REPRESENTATION OF FLAT LAGRANGIAN H-UMBILICAL SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES

Bang-Yen Chen

(Received May 26, 1997)

Abstract

The author proved earlier that, a Lagrangian H-umbilical submanifold in complex Euclidean n-space with $n>2$ is either a complex extensor, a Lagrangian pseudo-sphere, or a flat Lagrangian H-umbilical submanifold. Explicit descriptions of complex extensors and of Lagrangian pseudo-spheres are given earlier. The purpose of this article is to complete the investigation of Lagrangian H-umbilical submanifolds in complex Euclidean spaces by establishing the explicit description of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces.

1. Statements of theorems. We follow the notation and definitions given in [2]. In order to establish the complete classification of Lagrangian H -umbilical submanifolds in C^{n} we need to introduce the notion of special Legendre curves as follows.

Let $z: I \rightarrow S^{2 n-1} \subset C^{n}$ be a unit speed Legendre curve in the unit hypersphere $S^{2 n-1}$ (centered at the origin), i.e., $z=z(s)$ is a unit speed curve in $S^{2 n-1}$ satisfying the condition: $\left\langle z^{\prime}(s), i z(s)\right\rangle=0$ identically. Since $z=z(s)$ is a spherical unit speed curve, $\left\langle z(s), z^{\prime}(s)\right\rangle=0$ identically. Hence, $z(s), i z(s), z^{\prime}(s), i z^{\prime}(s)$ are orthonormal vector fields defined along the Legendre curve. Thus, there exist normal vector fields P_{3}, \ldots, P_{n} along the Legendre curve such that

$$
\begin{equation*}
z(s), i z(s), z^{\prime}(s), i z^{\prime}(s), P_{3}(s), i P_{3}(s), \ldots, P_{n}(s), i P_{n}(s) \tag{1.1}
\end{equation*}
$$

form an orthonormal frame field along the Legendre curve.
By taking the derivatives of $\left\langle z^{\prime}(s), i z(s)\right\rangle=0$ and of $\left\langle z^{\prime}(s), z(s)\right\rangle=0$, we obtain $\left\langle z^{\prime \prime}, i z\right\rangle=0$ and $\left\langle z^{\prime \prime}, z\right\rangle=-1$, respectively. Therefore, with respect to an orthonormal frame field chosen above, $z^{\prime \prime}$ can be expressed as

$$
\begin{equation*}
z^{\prime \prime}(s)=i \lambda(s) z^{\prime}(s)-z(s)-\sum_{j=3}^{n} a_{j}(s) P_{j}(s)+\sum_{j=3}^{n} b_{j}(s) i P_{j}(s), \tag{1.2}
\end{equation*}
$$

for some real-valued functions $\lambda, a_{3}, \ldots, a_{n}, b_{3}, \ldots, b_{n}$. The Legendre curve $z=z(s)$ is called a special Legendre curve in $S^{2 n-1}$ if the expression (1.2) reduces to

$$
\begin{equation*}
z^{\prime \prime}(s)=i \lambda(s) z^{\prime}(s)-z(s)-\sum_{j=3}^{n} a_{j}(s) P_{j}(s), \tag{1.3}
\end{equation*}
$$

for some parallel normal vector fields P_{3}, \ldots, P_{n} along the curve.

By a Lagrangian cylinder in C^{n} we mean a Lagrangian submanifold which is a cylinder over a curve whose rulings are $(n-1)$-planes parallel to a fixed ($n-1$)-plane.

The following result provides an explicit description of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces.

Main Theorem. Let $n \geq 2$ and $\lambda, b, a_{3}, \ldots, a_{n}$ be n real-valued functions defined on an open interval I with λ nowhere zero and let $z: I \rightarrow S^{2 n-1} \subset C^{n}$ be a special Legendre curve satisfying (1.3). Put

$$
\begin{equation*}
f\left(t, u_{2}, \ldots, u_{n}\right)=b(t)+u_{2}+\sum_{j=3}^{n} a_{j}(t) u_{j} \tag{1.4}
\end{equation*}
$$

Denote by $\hat{M}^{n}(0)$ the twisted product manifold ${ }_{f} I \times \boldsymbol{E}^{n-1}$ with twisted product metric given by

$$
\begin{equation*}
g=f^{2} d t^{2}+d u_{2}^{2}+\cdots+d u_{n}^{2} . \tag{1.5}
\end{equation*}
$$

Then $\hat{M}^{n}(0)$ is a flat Riemannian n-manifold and

$$
\begin{equation*}
L\left(t, u_{2}, \ldots, u_{n}\right)=u_{2} z(t)+\sum_{j=3}^{n} u_{j} P_{j}(t)+\int^{t} b(t) z^{\prime}(t) d t \tag{1.6}
\end{equation*}
$$

defines a Lagrangian H-umbilical isometric immersion $L: \hat{M}^{n}(0) \rightarrow C^{n}$.
Conversely, up to rigid motions of C^{n}, locally every flat Lagrangian H-umbilical submanifold in \boldsymbol{C}^{n} without totally geodesic points is either a Lagrangian cylinder over a curve or a Lagrangian submanifold obtained in the way described above.

Clearly, every unit speed Legendre curve in S^{3} is special. The following result shows that special Legendre curves in $S^{2 n-1}$ do exist abundantly for $n \geq 3$.

Existence Theorem. Let n be an integer ≥ 2. Then, for any given $n-1$ real-valued functions $\lambda, a_{3}, \ldots, a_{n}$ defined on an open interval I with λ nowhere zero, there exists a special Legendre curve $z: I \rightarrow S^{2 n-1} \subset C^{n}$ which satisfies (1.3) for some parallel orthonormal normal vector fields P_{3}, \ldots, P_{n} along the curve z.
2. Proof of the main theorem. Let $\lambda, b, a_{3}, \ldots, a_{n}$ be n functions defined on an open interval I with λ nowhere zero and let $z: I \rightarrow S^{2 n-1} \subset C^{n}$ be a special Legendre curve satisfying (1.3) for some parallel orthonormal normal vector fields P_{3}, \ldots, P_{n} defined along the Legendre curve. Then, from the definition of parallel normal vector fields, we have

$$
\begin{equation*}
P_{j}^{\prime}(t)=\eta_{j}(t) z^{\prime}(t), \quad j=3, \ldots, n, \tag{2.1}
\end{equation*}
$$

for some functions $\eta_{3}, \ldots, \eta_{n}$.
Let $L=L\left(t, u_{2}, \ldots, u_{n}\right)$ be given by (1.6). Then, by taking the partial derivatives of L with respect to t, u_{2}, \ldots, u_{n}, we get respectively

$$
\begin{align*}
& L_{t}=u_{2} z^{\prime}(t)+\sum_{j=3}^{n} u_{j} P_{j}^{\prime}(t)+b(t) z^{\prime}(t), \\
& L_{u_{2}}=z(t), \tag{2.2}\\
& L_{u_{j}}=P_{j}(t), \quad j=3, \ldots, n .
\end{align*}
$$

From (2.2) and the definition of special Legendre curves we find

$$
\begin{equation*}
\left\langle L_{i}, L_{u_{j}}\right\rangle=0, \quad\left\langle L_{u_{j}}, L_{u_{k}}\right\rangle=\delta_{j k}, \quad j, k=2, \ldots, n . \tag{2.3}
\end{equation*}
$$

Since $z^{\prime}(t)$ and $P_{j}(t)$ are perpendicular, (2.1) yields

$$
\begin{equation*}
P_{j}^{\prime}(t)=a_{j}(t) z^{\prime}(t), \quad j=3, \ldots, n . \tag{2.4}
\end{equation*}
$$

Combining (2.2) and (2.4) we get

$$
\begin{equation*}
L_{t}=f z^{\prime}(t) . \tag{2.5}
\end{equation*}
$$

(1.4), (1.5), (2.3) and (2.5) imply that $L=L\left(t, u_{2}, \ldots, u_{n}\right)$ is an isometric immersion of $\hat{M}^{n}(0)$ in C^{n}. Moreover, from the definition of special Legendre curves, L is Lagrangian.

Using (1.3), (2.2), (2.5) and the definition of special Legendre curves, we find

$$
\begin{equation*}
L_{t t}=f_{t} z^{\prime}(t)+f z^{\prime \prime}(t), \quad L_{t u_{j}}=a_{j}(t) z^{\prime}(t), \quad L_{u_{j} u_{k}}=0, \quad j, k=2, \ldots, n . \tag{2.6}
\end{equation*}
$$

Applying (1.3), (2.2), (2.4), (2.5) and (2.6), we obtain

$$
h\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=\lambda(t) J\left(\frac{\partial}{\partial t}\right), \quad h\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial u_{j}}\right)=h\left(\frac{\partial}{\partial u_{j}}, \frac{\partial}{\partial u_{k}}\right)=0, \quad j, k=2, \ldots, n,
$$

which implies that $L: \hat{M}^{n}(0) \rightarrow C^{n}$ is Lagrangian H-umbilical.
Conversely, assume that $L: M^{n} \rightarrow C^{n}$ is a Lagrangian H-umbilical isometric immersion of a flat Riemannian n-manifold M^{n} into C^{n} without totally geodesic points. Since M is flat, the second fundamental form h of L satisfies (cf. [2])

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\phi J e_{1}, \quad h\left(e_{1}, e_{j}\right)=h\left(e_{j}, e_{k}\right)=0, \quad j, k=2, \ldots, n, \tag{2.7}
\end{equation*}
$$

for some nowhere zero function ϕ, with respect to some suitable orthonormal local frame field e_{1}, \ldots, e_{n}. Without loss of generality, we may assume $\phi>0$.

From (2.7) and Codazzi's equation, we find

$$
\begin{equation*}
e_{j} \ln \phi=\omega_{1}^{j}\left(e_{1}\right), \quad \omega_{1}^{j}\left(e_{k}\right)=0, \quad 2 \leq j, k \leq n . \tag{2.8}
\end{equation*}
$$

Let \mathscr{D} and \mathscr{D}^{\perp} denote the distributions of M spanned by $\left\{e_{1}\right\}$ and $\left\{e_{2}, \ldots, e_{n}\right\}$, respectively. \mathscr{D} is clearly integrable, since it is 1 -dimensional. From (2.7) and (2.8) it follows that \mathscr{D}^{\perp} is also integrable and the leaves of \mathscr{D}^{\perp} are totally geodesic submanifolds of C^{n}. Because \mathscr{D} and \mathscr{D}^{\perp} are both integrable and they are perpendicular, there exist local coordinates $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $\partial / \partial x_{1}$ spans \mathscr{D} and $\left\{\partial / \partial x_{2}, \ldots, \partial / \partial x_{n}\right\}$ spans \mathscr{D}^{\perp}. Since \mathscr{D} is 1 -dimensional, we may choose x_{1} such that $\partial / \partial x_{1}=\phi^{-1} e_{1}$.

With respect to $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n},(2.7)$ becomes

$$
\begin{array}{r}
h\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right)=J\left(\frac{\partial}{\partial x_{1}}\right), h\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{j}}\right)=h\left(\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right)=0, \tag{2.9}\\
j, k=2, \ldots, n
\end{array}
$$

Let N^{n-1} be an integral submanifold of \mathscr{D}^{\perp}. Then N^{n-1} is a totally geodesic submanifold of \boldsymbol{C}^{n}. Thus, N^{n-1} is an open portion of a Euclidean $(n-1)$-space \boldsymbol{E}^{n-1}. Therefore, M is an open portion of the twisted product manifold ${ }_{f} I \times \boldsymbol{E}^{n-1}$ with twisted product metric [1] (see also [4])

$$
\begin{equation*}
g=f^{2} d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+\cdots+d x_{n}^{2} \tag{2.10}
\end{equation*}
$$

where $f=\phi^{-1}$ and I is an open interval on which ϕ is defined. (2.10) implies

$$
\begin{align*}
& \nabla_{\partial / \mid x_{1}} \frac{\partial}{\partial x_{1}}=\frac{f_{1}}{f} \frac{\partial}{\partial x_{1}}-f \sum_{k=2}^{n} f_{k} \frac{\partial}{\partial x_{k}}, \tag{2.11}\\
& \nabla_{\partial \mid / x_{1}} \frac{\partial}{\partial x_{j}}=\frac{f_{j}}{f} \frac{\partial}{\partial x_{1}}, \quad \nabla_{\partial \mid \partial x_{j}} \frac{\partial}{\partial x_{k}}=0,
\end{align*}
$$

for $2 \leq j, k \leq n$, where $f_{i}=\partial f / \partial x_{i}, i=1, \ldots, n$. Using (2.11) we obtain

$$
\begin{equation*}
R\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{1}}=f \sum_{k=2}^{n} f_{j k} \frac{\partial}{\partial x_{k}}, \quad j=2, \ldots, n . \tag{2.12}
\end{equation*}
$$

Since M is flat, (2.12) yields $f_{j k}=0, j, k=2, \ldots, n$. Therefore, f is given by

$$
\begin{equation*}
f=\beta\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(x_{1}\right) x_{j} \tag{2.13}
\end{equation*}
$$

for some functions $\beta, \alpha_{2}, \ldots, \alpha_{n}$. By (2.13), (2.11) reduces to

$$
\begin{align*}
& \nabla_{\hat{\imath} \mid x_{1}} \frac{\partial}{\partial x_{1}}=\frac{1}{f}\left(\beta^{\prime}\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}^{\prime}\left(x_{1}\right) x_{j}\right) \frac{\partial}{\partial x_{1}}-f \sum_{k=2}^{n} \alpha_{k} \frac{\partial}{\partial x_{k}}, \\
& \nabla_{\overparen{\tau} \mid \hat{x} x_{1}} \frac{\partial}{\partial x_{j}}=\frac{\alpha_{j}}{f} \frac{\partial}{\partial x_{1}}, \quad \nabla_{\tau \mid \tau x_{j}} \frac{\partial}{\partial x_{k}}=0, \quad j, k=2, \ldots, n . \tag{2.14}
\end{align*}
$$

Combining (2.9), (2.14) and the formula of Gauss we obtain

$$
\begin{equation*}
L_{x_{1} x_{1}}=\frac{1}{f}\left(\beta^{\prime}\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}^{\prime}\left(x_{1}\right) x_{j}\right) L_{x_{1}}-f \sum_{k=2}^{n} \alpha_{k} L_{x_{k}}+i L_{x_{1}}, \tag{2.15}
\end{equation*}
$$

Integrating (2.17) yields

$$
\begin{equation*}
L=\sum_{j=2}^{n} P_{j}\left(x_{1}\right) x_{j}+D\left(x_{1}\right), \tag{2.18}
\end{equation*}
$$

for some C^{n}-valued functions P_{2}, \ldots, P_{n}, D of x_{1}. Thus

$$
\begin{gather*}
L_{x_{1}}=\sum_{j=2}^{n} P_{j}^{\prime}\left(x_{1}\right) x_{j}+D^{\prime}\left(x_{1}\right), \tag{2.19}\\
L_{x_{j}}=P_{j}\left(x_{1}\right), \quad j=2, \ldots, n . \tag{2.20}
\end{gather*}
$$

From (2.10) and (2.20), we know that P_{2}, \ldots, P_{n} are orthonormal tangent vector fields on M^{n}. By applying (2.16), (2.19) and (2.20), we obtain

$$
\begin{gather*}
\alpha_{j}\left(x_{1}\right) D^{\prime}\left(x_{1}\right)=\beta\left(x_{1}\right) P_{j}^{\prime}\left(x_{1}\right), \tag{2.21}\\
\alpha_{j}\left(x_{1}\right) P_{k}^{\prime}\left(x_{1}\right)=\alpha_{k}\left(x_{1}\right) P_{j}^{\prime}\left(x_{1}\right), \quad j, k=2, \ldots, n . \tag{2.22}
\end{gather*}
$$

Case 1. $\alpha_{2}=\cdots=\alpha_{n}=0$. In this case, (2.21) yields $P_{2}^{\prime}\left(x_{1}\right)=\cdots=P_{n}^{\prime}\left(x_{1}\right)=0$, since $\beta \neq 0$ by (2.13). Hence, P_{2}, \ldots, P_{n} are constant vectors in C^{n}. Therefore, (2.18) becomes $L\left(x_{1}, \ldots, x_{n}\right)=D\left(x_{1}\right)+\sum_{j=2}^{n} c_{j} x_{j}$, for some function $D=D\left(x_{1}\right)$ and orthonormal constant vectors $c_{2}, \ldots, c_{n} \in \boldsymbol{C}^{n}$. This means that L is a Lagrangian cylinder over the curve $D=D\left(x_{1}\right)$ whose ruling are ($n-1$)-planes parallel to the totally real $x_{2} \cdots x_{n}$-plane in C^{n}.

Case 2. At least one of $\alpha_{2}, \ldots, \alpha_{n}$ is nonzero. In this case, without loss of generality, we may assume $\alpha_{2} \neq 0$. By making the following change of variables:

$$
\begin{equation*}
t=\int_{0}^{x_{1}} \alpha_{2}\left(x_{1}\right) d x_{1}, \quad u_{2}=x_{2}, \ldots, u_{n}=x_{n}, \tag{2.23}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
g=\hat{f}^{2} d t^{2}+d u_{2}^{2}+\cdots+d u_{n}^{2} \tag{2.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{f}=b(t)+u_{2}+\sum_{j=3}^{n} a_{j}(t) u_{j}, \tag{2.25}
\end{equation*}
$$

for some functions $b(t), a_{3}(t), \ldots, a_{n}(t)$. From (2.9) and (2.23) we obtain

$$
\begin{equation*}
h\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=\lambda(t) J\left(\frac{\partial}{\partial t}\right), \quad h\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial u_{j}}\right)=h\left(\frac{\partial}{\partial u_{j}}, \frac{\partial}{\partial u_{k}}\right)=0, \quad j, k=2, \ldots, n . \tag{2.26}
\end{equation*}
$$

where $\lambda=\left(\alpha_{2}\right)^{-1}$ is a function of t. By applying (2.11), (2.24), (2.25), (2.26) and the formula of Gauss, we get

$$
\begin{equation*}
L_{t t}=\frac{1}{\hat{f}}\left(b^{\prime}(t)+\sum_{j=3}^{n} a_{j}^{\prime}(t) u_{j}\right) L_{t}-\hat{f} \sum_{k=2}^{n} a_{k} L_{u_{k}}+i \lambda L_{t} \tag{2.27}
\end{equation*}
$$

$$
\begin{gather*}
L_{t u_{j}}=\frac{a_{j}}{\hat{f}} L_{t}, \tag{2.28}\\
L_{u j u_{k}}=0, \quad j, k=2, \ldots, n, \tag{2.29}
\end{gather*}
$$

where $a_{2}=1$. By solving (2.29), we find

$$
\begin{equation*}
L=\sum_{j=2}^{n} u_{j} P_{j}(t)+D(t) \tag{2.30}
\end{equation*}
$$

for some C^{n}-valued functions P_{2}, \ldots, P_{n}, D of t. Thus

$$
\begin{equation*}
L_{t}=\sum_{j=2}^{n} u_{j} P_{j}^{\prime}(t)+D^{\prime}(t), \quad L_{u_{j}}=P_{j}(t), \quad j=2, \ldots, n . \tag{2.31}
\end{equation*}
$$

(2.24) and (2.31) imply that P_{2}, \ldots, P_{n} are orthonormal tangent vector fields on M^{n}. By applying (2.28) and (2.31), we obtain

$$
\begin{equation*}
D^{\prime}(t)=b(t) P_{2}^{\prime}(t), \quad P_{k}^{\prime}(t)=a_{k}(t) P_{2}^{\prime}(t), \quad k=2, \ldots, n . \tag{2.32}
\end{equation*}
$$

Substituting (2.32) into (2.31) yields

$$
\begin{equation*}
L_{t}=\hat{f} P_{2}^{\prime}(t) \tag{2.33}
\end{equation*}
$$

(2.24) and (2.33) imply that $P_{2}^{\prime}(t)$ is a unit vector field.

If we put $z(t)=P_{2}(t)$, then $z=z(t)$ can be regarded as a unit speed spherical curve $z: I \rightarrow S^{2 n-1} \subset C^{n}$ defined on some open interval I. Since L is Lagrangian, (2.31) and (2.33) imply that $z=z(t)$ is a Legendre curve in $S^{2 n-1}$. Moreover, by (2.31) and (2.32) we know that $z(t), i z(t), z^{\prime}(t), i z^{\prime}(t), P_{3}(t), i P_{3}(t), \ldots, P_{n}(t), i P_{n}(t)$ form an orthonormal frame field where P_{3}, \ldots, P_{n} are parallel normal vector fields along the Legendre curve. Furthermore, (2.30) and (2.33) imply that, up to rigid motions of \boldsymbol{C}^{n}, L is given by

$$
\begin{equation*}
L\left(t, u_{2}, \ldots, u_{n}\right)=u_{2} z(t)+\sum_{k=3}^{n} u_{k} P_{k}(t)+\int^{t} b(t) z^{\prime}(t) d t . \tag{2.34}
\end{equation*}
$$

Finally, from (2.27), (2.31), (2.32) and (2.34), we know that $z=z(t)$ satisfies (1.3). Therefore, $z=z(t)$ in (2.34) is a special Legendre curve in $S^{2 n-1}$.
3. Proof of the existence theorem. Let $\lambda(t), a_{3}(t), \ldots, a_{m}(t)$ be $n-1$ functions of t defined on an open interval I with λ nowhere zero. Put

$$
\begin{equation*}
f\left(t, u_{2}, \ldots, u_{n}\right)=1+u_{2}+\sum_{j=3}^{n} a_{j}(t) u_{j} . \tag{3.1}
\end{equation*}
$$

Consider the twisted product manifold $M^{n}(0)$ with twisted product metric

$$
\begin{equation*}
g=f^{2} d t^{2}+d u_{2}^{2}+\cdots+d u_{n}^{2} . \tag{3.2}
\end{equation*}
$$

Then $M^{n}(0)$ is a flat Riemannian n-manifold. Define a symmetric bilinear form σ on $M^{n}(0)$ by

$$
\begin{equation*}
\sigma\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=\lambda \frac{\partial}{\partial t}, \quad \sigma\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial u_{j}}\right)=0, \quad \sigma\left(\frac{\partial}{\partial u_{j}}, \frac{\partial}{\partial u_{k}}\right)=0, \quad j, k=2, \ldots, n . \tag{3.3}
\end{equation*}
$$

Then $\langle\sigma(X, Y), Z\rangle$ is totally symmetric in X, Y and Z.
From (3.2) and (3.3) it follows that $(\nabla \sigma)(X, Y, Z)$ is totally symmetric in X, Y and Z and, moreover, σ and the Riemann curvature tensor R of M satisfy

$$
\begin{equation*}
R(X, Y) Z=\sigma(\sigma(Y, Z), X)-\sigma(\sigma(X, Z), Y) \tag{3.4}
\end{equation*}
$$

Theorems A and B of [2] imply that, up to rigid motions of \boldsymbol{C}^{n}, there is a unique Lagrangian isometric immersion $L: \hat{M}^{n}(0) \rightarrow C^{n}$ with second fundamental form given by $h=J \sigma$.
(3.1)-(3.3) and $h=J \sigma$ imply that L satisfies

$$
\begin{align*}
L_{t t} & =\frac{1}{f} \sum_{j=3}^{n} a_{j}^{\prime}(t) u_{j} L_{t}-f \sum_{k=2}^{n} a_{k} L_{u_{k}}+i \lambda L_{t}, \tag{3.5}\\
L_{t u_{j}} & =\frac{a_{j}}{f} L_{t}, \quad L_{u_{j} u_{k}}=0, \quad j, k=2, \ldots, n, \tag{3.6}
\end{align*}
$$

where $a_{2}=1$. Solving (3.6) as before yields

$$
\begin{gather*}
L=\sum_{j=2}^{n} u_{j} P_{j}(t)+D(t) \tag{3.7}\\
L_{t}=f P_{2}^{\prime}(t), \quad L_{u_{k}}=P_{k}(t), \quad D^{\prime}(t)=P_{2}^{\prime}(t), \quad P_{k}^{\prime}(t)=a_{k}(t) P_{2}^{\prime}(t), \quad k=2, \ldots, n \tag{3.8}
\end{gather*}
$$

for some C^{n}-valued functions P_{3}, \ldots, P_{n}, D.
From (3.2) and (3.8), it follows that $P_{2}^{\prime}(t)$ is a unit vector field and, moreover, $P_{2}(t), \ldots, P_{n}(t)$ are orthonormal vector fields. Put $z(t)=P_{2}(t)$. Then $z: I \rightarrow S^{2 n-1} \subset C^{n}$ is a unit speed curve defined on some open interval I. Since L is Lagrangian, (3.8) implies that $z(t), i z(t), z^{\prime}(t), i z^{\prime}(t), P_{3}(t), i P_{3}(t), \ldots, P_{n}(t), i P_{n}(t)$ form an orthonormal frame field with P_{3}, \ldots, P_{n} being parallel orthonormal normal vector fields along z and $z=z(t)$ is a Legendre curve in $S^{2 n-1}$. Finally, from (3.5) and (3.8), we conclude that $z=P_{2}$ is a special Legendre curve in $S^{2 n-1}$ satisfying (1.3) for some associated parallel normal vector fields P_{3}, \ldots, P_{n}.
4. Examples of special Legendre curves. Legendre curves in $S^{3} \subset \boldsymbol{C}^{2}$ are special Legendre curve automatically. Here, we provide some examples of special Legendre curves in $S^{2 n-1} \subset C^{n}$ for $n \geq 3$.

Examples. Let $\lambda, a_{3}, \ldots, a_{n}$ be $n-1$ real numbers with $\lambda>0$. Put

$$
\begin{gather*}
\gamma=1+\sum_{j=3}^{n} a_{j}^{2}, \quad \mu=\left(\lambda^{2}+4 \gamma\right)^{1 / 2} \tag{4.1}\\
z(s)=\frac{\mu-\lambda}{2 \mu \gamma}\left(\frac{2 \gamma}{\mu-\lambda}, 1, a_{3}, \ldots, a_{n}\right) e^{(\lambda+\mu) i s / 2} \tag{4.2}\\
+\frac{\lambda+\mu}{2 \mu \gamma}\left(-\frac{2 \gamma}{\lambda+\mu}, 1, a_{3}, \ldots, a_{n}\right) e^{(\lambda-\mu) i s / 2}-\frac{1}{\gamma}\left(0,1-\gamma, a_{3}, \ldots, a_{n}\right), \\
c_{3}=\left(0, a_{3},-1,0, \ldots, 0\right), \ldots, c_{n}=\left(0, a_{n}, 0, \ldots, 0,-1\right) . \tag{4.3}
\end{gather*}
$$

Then, $z=z(s)$ is a (unit speed) special Legendre curve in $S^{2 n-1} \subset C^{n}$ satisfying

$$
\begin{equation*}
z^{\prime \prime}(s)=i \lambda z^{\prime}(s)-z(s)-\sum_{j=3}^{n} a_{j} P_{j}(s) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{j}(s)=a_{j} z(s)-c_{j}, \quad j=3, \ldots, n \tag{4.5}
\end{equation*}
$$

are the associated orthonormal parallel normal vector fields.

References

[1] B. Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo, 1981.
[2] B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tôhoku Math. J. 49 (1997), 277-297.
[3] B. Y. Chen and K. Ogive, On totally real submanifolds, Trans. Amer. Math. Soc. 193(1974), 257-266.
[4] R. Ponge and h. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geometriae Dedicata 48 (1993), 15-25.

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824-1027
U.S.A.

E-mail address: bychen@math.msu.edu

