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Abstract. We propose a new asymptotic Dirichlet problem for harmonic functions
via the rough isometry on a certain class of Riemannian manifolds. We prove that this
problem is solvable for naturally defined class of functions. This result generalizes those
of Schoen and Yau and of Cheng.

1. Introduction. The asymptotic Dirichlet problem for harmonic functions on a
noncompact complete Riemannian manifold is to find the harmonic function satisfying
the given Dirichlet boundary condition at infinity. It has a long history, and by now,
it is well understood by the works of the first author, M. Anderson, D. Sullivan, R.
Schoen and others, when M is a Cartan-Hadamard manifold with sectional curvature
— b2<KM< —a2<0. (By a Cartan-Hadamard manifold, we mean a complete simply
connected manifold of nonpositive sectional curvature.)

In [Ch], the first author posed the asymptotic Dirichlet problem and proved that
it is solvable when a Cartan-Hadamard manifold M with sectional curvature
KM<—a2<0 satisfies the convex conic neighborhood condition. In [A], Anderson
constructed a convex neighborhood, thereby solving the problem when the sectional
curvature satisfies — b2<KM< — a2<0. At the same time, Sullivan [S] also solved this
problem using the probabilistic approach. In [A-S], Anderson and Schoen showed
that the Martin boundary of M can be identified with M(oo) which is naturally defined
to be the set of the asymptotic classes of geodesic rays. By constructing the Poisson
kernel, they obtained the representation formula for harmonic functions, and proved
the Fatou-type theorem. The essence of all of the above works is that the curvature
assumption enables one to control the angle via the Toponogov comparison theorem
and the convexity property near the boundary at infinity M(oo).

There have been many attempts to generalize the above results. A typical approach
is to relax the curvature assumption to allow curvature decay at a certain rate. But the
basic method of proof still remains the same and the improvements are mostly techni-
cal. One interesting generalization that does not directly involve the curvature bound
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is achieved by Schoen and Yau [S-Y]. They proved the following: Suppose that
(M,ds2) is complete and simply connected and its sectional curvature KM satisfies
— b2<KM< —a2<0. Let ds2 be a new Riemannian metric on M which is uniformly
equivalent to ds2. When (M, ds2) has the bounded sectional curvature and the positive
injectivity radius, they solved the asymptotic Dirichlet problem on (M, ds2) where
M(oo) is defined with respect to the old metric ds2. It is important to note this curious
fact that M(oo) is still defined with respect to the old metric ds2, whereas the Laplacian
Δ is defined with respect to the new metric ds2. Cheng [C] removed the assumptions
on the sectional curvature and the injectivity radius of (M, ds2) from Schoen-Yau's
result to obtain the following result:

THEOREM (Cheng). Let (M,ds2) be a complete simply connected Riemannian
manifold with nonposίtive sectional curvature and the Dirichlet eigenvalue λί(M)>0.
Assume that the local pinching condition holds on (M, ds2), i.e., there exist a point oeM
and a constant C>\ such that at any xe(M,ds2), \K(σ)\<C\K(σ')\, where σ, σ' are
plane sections at x containing the tangent vector of the geodesic joining o to x and K(σ),
K(σf) are the sectional curvatures of the plane sections σ, σ\ respectively. Let ds2 be a
new metric on M which is uniformly equivalent to ds2. Then for any continuous function
f on M(oo), there exists ue C°°(M)n C°(MuM(oo)) such that

u = 0 on M

u—f on M(oo),

where Δ is the Laplacian of(M, ds2).

Again, it has to be emphasized that M(oo) is still defined with respect to the old
metric ds2. But it is only natural because one has difficulty in defining the asymptotic
boundary at infinity of (M, ds2) if the assumption that the manifold is nonpositively
curved is omitted. The results of Schoen and Yau and of Cheng indicate that the
solvability of the asymptotic Dirichlet problem depends on some crude macroscopic
property of M rather than more local geometric properties such as the curvature.

The main motivation of this paper is to validate this viewpoint using the rough
isometry. The concept of rough isometry is introduced by Kanai [Kl], [K2] and [K3];
and later, Coulhon and Saloff-Coste [C-S] gave some improvements. See the next
section for the definition which we adopt. The rough isometry is a very crude equiva-
lence relation on the class of Riemannian manifolds, and it is not even required to
be continuous. Therefore even if M and TV are roughly isometric, M and N may
have completely different topology. But they share certain macroscopic geometric
properties such as the volume growth, the positivity of the Sobolev or the Poincare
constants, etc.

In this paper, we propose and solve a new asymptotic Dirichlet problem via the
rough isometry. It is stated as follows: Suppose φ: M^N is a rough isometry, and
suppose M satisfies the conditions in Cheng's result with respect to the old metric.



ROUGH ISOMETRY AND ASYMPTOTIC DIRICHLET PROBLEM 335

We define a suitable function class $Fφ on N, where φ: M-+N is a rough isometry. For
each fe^φ9 our problem is to find a function ύeCco(N) such that Δw = 0 on TV and
(ύ —f){φ(x)) -• 0 as x -• oo. Note the curious way of stating the continuity of the solution
at infinity in our formulation. But this is in fact in line with the approach of Schoen
and Yau and of Cheng. First, since even the topology of N differs from that of M not
to mention the nonpositivity of the curvature, there is no clear way of defining iV(oo),
the boundary at infinity, of N. This therefore forces one to state the boundary value
in terms of M(oo). Note that Schoen and Yau's and Cheng's case is when M and N
are the same manifolds with different, but uniformly equivalent, metrics, and φ is the
identity map. Next simple situation is the case when M and TV are the same manifolds
equipped with different metrics such that the identity map is a rough isometry. Our
result is new even in this simple case.

2. Rough isometry and net structure. A (not necessarily continuous) map φ:
X-> Y between two metric spaces X a.nά Y is called a rough isometry, if the following
conditions hold:

(1) there exists a constant τ>0 such that

Y= U BJtφ(x)),
xeX

where Bτ(φ(x)) means the τ-neighborhood of φ(x);
(2) there exist constants a > 1 and b > 0 such that

— d{xl9 x2) — b<d(φ(xί), φ(x2))<ad(xί9 x2) + b
a

for all xί9 x2 in X, where d denotes the distances of Xand 7induced from their metrics,
respectively.

It is easy to see that for such a rough isometry φ, there exists the inverse rough
isometry φ " 1 : Y-> X such that d(y, φ°φ~1(j))<τ for all y in Y. Thus being roughly
isometric is an equivalence relation. (See [K2].) But it is also important to note that
two roughly isometric metric spaces may have completely different topology, since φ
is not assumed to be continuous. For example, an infinite cylinder is roughly isometric
to an infinite cylinder with infinitely many identical handles attached at equal distance
going off to the infinity.

In [Kl], [K2] and [K3], Kanai introduced the concept of rough isometry. He
assumed that a rough isometry φ satisfies the conditions (1) and (2), and demanded
the additional conditions on Riemannian manifolds as follows:

(Kl) the Ricci curvature of manifold M is bounded below;
(K2) the injectivity radius is positive, i.e., inj(M)>0.
Later, Coulhon and Saloff-Coste [C-S] gave a slightly more general and convenient

definition of the rough isometry between Riemannian manifolds. Let φ: M^N be a
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map satisfying the conditions (1) and (2). They assumed the following condition:
(3) there exists a constant C> 1 such that

— vol B^x) < vol Bx{φ(x)) < C vol Bγ(x)

for each xeM.
They also assume that both M and N satisfy the local volume doubling condition

as follows:
(4) for all r>0, there exists a constant Cr>0 depending only on r such that

vo\B2r(x)<Crwo\Br{x)

for all x in M (in N, respectively).
But these assumptions are improvements of Kanai's assumptions. Thus we still

call it a rough isometry between Riemannian manifolds. From now on, when we say
φ is a rough isometry between Riemannian manifolds, it means that φ satisfies the
conditions (1), (2) and (3), and the Riemannian manifolds satisfy the condition (4); and
τ always means that which appears in (1).

We now collect relevant definitions concerning the rough isometry which we need
in this paper. One of the key tools in combinatorially approximating a Riemannian
manifold M is the concept of the net defined as below:

Let d be the distance function on M. A subset P of M is called μ-separated for
some μ>0 if d(p, p')>μ for any distinct points p and p' of P.

A μ-separated subset is called maximal μ-separated if it is maximal with respect to
the order relation of inclusion. Let P be a maximal μ-separated subset of M. Then we
can define a net structure Jί = {N(p):peP) by setting N(p) = {p'eP: μ<d(p,p')<3μ}.
Note that this family Jί satisfies that for allp,pfeP,

( i ) N(p) is a finite nonempty subset of P\
(ii) p'eN(p) if and only if peN(p').

A maximal μ-separated subset P of M with the net structure described above is called
the μ-net in M.

A sequence p = (po> -- ,Pι) of points in P is called a path from p0 to pt with the
length / if each pk is an element of N(pk_1) for k= 1, 2,...,/. Then for two points p
and p' of P, we can define δ(p,p') to be the minimum of the lengths of paths from
p to p'. It is easy to check that δ defines a metric on P. In [K2], Kanai proved that
a net P, with this metric δ, is roughly isometric to M, i.e., there exist constants α> 1
and β>0 such that

for all/?!,p2 eP. For this metric δ, define an /-neighborhood Nt(p) = {p' eP: δ(p,pf)<l}
for eachpeP and for each leN. A net P is said to be uniform if there exists a constant
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λ such that %N(p)<λ< oo for all peP, where #5 denotes the cardinality of the set S.
Either the condition (Kl) or (4) guarantees that a μ-net P on M is uniform, and this
uniformness plays a crucial role in the proof of the roughly isometric invariance of
some analytic properties. Let us define the norm of gradient of functions on a net P;
for a function / defined on a net P and for pεP, set

/ \l/2

\Df\(p) = ( Σ \f(p')-f(p)\2)
\p'eN(p) /

3. Boundary value of a function under rough isometry. Let TV be a complete

Riemannian manifold which is roughly isometric to a Cartan-Hadamard manifold M
via the rough isometry φ. We would like to pose and solve an asymptotic Dirichlet
problem on N. The first difficulty one encounters in doing so is that there is no a priori
good way of defining the boundary N(oo) at infinity of N. Our idea is to lean on M(oo)
as a way to detect the infinity behavior of N. The rationale is that the structure of the
infinity of N must be roughly equal to that of M, since the rough isometry is really on
the infinity behavior of the respective manifolds. To be more specific, let M(oo) be the
boundary at infinity of M which is the set of asymptotic classes of unit speed geodesic
rays. It is topologized with the cone topology in the sense of Eberlein and O'Neill
[E-O]. Let φ: M-+N be a rough isometry and / be a function on N. We say that /
is an element of the class 3Fφ if / satisfies the following conditions:

( i ) foφ can be extended to MuM(oo) in such a way that /° φ is continuous at
every point of M(oo);

(ii) for given ε > 0, there exists T> 0 such that | f(x) —f(y) \ < ε whenever y e Bτ(x)
and d(o\ x)>T for some fixed point o'eN.

In the above, the statement (i) means that for any υeM(oo), f°φ(x) converges to a
number Av as x converges to v, i.e., for any ε>0, there exists a neighborhood K of v
such that I f(x) — Av \ < ε whenever xeK. The statement (ii) is needed to control the wild
variance of/ within the τ-ball. (See Example 3.1.) It is perhaps worthwhile to understand
better of the above conditions. First, as we do not know the boundary at infinity of
N, the value of / o φ on Λf(oo) is used as a surrogate value of / at the infinity of N. It
is instructive to note that this is the approach that Schoen-Yau and Cheng took as
explained in § 1. Second, however, this definition depends on the choice of the particular
rough isometry φ. What we need is to know under what circumstances the condition
(i) above is independent of a particular choice of the rough isometry. With regard to
this, it is interesting to recall the result of Li and Wang [L-W] in which they proved
that if φ: X-> Fis a rough isometry between two Cartan-Hadamard manifolds and if
the sectional curvature of X or Y is bounded above by a negative constant, then φ
extends to a map φ: Zu Z(oo) -> Yu Y(co) which induces a homeomorphism of Z(oo)
onto F(oo).

In this paper, however, we do not assume that TV is a Cartan-Hadamard manifold,
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and even though M is one, the sectional curvature is not assumed to be bounded

above by a negative constant. Thus Li and Wang's result does not apply directly.

But we still have some interesting invariance of the continuity of the boundary

value at infinity. Suppose φ and ψ are both rough isometries of M to N. Then

φ~ιo\jj\ M^M is a rough isometry of the Cartan-Hadamard manifold M. It is not

true in general that φ~1oψ extends to a map φ~1oψ MuM(oo)-»MuM(oo) in

such a way that it is continuous at every point of M(oo). However, if it does, we

have the following result.

PROPOSITION 3.1. Let φ, φ : M->N be rough isometries such that φ'1 oψ extends

to a map φ~ιoφ \ MuM(oo)-»MuM(oo) in such a way that it is continuous at

every point of M(oo). Then for each fe^φ9 f°φ can be extended to MuM(oo) so that

f°ψ is continuous at every point of M(oo).

REMARK. Even though φ~1 oψ is continuous at every point of M(oo), we do not

require φ~1o\j/ to be continuous in the interior M.

PROOF. Fix a point oeM. Then we can identify the unit tangent space U0M at

o with M(oo). We use the notation

K{v, δ, R) = {xEMI <0(v, ox)<δ, d{o, x)>R} ,

for ve U0M, where <0(v, ox) denotes the angle at o between v and the ray starting from

o and passing through x. For any ε > 0 and any ve U0M, we shall show that there

exist δ>0 and i?>0 such that \f°φ(x)—f°φ(w)\<2ε if XEK(V, δ, R), where w =

φ~γ°\jj(v). Since f°φ is continuous on M(oo), there exist $>0 and i?>0 such that

\foφ(z) — foφ(w)\<ε for all ZEK(W, δ, R).

Since φ~ιo φ is continuous on M(oo), we can choose δ>0 so that

where Bδ(v) denotes the ^-neighborhood of υ in U0M and Bg/2(w) denotes the

(5/2-neighborhood of w in U0M. On the other hand, we can choose R>0 so that

φ~1oψ(M\BR(o))^M\B2R(o). Consequently, we have

φ ~x o ψ(K(υ, (5, R)) <= κ(w, y , 27? V

For each xeK(v, δ, R), there exists y EM such that d(φ(y), ψ(x))<τ, since Bτ(φ(M)) = N.

Since fe^φ9 there exists T> 0 such that | / o φ(y) — / o ψ(χ) \ < g whenever d(ψ(o), φ(x)) > T.

We can choose a sufficiently large R > 0 such that d(ψ(o), φ(x)) > T. This implies that

\foφ(y) — f°ψ(x)\<ε whenever d(o,x)>R. On the other hand, since φ~1oψ(χ)E

K(w, £/2, 27?) and
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d{y, φ'ιoφ(χ))<ad(φ(y), φ o φ ~ * oφ(χ)) + b

<aτ + ad(φ(y),ψ(x)) + b

<aτ + aτ + b,

we have yeK(w, δ, R) if 2aτ + b<R. This implies that \f°φ(y)—f°φ(w)\<ε. Thus for
chosen δ>0 and R>0 in the above, we have \foφ(χ)-foφ(w)\<2ε if xeK(v, δ, R),
where w = φ ~1 ° φ(v). Π

EXAMPLE 3.1. We now give an example to illustrate why the condition (ii) of 3Fφ

is needed. By the result of Li and Wang in [L-W], each rough isometry from the
hyperbolic space H2 into itself induces a homeomorphism from //2(oo) onto itself. Let
P be a μ-net in H2. Define a rough isometry φ: H2 -+H2 by for each xeH2, φ(x)=px

for somepxePnBμ(x). Note that H2 = {JpePBμ(p).

Define another rough isometry φ: H2 -+H2 by for each xeH2, φ(x)=y, where y
is a point on a unit speed minimal geodesic γ: [0, oo)-»/72 such that y(0) =px, y(t) = x
with γ(μ/3)=y. Then for a function / on H2 given by

t 0 otherwise,

we have/oφ=l and foφ = 0. This wild variance of/ permits proving the existence
of a rough isometry θ: H2 -+H2 such that /o0 is discontinuous at infinity H2(co). To
show this, we choose a suitable coordinate on H2 as follows: Set H2 = (R%, (dx2 +
dy2)ly2), where /?i = {(x, y)sR2\y>0}. And define a rough isometry θ: # 2 ->H2 by

where φ and φ are given above. Then f°θ is discontinuous on H2(co). •

Note that the rough isometries φ,φ,θ: H2 -> H2 induce homeomorphisms
φ,φ,θ: //2(oo)-»//2(oo), respectively. Thus we need to add the local condition (ii) of
#φ in order to make the Proposition 3.1 valid.

4. The asymptotic Dirichlet problem. Let φ: M^N be a rough isometry of a
Cartan-Hadamard manifold M into a complete Riemannian manifold N. Let / be a
function on N such that fe^φ. The asymptotic Dirichlet problem we propose is to
find a harmonic function ύ on N such that ύoφ has the same boundary value as /oφ on
M(oo).

For technical reasons, we redefine φ as follows: Let P be μ-net of M and Q be
v-net of TV. Since both M and TV satisfy the local condition (4), each of P and Q is a
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uniform net. And since M and N are roughly isometric, there exists a rough isometry
φ: P -» Q. In fact, we can choose φ so that φ(p) = q for some q e β, where q is a point
in Q satisfying d(q, φ(p))<τ. Let π: M^>P be a rough isometry. Then ioφon: M^N
is a rough isometry, where /: Q^N is the inclusion map. It is easy to check that
φ~ιo(joφoπ) extends to a map φ~1o(ίoφoπ): MuM(oo)->MuM(oo) such that the
restriction map M(oo)-»M(oo) is the identity map, where φ " 1 is the inverse rough
isometry of φ. Thus by the Proposition 3.1, fo(ioφoπ) is again continuous at every
point of M(oo). For this reason, we may redefine φ by i°φ°π. Then φ: P-> Q is simply
the restriction of φ to P. It is easy to check that solving the asymptotic Dirichlet prob-
lem for this newly defined φ is enough to solve this original asymptotic Dirichlet
problem.

To prove our main results, we need to add the following condition on M:
(5) there exists a constant C>0 depending only on r>0 such that

Γ Γ
|V/|>C | / - / |

J Br(x) J Br(x)

for all xeMand for all feC°°{Br{x)), where f=(wolBr{x)y1jBΛχ)f
Note that if the Ricci curvature is bounded below, then we have a constant C>0

satisfying the condition (5). (See Buser [B].)

THEOREM 4.1. Let M be a Cartan-Hadamard manifold satisfying the local conditions

(4) and (5) and let N be a complete Riemannian manifold satisfying the local condition

(4). Suppose the Dirichlet eigenvalue λγ(M) > 0, and suppose there exist a point oeM and

a constant C>\ such that at any x e M, we have | K(σ) \ < C\ K(σ') |, where σ, σ' are plane

sections at x containing the tangent vector of the geodesic joining o to x and K(σ), K(σ')

are the sectional curvatures of the plane sections σ, σ', respectively. Let φ\ M —• N be a

rough isometry. Then for any / e J ^ , there exists a solution ύeCcc(N) such that Δw = 0

on N and (ύ —f)(φ(x)) -» 0 as x -» oo.

For each / e J ^ , we can define an extension h of foφ such that heCcc(M)n
C°(MuM(oo)) and h\M{oo) = f°φ\M{oo). We may define h to be radially constant out-
side some compact subset of M. In [C], Cheng imposed a local pinching condition
for curvatures. From this condition, he obtained that \Vh\eL\M) for sufficiently
large s>2. (See [C, Theorem 3.1].) Without loss of generality, we may assume that
h is positive and bounded.

Let P be a μ-net of M and Q be a v-net of N. Define a function hμ on P by

h

vol B4μ(p)

for peP. Define a function k on Q by
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for qeQ, where φ~1 is the inverse rough isometry of φ such that d(φoφ~x(q), q)<τ for

each q e Q. Define a new function g: TV —• R by

where ηq(x) is a partition of unity defined as follows: Let ξq be a Lipschitz function given by

0, otherwise.

We define

Then it is easy to check that there exist C1>0 and C2 > 0 such that Σ β , e Q ^ W > Cx > 0

and IV^ |(x)< C2 for all xeN and for all ^e Q, where V̂ ^ is a weak derivative.

THEOREM 4.2. i^r sufficiently large s>2, we have the following:

is defined as above.

This fact is useful in showing that the solution of Theorem 4.1 converges to the

boundary data at infinity. The proof of Theorem 4.2 is divided into several steps: In

proving Lemma 4.1, Lemma 4.2, Lemma 4.3 and Lemma 4.4, we follow Kanai's program

in [Kl], [K2] and [K3] and in proving Lemma 4.5 and 4.6, we follow Cheng's program

in [C], respectively.

LEMMA 4.1. For each peP, there exists a constant C>0 depending only on μ > 0

and s>2 such that

C\
JB4μ(p)

PROOF. Using the condition (5), we find a constant C>0 depending only on μ

such that

C \h*-hs

μ(p)\<\ \Whs\.
JB4μι(p) JB4μ(p)

Since | Vhs\=s hs~ι\ VΛ|, we have the conclusion by the Holder inequality and the

definition of hμ(p). •



342 H. I. CHOI, S. W. KIM AND Y. H. LEE

LEMMA 4.2. There exists a constant C> 0 depending only on μ > 0 ands>2 such that

CΣvolBμ(p)\Dhμ\
s(p)<[ \Vh\s

peP JMI M

PROOF. For p' e N(p), we have

Using the Lemma 4.1 and the condition (4), we have

B7μ(p)

\hs-K{p')\

\hs

μ(p)-hμ(p')\

where C depends only on μ and 5. Therefore we have

y/.
IVAM

BτM(p) /

for all p' e N(p). This implies that

Cvo\Bμ{p)\Dhμ\
s(p)<\ |V/*|S.

Since s u p x e M #{peP : xe57/1(/?)} < oo, we have the conclusion. •

LEMMA 4.3. There exists a constant C > 0 depending only on μ, v, τ and s>2 such

that

Σ volBv(q)\ Dk \\q)< C X volBμ(p) \ Dhμ \s(p).
qeQ peP

PROOF. For q' eN(q)<=Q, we can choose a minimal path p = {po^Pu -->Pι)

Po^φ^iΦ where Pιz=φ~ι{q'). Then we have
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\k{q)-k(q')\ = \hμ(p0)-hμ(Pι)\

<\hμ(p0)-hμ(pι)\+ • • +|Λμ(Λ-i)-Λμ(A)|

< Σ \Dhμ\(p).
peNi-iiφ-Hq))

By the uniformness of the net P, we can choose an integer L satisfying 1<L. Thus we

have

\Dk\\q)<C Σ

for each q e Q. By the conditions (3) and (4), we have

vo\Bv(q)\^\s(q)<CwolBv(q) Σ ι \Dhμ\\p)

<C Σ vol Bμ(p)\DhJ(p).

By the uniformness of the net P, we have the conclusion. •

LEMMA 4.4. There exists a constant C > 0 depending only on μ, v, τ and s>2 such

that

JN qeQ

PROOF. In the weak sense, we have

Σ V*7q'M = 0 for x e Bv(q), since Σ tfq'fa) = 1
q'eN(q)U{q} q'eN(q)\J{q}

Since for each x e Bv(q),

v#W= Σ KqΉnq{χ)=

we have

Σ \k(q')-k(q)\<C\Dk\(q).
q'eN(q)

Raising to the s-th power and integrating both sides on Bv(q), we have

) Bv(q)

By the uniformness, we have the conclusion. •

Therefore, Theorem 4.2 is proved.

We now solve the following Dirichlet problem, in the weak sense, on BR(o)
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ΔuR= -Ag on BR(o)
(4.1)

uR = 0 on dBR(o).

Define a functional E by

for VEHQ'2(BR(O)). Since for some s>2,

E(v)>—^

2/s

BR(O)

we can take a minimizer of this functional E(v). For this solution, we have the following

result.

LEMMA 4.5. Let N be a complete Riemannian manifold with the Dirichlet eigenvalue

λι(N)>0. Then for a solution uR of the equation (4.1), we have

2 V / 2

I
R(o) \ Λ H i V / JBR(O)

for any s>2.

PROOF. Set u = uR. Since u\dBR{o) = 0, we have

V((sgn«) |«r 1 ) V « = -
BR(O)

From this equation, we have

w Γ 2 | V | W | | 2 < f | W Γ 2 | V | W | | | V ^ |
BR(O) J BR(O)

< y ί l ^ | s - 2 | V | W | | 2 + y J \uΓ2\Vg\2,

Since |V |w | s / 2 | 2 = ̂ 7 4 ) | w r 2 | V | w | | 2 , we have

4

Using the Holder inequality and the hypothesis λ1(N)>0, we have

\2/s

JBR(O) ^l(^) VĴ Rίo) / \JβR(o) /

D
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For any compact subset Ω in N, we have

uR + g\<sup\g\
Ω N

and sup|#|<sup|/j | .
N N

By the standard Schauder estimates, we can choose a subsequence {uRk + g} of {uR

converging uniformly to ύ on any compact subset of N satisfying Aύ = 0 on N. Set
u = u — g. Then by the standard Moser iteration, we have the following lemma.

LEMMA 4.6. Let N be given in Lemma 4.5 with the Sobolev constant S1(N)>0.
Then u(z) -> 0 as z —• oo.

PROOF. By Lemma 4.5, we have §N\u\s<oo. Thus for any ε>0, there exists a
sufficiently large R>0 such that $BR {Z) \ u\s<ε if d(p\ z)>R for some fixed Ro>0. By
the standard Moser iteration, for any zeN and Ro>0, there exist constants δ>0 and
C>0 such that

sup \U\<C
n/s δ/s

where C depends on supN| V#|,
a sufficiently large R > 0 such that | w(z) | < ε if d(o ',z)>R.

1 _L /?2

Ro J \JBRQ{Z)

lgl and $N\ Vg\s. Thus for any ε>0, there exists

Π

In [Kl] and [K2], Kanai proved that λ1>0 and S1>0 are preserved under the
rough isometry. In [C-S], Coulhon and Saloίf-Coste also proved these facts under the
rough isometry with the conditions (1), (2), (3), (4) and (5). Since λγ(M) > 0 and S^M) > 0,
we have λί(N)>0 and SΊ(iV)>0.

PROOF OF THEOREM 4.1. We have only to show that

(g o φ(χ) — / o φ(x)) —• 0 as x -• oo .

Note that

1

JB4μ(φ-Hq))

\goφ(χ)-foφ(χ)\ = Σ%

! IKy)-f(φ(χ< Σ iMχ))

By the compactness of MuM(oo), for given ε>0, there exist R>0, vu . . . , ι>feM(oo)
and positive numbers δί9 ..., (5t such that M(oo)<= \J)=ί K(vp δp R) and

\foφ(x)-h(vj)\<ε9 \h(y)-h(vj)\<ε

if x j e % 2δ7, R) for eachy= 1,2,..., i. For any ye {]qeB^2{φ{x))B^{φ-\q)l
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< ad{φ{x\ φoφ'1 (q)) + b + 4μ

< ad{φ(x\

<—

Thus for sufficiently large R>(3/2)αv + aτ + b + 4μ, we have d{x,y)<R. If d(o, x)>
2R, then for some ^eM(oo), x e K(vp δj, R/2). Thus yeK(vp2δp R). This implies
\foφ(χ) — h(y)\<2ε. Thus for any ε>0, there exists R>0 such that

\uoφ(χ)-foφ(x)\<3ε if d(o,x)>2R,

where R>aR + b and R is given in the proof of Lemma 4.6. Π

As corollaries, we have some interesting new results on the usual asymptotic
Dirichlet problem which is considered in [Ch], [A], [A-S] and [S].

COROLLARY 4.1. Let Mbea Cartan-Hadamardmanifold. Then the usual asymptotic
Dirichlet problem on M is solvable, provided that M is roughly isometric to another
Cartan-Hadamard manifold with the sectional curvature pinched between two negative
constants.

PROOF. Let φ: X^M be a rough isometry such that X is a Cartan-Hadamard
manifold with the sectional curvature pinched between two negative constants. Then
Li and Wang's result implies that φ extends to a homeomorphism φ: X(QO)-*M(QO).

The rest of the proof is the same as that in the proof of Corollary 4.2. •

COROLLARY 4.2. Let φ, M and N be as in Theorem 4.1. Suppose further that N is
also a Cartan-Hadamard manifold such that φ: M ^>N extends to a map φ: M u
M(oo)—•TVuN(co) in such a way that it is continuous at every point of M(oo). Then the
usual asymptotic Dirichlet problem on N is solvable.

PROOF. Let / be a continuous function on N\JN(OO). Since the rough isometry
φ: M -> TV extends to a continuous map φ: M(oo) —• N(oo), we have a continuous function
foφ on M(oo). Let h be an extension of foφ such that h\M(oo) = f°φ\M{ao) and it is
radially constant outside some compact subset of M. Define a function g on N by

g(z)= Σ
qeQ \vo\B4μ(φ \q))

where ηq(x) is a partition of unity as defined just above the statement of Theorem 4.2.
By Theorem 4.2, we have j N | Vg \s < oo for sufficiently large s > 2. Since λί>0 and Sί>0
are preserved under the rough isometry, by Lemma 4.6, we have a harmonic function
ύ on N such that | ύ(z) — g(z) \ -> 0 as z -• oo. We have only to show that | g(z) —f(z) \ -> 0
as z-»oo. Note that
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\g{z)-f{z)\= Σ u 4 1 P ! -1(XΪ

qeQ \vo\B4μ(φ \q))

^ Σ * (

For any 7eU g eβ 3 v / 2(Z)^(φ" 1(^)) ? Φ , </>(>>))<£ where C depends only on μ, v, τ, a
and b. Note that fA(^)-/(z)|<|A(^)-/(φ(^))| + |/(φ(>;))-/(z)|. Using the definition
of h and the continuity of/, we have | h(y) —f(z) | -• 0 as z-»oo. Thus we have
|0(z)-/(z)|->Oasz->oo. D

Finally, Proposition 3.1 and Theorem 4.1 imply the in variance property of our
new asymptotic Dirichlet problem.

COROLLARY 4.3. Let φ, M and N be as in Theorem 4.1. Let φ: M-*N be another

rough ίsometry such that φ~1°φ extends to a map φ~ιoφ\ MuM(co)—>-MuM(oo) in

such a way that it is continuous at every point of M(co). Then for any fe J^, we have a

solution ueC°°(N) such that Aύ = 0 on N and (ύ—f)(φ(x)) -• 0 as x -• oo.

REMARK. Let id be the identity map of (M,ds2) onto (M,ds2). Then for any
continuous function / on (M, ds2), it is easy to check that fe J^d. By the consequence
of our result, we have the results of Schoen and Yau and of Cheng.
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