THE DIMENSION OF A CUT LOCUS ON A SMOOTH RIEMANNIAN MANIFOLD

Jin-ichi Itoh* and Minoru Tanaka

(Received April 9, 1997, revised September 12, 1997)

Abstract

In this note we prove that the Hausdorff dimension of a cut locus on a smooth Riemannian manifold is an integer.

It is very difficult to investigate the structure of a cut locus (cf. [1] for the definition) on a complete Riemannian manifold. The difficulty lies in the non-differentiability of a cut locus. This means that one cannot describe the structure of a cut locus in a smooth category. For example, it is not always triangulable (cf. [3]). In this note, the structure of a cut locus will be described in terms of the Hausdorff dimension (cf. [2], [9] for the definition of the Hausdorff dimension), that is, the aim of this note is to determine the Hausdorff dimension of the cut locus of a point on a complete, connected C^{∞}-Riemannian manifold. The cut locus on a 2 -dimensional Riemannian manifold has been investigated in detail by many reseachers. Actually it is already known that the Hausdorff dimension of a cut locus on a smooth 2-dimensional Riemannian manifold is 0 or 1 (cf. [4], [5]). On the other hand, the Hausdorff dimension of a cut locus on a Riemannian manifold is not always an integer, if the order of differentiability of the Riemannian metric is low. In fact, for each integer $k \geq 2$, the first author, constructed in [6] an $n(k)$-dimensional sphere $S^{n(k)}$ with a C^{k}-Riemannian metric which admits a cut locus whose Hausdorff dimension is greater than 1, and less than 2 (cf. [5]). In this note we prove that the Hausdorff dimension of a cut locus on a C^{∞}-Riemannian manifold is an integer. More precisely, we prove the following theorem.

Main Theorem. Let M be a complete, connected smooth Riemannian manifold of dimension n, and C_{p} the cut locus of a point p on M. Then for each cut point q of p, there exists a postive number δ_{0} and a non-negative integer $k \leq n-1$ such that for any positive $\delta \leq \delta_{0}$, the Hausdorff dimension of $B(q, \delta) \cap C_{p}$ is k. Here $B(q, \delta)$ denotes the open ball centered at q with radius δ.

Remark. The topological dimension is not greater than the Hausdorff dimension for a metric space. Since $C_{p} \cap B(q, \delta)$ contains a submanifold with the same dimension as the Hausdorff dimension of $C_{p} \cap B(q, \delta)$, both dimensions coincide.

[^0]1991 Mathematics Subject Classification. Primary 53C22; Secondary 28A78.

For some basic tools in Riemannian geometry refer to [1], [8].
Let M be a complete, connected, smooth ($C^{\infty}-$) Riemannian manifold of dimension n and let $S_{p} M$ denote the unit sphere of all unit tangent vectors to M at p. For each $v \in S_{p} M$, let $\rho(v)$ denote the distance from p to the cut point of it along a unit speed geodesic $\gamma_{v}:[0, \infty) \rightarrow M$ emanating from p with $\gamma_{v}^{\prime}(0)=v$. If there is no cut point of p along γ_{v}, define $\rho(v)=\infty$. Then it is well-known that the function $\rho: S_{p} M \rightarrow[0, \infty]$ is continuous. The cut locus of p will be denoted by C_{p}. For each $v \in S_{p} M$, let $\lambda(v)$ denote the distance function on the tangent space $T_{p} M$ of M at p between the zero vector to its first tangent conjugate point along γ_{v}. If there is no conjugate point of p along γ_{v}, define $\lambda(v)=\infty$. It follows from the proof of the Morse index theorem (cf. [8]) that the function $\lambda: S_{p} M \rightarrow[0, \infty]$ is continuous. Note also that $\rho \leq \lambda$ on $S_{p} M$. We define two maps e_{λ} and e_{ρ} on $\left\{v \in S_{p} M \mid \lambda(v)<\infty\right\},\left\{v \in S_{p} M \mid \rho(v)<\infty\right\}$ respectively by

$$
e_{\lambda}(v):=\exp _{p}(\lambda(v) v), \quad e_{\rho}(v):=\exp _{p}(\rho(v) v)
$$

where $\exp _{p}$ denotes the exponential map on $T_{p} M$. If a cut point q of p is conjugate to p along some minimal geodesic joining p to q, is called a conjugate cut point. Otherwise q is called a non-conjugate cut point. If a cut point q of p is non-conjugate and if there exist exactly two minimal geodesics joining p to q, then the cut point q will be called a normal cut point. It follows from the implicit function theorem that the set of all normal cut points forms a smooth hypersurface of M. For each $v \in S_{p} M$ with $\lambda(v)<+\infty$, let $N(v)$ denote the kernel of the map $\left(d \exp _{p}\right)_{\lambda(v) v}$ and denote its dimension by $v(v)$, which is called the conjugate multiplicity of the conjugate point $e_{\lambda}(v)$ along γ_{v}. It follows from a property of Jacobi fields that $N(v)$ can be identified with a linear subspace of the tangent space of $S_{p} M$ at v. It follows from the implicit function theorem that if the function v is constant on an open sebset U in $S_{p} M$, then λ is smooth on U.

Lemma 1. Suppose that v is constant on an open subset U in $S_{p} M$. If $\lambda\left(v_{0}\right)=\rho\left(v_{0}\right)<\infty$ at a point v_{0} in U, then any vector of $N\left(v_{0}\right)$ is mapped to the zero vector by the differential $d e_{\lambda}$ of e_{λ}.

Proof. Let w be any element of $N\left(v_{0}\right)$. Choose a smooth curve $v:(-1,1) \rightarrow S_{p} M$ with $v(0)=v_{0}, v^{\prime}(0)=w$ such that $v^{\prime}(t) \in N(v(t))$ for each $t \in(-1,1)$. Suppose that $d e_{\lambda}(w)$ is non-zero. Since we get

$$
d e_{\lambda}\left(v^{\prime}(t)\right)=\gamma_{v(t)}^{\prime}(\lambda(v(t)))(\lambda \circ v)^{\prime}(t),
$$

we may assume that $(\lambda \circ v)^{\prime}(t)$ is negative on $[0, \delta]$ for some positive $\delta<1$. The length $l(\delta)$ of the subarc $e_{\lambda} \circ v \mid[0, \delta]$ is

$$
\begin{equation*}
l(\delta)=\lambda\left(v_{0}\right)-\lambda(v(\delta)) \tag{1}
\end{equation*}
$$

By the triangle inequality we have

$$
\begin{equation*}
l(\delta)+\lambda(v(\delta)) \geq d\left(p, e_{\lambda}\left(v_{0}\right)\right)=\rho\left(v_{0}\right)=\lambda\left(v_{0}\right) . \tag{2}
\end{equation*}
$$

The equation (1) implies that the equality holds in (2). This is impossible, because $\lambda(v(\delta)) \geq \rho(v(\delta))$. Therefore $d e_{\lambda}\left(N\left(v_{0}\right)\right)=0$.

If Q_{p} denotes the set of all conjugate cut points, then we have:
Lemma 2. The Hausdorff dimension of Q_{p} is not greater than $n-2$.
Proof. It follows from the Morse-Sard-Federer theorem [9] that the Hausdorff dimension of the set

$$
\left\{\exp _{p}(w) \mid w \in T_{p} M, \operatorname{rank}\left(d \exp _{p}\right)_{w} \leq n-2\right\}
$$

is not greater than $n-2$. Thus the Hausdorff dimension of the set

$$
\left\{e_{p}(v) \in Q_{p} \mid v \in S_{p} M, v(v) \geq 2\right\}
$$

is not greater than $n-2$. Thus it sufficies to prove that the Hausdorff dimension of the set $A_{1}:=\left\{e_{\rho}(v) \in Q_{p} \mid v(v)=1\right\}$ is not greater than $n-2$. By the proof of the Morse index theorem (cf. [8]), the function v is locally constant around a neighborhood of each $v \in A_{1}$. Thus λ is smooth around each $v \in S_{p} M$ with $v \in A_{1}$. It follows from Lemma 1 that A_{1} is a subset of

$$
\left\{e_{\lambda}(v) \mid v \in S_{p} M, v(v)=1, \operatorname{dim} d e_{\lambda}\left(T_{v} S_{p} M\right) \leq n-2\right\} .
$$

Therefore by the Morse-Sard-Federer theorem, the Hausdorff dimension of A_{1} is not greater than $n-2$.

If L_{p} denotes the set of non-conjugate cut points which are not normal, then we have:

Lemma 3. The Hausdorff dimension of L_{p} is not greater than $n-2$. Thus the Hausdorff dimension of the cut locus of p is not greater than $n-1$.

Proof. Let q be any element of L_{p}. Let v_{1}, \ldots, v_{k} be all the elements of $e_{\rho}^{-1}(q)$. It follows from the implicit function theorem that for each pair of two vectors v_{i}, v_{j} $(i<j)$ in $e_{\rho}^{-1}(q)$ there exist hypersurfaces $W_{i}, W_{j}, H_{i, j}$ containing $\rho\left(v_{i}\right) v_{i}, \rho\left(v_{j}\right) v_{j}, q$ respectively such that for each $x \in H_{i, j}$ there exist vectors $w_{i} \in W_{i}, w_{j} \in W_{j}$ of the same length with $\exp _{p} w_{i}=\exp _{p} w_{j}=x$ (cf. [7]). Let $v_{i}, v_{j}, v_{k}(i<j<k)$ be any distinct three vectors in $e_{\rho}^{-1}(q)$. Since the tangent spaces of $H_{i, j}$ and $H_{j, k}$ at q are distinct, we may assume that the intersection $H_{i, j, k}:=H_{i, j} \cap H_{j, k}$ forms an ($n-2$)-dimensional submanifold containing q, by taking smaller hypersurfaces $H_{i, j}, H_{j, k}$. If we set $H_{q}=\bigcup_{i<j<k} H_{i, j, k}$, then any cut point of L_{p} sufficiently close to q is an element of H_{q}. Moreover, the Hausdorff dimension of H_{q} is $n-2$. Therefore for each point $q \in L_{p}$ we can choose a subset $H_{q}(\ni q)$ of Hausdorff dimension $n-2$ such that $L_{p} \cap H_{q}$ is relatively open in L_{p}. Since M satisfies the second countability axiom, L_{p} is covered by at most a countable number of $H_{q_{i}}, q_{i} \in L_{p}$. Thus implies that the Hausdorff dimension of L_{p} is at most $n-2$. As was observed above, $C_{p} \backslash\left(L_{p} \cup Q_{p}\right)$ is a countable disjoint union of smooth
hypersurfaces of M. In particular its Hausdorff dimension is $n-1$. Thus the latter claim is clear from Lemma 2.

Lemma 4. If $v_{0} \in S_{p} M$ satisfies $\rho\left(v_{0}\right)<\lambda\left(v_{0}\right)$, then there exists a sequence of $\left\{v_{j}\right\}$ of elements in $S_{p} M$ convergent to v_{0} such that $e_{\rho}\left(v_{j}\right)$ is a normal cut point for each j.

Proof. Since the functions ρ, λ are continuous, there exists a relatively open neighborhood U around v_{0} in $S_{p} M$ on which $\rho<\lambda$. Since $d \exp _{p}$ has maximal rank at each $v \in U$, we have

$$
\operatorname{dim}_{\mathrm{H}}\left(\left.e_{\rho}\right|_{U}\right)^{-1}\left(Q_{p} \cup L_{p}\right)=\operatorname{dim}_{\mathrm{H}}\left(Q_{p} \cup L_{p}\right)
$$

where $\operatorname{dim}_{\mathrm{H}}$ denotes the Hausdorff dimension. Thus by Lemmas 2 and 3,

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}}\left(\left.e_{\rho}\right|_{U}\right)^{-1}\left(Q_{p} \cup L_{p}\right) \leq n-2 . \tag{3}
\end{equation*}
$$

This inequalty implies that the set $U \backslash e_{\rho}^{-1}\left(Q_{p} \cup L_{p}\right)$ is open and dense in U, since $\operatorname{dim}_{\mathbf{H}} U=n-1$. Therefore if we get a sequence $\left\{v_{i}\right\}$ of points in $U \backslash e_{\rho}^{-1}\left(Q_{p} \cup L_{p}\right)$ convergent to v_{0}, then the sequence $\left\{e_{\rho}\left(v_{i}\right)\right\}$ of normal cut points converges to q.

Remark. The inequality (3) is a generalization of Lemmas 2.1 and 3.1 in [10].
Proof of the Main Theorem. Let q be any cut point of p. Suppose that there exists a sequence $\left\{v_{j}\right\}$ of tangent vectors in $S_{p} M$ with $\lim _{j \rightarrow \infty} e_{\rho}\left(v_{j}\right)=q$ such that $\rho\left(v_{j}\right)<\lambda\left(v_{j}\right)$ for each j. By Lemma 4 for any positive ε

$$
\operatorname{dim}_{\mathbf{H}} B(q, \varepsilon) \cap C_{p} \geq n-1 .
$$

On the other hand, $\operatorname{dim}_{\mathrm{H}} C_{p} \leq n-1$. Thus $\operatorname{dim}_{\mathrm{H}}\left(B(q, \varepsilon) \cap C_{p}\right)=n-1$ for any positive ε. Suppose that the cut point q does not admit a sequence $\left\{v_{j}\right\}$ as above. Then there exists a neighborhood W around $e_{\rho}^{-1}(q)$ in $S_{p} M$ such that $\rho(w)=\lambda(w)$ for any $w \in W$. For each $v \in e_{\rho}^{-1}(q)$, we define a positive integer $k(v)$ by

$$
k(v):=\lim _{w \rightarrow v} \inf v(w) .
$$

Thus we may take a sufficiently small neighborhood $U(v)(\subset W)$ around v in $S_{p} M$ such that $\left.\min v\right|_{U(v)}=k(v)$. Since $e_{\rho}^{-1}(q)$ is compact, we may choose finitely many neighborhoods $U\left(v_{1}\right), \ldots, U\left(v_{l}\right)$ from $U(v), v \in e_{\rho}^{-1}(q)$, which cover $e_{\rho}^{-1}(q)$. Set $U_{i}:=U\left(v_{i}\right), k_{i}:=k\left(v_{i}\right)$ for simplicity. Without loss of generality we may assume that

$$
k_{1}=\min \left\{k_{i} \mid 1 \leq i \leq l\right\} .
$$

For each i, let

$$
W_{i}:=\left(\left.v\right|_{U_{i}}\right)^{-1}\left(k_{1}\right) .
$$

If W_{i} is not empty, i.e. $k_{1}=k_{i}$, then it follows from the Morse index theorem that W_{i} is an open subset of U_{i}. Therefore λ is smooth on $\bigcup_{i=1}^{l} W_{i}$. Since $\lambda=\rho$ on $\bigcup_{i=1}^{l} U_{i} \subset W$, it follows from the Morse-Sard-Federer theorem and Lemma 1 that

$$
\operatorname{dim}_{\mathrm{H}} e_{\rho}\left(\bigcup_{i=1}^{l} W_{i}\right) \leq n-\left(k_{1}+1\right), \quad \operatorname{dim}_{\mathrm{H}} e_{\rho}\left(\bigcup_{i=1}^{l} U_{i} \backslash W_{i}\right) \leq n-\left(k_{1}+1\right) .
$$

Therefore we get

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}} e_{\rho}\left(\bigcup_{i=1}^{l} U_{i}\right) \leq n-\left(k_{1}+1\right) . \tag{4}
\end{equation*}
$$

Let δ_{0} be a sufficiently small positive number satisfying

$$
C_{p} \cap B\left(q, \delta_{0}\right) \subset e_{\rho}\left(\bigcup_{i=1}^{l} U_{i}\right) .
$$

By (4) we have

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}} C_{p} \cap B\left(q, \delta_{0}\right) \leq n-\left(k_{1}+1\right) . \tag{5}
\end{equation*}
$$

Let $\delta \in\left(0, \delta_{0}\right.$] be fixed. Since v_{1} is an element of the closure of W_{1}, there exists an open subset $\tilde{W} \subset W_{1}$ such that $e_{\rho}(\tilde{W}) \subset C_{p} \cap B(q, \delta)$. By Theorem 3.3 in [11], $e_{\rho}(\tilde{W})=$ $e_{\lambda}(\tilde{W})$ is a submanifold of dimension $n-\left(k_{1}+1\right)$. Thus

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}} C_{p} \cap B(q, \delta) \geq n-\left(k_{1}+1\right) \tag{6}
\end{equation*}
$$

for any $\delta \in\left(0, \delta_{0}\right]$. Combining (5) and (6), we conclude the proof of the main theorem.

References

[1] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
[2] K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985.
[3] H. Gluck and D. Singer, Scattering of geodesic fields I, Ann. of Math. 108 (1978), 347-372.
[4] J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom. 40 (1994), 621-642.
[5] J. Iтон, The length of cut locus in a surface and Ambrose's problem, J. Differential Geom. 43 (1996), 642-651.
[6] J. Iтон, Riemannian metric with fractal cut locus, to appear.
[7] V. Ozols, Cut locus in Riemannian manifolds, Tôhoku Math. J. 26 (1974), 219-227.
[8] J. Milnor, Morth theory, Ann. of Math. Studies No. 51, Princeton Univ. Press, 1963.
[9] F. Morgan, Geometric measure theory, A beginner's guide, Academic Press 1988.
[10] K. Shiohama and M. Tanaka, The length function of geodesic parallel circles, in "Progress in Differential Geometry" (K. Shiohama, ed.) Adv. Studies in Pure Math., Kinokuniya, Tokyo 22 (1993), 299-308.
[11] F. W. Warner, The conjugate locus of a Riemannian manifold, Amer. J. Math. 87 (1965), 575-604.

Faculty of Education
Kumamoto University
Kumamoto 860
JAPAN
E-mail address: j-itoh@gpo.kumamoto-u.ac.jp

[^1]
[^0]: * Partially supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

[^1]: Department of Mathematics
 Tokai University
 Hiratsuka 259-1292
 Japan
 E-mail address: m-tanaka@sm.u-tokai.ac.jp

