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Abstract. The author proved earlier that, a Lagrangian //-umbilical submanifold
in complex Euclidean «-space with n>2 is either a complex extensor, a Lagrangian
pseudo-sphere, or a flat Lagrangian //-umbilical submanifold. Explicit descriptions of
complex extensors and of Lagrangian pseudo-spheres are given earlier. The purpose of
this article is to complete the investigation of Lagrangian //-umbilical submanifolds in
complex Euclidean spaces by establishing the explicit description of flat Lagrangian
//-umbilical submanifolds in complex Euclidean spaces.

1. Statements of theorems. We follow the notation and definitions given in [2].

In order to establish the complete classification of Lagrangian //-umbilical submanifolds

in Cn we need to introduce the notion of special Legendre curves as follows.

Let z: I^S2n~ι c C " b e a u n i t speed Legendre curve in the unit hypersphere S2n~1

(centered at the origin), i.e., z — z(s) is a unit speed curve in S2n~1 satisfying the condition:

(z'(s\ iz(s)) = 0 identically. Since z = z(s) is a spherical unit speed curve, <z(s), z'(s)> = 0

identically. Hence, z(s), iz(s% z'(s\ iz'(s) are orthonormal vector fields defined along

the Legendre curve. Thus, there exist normal vector fields P 3 , ...,/>„ along the Legendre

curve such that

(1.1) Φ ) , ι'Φ), z'(s\ iz\s\ PM iPsis), > Pn(s), iPn(s)

form an orthonormal frame field along the Legendre curve.

By taking the derivatives of <z'(s), ίz(s)> = 0 and of <z'(s), z(s)>=0, we obtain

<z", ίz>=0 and <z", z>= — 1, respectively. Therefore, with respect to an orthonormal

frame field chosen above, z" can be expressed as

(1.2) z"(s) = i^s)z'(s)-z(s)- Σ aj(s)Pj(s)+ £ bj(s)iPj(s),

for some real-valued functions λ, a3, . . . , an9 6 3 , . . . , bn. The Legendre curve z = z(s) is

called a special Legendre curve in S2n~! if the expression (1.2) reduces to

(1.3) z"{s) = iλ{s)z'{s)-z{s)- Σ aj(s)Pj(s),
J = 3

for some parallel normal vector fields P 3 , . . . , Pn along the curve.
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By a Lagrangian cylinder in Cn we mean a Lagrangian submanifold which is a

cylinder over a curve whose rulings are (n— l)-planes parallel to a fixed (n— l)-plane.

The following result provides an explicit description of flat Lagrangian //-umbilical

submanifolds in complex Euclidean spaces.

MAIN THEOREM. Let n>2 and λ, fe, α3, . . . , an be n real-valued functions defined

on an open interval I with λ nowhere zero and let z: I-> S2n~ι czC" be a special Legendre

curve satisfying (1.3). Put

n

(1.4) /(r, w2, . . . , un) = b(t) + u2 + Σ α/O^
7=3

Denote by Mn(0) the twisted product manifold fIxEn~ι with twisted product metric

given by

(1.5) g = f2dt2 + dui+ + du2 .

Then M"(0) w α yfa/1 Riemannian n-manifold and

(1.6) L(ί, w2, . . . , un) = u2z(t)+ Σ UjPj{t)+ b{t)z\t)dt
J = 3 J

defines a Lagrangian H-umbilical isometric immersion L: M"(0) -> Cn.

Conversely, up to rigid motions of C", locally every flat Lagrangian H-umbilical

submanifold in Cn without totally geodesic points is either a Lagrangian cylinder

over a curve or a Lagrangian submanifold obtained in the way described above.

Clearly, every unit speed Legendre curve in S 3 is special. The following result

shows that special Legendre curves in S2n~ι do exist abundantly for n>3.

EXISTENCE THEOREM. Let n be an integer> 2. Then, for any given n—\ real-valued

functions λ, a3, . . . , an defined on an open interval I with λ nowhere zero, there exists

a special Legendre curve z\ /->S 2 "~ ι c i C which satisfies (1.3) for some parallel

orthonormal normal vector fields P3, . . . , Pn along the curve z.

2. Proof of the main theorem. Let λ, b, a3, . . . , an be n functions defined on an

open interval / with λ nowhere zero and let z: /—• S2n~ι c=C" be a special Legendre

curve satisfying (1.3) for some parallel orthonormal normal vector fields P3, ...,Pn

defined along the Legendre curve. Then, from the definition of parallel normal vector

fields, we have

(2.1) P'j{t) = ηj{t)z\t), y = 3 , . . . , Λ ,

for some functions η3, ..., ηn.

Let L = L(t, M2, . . . , un) be given by (1.6). Then, by taking the partial derivatives of

L with respect to t, u2, . . . , un, we get respectively
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n

Lt = u2z\t) + Σ UjP'j(t) + b(t)z'(t),

(2.2) L U 2 = z ( t ) ,

L«j = Pj(t), 7 = 3, . . . , « .

From (2.2) and the definition of special Legendre curves we find

(2.3) <L f,LH j> = 0, <LMj,LIlk> = δJ.k, Λfc = 2 «.

Since r'(r) and Py(r) are perpendicular, (2.1) yields

(2.4) Pj(t) = aj(t)z'(t), y = 3 , . . . , « .

Combining (2.2) and (2.4) we get

(2.5) Lt = fi'(t).

(1.4), (1.5), (2.3) and (2.5) imply that L = L(t, u2, ..., wπ) is an isometric immersion

of M"(0) in C\ Moreover, from the definition of special Legendre curves, L is Lagrangian.

Using (1.3), (2.2), (2.5) and the definition of special Legendre curves, we find

(2.6) L r,=/,r'(f) + / r " ( r ) , LtUj=aj(t)z'(t), LUjUk = 0,

Applying (1.3), (2.2), (2.4), (2.5) and (2.6), we obtain

Bt dt) \dtj \dt dujj \duj du

which implies that L: Mn(0) -• Cn is Lagrangian //-umbilical.

Conversely, assume that L: Mn -> C" is a Lagrangian //-umbilical isometric im-

mersion of a flat Riemannian w-manifold M" into Cn without totally geodesic points.

Since M is flat, the second fundamental form h of L satisfies (cf. [2])

(2.7) ft(έ?i,έ?i) = 0 Λ ? i , h ( e u e j ) = h ( e j 9 e k ) = 0 , j , k = 2 , . . . , n ,

for some nowhere zero function φ, with respect to some suitable orthonormal local

frame field eu . . . , en. Without loss of generality, we may assume φ>0.

From (2.7) and Codazzi's equation, we find

(2.8) ejlnφ = ωJ

ί(eί)9 ωJ

t(ek) = 0 9 2<j, k<n.

Let Q) and &L denote the distributions of M spanned by {e^} and {e2, . . . , <?„},

respectively. Q) is clearly integrable, since it is 1-dimensional. From (2.7) and (2.8)

it follows that Θ1 is also integrable and the leaves of Q)L are totally geodesic submanifolds

of Cn. Because 3> and S)L are both integrable and they are perpendicular, there

exist local coordinates {xl9 x2,..., xn} such that d/dxί spans Q) and {d/dx2, . . . , d/dxn}

spans ΘL. Since Θ is 1-dimensional, we may choose xι such that d/dxx =φ~1eί.

With respect to d/dx1, . . . , d/dxn, (2.7) becomes
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(2.9)

Let N"'1 be an integral submanifold of 9>L. Then N"'1 is a totally geodesic

submanifold of C. Thus, N"~ι is an open portion of a Euclidean (n — l)-space E"~ι.

Therefore, M is an open portion of the twisted product manifold fIxE"~ι with twisted

product metric [1] (see also [4])

(2.10)

where f=φ~ι and /is an open interval on which φ is defined. (2.10) implies

8 f ι 8 - a
V J 2., Jdxι f dx, k = 2 dxk

(2.11)
d fi d d

for 2 < j , /c<π, where f. = df/dxh i= 1, . . . ,« . Using (2.11) we obtain

(2.12) R ( *

Since M is flat, (2.12) yields fjk = 09 j,k = 2,...9n. Therefore, / is given by

(2.13) f=β(xi)+ Σφi)*j>

j = 2

for some functions β, α2, . . . , αn. By (2.13), (2.11) reduces to

d 1 / w \ 3 n d
^ i / V j=2 / dx1 k = i dxk

(2.14)
^ 8 oc: δ d ,
V,/,X1 = - ^ , V,/^ = 0 , /, k = 2, . . . , n .

δx7- f dxt dxk

Combining (2.9), (2.14) and the formula of Gauss we obtain

(2.15) LXιXί=±:<β'(xi)+ Σ φi)xj)LXι-f £ ockL
7 7=2 *=2

(2.16) LXίXj = ^LXι,

(2.17) ^ f c = 0, Λ* = 2, . . . ,/ i .

Integrating (2.17) yields
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(2.18) L^P/x^.+DW,
j=2

for s o m e C M -va lued f u n c t i o n s P2, ...9Pn9Doίxί. T h u s

(2.19) L^ΣP'jixifrj + D'ixJ,

(2.20) LXj = Pj(Xl)9 y = 2 , . . . , / i .

From (2.10) and (2.20), we know that P2,..., Pn are orthonormal tangent vector fields

on Mn. By applying (2.16), (2.19) and (2.20), we obtain

(2.21) *Mι)D\xι) s

(2.22) xj(x1)Pί(xι) = xk(xι)P'j(x1), j , k = 2 , . . . , Λ .

Case 1. α 2 = =α w = 0. In this case, (2.21) yields P 2 (^ i )= * ' = ̂ «(*i) = 0> s i n c e

βφO by (2.13). Hence, P 2 , . . . , Pn are constant vectors in C . Therefore, (2.18) becomes

L(x1? . . . , xM) = ̂ (^i) + X" = 2 ^oi J , for some function D = D(xι) and orthonormal constant

vectors c2, . . . , c n e C π . This means that L is a Lagrangian cylinder over the curve

D = D(xι) whose ruling are (n — l)-planes parallel to the totally real x2 * xM-plane in Cn.

Case 2. At least one of α2, . . . , αn is nonzero. In this case, without loss of

generality, we may assume a 2 # 0 . By making the following change of variables:

(2.23) t =
Jo

we obtain

(2.24)

where

(2.25)

for some functions b(t)9a3(t\ . . . , an{t). From (2.9) and (2.23) we obtain

(2.26) hi—,— ) = A(ί)/l — I, hi—, ) = h\ -> / = ^ » J> fc = 2 , . . . , n .

\dt dt) \dt) \dt dujj \duj dukj
where λ = (ot2y

1 is a function of t. By applying (2.11), (2.24), (2.25), (2.26) and the

formula of Gauss, we get

(2.27) Ltt = j
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(2.28) LtUj = JL<

(2-29) L U j U k = 0 , j , k =

where a2= 1. By solving (2.29), we find

(2.30) Σ
j = 2

for some C-valued functions P2, . . . , Pn, D of t. Thus

(2.31) L f = Σ W j

(2.24) and (2.31) imply that P 2 , . . . , Pn are orthonormal tangent vector fields on Mn.

By applying (2.28) and (2.31), we obtain

(2.32) D\t) = b{t)P'2{t), P'k(t) = ak{t)P'2{t), k = 2,...,n:

Substituting (2.32) into (2.31) yields

(2.33) Lt=fP'2(t).

(2.24) and (2.33) imply that P'2(t) is a unit vector field.

If we put z(t) = P2(t), then z = z(t) can be regarded as a unit speed spherical

curve z: I-+S2n~ι<^Cn defined on some open interval /. Since L is Lagrangian, (2.31)

and (2.33) imply that z = z(t) is a Legendre curve in S2"'1. Moreover, by (2.31) and

(2.32) we know that z(t),iz(t), z\t\iz'(t\ P3(t),iP3(t\ . . . , Pn(t)JPn(t) form an or-

thonormal frame field where P3,..., Pn are parallel normal vector fields along the

Legendre curve. Furthermore, (2.30) and (2.33) imply that, up to rigid motions of Cn,

L is given by

(2.34) L(t, u2,..., un) = u2z(t)+ Σ ukPk{t)+ b{t)z\t)dt.
k = 3 J

Finally, from (2.27), (2.31), (2.32) and (2.34), we know that z = z(t) satisfies (1.3).

Therefore, z~z(t) in (2.34) is a special Legendre curve in S2n~ι. •

3. Proof of the existence theorem. Let λ(t), α3(ί), . . . , am(t) be n— 1 functions of

t defined on an open interval / with λ nowhere zero. Put

(3.1) f(t,u2,...,un)=l+u2+ Σ <*j(t)uj'
7 = 3

Consider the twisted product manifold Mn(Q) with twisted product metric

(3.2) g=f2d2 l 2
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Then M"(0) is a flat Riemannian ^-manifold. Define a symmetric bilinear form σ on

Mn(0) by

(3.3) σ(f f

Then <σ(X, 7), Z> is totally symmetric in X, 7 and Z.

From (3.2) and (3.3) it follows that (Vσ)(X, Y, Z) is totally symmetric in X, Y and

Z and, moreover, σ and the Riemann curvature tensor R of M satisfy

(3.4) R(X9 Y)Z = σ(σ(Y, Z), X)-σ(σ(X, Z), Y).

Theorems A and B of [2] imply that, up to rigid motions of Cn, there is a unique

Lagrangian isometric immersion L: Mn(0) -> Cn with second fundamental form given

by h = Jσ.

(3.1)—(3.3) and h = Jσ imply that L satisfies

(3.5) Ltt=
l

7 Σ a'j(t)ujLt-f t akLUk + ίλLt,

(3.6) L t u J = ? j r L t 9 L U j U k = 0 , j , k = 2 9 . . . , n 9

where a2 = l. Solving (3.6) as before yields

(3.7) t

( 3 . 8 ) L t = f P ' 2 ( t ) , L U k = P k { t ) , D ' ( t ) = P ' 2 { t ) 9 P ί ( t ) = a k ( t ) P ' 2 ( t ) 9 k = 2 9 . . . 9 n 9

for some C"-valued functions P39..., Pn, D.

From (3.2) and (3.8), it follows that P'2(t) is a unit vector field and, moreover,

P2(t),...,Pn(t) are orthonormal vector fields. Put z(t) = P2(t). Then z: I-+S2n~ί<=:Cn

is a unit speed curve defined on some open interval /. Since L is Lagrangian, (3.8)

implies that z(ί), iz(t\ z\t\ iz\t\ P3(ί), iP3(t),..., Pn{t\ iPn(t) form an orthonormal

frame field with P3, ..., Pn being parallel orthonormal normal vector fields along z and

z = z(t) is a Legendre curve in 5 2 " " 1 . Finally, from (3.5) and (3.8), we conclude that

z = P2 is a special Legendre curve in S 2 " " 1 satisfying (1.3) for some associated parallel

normal vector fields P3, ..., Pn. •

4. Examples of special Legendre curves. Legendre curves in S 3 c C 2 are special

Legendre curve automatically. Here, we provide some examples of special Legendre

curves in S 2 " ' 1 aCn for n>3.

EXAMPLES. Let λ, a3, ...,an be n— 1 real numbers with λ>0. Put
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7 = 3
(4.1)

(4.2)
μ — λ |ί ̂

r-i

, i, a3, ..., an je (u, i —γ, a3, ..., an),
)

H i , i, a3, ..., an je

2μγ \ λ + μ ) y

(4.3) c3 =(0, fl3, - 1, 0, . . . , 0 ) , . . . , cn = (0, an9 0 , . . . , 0, - 1 ) .

Then, z = z(s) is a (unit speed) special Legendre curve in S2n~ι<=Cn satisfying

(4.4) z"{s) = iλz\s)-z{s)- X ajPj(s),

where

(4.5) Pj(s) = ajz(s)-cj, 7 = 3, . . . , Λ ,

are the associated orthonormal parallel normal vector fields.
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