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Lp AND BESOV MAXIMAL ESTIMATES FOR SOLUTIONS
TO THE SCHRODINGER EQUATION
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Abstract. Precise results on Lp and Besov estimates of the maximal function of the
solutions to the Schrodinger equation are given. These results contain an improvement of the
theorem in Sjόlin [10].

1. Introduction. It is well-known that the solution to the Schrodinger equation

is given by

(1.1) — = - Ϊ Δ K , u(0,x) = f(x), (xeRn,teR)
σt

u(t,x) = cn

In this note we shall consider estimates of L2-norm and the Besov type norm of integrals of

this kind by means of the Besov norm of / , and give L^-estimates of their maximal functions.

Our first results are the following two theorems:

THEOREM 1. Let σ be a positive number, I = (0, 1), γ > 1 and let 1 < q < oo.

Assume that h(t, ξ) is real-valued, measurable, and C°° in t and the inequality

(1.2) * * < ' ' * >

holds for any positive integer k, where Ck is a constant independent of t and ξ. Then, the

operator T\ defined by

(1.3) Tlf(t,x) = cn

J

where cn = {2π)~n, is bounded from B%σ

q(Rn) to Bσ

lq{l\ L2(R2)).

THEOREM 2. Let hbe a real-valued function satisfying the condition (1.2). Then, the

" Rn)

1/2

operator T\ defined by (1.3) is bounded from B^(Rn) to L2(Rn\ £oo(/)), i.e.,

(1.4) / \\Tif(x,')\\2

Looa)dx
\JRn

For the operator of the type (1.5) below acting on Sobolev spaces Hs, there are sev-

eral papers. Carbery [1] and Cowling [2] have prove that T2 is bounded from Hs(Rn) to

Γ; L2{Rn)) for s > a/2, and Theorem 2 is an improvement of their results. P. Sjolin [10]
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has proved that if a > 1 then s > an/4 is a sufficient condition for all n, and if n = 1 then
s > a/4 is a necessary condition. S. Fukuma [3] has proved that if / € Hι/4(Rn), n > 2,

q = 4n/(2n - 1) and if / is radial, then T2f e Lq(Rn Loo(/)) C. E. Kenig, G. Ponce and L.

Vega ([5], [6], [7]) have indicated the application of the estimate to the dispersive equations.

In this paper we also have the following theorem for the operator of type (1.5):

THEOREM 3. Let a > 1. Then, the operator T2 defined by

(1.5)

is bounded from B™χ

μ(Rn) to L2(Rn; Loo(/)), i.e.,

α 1/2

\\T2f(x,
Rn

Noting that Hs c #2 1 ^ s > anl^^ t m s result is an improvement of the theorem in

Sjolin [10].
Our Lp-results are as follows:

THEOREM 4. Let a > 1, / = (0, 1), 1 < p < oo and let

. 1
σ = min \ \- (n —

1 1

~2~~P

1 1

y~7
Then, the operator T2 definedby (1.5) is boundedfrom Ba

p

σ

χ(Rn) to Lp(Rn; L^il)), i.e.,

\\τ2f(χ,

In §2 we shall give a proof of Theorem 1. In §3 we state a lemma needed in the proof of

Theorem 2 and prove Theorem 2. In §4 we explain the proof of Theorem 3 and lemmas we

used. In §5 we prove the Lemma 2 in the previous section. Finally in §6 we prove Theorem

4.

NOTATIONS. f(ξ) = / eixξf(x)dx (Fourier transform of / ) ; dt = d/dt, dj = d/dxj,

v = O i , . . . , aπ), Δ = Σnj=ι &r * = ( * i , . . . , χ n ) \ aα = Π"=i βjy". ** = Π " = i * ? ; LP

denotes the usual Lebesgue space o n R n with norm || \\Lp(Rn)', Hs denotes the Sobolev space

defined by {/ e S'; \\f\\Hs = \\f(ξ)(l + | ^ | 2 ) 5 / 2 | | L 2 ( ^ ) < oo}; Bσ

pq denotes Besov spaces

with norm || \\Bσ

pq which is explained, for example, in [11]; £(X, Y) denotes the space of

linear bounded operators from a Banach space X to Y; Lp(- X) denotes the L^-space of

X-valued functions.

2. Proof of Theorem 1. First, consider the case where q = 2 and σ is a non-negative
integer m. Notice that B™2 = Hm. It is easy to see that

,*7Ί/ = cn fj ei{
, ξ)f(y)dξdy
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with \Hk(t, ξ)\ < c'k{\ + \ξ\kγ). Hence, by ParsevaΓs formula we have

H7ϊ/lli2(/;t2(«»)) < Co ί \\f\\l2dt = Coiι/ιιi2,

J 0

and

r\
II QΛ T -f \\2 ^ f~* I Λ+\\(Λ I l £ - l ^ y \ -/" / ί - \ I I 2 ^ /̂  II - Γ l | 2
H - Γ I / I I L 2 ( / ; L 2 ( Λ ' 1 ) ) - c k dt\\(i + \ξ\ r)/(?)llL2(/?") - c ^ 11/11 HkY(Rn)

JO

Combining these facts, we obtain that

Finally, we recall that the Besov spaces are identical with the real interpolation of the

Sobolev spaces:

(L2(Λ; X), Hm(Ω; X))θtq = Bfq(Ω; X).

Here, X is a Banach space and ( , )β,q denotes the real inteφolation spaces. Therefore, the

conclusion of the theorem follows from inteφolation of linear operators and the fact that T\

is bounded from Hmy(Rn) to Hm{l\ L2(Rn)) for any non-negative integer m.

3. Proof of Theorem 2. To get Li maximal estimates for the operator of type (1.3)

we need the following

LEMMA 1. Let I = (0, 1), 1 < q < p < oo, and let σ be a positive number. Then, the

Besov space Bσ

pq(I\ Lp(Rn)) is continuously imbedded in the space Lp(Rn; B°q(I)).

PROOF. Consider first the case where 0 < σ < 1. Assume that u(t, x)eBσ {I; Lp{Rn)).

Then, by Minkowsky's inequality we see that

u(t + 5, x) - u(t,

= \u\B°pq{l;Lp{Rn))-

Here L*(I) := Lq(I, ds/s). In the same way we get for the case where σ = 1;

[\u(t,x)\Bip^n}\\Lp(R»)

u(t + 25, x) - 2u(t + 5, x) + w(ί, X)| |LA 7((0,I-25))^~ 1}IILJ(/)] | |L^(^)

M(ί + 25, X) - 2u(t + 5, X) + Il(ί, ΛΓ)||# ( Λ Π ) ) | | F ((O.l-Zs))*" 1}! !^*^)
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Consider now the case where σ = k + θ,k isa. positive integer, and 0 < θ < 1. By the

facts proved above we have

\\{\u(t,x)\Bϊq(I)}\\Lp(R») = MBϊq(

= \u\Bσ

pq{I Lp{Rn)).

Noting that the norm of Bσ

pq(l; X) is given by || \\Wk{I.X) + I * \Bσ

pq{i\X) (see T. Muramatu

[8]), these estimate gives the proof of Lemma 1.

From Lemma 1 and the imbedding theorem B2l (I) C LOQ(I) (see Muramatu [9]) it

follows that

B$(I; L2(Rn)) C L2(Rn; B$(I)) C L2(Rn; £«>(/))

with continuous inclusions, which, combined with Theorem 1, gives Theorem 2.

4. Proof of Theorem 3. Next, Theorem 3 has been proved if we show that the oper-

ator S defined by

Sf(x) =

where t(x) is a measurable function of x e Rn with 0 < t (x) < 1, is bounded from B™{ (Rn)

to L2(Rn) and its norm is estimated by a constant independent of t(x).

To prove this we need the following partition of unity in £-space. Let φo e C°°(Rn),

φ e C°°(Rn) and ψ e C°°(Rn) be functions such that

=l, O<φo(ξ)<h 0<φ(ξ)<l,

Rn\ \ξ\ < 2}, supp(^) c l ξ e f i " ; ~ < \ξ\ < 2J .

jiξ) := φ(2-Jξ), ψo(ξ) := φo(ξ/2), and

( ψj(ξ) .= ψ(2-Jξ) foτj>ι.

Then

supp(ψ)cUeRn; j<\ξ\<Δ, ψ(ξ) = 1 if ^<\ξ\<2,

and for j = 0, 1, 2 , . . . , ψj;(ξ) = 1 holds for any ξ e supp(<py ). Hence, it follows that

00

(4.1) Σ

From this identity we see that

j=0
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where

(4.2) Sj9(x) =cnj eixξ+i

(4.3) fj(x) = cnj eixξφj(ξ)f(ξ)dξ .

To estimate \\Sj \\c(L2,L2)
 w e n e e ( * m e following

LEMMA 2. Let ψ e C°° with support contained in the set [ξ; 1/4 < \ξ\ < 4}, t(x) a

measurable function of x e Rn with 0 < t(x) < 1, j a positive integer, and let a > 1. Define

the operator Sj by (4.2). Then,

(4.4) \\

where C is a constant independent ofj andt(x).

From this lemma we can immediately prove Theorem 3, that is,

5. Proof of Lemma 2. In order to prove Lemma 2 we need several lemmas. We start

with recalling the formulas for products and adjoints of Fourier multipliers.

LEMMA 3. Let X, Y and Z be Hubert spaces, and let T and S be the operators defined

by

, Sg(x) = cn jf ei{x~y)ξH{ξ)g{y)dξdy ,.

where K(ξ) is C(X, Y)-valuedfunctions ofξ e Rn and H(ξ) is C(Y, Z)-valuedfunctions of

ξ e Rn with

) < oo,

Then, Γ* is the bounded operator from L2{Rn\ Y) to L2{Rn\ X) defined by the formula

T*g(x) = cn

and ST is the bounded operator from L2{Rn\ X) to L2(Rn\ Z) defined by the formula

STf(x) = cn
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PROOF. Let / e S(Rn; X) and g e S(Rn; Y). Then, we have

(<?, Tf)L2(Rn.Y) = cn ff(9(x), eixξK(ξ)f(ξ))γdxdξ

~Cn J \J 6 g X )γ

= cnj(K(ξ)*g(ξ),f(ξ))χdξ

= cn [(κ(ξ)*g(ξ), fe-ixξf(x)dx) dξ
J \ J Jx

= cnjΊj eixξK(ξfg(ξ)dξ, f(x)) dx .

Therefore, we have

T*g(x) = cnj eiχΪK(ξrg(ξ)dξ = cn jf e^^K(ξYg{y)dξdy .

Next, since ff (ξ) = K(ξ)f(ξ), it follows that

STf (x) = cn ί eix^H(ξ)ff(ξ)dξ = cn (j ei{χ-y)ξH(ξ)K(ξ)f(y)dξdy .

Secondly, we prove the following

LEMMA 4. Let φ e CQ°(Rn), and ψ a real-valued C°°-function in a neighborhood of

the support ofφ. Assume that

> c , \d°φ\<ca\vφ\

hold for any x e supp φ and any multi-index a. Then

(5.1) -2m\<C2+2m(n)C-2m\\φ\\w2m

holds for any positive integer m. Here cm (n) is a constant depend only onn,m and {Ca}\a\<m-

PROOF. If 0 < C < 1, we have

\f< ll̂ lk, <c-M\\φ\\Li.

Therefore, we may assume that C > 1. Since

we have

ί eiψ(x)φ(x)dx = - ί{Aeiψ(x)}φ(x)\\7ψΓ2dx + i (eiψ(x)φ{x)Af{x)\Vψ\-2dx.

By integrating by parts we have
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which gives

x)\VψΓ2dx

mx)}φ(x)\VψΓzdx
. - 2<C3C-2\\φ\\W2.

By making use of the formula

I eiψ{x)φ{x)Aψ(x)\SJψ\~2dx

= - ({Aemx)}φ{x)Aψ(x)\Vψ\~Adx + i ί eiψ{x)φ(x){Aψ(x)\Vψ\~2}2dx ,

we also have the estimate

ί e -2C2C-2\\φ\\L] <

Thus we have proved the inequality (5.1) for the case m = 1.

From the formula

ί eWχ)φ{x)dx = ί eiψ{x)φχ{x)dx ,

where

Γ2
φi(x) = - {Aφ(x)}\VψΓz - ^ fy

7 = 1

7 = 1

-φ(x){Aψ(x)\VψΓ2}2,

and the inequality (5.1) for the case m = 1 it follows that

<C 4 C- 2 |koi | | ,y2,

since ||α?il|w2 < CίC~2\\φ\\W4. Hence we have the inequality (5.1) for the case m = 2.

Repeating this argument we get the inequality for arbitrary m.

Next, we prove the following

LEMMA 5. Let ψ e C°°(Rn) with support contained in the set {ξ; 1/4 < \ξ\ <

4}, |f| < 1, and let N > 1, a > 1, \/N < \x\ < 2a(4N)a-χ. Then

<C(n,a,ψ)Nn/2\x\-n/1.
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PROOF. Assume that 1 < N\x\ < 2a\t\4a~ιNa. Apply Lemma 1 in Sjolin [10] to the
integral

KN(t

Then, we have

\KN(t,x)\ < C(n, a,

, x)=ί e^+it^aψ (jΛ dξ=Nn

H

When|*| > 2a\t\{AN)a~\

\Nx + atNa\ξ\a~2ξI > N\x\ - a\t\Na\ξ\a~ι > N\x\/2 > a\t\4a~lNa ,

\d%(Nxξ+tNa\ξ\a)\ <Ca\{Nx+atNa\ξ\a~2ξ}\ for any a

holds for any 1/4 < \ξ \ < 4, so that by Lemma 4 we get

\KN(t, x)\ < C'(n, a, ψ)(N\x\Γ2mNn .

Here, m is the least integer such that 2m > n. Combining this with the simple inequality

\KN(t9 x)\ < C(ψ)Nn, we have

\KN(t,x)\ < [C(n,a,ψ)Nn-2m\x\-2m]n/4m[C(ψ)Nnγ-n/4m

= C(n,a,ψ)Nn/2\xΓn/1.

Now, let us prove Lemma 2. It is easy to see that

S*g(χ) = Cn jf ei^-y^

where

SjS*g(x) = cn

= j Kj(x,y)g(y)dy,

Kj(x, y) = cn f>*-^+< ('

The norm of the integral operator SjS*- is obtained from the inequalities:

(5.2) j \Kj(x, y)\dx < C(n, a, ψ)2Jan'2, ί \Kj(x, y)\dy < C(n, a,

which can be proved as follows: It is clear that

\Kj(x, y)\ <CnJ \ψ(2~Jξ)2\dξ = CnV
n\\ψ\\l2

holds for any x and y. Also, we have as in Proof of Lemma 5 that

\Kj(x, y)\ < C{n,a,ψ)2J(n-2m)\x - y\-2m
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holds for any \x — y\ > 2α2 ( 2 + / ) ( β ~ 1 ) , where m is an integer such that 2m > n. Hence, by

Lemma 5 we obtain that

j\Kj(x,y)\dy

< C(π, a,ψ)\[ 2jndy + f 2jn/2\y - x\-n/2dy
[J\y-x\<2-J J2-J <\y-x\<2a2(2+JKa-V

+ [ V{n-lm)\y-x\-2mdy\
J\y-x\>2a2V+iKa-χ) J

<C\n,a,ψ)Van'2

holds for any x e Rn. The second inequality in (5.2) can be proved in the same way. Now,

from (5.2) we have

where C is a constant independent of j and t(x), which gives (4.4), because \\A\\ = ||ΛΛ* || ̂ 2

holds for any bounded linear operator A between Hubert spaces.

6. Proof of Theorem 4. To prove Theorem 4 we start with

LEMMA 6. Let ψ e C°° with support contained in the set {ξ; 1/4 < \ξ\ < 4}, and let

j be a positive integer, / = ( 0 , 1 ) , 1 < / ? < O O , and a > 1. Define the operator Pj by

Then,
II p ii ^ rτ)jan/2

where C is a constant independent ofj.

PROOF. We consider Pj as an integral operator with C(C, Loo(/))-valued kernel, i.e.,

Pjf(x) = f Kj(x-y)f(y)dy,

where

Kj(x) = Kj(t,x) = cn eixξ+itl^aψ(2~jξ)dξ .

Hence, the conclusion follows from the estimate

/ WKjWWciCLooVvdx = / ess. sup \Kj(t,x)\dx < C(n,a, ψ)2jan/2 .
J ' J \t\<\

It is clear that

\Kj(t,x)\ < / \ψ(2~jξ)\dξ =2jn\\ψ\\Lι

holds for any x. Also, we have as in Proof of Lemma 5 that

\Kj{t,x)\<C(n,a,ψ)V{n-lm)\x\-2m
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holds for any |JC| > 2a2^2+J^a~ι\ where m is an integer such that 2m > n. Hence, by Lemma

5 we obtain that

/
ess. sup \Kj(t,x)\dx

\t\<ι

< C(n, a,ψ)\f 2jndx + f 2jn/2\x\~n/2dx
[J\x\<2-J J2-J<\x\<2a2(2+Ma-V

+ f 2j(n-2m)\x\-2mdx)
J\x\>2a2V+JKa-V J

PROOF OF THEOREM 4. The results for the case p = 2 are given in Theorem 2 and

Theorem 3. Next, consider the case where p = 1. It follows from the identity (4.1) that

where

By this formula we see that

oo

j=o

which gives with the aid of Lemma 6 that

oo

II 2 J \\L\ (Rn;Loo(/)) _ ^ / ^ IIJj IIL\ (Rn) — ^ IIJ II τ>anl^ (Ώn\

In the same way we have

oo

7=0

<c'ιι/ιι c / 2 ( Λ n ) .
For the case 1 < p < 2 (the case 2 < p < oo) the result follows from that for the cases

p = 1, 2 (the cases p = 2, oo) and the complex interpolation:
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with
1 1 - 0 0 1 1 - 0 0

— = + —, — = + — .
P PO Pi q qo qι
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