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Abstract. In this paper we answer a question posed by Batyrev, which asks if there

exists a complete regular fan with more than quadratically many primitive collections.

We construct a smooth projective toric variety associated to a complete regular

ί/-dimensional fan with n generators where the number of primitive collections is at least

exponential in n — d. We also exhibit the connection between the number of primitive

collections and the facet complexity of the Grobner fan of the associated integer

program.

1. Introduction. In this paper we give an affirmative answer to the following

question posed by Batyrev [Bat]:

QUESTION. Does there exist a complete regular d-dίmensίonalfan A with n generators

iSuch that A has more than (n —d—\)(n — d +2) β primitive collections for n — d>\Ί

In Section 2 we prove the following theorem which answers the above question.

THEOREM 1.1. There exists a complete regular d-dimensionalfan A with n generators

where the number of primitive collections of A is more than 2(n~d)ί2.

A fan AczRd that covers Rd is a complete fan. If we require the full-dimensional

cones in A to be simplicial with integral generators which form a Z-basis for Zd, then

A is said to be regular (see below for formal definitions). If a fan A aRd is generated

by the one-dimensional cones defined by the vectors in jtf = {aί9 a2,..., an}^Zd, then

the primitive collections of A are defined as follows:

DEFINITION 1.2. A nonempty subset 0 — {atl, ah,..., aik} of s/ is called a primi-

tive collection if for each generator aise^ the elements έ?\ais generate a (fe— 1)-

dimensional cone in A, while 0* does not generate a /:-dimensional cone in A.

The primitive collections of a complete regular fan AczRd with n generators are

studied in [Bat] to classify d-dimensional smooth complete toric varieties with n — d=3.

The question we study asks whether there exists a complete regular fan A where the

number of primitive collections of A is at least quadratic Ίnn — d. Theorem 1.1 constructs

a complete regular fan with exponentially many primitive collections. The same theorem

can be restated in the language of Grobner bases of toric varieties: Theorem 3.1 shows

that there exists a toric variety X with a square-free initial ideal whose number of
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minimal generators is exponential in the codimension of X. In the last section we make

a connection between two conjectures: one of them appears in the context of the

complexity of complete regular fans (Conjecture 7.1 in [Bat]) and the other one is

about the complexity of Grδbner fans in the context of integer programming (Conjecture

6.1 in [ST]).

In this article we will use results from the theory of coherent triangulations of a

vector configuration. In order to prove Theorem 1.1 we need the following definitions

which connect coherent triangulations and complete regular projective fans: A complete

fan ΔeRd with n generators si = {ax,a2, ...,an}aZd is said to be regular if every

d-dimensional cone σeΔ is simplicial and the generators {ail9 ai2, . . . , aid} of σ form a

Z-basis of Zd.

DEFINITION 1.3. A complete regular fan Δ is said to be projective if there exists a

support function φ: Rd-+R such that

1. φ is convex and φ{Zd) c Z,

2. φ is linear on each cone of Δ with φ\σΦφ\τ for distinct ^/-dimensional cones

σ and τ.

It is a well-known fact that if V(Δ) is the smooth complete J-dimensional toric

variety that is associated with Δ then V(Δ) is projective if and only if A is projective

(cf. [Oda]). In this paper we will use an equivalent definition of a projective toric variety

via coherent triangulations.

DEFINITION 1.4. A triangulation T of a vector configuration si = {aί, a2,..., an} e

Rd is a polyhedral complex consisting of simplical cones which cover pos(si) = {xe

Rd: x = Σn

i=1 λidi, λi>0}. A triangulation T of si is said to be coherent if there exists

a support function φ on T as in Definition 1.3 (see [BFS], [GKZ]).

ACKNOWLEDGEMENT. The author thanks Bernd Sturmfels for pointing out

Batyrev's open problem.

2. Exponential lower bound. To give an exponential lower bound for the number

of primitive collections of a complete regular fan we will use the example given in

Proposition 6.7 of [ST].

DEFINITION 2.1. Given a matrix BeZdXn, the chamber complex Γ(B) of B is the

coarsest polyhedral complex that refines all triangulations of B and covers pos(5).

PROPOSITION 2.2 ([BGS]). Let A be a Gale transform of BeZdXn, i.e. let Ae

Zin~d)xn such that

0 — > R d ^ > R " - A - + R i " - d ) — > 0
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is exact. Then there is a bijection between the coherent triangulations of A and the

d-dimensional chambers of Γ(B) given by

i = 1

where σ ^ p o s ^ , ah, ...,ain_d) are the cones of the coherent triangulation T and σf* =

pos({&y: 1 <j<n,jφίu i2, . . . , in-d}) a r e the cones of B containing the chamber C.

Now we construct a complete regular projective fan which has exponentially many

primitive collections. Let B be the node-edge incidence matrix of the complete bipartite

graph Knm where n = 2k—l and m = 2k + 1. B = {et x e'}: 1 < i < n , 1 <j<m} where e{eRn

and e'jERm are standard basis vectors. B has rankn + m — 1 and is unimodular, i.e. any

subdeterminant of B is 0 or ± 1 (cf. [Schr, p. 273]). The cone pos(i?) consists of all

non-negative vectors (uu ..., un) x (υu . . . , vm) such that uι + + un = vγ + + vm. Let

AeZ(n-i)(m-i)χnm b e a G a l e transform of B. By Proposition 2.2, for every chamber in

the chamber complex Γ(B) there exists a corresponding coherent triangulation of A.

We consider a special chamber in Γ(B). The one-dimensional cone generated by

(1/tt,..., l/π)x(l/m,..., 1/m) is in pos(i?) and we claim that it is in the interior of a

full-dimensional chamber. The facets of full-dimensional chambers of Γ(B) correspond

to the cocircuits of the oriented matroid of B (cf. [DHSS, Lemma 2.7]). In our situation,

a cocircuit of B corresponds to a cut (C+, C_ D + , £>_) in Knm where (C + , C_) is a

partition of {1, ...,«} and (/) + ,/)_) is a partition of {1, . . . , m}. The corresponding

hyperplane is defined by

(i) Σ «,- Σ ««- Σ »,+ Σ ^ = o .
ieC+ ieC- jeD+ jeD-

Since « and m are relatively prime, (1/rc,..., l/n) x (1/m,..., 1/m) cannot lie on any of

these hyperplanes. So it must be in the interior of a full-dimensional chamber. This

chamber is called the central chamber of pos(i?). Let Δ be the corresponding coherent

triangulation of A. Since B is unimodular, so is A, and therefore A consists of simplical

cones whose generators form a Z-basis for z(n~1){m~l). Because there exists a strictly

positive vector in im(2?τ) = ker(;4), any vector in ^ ( " - D ^ " 1 ) j s m pos(^4). This shows

that Δ is a complete regular fan.

Now we show that every column of A is a generator of Δ. By Proposition 2.2 it

is enough to show that for every column bUj = et xe]eB there exists a cone τ which

contains the central chamber but which does not have bitj as a generator. Suppose τ is

a cone that contains the central chamber and has bitj as a generator. Since the natural

action of the product of symmetric groups Sn x Sm on B fixes the central chamber, for

any πxσeSnxSm, (π x σ)(τ) covers the central chamber as well. We can pick π such

that π(ί) = i. If bitk9 k //, does not appear as a generator of τ we can choose σ so that

σ(k)=j, and we would be done. So suppose bik is a generator of τ for k= 1, . . . , m.
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Since these vectors are linearly independent and rank(£) = π + m — 1, there are exactly
n— 1 generators of τ which are not of the above form. But τ contains (1/n,..., 1/n) x
(1/m,..., 1/m) in its interior, so these remaining n—\ generators are of the form bkSk,
fc = 1,..., n, k Φ i. Each of these generators must have the coefficient 1/n in the unique
expression that expresses (1/rc,..., 1/π) x (1/m,..., 1/m) in terms of generators of τ. But
l/w> 1/m, and this shows that A is a complete regular projective fan generated by the
columns of A.

In order to give an exponential lower bound on the primitive collections of A
constructed above we establish a link between its circuits and its primitive collections.

DEFINITION 2.3. Let srf be a vector configuration in Zd. A collection of linearly
dependent vectors Z^srf is called a circuit if any proper subset of Z is linearly
independent.

We will call the circuits of the generators of a complete fan A the circuits of A. If
Z is a circuit of Δ, the unique (up to sign) dependence relation Σiλizi = 0 partitions
Z into two subsets, namely Z + ={z ( eZ: λ f>0} and Z~{zieZ\ λi<ϋ). In this case,
there exist precisely two triangulations of Z: t + (Z) = {Z\zi: zteZ+} and ί_(Z) =
{ZXzfiz. eZ-}. Note that relint(pos(Z+))nrelint(pos(Z_))^0 (see [BLSWZ]).
Given a triangulation A and a circuit Z of Zl such that t+(Z) is a subcomplex of zl, one
can get via a bistellar flip another triangulation zΓ such that t-(Z) is a subcomplex of
A'. For the details we refer to [GKZ, pp. 231-233]. The next lemma makes the connection
between the circuits and primitive collections of A.

LEMMA 2.4. Let AczRd be a complete regular fan {i.e. a triangulation) and let Z

be a circuit such that t+(Z) is a subcomplex of A. Then Z + is a primitive collection.

Moreover, if Z' is a different circuit where t+{Z') is a subcomplex of A, then Z + # Z + .

PROOF. Clearly Z + does not generate a cone in A. By the definition of t+{Z\ for
all zeZ+, pos(Z+\z) is a face of ί+(Z), and hence is a cone in Δ. Each of these cones
must be (card(Z+)— l)-dimensional, since otherwise Z cannot be a circuit. This shows
that Z + is a primitive collection. For the second statement, assume Z+=Z'+. Since
t+(Z)φt+(Z'), the respective subcomplexes K and K of A on which the bistellar flips are
supported are different as well. But pos(Z+)nrelint(ΛT)^0 and pos(Z'+)nrelint(K')/
0 , which implies relint(A )̂ n relint(Λ^) Φ 0 . This cannot happen since K and K' are
distinct subcomplexes of A. This contradiction completes the proof.

For the main theorem we need the following result which provides the link between
bistellar flips (and hence the primitive collections) of A and the corresponding chamber
in the dual configuration.

THEOREM 2.5 ([GKZ, p. 233]). Let srf aZd be a vector configuration and let &

be a Gale transform of stf. If A and A' are two coherent triangulations of stf, then A and

A' differ by a bistellar flip if and only if the corresponding chambers in Γ(β) share a facet.
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PROOF OF THEOREM 1.1. Let B be the node-incidence matrix of Knm where

n = 2k — 1 and m = 2k+\ and let A be a Gale transform of B. Let Δ be the coherent

triangulation of A that corresponds to the central chamber in Γ(B). As we established

before A is a complete regular projective fan generated by the columns of A. Lemma

2.4 and Theorem 2.5 imply that the number of primitive collections of Δ should be at

least the number of facets of the central chamber in Γ(B). The following proposition

shows that there are at least exponentially many such facets. The proof of the proposition

can be found in [ST], but we include its proof for completeness.

PROPOSITION 2.6. The central chamber in Γ(B) which corresponds to Δ has at least

4k facets.

PROOF. If H is a hyperplane defined by the equation (1), we will call (card(C+),

card(Z)+)) the type of H. Now starting at the point (1/rc,..., l/π)x(l/m,..., 1/m) and

moving in the direction of (— 1, . . . , — 1, n — 1) x (0,..., 0) to a generic point

(a,..., α, a + 1 — na) x (1/m,..., 1/m) we cross a facet of type (r, 5) with neC- whenever

r ' a — (n — r— 1) α — ( α + 1 — na) — s/m 4- (m — s)/m = 2 r a — 2 s/m = 0 .

From here we get a = s/mr and since a<\/n we like to find r and s which minimize

the positive integer m r — n's. The unique solution is r = k and s~k+l and since

Sn x Sm acts transitively on the set of hyperplanes of type (r, 5), we conclude that every

hyperplane of this type is a facet of the central chamber. When k>3 there are

2k—l\f2k+\\
^k -k Λk 1 Γ __

)>2k'2k = Ak such facets. •
k )\k + \)

3. Connections to integer programming. In this section we will first state Theorem

1.1 in terms of the Grδbner basis (cf. [AL], [CLO]) of an integer program. Subsequently

we will relate two conjectures, one that appears in the context of smooth projective

toric varieties and the other one in the context of integer programming. An integer

program can be stated as follows:

minimize c x subject to A x = b, x e Nn

where AeZdXn with τaήk(A) = d, beZd and ceR\ The reduced Grόbner basis of the

toric ideal IA = (xa — xβ: α, βeNn, A' oc = A β} with respect to the term order induced

by the cost vector c provides a test set for solving this integer program (see [AL], [CT],

[ST], [Th] for details).

THEOREM 3.1. Let A be a Gale transform of the node-edge incidence matrix B of

Kn,m with n = 2k—l and m = 2k+l. Then I A is generated by xnXn Xim— 1, i= 1, . . . , n

and xijXij ' ' ' Xnj— 1, j = 1,..., m, and the reduced Grδbner basis of I A with respect to

the degree lexicographic term order contains at least 4k elements.

PROOF. The rows of B constitute a Z-basis for ker(^4) n Znm. The above binomials
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correspond to the rows of B and the ideal they generate is contained in IA. But since

the sum of all the rows of B is a strictly positive vector, these binomials generate IΛ

(see Lemma 2.1 in [SWZ]). The degree lexicographic term order >degiex can be

represented by the cost vector c = (l, 1,..., 1) refined by the lexicographic order. Since

A is unimodular, the reduced Grόbner basis of I A with respect to >degiex consists of

square-free binomials (cf. [St, Corollary 8.9]) and the initial term of each binomial

corresponds to a minimal non-face (i.e. a primitive collection) of the coherent tri-

angulation Δ induced by c (cf. [St, Theorem 8.3]). As the vector B c is in the central

chamber of Γ(B), Proposition 2.2 implies that the triangulation A induced by c is the

same as the complete regular fan we considered in the proof of Theorem 1.1. Π

EXAMPLE 3.2 ( 3 x 5 Complete Bipartite Graph). Let B be the node-incidence

matrix of ^3,5. If we associate with every column bij — ei x e'j, i= 1, 2, 3, j= 1, 2, 3, 4, 5,

the variable xy, then

/i4 = <*l 1*21*3 1 — 1, *12*22*32—1, Xl3*23*33 — 1, *14*24*34—1, *15*25*35 — 1 ,

X11X12X13X14X15 — 1, *21*22*23*24*25 — 1 , *31*32*33*34*35 — 1 >

There are 30 facets of the central chamber of B and indeed the reduced Grόbner basis

of I A with respect to >degiex consists of 50 binomials.

In relation to smooth complete projective varieties, the following conjecture is

posed in [Bat].

CONJECTURE 3.3 ([Bat, Conjecture 7.1]). For any ̂ /-dimensional smooth com-

plete toric variety defined by a complete regular fan Δ with n generators, there exists

a constant N(n — d) depending only on n — d such that the number of primitive collec-

tions in Δ does not exceed N(n — d).

Another conjecture with a similar flavor is stated about the complexity of Grόbner

cones in the setting of integer programming in [ST] (Conjecture 6.1), and here we will

give a connection between the two conjectures along the lines of the previous section.

Given an integer program defined by a matrix A, two generic cost vectors c and c' are

considered to be equivalent if the respective reduced Grόbner bases of IA are the same.

The set of all such equivalent cost vectors associated to a fixed reduced Grόbner basis

of the toric ideal of A is an open polyhedral cone and the collection of the closures of

all such cones and their faces constitute a fan called the Grobner fan of A (cf. [MR],

[BM], [St], [ST]).

CONJECTURE 3.4 ([ST, Conjecture 6.1]). There exists a function φ such that, for

every matrix A e Zd x n of rank d, every cone of the Grόbner fan of A has at most φ(n — d)

facets.

This conjecture is true for n — d<2. For the case n — d = 3, φ(3) = 4 under certain

genericity assumptions on the matrix A and this was proved by Barany and Scarf in
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[BS]. The following proposition points to a connection between TV and φ:

PROPOSITION 3.5 ([ST, Corollary 3.18]). Let AeZdXn with mnk(A) = d be a unί-

modular matrix and let B be a Gale transform of A. Then the Grδbner fan of A and

Γ{B) coincide.

In the light of this proposition one can formulate a specialized version of Conjecture

3.4.

CONJECTURE 3.6. There exists a function φ' such that, for every unimodular

matrix A eZdXn of rankd, every cone of Γ(B) has at most φ'(n — d) facets where B is a

Gale transform of A.

THEOREM 3.7. If there exist N and φ' as above, then N(n — d)>φ'(n — d) for all n

and d.

PROOF. Fix n and d, and suppose that AeZdXn is a unimodular matrix with a

coherent triangulation A such that the corresponding chamber in Γ(B\ where B is a

Gale transform of A, has φ\n — d) facets. If A uses all columns of A as generators, then

by the results of the previous section we would be done. Otherwise we can refine A into

another complete regular fan by adding the missing generators. This will not destroy

the primitive collections in A associated with the bistellar flips as in Lemma 2.4. Hence

N{n-d)>φ\n-d). •
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