
Tohoku Math. J.
50 (1998), 597-611

A REMARK ON THE ASYMPTOTIC PROPERTIES OF
EIGENVALUES AND THE LATTICE POINT PROBLEM
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Abstract. The asymptotic distribution of eigenvalues of elliptic self-adjoint oper-

ators on the flat torus is discussed. A relation between a geometrical property of

the operators and the error terms in the distribution formulas is given in the case

when the operators have constant coefficients. As a corollary, the error terms can

be determined only by the order of the operators and the dimension of the torus.

This result also gives an information on the number of lattice points inside convex or

nonconvex bodies in Rn.

1. Introduction. Let M be an ^-dimensional compact Riemannian manifold
without boundary and P a partial differential operator on M of order m. We assume
that P is self-adjoint and elliptic, namely the principal symbol pm(x, ξ)eCco(T*M\0)
of P is strictly positive. The famous formula of Weyl says that the number N(λ) of
eigenvalues of P which are not greater than λ behaves like

1)/m); c = (2π)-"\ dxdξ,
J J Pm(x,ξ)<ί

as Λ,-» + oo. The order (n — l)/ra of the error term cannot be improved if we take
the sphere Sn as M. Indeed, the spectrum of the standard Laplacian — Δ on the sphere
is well-known and the case P = ( — Δ)m/2 yields a counterexample. Refer to Hόrmander
[4] for these matters.

On the other hand, we can obtain a better estimate o(λ{n~1)/m) for the error term
if M and P satisfy extra conditions. For example, this is true if the closed orbits of the
Hamilton flow HPm generated by the principal symbol form a set of measure zero in
Γ*M\0 (Duistermaat-Guillemin [2]). If P is the Laplace-Beltrami operator, then HPm

is the geodesic flow, and the torus M= Tn satisfies this condition if n>2 while M=Sn

does not. We remark that T^S1.
Then our next question is what the exact order of the error term is for a given

Riemannian manifold M and an operator P which satisfies the global condition
above. In other words, our objective is the numbers d>0 for O(λin~1)/m~d) to be
true for the error term and their maximum dmax. Our results in this paper answer this
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question to some extent for the flat torus M=Tn = Rn/Zn with n > 2 and P with constant

coefficients, which satisfy the global condition. Our general answer is oc/{m(n — α)}<

dmax < (x/m, where α is the index defined by a geometrical property of P (Theorems 1

and 2). As a corollary, we have dmax>dmn = (m2n — m)~1, which we can improve if P

has a kind of convexity (Theorem 3).

In the special case when P is homogeneous, that is, P has only the principal

part and no lower terms, our answers can be translated into those for the problem of

determining the asymptotic distribution of the number of lattice points inside the

region RΩ = {Rξ; ξeΩ} as R = {2π)-γλιlm-* + oo. Here Ω = {ξ; p(ξ) < 1}, and p(ξ) is the

symbol of P = P(D). Especially, in the case when P is the standard Laplacian on the

2-dimensional flat torus J 2 , this is known as Gauss's circle problem, and better results

than our answer dmax>d2 2 = l/6 have been shown from number theoretical aspects

(Remark 3). However, we would like to emphasize here that we can treat more general

n and P and the order dmn = (m2n — m)~l can be determined only by the dimension of

the manifold and the order of the operator.

Finally, the author expresses his gratitude to Professor Takao Watanabe for

valuable conversations.

2. Main results. In the rest of this paper, we always assume that n>2 and

P = P(D) is an elliptic self-adjoint partial differential operator on Tn of order m with

constant coefficients. Then the symbol of P can be expressed as

p(ξ)=pJίξ)+Pn-i(ξ)+'-+Po(ξ),

where Pj(ξ) is a real polynomial of ξ = (ξ1, ξ2, , ζn) °f order j (y = 0, 1, . . . , m). We

remark that m must be even and pm(ξ) is identically positive or negative for ξφO. We

assume here the positivity, otherwise take - P as P. Now, we set

Q = {ξeR";pm(ξ)<l}.

We shall call its boundary dΩ the cosphere of P, which is a compact real analytic

hypersurface in Rn, that is, a submanifold of codimension 1. Before stating our

main results, we shall define the indices for hypersurfaces which were introduced in

Sugimoto [12] and [13] for another purpose.

DEFINITION 1. Let I be a hypersurface in Rn, p a point on Σ, and H a 2-

dimensional plane which contains the normal line of Σ at p, that is,

H={p + sμ + tveRn\s, teR} .

Here μ is a tangent vector of Σ at p and v is a normal. Let T be the tangent hyperplane

of Σ at p. We define the index γ(Σ; />, H) to be the order of contact of the curve ΣnH

to the line TnH at />, that is, the smallest number leN such that ψ{l)(0)^0 when we

express the curve ΣnH as {p + sμ + \l/(s)veRn; \s\<ε} near p with small ε > 0 .

Furthermore, we define the indices γ(Σ) and
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γ(Σ) = sup sup y(Σ; p, H), yo(Σ) = sup inf y(Σ; p, H).
p H p H

REMARK 1. We have 2<yo(Σ)<γ(Σ) by definition. Equality yo(Σ) = y(Σ) holds

when n = 2.

Hereafter, Σ always denotes the cosphere of P, that is,

Σ = {ξeR";pm(ξ)=l}.

Then we have the following inequality:

PROPOSITION 1 ([13; Proposition 2]). 2<yo(Σ)<y(Σ)<m .

REMARK 2. In the case when m = 2 and P= — Δ is the Laplacian for instance, we

have γo(Σ) = y(Σ) = 2. Even in the higher order case m > 3, this is true when the Gaussian

curvature of Σ never vanishes.

We shall state our main theorems. In the following, N(λ) denotes the number of

eigenvalues of P which are not greater than λ (counted with multiplicity), and | Ω | the

Lebesgue measure of Ω.

THEOREM 1. Let d=(x/{m(n — oc)}. Then we have the asymptotic distribution

(1) N(λ) = ( 2 π ) " n I Ω \λn/m + O(λ{n -1)/m~d)

with α = \/yo(Σ\ hence with oc= l/m.

In the case when P is homogeneous, that is, the case p(ξ)=pm(ξ), the asymptotic

distribution (1) for the number of eigenvalues can be translated into the behavior of

the number N'(R) of lattice points inside the region RΩ = {Rξ; ζeΩ) as R-+ +oo. In

fact, we have

(Γ) N\R) = \Ω\Rn + O{Rnlmd),

since the number λ is an eigenvalue of P if and only if the Diophantus equation

pm(2πξ) = λ has a solution ξeZn. (See Lemma 1 in Section 3.)

REMARK 3. In the case when n = 2 and P— — Δ, Theorem 1 is an answer to

Gauss's circle problem and claims N'(R) = πR2 + O(R2/3\ where N'(R) denotes the

number of lattice points inside the disk {ξ; | ξ \<R}. This corresponds to classical re-

sults of Sierpinski [10]. There has been a series of improvements to this result, replacing

O(R2/3) by O(R% where κ<2/3. For example, Chen [1] proved it with κ = 24/37 + ε

for arbitrary ε>0, which had been the best result until 1987. Iwaniec-Mozzochi [5]

obtained a better result κ: = 7/ll +ε. It has also been shown that κ= 1/2 is not possible

(Landau [7]). The final result κ= 1/2 + ε is conjectured but remains unsolved.

EXAMPLE 1. Suppose n>3 and leN. Let
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Then y(Γ) = 4/ and γo(Σ) = 2l, hence we have the asymptotic distribution (1) with

d=oc/{m{n — α)}, where α = (2Z)~1. For the proof of this, refer to Sugimoto [13; Example

1]

As suggested in Remark 3, Theorem 1 might also be true for greater d's. However,

by computing the order of the error term for Example 1, we have an upper bound for

them.

THEOREM 2. Suppose n>3, leN, and l> 1/2+ \/(n — 2). Let m = 4l. Suppose that

the operator P defined by the symbol p in Example 1 admits the asymptotic distribution

(1). Then d<oc/m, where oc=l/yo(Σ).

REMARK 4. If we formally take n = m = 2, the upper bound <x/m= \/(myo(Σ))

for rf's in (1) equals 1/4, which corresponds to the fact that the number of lattice points

inside the disk {ξ;\ξ\<R} cannot behaves like πR2 + O(RK) with κ< 1/2 (Landau [7]).

In this sense, Theorem 2 is an extension of the result of [7] to the general lattice point

problem.

The cosphere Σ in Example 1 is not convex. But Theorem 1 can be improved if P

has some convexity property. We set

Σe={ξERn'9pm(ξ) + ε1pm^ί(ξ) + ε2pn.2(ξ)+ + εmPo(ξ)=l} ,

where ε = (ε l9 ε2, . . . , εm). We always assume that | ε | is sufficiently small so that Σε is a

compact real analytic hyper surface.

DEFINITION 2. The cosphere Σ of P is called stably convex if there is δ>0

such that Σε is convex for | ε | <δ.

REMARK 5. The stable convexity implies the convexity. If P is homogeneous,

that is, pm-ι(ζ)= =po(ξ) = 0, the convexity is equivalent to the stable convexity. If

the Gaussian curvature of the cosphere never vanishes, then it is stably convex.

Indeed, the curvature condition implies the convexity (Kobayashi-Nomizu [6; Chap.

7]) and this condition is stable under the lower term perturbation. Accordingly, the

cospheres of the elliptic operators of order 2 are always stably convex because they

are ellipsoid.

THEOREM 3. Let d=oc/{m(n — oc)}. Suppose that the cosphere of P is stably convex.

Then we have the asymptotic distribution (1) with oc = (n — l)/γ(Σ), hence with oc = (n—l)/m.

REMARK 6. In the case when the Gaussian curvature of the cosphere Σ never

vanishes (then γ(Σ) = 2), Theorem 3 was essentially proved by Hlawka [3].

EXAMPLE 2. Suppose n>3 and leN. Let
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Then γ(Σ) = yo(Σ) = 2l, hence we have the asymptotic distribution (1) with d=

(x/{m(n — cή}, where oc = (n — l)/2/.

REMARK 7. In the special case of n — 2, the result in Example 2 is not the best

one. In fact, for /= 1, which corresponds to Gauss's circle problem, better estimates for

the error term have been obtained by many authors. (See Remark 3.) Furthermore,

for />2, the exact order of the error term is given by Muller-Nowak [8; Corollary 3],

which shows that (1) holds for the best possible order d=ai/m, where n = 2, m = 2l, and

3. Proofs of Theorems 1 and 3. We shall show Theorems 1 and 3 by proving

the following sequence of lemmas. We remark that the capital " C " (with some suffix)

in estimates always denotes a positive constant (depending on the suffix) which may be

different in each occasion.

First of all, we notice that each feL2(Tn) has the Fourier series expansion

f(χ) = Σkez»cke2πik'x> therefore Pf(x) = ΣkeZnckp{2πk)e2πikx. Hence we have

LEMMA 1. The number λ is an eigenvalue ofP = P(D) if and only if the Diophantus

equation p(2πξ) = λ has a solution ξeZn.

Now, for ε = (ε l9 ε 2 , . . . , εm), we shall denote by Ωε the closed region surrounded

by Σε, that is,

+εmPo(ξ)<\} .

In particular, we have

Ωε{λ) = {ξeR";p{R(λ)ξ)<λ}9

where

R(λ) = λ1/m , ε{λ) = (R(λy\ R(λ)~2

9 . . . , R(λym).

We may assume that λ is large enough so that | ε(λ) | is sufficiently small. Let χε be the

characteristic function of Ωε. From Lemma 1, we easily obtain

LEMMA 2. iV(A) = ΣJk6ZκZεα,(2πΛ(A)-1Λ).

Let us fix a smooth positive function ψ(x) which is supported in a sufficiently small

ball {x; | x | < α } and satisfies \φ(x)dx=\. We define, for R, τ > 0 ,

Nε(R, τ) = Σ CXεCπΛ " ' ) * τ " > ( τ " ' )](*).

keZn

By an argument using Friedrichs' mollifier, we have easily

LEMMA 3. For τ > 0, Nε(λ)(R(λ) - τ, τ) < N(λ) < Nε(λ)(R(λ) + τ, τ).

On the other hand, direct application of Poisson's summation formula to Nε(R, τ)
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yields

LEMMA 4. Nε(R, τ) = {2π)-n\Ω^Rn + Y^keZkφO{2πrnRn

In order to use Lemma 4 with ε = ε(λ), we shall estimate the difference between

\Ωεiλ)\ and \Ω\. By using Heaviside function Y(t), we express them in the form of

oscillatory integrals as

= \Y(l-λ-1p(R(λ)ξ))dξ

--

where

Similarly, we have

+R(λΓmp0(ξ).

\Ω\= eit{ί-pm{ξ))Y{t)dtdξ.

Then, by Taylor's formula,

\Ωε(λ)\-\Ω\

2π
itrλ(ξ))2 (l-θ)e-itθrAξ)dθ]γ(t)dtdξ

= -\δ(l-Pm(ξ))rλ(ξ)dξ+ δ'(l-pm(ξ)-θrλ(ζ))(rλ(ξ))2dξ}dθ ,

where δ(t) is the formal expression of Dirac's delta function. The first term on the

right hand side is O(R(λ)~2), since

δ(l-Pm(ξ))rλ(ξ)dξ=[ rλ(ξ)dΣ

= R(λy2

Here we have used the fact that m is even, which implies ^Σpm_ί(ξ)dΣ = 0. Similarly,

the second term is O(R(λ)~2) as well, since the integrand with respect to θ is essentially

an integral of derivatives of rλ(ξ)2 over the hypersurface Σθε{λ). Thus we have obtained
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LEMMA 5. \Ωε{λ)\ = \Ω\ + O(R(λy2).

In view of Lemma 4, an estimate for the Fourier transform of the characteristic
function χε(ξ) is needed for estimating the error term. In fact, the following is true.

LEMMA 6. Let oc<n/2. Suppose

(2) \χE(ξ)\<C(l+\ξ\Γ<1+x),

where C is independent of ξ and small ε. Then we have (1).

To prove Lemma 6, we first note that φ is rapidly decreasing. With this fact and
the estimate (2), the summation part of the equality in Lemma 4 is estimated as

X (2π)-"Rnχe(Rk)Φ(2πτk)
keZ,kΦ0

<CRn

<CRn

<CR"\ \Rξ\-<1+*)dξ + CRn\ \Rξ\'il+a)\τξ\-κdξ

where K>n — (1 +α) and C is independent of ε, R, and τ. Here we have used n> 1 +α.
Applying this estimate together with Lemma 5 to Lemma 4, we have

Nε{λ)(R(λ)±τ,τ)

= (2πΓn\Ω \R(λ)n+ O(τR(λ)n-'

= (2π)"n IΩ \R{λ)n + O{R(λ)n ~1 ~

if we take τ = i^(2)~α/(Π~α). Here we have used the binomial expansion (^±τ)" —
Rn-\-O(τRn~ί) and n-l-oc/(n-(x)>n-2. Then we have (1) by Lemma 3, which
completes the proof of Lemma 6.

Thus all we have to show is the estimate (2). Let Γ be a conic neighborhood
of x = (0, .. ., 0, 1) and φ(x) a smooth function which is positive, homogeneous of order
0 for large \ξ\, and is supported in Γ. It suffices to show the same estimate for χjp(ξ)
instead of χε(ξ), and we may take Γ sufficiently small if necessary. We shall express

where U^Rn~ι is a neighborhood of the origin and hε(y)eCω(U). We remark
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that hε is real analytic with respect to ε as well. Then we have, by the change of variables

x = (ty, thε(y)) and integration by parts,

'-rWdy

e ιu

u

where gε(t, y) = φ(ty, thε(y))tn~1\hε(y)—yh'ε(y)\, ω = ξ/\ ξ\ = (ω\ ωn), ω' = (ω 1 ? ω 2 , . . . ,

ω n _!), and η = ω'/ωn. We remark that gε(t, y) vanishes identically for small t. We may

assume here that ωn is away from 0, since integration by parts argument yields a better

estimate than we need in the direction ω = (ω\ 0). By all of this, the estimate (2) is

reduced to that for the oscillatory integral of the type

7e(ί; η)= f eit^ + h^)g(y)dy ge C£(U).
Ju

That is, we have

LEMMA 7. Suppose, for some KeN,

(3) \h(t η)\<Cg\t\-\

where Cg=CΣ\Λ\<κ l|dα0/dyαHLoo([/) and C > 0 is independent of t, η, and small ε. Then

we have the estimate (2), hence the asymptotic distribution (1).

In order to obtain (3), we shall use the following scaling principle for oscillatory

integrals:

LEMMA 8. Let f{t)eC^{R) be real-valued and let ζ(t)eC£(R). Suppose, for v>2

and μ > 0,

\fiv\t)\>μ on suppζ.

Then we have

,itf(t),X(t)dt < C ( | | C I I L O O + | | Π L 0 M
-1/v

where the constant C > 0 depends only on v and μ.

For the proof of this lemma, refer to Stein [11, Chapter VIII, 1.2]. By an
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appropriate change of coordinates and taking U sufficiently small if necessary, we

may assume \{dvhjdy\)(y)\>μ>§ for ye U and small ε, where v = γo(Σ). Hence, from

Lemma 8, we obtain

\eit{yη+hΛy))g(y)dy1

for all y' = {y2, . ,>>π_i), and hence

\Ut;η)\<

<c Σ
d'g

dy«
\-ί/yo(Σ)

dy>

We have thus proved the following lemma which implies Theorem 1 by Lemma 7

and Proposition 1.

LEMMA 9. The estimate (3) is true for α = l/γo(Σ).

On the other hand, when Σ is stably convex, the map h'ε: £/-• — h'ε(U)(^Rn~1 is a

homeomorphism because of the compactness and the real analyticity of Σε. Then we

can define zε = zε(η) by the relation η + h'ε(zε) = 0, otherwise Iε has a better estimate than

we need by integration by parts argument again. We set

ϊe{t9 z ) = E(y, z) = hε(y)-hε(z)-h'ε(z) (y-z).

Now, we shall estimate ϊε instead of Iε9 since \Iε(t;η)\ = \ΐε(t; zε)\. For this purpose,

we rewrite it with the polar coordinates as

Tε(t; z) = Gε(t; z, ω)dω Gε(t; z,ω)=
J

p; z, ω)dp ,

where

; z, ω) = z)-hε(z)-phε(z) ω , β(p; z, ω) = g(pω + z)pn~

For the sake of simplicity, we shall often omit parameters z and ω. We split the function

Gε(t) into the following two parts:

G2{t)=

I(P, t)dp : βx(p, t) =

9 t)dp β2(p9 t) = - Ψ)(\

where the function Ψ(p)eCco(R) equals to 1 for large p and vanishes near the

origin. The estimate for the part Gε(t) is easy. In fact, we have
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\GKt)\<\ \β2(p,t)\dp
Jo

<cg\ | p " - 2 ( i -
Jo

< Γ \t \-(n-ί)/γ(Σ)
— ^g I M

On the other hand, integration by parts yields

Gε\t)=

for/=0, 1,2,.... Here

and L* is the transpose of L. By induction, we can easily have

l J7(sι). . .f(sq) β

(p) ,

where the summation £ is a finite sum over r, q, su ..., ^ > 0 which satisfy r +
sx + +sq = l+q. The derivatives of Fε have the following estimate.

LEMMA 10. Suppose Σ is stably convex. Then there exist constants C, Cv, a>0
such that the estimates

hold for 0<p, \z\, \ε\<a, ωeS"~2, W v = 0, 1,2,

If we use Lemma 10 and the estimate

dp"r(P>t)
-.n-2 -r

we have, for a large number / and a constant b>0,

c

ς

poo

y
' L J o

- r

d'β,
dp

We have thus proved
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LEMMA 11. If Σ is stably convex, the estimate (3) is true for oc = (n—l)/y(Σ).

From Lemma 7, Lemma 11 and Proposition 1, we obtain Theorem 3 if we prove

Lemma 10. Although the proof of it is carried out essentially by the same argument as

in Randol [9] and Sugimoto [12], we shall provide it for the sake of completeness.

First we note that the function Fε(ρ) is real analytic for fixed z, ω, and ε. For the

expansion Fε(p) = YjJL2bJ{z9 ω, ε)ρ\ we set

y(Σ)

π(p)= Σ \jbj(z,ω,ε)\pJ * .

Since the definition of the order y(Σ) yields Σ](=2 I bj(z, ω ' ε) I ^0> w e n a v e t n e e s t i m a t e

(4) π(ρ)>Cpy{Σ)~1

for 0<p, | z | , | ε | < α , and ωeSn~2. Here a>0 is sufficiently small and the constant C

is independent of p, z, ε, and ω. Accordingly, all we have to show is the estimates

(5) \F'E(p)\>Cπ(p),

We write F(

ε

λί)(p) = Yj'*'=vj\{j—v)\~ιbj(z,ω, ε)pJ~v. Then we can easily have

%,Jj^)\bjiΣ'ω'ε)pi'

As for the remainder term, we use Cauchy's estimate, that is,

β
' max I

| < τ | = 2 α

Here the constant Cv is independent of z, ε, ω, and / Then we have

(7) Σ β - bj(z, ω, ε)pJ-v

for 0<p<a. Here we have used estimate (4). Combining these estimates, we have

estimate (6). On the other hand, by the concavity of the function hε(y) and the equality

F'E(0) = 0, we can see that the function | F'ε(p) \ is non decreasing. Hence we have

= max \F'e(t)\
0<t<p

> max
0<ί<p

y(Σ)

max
0<ί<p
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> max
0 < r < l

7(Σ)

j=2

— d max I tn(t) \
0<t<p

>(C-ClP)π(p).

Here we have used the compatibility of the norms maxo^^i | Σf=\ Cjtj~11 and £ ΐ i | Cj \

on Cγ{Σ\ and the estimate (7) with v = l . Thus we have obtained the estimate (5)

for sufficiently small p. This completes the proof of Lemma 10, and hence that of

Theorem 3.

4. Proof of Theorem 2. We shall prove Theorem 2 in this section. First we note

that p(2πξ)<λ if and only if

R(λ)2f42πR(λΓ ιξn)< 12πξ'\2 <R{λ)2f+{2πR{λy'ξn),

where R(λ) = λι«*ι\ ξ = (ξ', ξn\ ξ' = (ξl9 ξ2,..., ξn.x\ and

', 0 otherwise,

f ί 2 - ( l - ί 4 / ) 1 / ( 2 I ) ^

[ 0 otherwise .

Then, by Lemma 1, we have

N(λ)= Σ ̂ "
v e Z

v e Z

where Nn(λ) and dNn(λ) denote the numbers of keZn which satisfy the inequality

\2πk\2<λ and the equality \2πk\2 = λ, respectively. By the result in Example 2 and

Lemma 1 again, we have

where Bn = {ξeRn; \ξ\<l}. Since dNn{λ)<Nn(λ+l)-Nn(λ-l)9 we have

as well. Hence we have

(8) N(λ)= Σ \ { 2 π y ^ B \ R { λ γ f ( ^
veZ C \R\λ)
Λ(λ)/(2)

M-2-(n-2)/m

= {2π)-n\Bn-1\R{λ)n X —fl — \MΠ(m2ψ-l-(n-2)lnλ

V = - L L \Ly
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v = o L \L) L

where

f(t)=fMn-i)l2-f-{t){n-1)l2

and L = R(λ)/(2π). We have taken here λ = λL so that LeN, that is,

We remark here that f(t)e C°{R)n C2(R\{±A, ±1}) and f(t) is convex in a neigh-
borhood of t= ±A. In fact, we have ]imt^A-of'(t)>\imA+ofXt) and l im^^o f"(t)<0.
We also remark that suptΦ±Λt±ίf"(t) is finite, since l im t _ > 1 > 0 (l-ί 4 l ) 2 " 1 / ( 2 / ) /"(0<0.

The following trapezoidal rule is the key to the proof.

LEMMA 12. (i) Suppose F(t)eC2(\_a,a + K]). Then

a+h ft 1
F(t)dt = hF(a) + — (F(a + ft) - F{a)) F"(a + θh)h 3

2 12

for some 0 < θ < 1.
(ii) Suppose that F(t) is continuous and convex on the interval \a, a + K].

(%a + h ft
F(t)dt > hF(a) + — (F(a + ft) -F(a)).

PROOF OF LEMMA 12. (i) Apply Taylor's formula

L

(\-θ)φ"(θh)dθ

to

and use the mean value theorem, (ii) is trivial.

By Lemma 12, we have for v = 0, 1,..., L — 2,

<9) i4 ί ]4, ™*~ι̂
On the other hand, since
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/(I —r) = (

for small t, we have for v = L — 1

where C is a positive constant which is independent of L. From (9) and (10), we ob-
tain

L -

and hence from (8)

N(λL)<(2π)~"

+ o t w - 1 - 1 / z )+o{R{λ L γ -1-{n

Consequently, we have

y - 1 / ( 4 0 - 1 / ( 2 1 ) < 0

if /> 1/2+1/(^-2). This inequality and the formula (1) imply d< 1/(4/) 1/(2/) =
l/(mγo(Σ)). We have thus completed the proof of Theorem 2.
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