutator of the Hardy-Littlewood maximal operator, that is,

\b(x)-b(y)\k\f(y)\dy.
r > 0 J\χ-y\<r

Then for all 1 <p< oo, Mbk is bounded on Lp(Rn) with bound C | |£ | |B M O

LEMMA 2.2. Let φ e CjfiR") be a radial function such that supp φ cz {1/4 < | x | < 4}

and

\x\>0.
leZ

Denote by gι the multiplier operator

Then for any positive integer k and be BMO(/?"), the k-th order commutator of QX defined by

satisfies

for all l<p<oo.

Σ \Ql;b,
leZ

1/2

PROOF. Let 1 <p< oo and weAp. The weighted Littlewood-Paley theory (see [4])

shows that the estimate

Σ\9,f\
leZ

1/2

<c\\f\\PtM

holds for some constant C independent of w. Note that the mapping

is linear, the boundedness criterion for the commutators of linear operators of

Alvarez-Babgy-Kurtz-Perez (see [1, Theorem 2.13]) yields the desired estimate.

LEMMA 2.3. Let 1 <δ < oo,y be a positive integer, c and N be real numbers. Suppose

that mδ e Cj(Rn) is a multiplier such that supp mδ a {δ/2 < \ x | < 2δ} and

\\Damδ\\oo<CδN
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for some positive constant C which is independent of δ. Let T\ be the multiplier operator
defined by

For a positive integer k and b e BMO(/?"), denote by Tδ;bk the k-th order commutator of
Tδ\ which is defined as in (1.9). Then for any ε>0, there exists a positive constant
C— C(n, k, c, ε, N) such that

t f 2 d t 2(c + ε) 2k 2

R* S;b'k * ~

PROOF. Without loss of generality, we may assume that | |&| |BMO= l Obviously, it
suffices to show that

Let φ0, ψ be radial functions such that

supp^ci{l/4<|jc|<4}

and

Set φι(x) = ψ(2~ιx) for /> 1 and Kδ(x) = m#(x\ the inverse Fourier transform of mδ. Split

oo oo

Σ Ks(x)Ψι(x)= Σ K'δ(x) •
1=1 1=0

Recall that 1<<5<OO and suppm^ci{(5/2<|x|<2^}. A straightforward computation
shows that

Let TlΛ be the convolution operator whose kernel is Kι

δ. Young's inequality now says that

Write

{Kι

δY{ξ) =

Since φ is null in a neighborhood of the origin and a Schwarz function, we have

η*φ(η)dη = 0
Rn
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for any multi-index α, and

I \η\j\ψ(η)\dη<κ.
J Rn

Expanding mδ into a Tayloy series around ξ gives

\(KlsV(ξ)\< Σ WD'm^-fif \η\j\ψ(η)\dη<C2-ιδN.
| α | = J JR»

Thus,

On the other hand, another application of Young's inequality gives that

which in turn implies

(2.3) IIW|| 2 <G5 C | |/ | | 2 .

Therefore, for each fixed v, 0 < v < 1,

(2.4) ||7Ϊ !/Ί| 2^G5C + V ( N - C ) 2- W | | / | | 2 .

Interpolation between the inequalities (2.1) and (2.4) tells us that for each q with

(2.5) ||Γ<ί
 l/|

where q' is the dual exponent of q, i.e., q' = q/(q—\).
Now we turn our attention to Γ/.^, the k-th order commutator of the operator

Tl%ι. We decompose Rn into a grid of non-overlapping cubes with side length 2\ i.e.,
Rn=\J. Q., Denote by χQi the characteristic function of Qv Set fi = fχQi. Then

Since supple : { |x |<C2 z } , it is obvious that the support of T\λfi is contained in a
fixed multiple of Qi9 and that the supports of various terms Tl:lkft have bounded
overlaps. So we have the following almost orthogonality property:

Thus we may assume that supp/c=g for some cube Q with side length 2ι. Choose
φeC^(Rn), 0<φ<l, φ is identically one on 50nQ and vanishes outside lOOnQ.
Set Q = 200nQ, and S = (b(x) — b$φ(x), where b§ is the mean value of b on Q. Let

i, qi<oo such that \jqγ + l/q2 = l/2. By Holder's inequality and (2.5), we deduce
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τlψ-mf)\\2<\\hm\\qι\\τtψ-mf)\\qi
2vl/q2δn+c + [v{N~c)~n]2/q2\\brn\\ \\bk~mf\\

\\q

ιι iTfc — m i l

i\\D ll2g2/(

where in the last inequality we have invoked the fact

l UΆx)I< Σ Cΐ\Sm(χ)τδ

ιψ-mfXχ)I,

For each fixed ε > 0, we choose q2 larger than and sufficiently close to 2, v larger than

zero but sufficiently close to zero so that

2v/q2>n(l-2/q2), n + \y{N-c)-ή]2lq2<ε.

We then have that for some positive constant 7,

Observing that

we have

Summing over the last inequality for all />0 then completes the proof of Lemma 2.3.

PROOF OF THEOREM 1. As in the proof of Lemma 2.3, we may assume that

II^IIBMO== 1- Let I/Ό> Φ be the same as in the proof of Lemma 2.3. Decompose the

multiplier m as

00 00

m(ζ) = m(ζ)ψo(ξ)+ Σ m(ξ)φ(2-'ξ)= £ mt(ξ).
1=1 1=0

Define the operator T{ by

(τι

tfy(ξ)=mι(tξ)M).

Let T{.hk be the &-th order commutator of T{ defined analogously to (1.9) and let T£hk

be the maximal operator associated with T{.bk as in (1.10). Then

1 = 0

Since m0 e CffiR"), a trivial computation shows that

Tgib9J(xHCMbtkf{x)9

with Mbk the k-ίh order commutator of the Hardy-Littlewood maximal operator (see
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Lemma 2.1). Thus by Lemma 2.1 we need only to care about T*bik for / > 1 . Let

mI(ξ) = Vm/(ξ) ξ. Define the operator T{ by

We introduce the quadratic operators

<WW-(f'lWW|..*
\ Jo t

and

G'0 0 ~ J Λ 1 / 2

l^α/MI 2 —
0 * /

As in [10, page 308], it is easy to check that

\T*Mf{x)\2<2GJ{x)GJ{x).

We now estimate | | C J ; / | | 2 . We claim that for each fixed ε>0,

(2.6) \\GJ\\2<C(n, k, ε, a^-^-^Wfh

Indeed, by (1.5) we see that mι is supported in the spherical shell 2 / " 1 < | ξ | < 2 ί + 1

and | |m / | | 0 0 <C2~ / α i , | |Vm ί | | 0 0<C(2~ / α 2 + 2" / ( α i + 1 )). Thus by Lemma 2.3, we see that

for each fixed ε > 0 and non-negative integer k, there exists a positive constant

C = C(n, k,&,au a2) such that

.i dt
(2.7) f ΓlΓi

JJIJI

Observe that if b e BMO(/?M), then for any t>0, bt(x) = b(tx) also belongs to BMO(/?Π)

and | | 6 t | | B M O = IÎ IIBMO βy dilation-invariance, it follows from (2.7) that for any deZ,

(2.8) f Γ \ThJ()\2

Let φ e Co°°(/?") as in Lemma 2.2. Set

Then

deZ

= Σ
deZ
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With the aid of the formula

(b{x)-b{y)f= t Q(b(x)-b(z))ί(b(z)-b(y))k-i, zeR\
ΐ = 0

we have

τ&kf(χ)= Σ
i = 0

where gd is the multiplier operator associated with φ(2~d') defined in Lemma 2.2.
Note that for each fixed t and /, the number of d's for which supp φ(2~d~ι ) n supp mx(t )
is non-empty is at most 100. Hence,

r fixWdt<cΎ P V ' f(χ)\*dt<cY Γd+\τ"''f(χψώ

1 l,b,kJ \x) I ^ c ZJ 12 l;b,kJ \x) I ^ c Ẑ  I J l;b,kJ \x) I
t deZJo t deZj2-d I

k Γ2

ΪCΣ Σ
i = 0 deZ J 2

By the inequality (2.8) and Lemma 2.2, we finally obtain

i = 0 deZ

which establishes our assertion.
The L2 boundedness of Tb*k follows immediately. Indeed, without loss of generality,

one may assume that a1>a2 — l; otherwise, if aί<a2 — 1 and a1-\-a2>\, then a2>\
so that \\m][ξ^O0m{ξ) = (x exists and

\m(ξ)-oc\<C\ξΓa> + ί .

Thus we may replace m(ξ) by m(ξ) — oc and aγ by a2 — \. As in the proof of (2.7), we
have that for each given μ>0, there exists a positive constant C=C(n,k,μ,a2,N)
such that

So

For each fixed pair a1 and a2 with ax +a2 > 1, we can choose positive numbers ε, μ so
small that ε + μ<a1-\-a2 — l. Then for some positive constant Θ independent of /,

This leads to the conclusion of our Theorem 1.
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Now we turn our attention to the proof of Theorem 2. Let us introduce ad-

ditional operators Mf

α, which is defined by

for fe 6f, where

(2.9) mα(ί) = 2"/ 2 + α - 1

For a complex number α, put

M?;b,J(x) = MHWx) ~ K )tf )(x

and

ί > 0

In view of the method of the proof in [12], the conclusion of Theorem 2 can be deduced

from the following results.

LEMMA 2.4. If Re α > 1 - n/2, then

(3.2) WMl^JhKC^^^Wbf^oWfh,

where C1 is a bounded constant when Reα is in any compact subinterval of(l—n/2, oo).

By the asymptotic property of the Bessel function / v, Lemma 2.4 is a consequence

of Theorem 1 with aγ =«/2 + Reα —1/2 and α2 = «/2 + Reα—1/2. Now we turn to give

the estimates for M £ . M on Lp.

THEOREM 2.5. Let f be in $f. The inequality

holds provided that

(a) 1 <p < 2, when α > 1 — n + njp

(b) 2 <p < oo, when α > (2 — «)//?.

Ifoc = O, this means n>3 andn/(n — \)<p<cc.

PROOF. If R e α > l , then AfJ/(x)<CHL/(JC), where H L / i s the Hardy-Little-

wood maximal function of/. By Lemma 2.1, we see that

\\Ml;b,kf\\p<C\\b\\k

BMo\\

for all 1 <p<2. For the case of 2<p<oo, we claim that if R e α > 0 , then for p large

enough,

(2.H)

Indeed, since
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ί > 0

C / | Λ . _ v | 2 \ α - l

1 — f - (b(x)-b(y))kf(y)dy
J\x-y\<t\ t /

<(supr"ί \b(x)-b(y)\"k\f(y)\dy
\ ι w J \χ — y \ < t

y/p

: supr" 1-J f-\ \f{y)\dy)
\ ί > 0 J\x-y\<t\ t2 J J

and Ix which is the commutator of Hardy-Littelwood maximal operator is bounded
on LP with 1 </?< oo (see Lemma 2.1), it is sufficient to consider the operator

supΓ
ί > 0

for / > 0 and βeR. It is well-known by Stein in [12] that this operator is bounded
on LP when β>(2 — n)/p with 2<p<co. Choosing p so large that (Reα— \)p' +1 >

(2-n)/p9 i.e., /?>(-(tf-3) + v

/ («-3) 2 +4Reφ-2))/2Reα, We conclude that I 2 is

bounded on ZΛ Since

(ji/pji/py^l J P ^ J If die 1

<C\\h\\kp \\f\\p

(2.11) holds and the conclusion of Theorem 2.5 follows from the complex interpolation
theorem (see [15]).

3. Estimates for commutators generated by a Lipschitz function. We first consider
a maximal operator N^ defined by

f(x-ty')dσ(y')
t>0

with 0<β<(n — 2)/2. The maximal operator is interesting by itself. With the notation
Mt and Mf the same as in the previous section, we can rewrite N^ as

t>0

Let iNr;f/?/(x) = s u p f > o ^ | Aff

α/(A:)|. The estimates for Nζ follows that of N%β at α = 0.

THEOREM 3.1. Suppose 0<β<(n-2)/2 and Reα> 1 -\-β-n/2. Let f be in 6
The following inequality

(3.1) \\Niβf\
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holds with the constant C depending on n, β and Re α, which is bounded when Re α is in

a subinterval of (I + β — n/2, oo).

To prove Theorem 3.1, write Jί">βf(x) = supt>0{Γ1$t

0\sβM*f(x)\2ds}1/2. Assum-

ing that R e α > R e α ' > - f l / 2 and Cπ>α = 2Γ(w/2 + α)/Γ(α-α0Γ(n/2 + α'), by the formula

in [12, p. 2174],

(3.2)

Hence, if Re α > R e α' +1/2 and Re α' >β/2 — n/2 + 1/4, then an application of Schwarz

inequality shows that N^βf(x)<Criy0LJίct''βf{x), and (3.1) is a consequence of the

following result for JίΛ'%*.

LEMMA 3.2. Suppose that f is in Sf and 0<β<(n-2)/2. If R e α > l/2 + β — n/2,

then

ex x\ II j/^βfw <Cί>c\lmΛ\\\ f\\
\?-$) WyM J\\2^^e 11/ \\2n/(n + 2β) '

where C is a constant depending on n, Re α, and β.

PROOF. Since

(3.4)

where (W^β)A(ξ) = \ ξ\βm\\ ξ\) and Iβ is the Riesz potential operator. By the bound-

edness of Iβ, for the inequality (3.3), it is sufficient to show that if R e α > 1/2 + /? — n/2,

then for fe <f

={t\ξ\fm«{t\ξ\)(Iβfr{ξ)

(3.5) sup— \lVx β*f\2ds)
ί > 0 t /

Obviously, (3.5) follows from the estimate

(3-6)
dtV

We claim that (3.6) holds with the assumptions in Lemma 3.2. Indeed, by Parseval's

theorem, the proof of (3.6) comes down to the estimate

(3.7) \{t\ξ\fm°(tξ)\2 —
o t

for I ξ I = 1. Since mα(0)= 1 and β>0, the portion of the integral t< 1 in (3.7) is easily

seen to be bounded. To deal with the contribution for large t, we note
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(t\ξ\)βM«(t\ξ\)<Cj-n/2-Ke« + 1/2+β .

If Reα> 1/2 + β — n/2, then the integral (3.7) is bounded. This completes the proof of
Lemma 3.2.

Then estimate for N%β on LP is the following statement.

THEOREM 3.3. Suppose 0<β<(n — 2)/2 and f is in £f. The inequality

\\Nff\\q<C\\F\\p

holds with \/q=l/p — β/n in the following circumstances:

(a) 1 <p<2n/(n + 2/?), when Reα> 1 -n + n/p.
(b) 2n/(n + 2β) <p < n/β, when

{n-\)β/n-2{n-l)β2/n2 .

If<x = 0, this means n>3, n/(n-\)<p<n/β-n2/(n-l)β(n-2β).

PROOF. If Reα> 1, by the definition of Mf in Section 2, we have

N%βf(x)=C sup Γn+β

(\-\y\ηt2γ-ιf{x-y)dy
\y\<t

<Csupr"+ /M \f{x-y)\dy
oo

where / | is the maximal fractional integral operator introduced by Muckenhoupt
and Wheeden in [8], in which it was proved that / | is of type (p, q) with l/q =
l/p — β/n and of weak type (1, n/(n — β)). Using (3.1) as an endpoint estimate, the first
result in Theorem 3.3 will follow from the analytic interpolation theorem.

Now we turn to the proof of the second result. Let l < r < o o and l/ r+l/r '=l .
Using the Holder inequality,

|2\(Re«-l)r' \l/r'/ Γ / | v | 2
)<suplr"\ i - ^

ί > 0 V J | y | < Λ t
|y|

\f(x-y)\rdy
\y\<t

When Re(x>β/n, letting r<n/β and r be close to n/β yields Reα>(r' — l)/r. Thus

(Reα-l)r' \ 1/r'

dy) <oo

and this implies
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ί > 0

The result in [3, Lemma 2] shows that if r<p<n/p and \/q= l/p — β/n then

WfβJq<C\\f\\p.

Therefore, if Reoc>β/n, p is less than n/β but is close to n/β, and \/q = l/p — β/n, then

\\N^f\\t<C\\f\\p.

The analytic interpolation yields the result (b).
To prove Theorem 3, we first assume feL2nLp and />0. By the definition of

Lipschitz space, we have

Thus,

Theorem 3 follows obviously from Theorem 3.3.
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