L_{p} AND BESOV MAXIMAL ESTIMATES FOR SOLUTIONS TO THE SCHRÖDINGER EQUATION

Seiji Fukuma and Tosinobu Muramatu

(Received October 31, 1997)

Abstract

Precise results on L_{p} and Besov estimates of the maximal function of the solutions to the Schrödinger equation are given. These results contain an improvement of the theorem in Sjölin [10].

1. Introduction. It is well-known that the solution to the Schrödinger equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-i \Delta u, \quad u(0, x)=f(x), \quad\left(x \in \boldsymbol{R}^{n}, t \in \boldsymbol{R}\right) \tag{1.1}
\end{equation*}
$$

is given by

$$
u(t, x)=c_{n} \iint e^{i(x-y) \xi+i t|\xi|^{2}} f(y) d \xi d y
$$

In this note we shall consider estimates of L_{2}-norm and the Besov type norm of integrals of this kind by means of the Besov norm of f, and give L_{p}-estimates of their maximal functions.

Our first results are the following two theorems:
Theorem 1. Let σ be a positive number, $I=(0,1), \gamma>1$ and let $1 \leq q \leq \infty$. Assume that $h(t, \xi)$ is real-valued, measurable, and C^{∞} in t and the inequality

$$
\begin{equation*}
\left|\frac{\partial^{k} h(t, \xi)}{\partial t^{k}}\right| \leq C_{k}\left(1+|\xi|^{k \gamma}\right) \tag{1.2}
\end{equation*}
$$

holds for any positive integer k, where C_{k} is a constant independent of t and ξ. Then, the operator T_{1} defined by

$$
\begin{equation*}
T_{1} f(t, x)=c_{n} \iint_{R^{n}} e^{i(x-y) \xi+i h(t, \xi)} f(y) d \xi d y \tag{1.3}
\end{equation*}
$$

where $c_{n}=(2 \pi)^{-n}$, is bounded from $B_{2, q}^{\gamma \sigma}\left(\boldsymbol{R}^{n}\right)$ to $B_{2, q}^{\sigma}\left(I ; L_{2}\left(\boldsymbol{R}^{2}\right)\right)$.
THEOREM 2. Let h be a real-valued function satisfying the condition (1.2). Then, the operator T_{1} defined by (1.3) is bounded from $B_{2,1}^{\gamma / 2}\left(\boldsymbol{R}^{n}\right)$ to $L_{2}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)$, i.e.,

$$
\begin{equation*}
\left(\int_{R^{n}}\left\|T_{1} f(x, \cdot)\right\|_{L_{\infty}(I)}^{2} d x\right)^{1 / 2} \leq C\|f\|_{B_{2,1}^{\gamma / 2}} . \tag{1.4}
\end{equation*}
$$

For the operator of the type (1.5) below acting on Sobolev spaces H^{s}, there are several papers. Carbery [1] and Cowling [2] have prove that T_{2} is bounded from $H^{s}\left(\boldsymbol{R}^{n}\right)$ to $L_{2}\left(I ; L_{2}\left(\boldsymbol{R}^{n}\right)\right)$ for $s>a / 2$, and Theorem 2 is an improvement of their results. P. Sjölin [10]

[^0]has proved that if $a>1$ then $s>a n / 4$ is a sufficient condition for all n, and if $n=1$ then $s \geq a / 4$ is a necessary condition. S. Fukuma [3] has proved that if $f \in H^{1 / 4}\left(\boldsymbol{R}^{n}\right), n \geq 2$, $q=4 n /(2 n-1)$ and if f is radial, then $T_{2} f \in L_{q}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)$. C. E. Kenig, G. Ponce and L. Vega ([5], [6], [7]) have indicated the application of the estimate to the dispersive equations.

In this paper we also have the following theorem for the operator of type (1.5):
Theorem 3. Let $a>1$. Then, the operator T_{2} defined by

$$
\begin{equation*}
T_{2} f(t, x)=c_{n} \iint e^{i(x-y) \xi+i t|\xi|^{a}} f(y) d \xi d y \tag{1.5}
\end{equation*}
$$

is bounded from $B_{2,1}^{a n / 4}\left(\boldsymbol{R}^{n}\right)$ to $L_{2}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)$, i.e.,

$$
\left(\int_{R^{n}}\left\|T_{2} f(x, \cdot)\right\|_{L_{\infty}(I)}^{2} d x\right)^{1 / 2} \leq C\|f\|_{B_{2,1}^{a n / 4}\left(R^{n}\right)}
$$

Noting that $H^{s} \subset B_{2,1}^{a n / 4}$ if $s>a n / 4$, this result is an improvement of the theorem in Sjölin [10].

Our L_{p}-results are as follows:
Theorem 4. Let $a>1, I=(0,1), 1 \leq p \leq \infty$ and let

$$
\sigma=\min \left\{\frac{1}{2}+(n-1)\left|\frac{1}{2}-\frac{1}{p}\right|, \frac{n}{4}+\frac{n}{2}\left|\frac{1}{2}-\frac{1}{p}\right|\right\} .
$$

Then, the operator T_{2} defined by (1.5) is bounded from $B_{p, 1}^{a \sigma}\left(\boldsymbol{R}^{n}\right)$ to $L_{p}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)$, i.e.,

$$
\left(\int_{\mathbb{R}^{n}}\left\|T_{2} f(x, \cdot)\right\|_{L_{\infty}(I)}^{p} d x\right)^{1 / p} \leq C\|f\|_{B_{p, 1}^{a \sigma}\left(\boldsymbol{R}^{n}\right)}
$$

In §2 we shall give a proof of Theorem 1. In §3 we state a lemma needed in the proof of Theorem 2 and prove Theorem 2. In $\S 4$ we explain the proof of Theorem 3 and lemmas we used. In $\S 5$ we prove the Lemma 2 in the previous section. Finally in $\S 6$ we prove Theorem 4.

Notations. $\hat{f}(\xi)=\int e^{i x \xi} f(x) d x$ (Fourier transform of f); $\partial_{t}=\partial / \partial t, \partial_{j}=\partial / \partial x_{j}$, $\nabla=\left(\partial_{1}, \ldots, \partial_{n}\right), \Delta=\sum_{j=1}^{n} \partial_{j}^{2}, x=\left(x_{1}, \ldots, x_{n}\right) ; \partial^{\alpha}=\prod_{j=1}^{\alpha} \partial_{j}^{\alpha_{j}}, x^{\alpha}=\prod_{j=1}^{n} x_{j}^{\alpha_{j}} ; L_{p}$ denotes the usual Lebesgue space on \boldsymbol{R}^{n} with norm $\|\cdot\|_{L_{p}\left(\boldsymbol{R}^{n}\right)} ; H^{s}$ denotes the Sobolev space defined by $\left\{f \in \mathcal{S}^{\prime} ;\|f\|_{H^{s}}=\left\|\hat{f}(\xi)\left(1+|\xi|^{2}\right)^{s / 2}\right\|_{L_{2}\left(\boldsymbol{R}^{n}\right)}<\infty\right\} ; B_{p, q}^{\sigma}$ denotes Besov spaces with norm $\|\cdot\|_{B_{p, q}^{\sigma}}$ which is explained, for example, in [11]; $\mathcal{L}(X, Y)$ denotes the space of linear bounded operators from a Banach space X to $Y ; L_{p}(\cdot ; X)$ denotes the L_{p}-space of X-valued functions.
2. Proof of Theorem 1. First, consider the case where $q=2$ and σ is a non-negative integer m. Notice that $B_{2,2}^{m}=H^{m}$. It is easy to see that

$$
\partial_{t}^{k} T_{1} f=c_{n} \iint e^{i(x-y) \xi+i h(t, \xi)} H_{k}(t, \xi) f(y) d \xi d y
$$

with $\left|H_{k}(t, \xi)\right| \leq c_{k}^{\prime}\left(1+|\xi|^{k \gamma}\right)$. Hence, by Parseval's formula we have

$$
\left\|T_{1} f\right\|_{L_{2}\left(I ; L_{2}\left(\boldsymbol{R}^{n}\right)\right)}^{2} \leq C_{0} \int_{0}^{1}\|f\|_{L_{2}}^{2} d t=C_{0}\|f\|_{L_{2}}^{2}
$$

and

$$
\left\|\partial_{t}^{k} T_{1} f\right\|_{L_{2}\left(I ; L_{2}\left(\boldsymbol{R}^{n}\right)\right)}^{2} \leq C_{k} \int_{0}^{1} d t\left\|\left(1+|\xi|^{k \gamma}\right) \hat{f}(\xi)\right\|_{L_{2}\left(\boldsymbol{R}^{n}\right)}^{2} \leq C_{k}\|f\|_{H^{k \gamma}\left(\boldsymbol{R}^{n}\right)}^{2}
$$

Combining these facts, we obtain that

$$
\left\|T_{1} f\right\|_{H^{m}\left(I ; L_{2}\left(\boldsymbol{R}^{n}\right)\right)}^{2} \leq C_{m}\|f\|_{H^{m \gamma}\left(\boldsymbol{R}^{n}\right)}
$$

Finally, we recall that the Besov spaces are identical with the real interpolation of the Sobolev spaces:

$$
\left(L_{2}(\Omega ; X), H^{m}(\Omega ; X)\right)_{\theta, q}=B_{2, q}^{m \theta}(\Omega ; X)
$$

Here, X is a Banach space and $(\cdot, \cdot)_{\theta, q}$ denotes the real interpolation spaces. Therefore, the conclusion of the theorem follows from interpolation of linear operators and the fact that T_{1} is bounded from $H^{m \gamma}\left(\boldsymbol{R}^{n}\right)$ to $H^{m}\left(I ; L_{2}\left(\boldsymbol{R}^{n}\right)\right)$ for any non-negative integer m.
3. Proof of Theorem 2. To get L_{2} maximal estimates for the operator of type (1.3) we need the following

Lemma 1. Let $I=(0,1), 1 \leq q \leq p \leq \infty$, and let σ be a positive number. Then, the Besov space $B_{p, q}^{\sigma}\left(I ; L_{p}\left(\boldsymbol{R}^{n}\right)\right)$ is continuously imbedded in the space $L_{p}\left(\boldsymbol{R}^{n} ; B_{p, q}^{\sigma}(I)\right)$.

Proof. Consider first the case where $0<\sigma<1$. Assume that $u(t, x) \in B_{p, q}^{\sigma}\left(I ; L_{p}\left(\boldsymbol{R}^{n}\right)\right)$. Then, by Minkowsky's inequality we see that

$$
\begin{aligned}
\left\|\left\{|u(t, x)|_{B_{p, q}^{\sigma}(I)}\right\}\right\|_{L_{p}\left(\boldsymbol{R}^{n}\right)} & \left.=\left\|\left[\|\left\{\|u(t+s, x)-u(t, x)\|_{L_{p}((0,1-s))}\right\} s^{-\sigma}\right\}\right\|_{L_{q}^{*}(I)}\right] \|_{L_{p}\left(\boldsymbol{R}^{n}\right)} \\
& \leq \|\left[\left\{\|\left(\|u(t+s, x)-u(t, x)\|_{\left.L_{p}((0,1-s))\right)} \|_{L_{p}\left(\boldsymbol{R}^{n}\right)}\right\} s^{-\sigma}\right] \|_{L_{q}^{*}(I)}\right. \\
& \leq\left\|\left[\left\{\left\|\left(\|u(t+s, x)-u(t, x)\|_{L_{p}\left(\boldsymbol{R}^{n}\right)}\right)\right\|_{L_{p}((0,1-s))}\right\} s^{-\sigma}\right]\right\|_{L_{q}^{*}(I)} \\
& =|u|_{B_{p, q}^{\sigma}}\left(I ; L_{p}\left(\boldsymbol{R}^{n}\right)\right)
\end{aligned}
$$

Here $L_{q}^{*}(I):=L_{q}(I, d s / s)$. In the same way we get for the case where $\sigma=1$;

$$
\begin{aligned}
&\left\|\left\{|u(t, x)|_{B_{p, q}^{1}(I)}\right\}\right\|_{L_{p}\left(\boldsymbol{R}^{n}\right)} \\
&=\left\|\left[\left\|\left\{\|u(t+2 s, x)-2 u(t+s, x)+u(t, x)\|_{L_{p}((0,1-2 s))} s^{-1}\right\}\right\|_{L_{q}^{*}(I)}\right]\right\|_{L_{p}\left(\boldsymbol{R}^{n}\right)} \\
& \leq\left\|\left\{\left\|\left(\|u(t+2 s, x)-2 u(t+s, x)+u(t, x)\|_{L_{p}\left(\boldsymbol{R}^{n}\right)}\right)\right\|_{L_{p}((0,1-2 s))} s^{-1}\right\}\right\|_{L_{p}^{*}(I)} \\
&=|u|_{B_{p, q}^{\prime}\left(I ; L_{p}\left(\boldsymbol{R}^{n}\right)\right)} .
\end{aligned}
$$

Consider now the case where $\sigma=k+\theta, k$ is a positive integer, and $0<\theta \leq 1$. By the facts proved above we have

$$
\begin{aligned}
\left\|\left\{|u(t, x)|_{B_{p, q}^{\sigma}(I)}\right\}\right\|_{L_{p}\left(\boldsymbol{R}^{n}\right)} & =\left\|\left\{\left|\partial_{t}^{k} u(t, x)\right|_{B_{p, q}^{\theta}(I)}\right\}\right\|_{L_{p}\left(\boldsymbol{R}^{n}\right)} \\
& \leq\left|\partial_{t}^{k} u\right|_{B_{p, q}^{\theta}\left(I ; L_{p}\left(\boldsymbol{R}^{n}\right)\right)} \\
& =|u|_{B_{p, q}^{\sigma}\left(I ; L_{p}\left(\boldsymbol{R}^{n}\right)\right)} .
\end{aligned}
$$

Noting that the norm of $B_{p, q}^{\sigma}(I ; X)$ is given by $\|\cdot\|_{W_{p}^{k}(I ; X)}+|\cdot|_{B_{p, q}^{\sigma}(I ; X)}$ (see T. Muramatu [8]), these estimate gives the proof of Lemma 1.

From Lemma 1 and the imbedding theorem $B_{2,1}^{1 / 2}(I) \subset L_{\infty}(I)$ (see Muramatu [9]) it follows that

$$
B_{2,1}^{1 / 2}\left(I ; L_{2}\left(\boldsymbol{R}^{n}\right)\right) \subset L_{2}\left(\boldsymbol{R}^{n} ; B_{2,1}^{1 / 2}(I)\right) \subset L_{2}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)
$$

with continuous inclusions, which, combined with Theorem 1, gives Theorem 2.
4. Proof of Theorem 3. Next, Theorem 3 has been proved if we show that the operator S defined by

$$
S f(x)=\iint e^{i(x-y) \xi+i t(x)|\xi|^{a}} f(y) d \xi d y
$$

where $t(x)$ is a measurable function of $x \in \boldsymbol{R}^{n}$ with $0 \leq t(x) \leq 1$, is bounded from $B_{2,1}^{a n / 4}\left(\boldsymbol{R}^{n}\right)$ to $L_{2}\left(\boldsymbol{R}^{n}\right)$ and its norm is estimated by a constant independent of $t(x)$.

To prove this we need the following partition of unity in ξ-space. Let $\varphi_{0} \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$, $\varphi \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ and $\psi \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ be functions such that

$$
\begin{gathered}
\varphi_{0}(\xi)+\sum_{j=1}^{\infty} \varphi\left(2^{-j} \xi\right)=1, \quad 0 \leq \varphi_{0}(\xi) \leq 1, \quad 0 \leq \varphi(\xi) \leq 1, \\
\operatorname{supp}\left(\varphi_{0}\right) \subset\left\{\xi \in \boldsymbol{R}^{n} ;|\xi|<2\right\}, \quad \operatorname{supp}(\varphi) \subset\left\{\xi \in \boldsymbol{R}^{n} ; \frac{1}{2}<|\xi|<2\right\} .
\end{gathered}
$$

Put $\varphi_{j}(\xi):=\varphi\left(2^{-j} \xi\right), \psi_{0}(\xi):=\varphi_{0}(\xi / 2)$, and

$$
\psi(\xi):=\varphi\left(\frac{\xi}{2}\right)+\varphi(\xi)+\varphi(2 \xi), \quad \psi_{j}(\xi):=\psi\left(2^{-j} \xi\right) \quad \text { for } j \geq 1
$$

Then

$$
\operatorname{supp}(\psi) \subset\left\{\xi \in \boldsymbol{R}^{n} ; \frac{1}{4}<|\xi|<4\right\}, \quad \psi(\xi)=1 \quad \text { if } \quad \frac{1}{2} \leq|\xi| \leq 2
$$

and for $j=0,1,2, \ldots, \psi_{j}(\xi)=1$ holds for any $\xi \in \operatorname{supp}\left(\varphi_{j}\right)$. Hence, it follows that

$$
\begin{equation*}
\sum_{j=0}^{\infty} \psi_{j}(\xi) \varphi_{j}(\xi)=1 \tag{4.1}
\end{equation*}
$$

From this identity we see that

$$
S f(x)=\sum_{j=0}^{\infty} S_{j} f_{j}(x)
$$

where

$$
\begin{gather*}
S_{j} g(x)=c_{n} \int e^{i x \xi+i t(x)|\xi|^{a}} \psi_{j}(\xi) \hat{g}(\xi) d \xi \tag{4.2}\\
f_{j}(x)=c_{n} \int e^{i x \xi} \varphi_{j}(\xi) \hat{f}(\xi) d \xi \tag{4.3}
\end{gather*}
$$

To estimate $\left\|S_{j}\right\|_{\mathcal{L}\left(L_{2}, L_{2}\right)}$ we need the following
Lemma 2. Let $\psi \in C^{\infty}$ with support contained in the set $\{\xi ; 1 / 4<|\xi|<4\}, t(x) a$ measurable function of $x \in \boldsymbol{R}^{n}$ with $0 \leq t(x) \leq 1, j$ a positive integer, and let $a>1$. Define the operator S_{j} by (4.2). Then,

$$
\begin{equation*}
\left\|S_{j}\right\|_{\mathcal{L}\left(L_{2}\left(\boldsymbol{R}^{n}\right), L_{2}\left(\boldsymbol{R}^{n}\right)\right)} \leq C 2^{j a n / 4} \tag{4.4}
\end{equation*}
$$

where C is a constant independent of j and $t(x)$.
From this lemma we can immediately prove Theorem 3, that is,

$$
\|S f\|_{L_{2}} \leq \sum_{j=0}^{\infty}\left\|S_{j} f_{j}\right\|_{L_{2}} \leq C \sum_{j=0}^{\infty} 2^{a n / 4}\left\|f_{j}\right\|_{L_{2}} \leq C^{\prime}\|f\|_{B_{2,1}^{a n / 4}\left(\boldsymbol{R}^{n}\right)}
$$

5. Proof of Lemma 2. In order to prove Lemma 2 we need several lemmas. We start with recalling the formulas for products and adjoints of Fourier multipliers.

Lemma 3. Let X, Y and Z be Hilbert spaces, and let T and S be the operators defined by

$$
T f(x)=c_{n} \iint e^{i(x-y) \xi} \hat{K}(\xi) f(y) d \xi d y, \quad S g(x)=c_{n} \iint e^{i(x-y) \xi} \hat{H}(\xi) g(y) d \xi d y
$$

where $\hat{K}(\xi)$ is $\mathcal{L}(X, Y)$-valued functions of $\xi \in \boldsymbol{R}^{n}$ and $\hat{H}(\xi)$ is $\mathcal{L}(Y, Z)$-valued functions of $\xi \in \boldsymbol{R}^{n}$ with

$$
\sup _{\xi}\|\hat{K}(\xi)\|_{\mathcal{L}(X, Y)}<\infty, \quad \sup _{\xi}\|\hat{H}(\xi)\|_{\mathcal{L}(Y, Z)}<\infty
$$

Then, T^{*} is the bounded operator from $L_{2}\left(\boldsymbol{R}^{n} ; Y\right)$ to $L_{2}\left(\boldsymbol{R}^{n} ; X\right)$ defined by the formula

$$
T^{*} g(x)=c_{n} \iint e^{i(x-y) \xi} \hat{K}(\xi)^{*} g(y) d \xi d y
$$

and ST is the bounded operator from $L_{2}\left(\boldsymbol{R}^{n} ; X\right)$ to $L_{2}\left(\boldsymbol{R}^{n} ; Z\right)$ defined by the formula

$$
S T f(x)=c_{n} \iint e^{i(x-y) \xi} \hat{H}(\xi) \hat{K}(\xi) f(y) d \xi d y
$$

Proof. Let $f \in \mathcal{S}\left(\boldsymbol{R}^{n} ; X\right)$ and $g \in \mathcal{S}\left(\boldsymbol{R}^{n} ; Y\right)$. Then, we have

$$
\begin{aligned}
(g, T f)_{L_{2}\left(\boldsymbol{R}^{n} ; Y\right)} & =c_{n} \iint\left(g(x), e^{i x \xi} \hat{K}(\xi) \hat{f}(\xi)\right)_{Y} d x d \xi \\
& =c_{n} \int\left(\int e^{-i x \xi} g(x) d x, \hat{K}(\xi) \hat{f}(\xi)\right)_{Y} d \xi \\
& =c_{n} \int\left(\hat{K}(\xi)^{*} \hat{g}(\xi), \hat{f}(\xi)\right)_{X} d \xi \\
& =c_{n} \int\left(\hat{K}(\xi)^{*} \hat{g}(\xi), \int e^{-i x \xi} f(x) d x\right)_{X} d \xi \\
& =c_{n} \int\left(\int e^{i x \xi} \hat{K}(\xi)^{*} \hat{g}(\xi) d \xi, f(x)\right)_{X} d x
\end{aligned}
$$

Therefore, we have

$$
T^{*} g(x)=c_{n} \int e^{i x \xi} \hat{K}(\xi)^{*} \hat{g}(\xi) d \xi=c_{n} \iint e^{i(x-y) \xi} \hat{K}(\xi)^{*} g(y) d \xi d y
$$

Next, since $\widehat{T f}(\xi)=\hat{K}(\xi) \hat{f}(\xi)$, it follows that

$$
\operatorname{STf}(x)=c_{n} \int e^{i x \xi} \hat{H}(\xi) \widehat{T f}(\xi) d \xi=c_{n} \iint e^{i(x-y) \xi} \hat{H}(\xi) \hat{K}(\xi) f(y) d \xi d y
$$

Secondly, we prove the following
Lemma 4. Let $\varphi \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$, and ψ a real-valued C^{∞}-function in a neighborhood of the support of φ. Assume that

$$
|\nabla \psi| \geq C, \quad\left|\partial^{\alpha} \psi\right| \leq C_{\alpha}|\nabla \psi|
$$

hold for any $x \in \operatorname{supp} \varphi$ and any multi-index α. Then

$$
\begin{equation*}
\left|\int e^{i \psi(x)} \varphi(x) d x\right| \leq c_{2+2 m}(n) C^{-2 m}\|\varphi\|_{W_{1}^{2 m}} \tag{5.1}
\end{equation*}
$$

holds for any positive integer m. Here $c_{m}(n)$ is a constant depend only on n, m and $\left\{C_{\alpha}\right\}_{|\alpha| \leq m}$.
Proof. If $0<C<1$, we have

$$
\left|\int e^{i \psi(x)} \varphi(x) d x\right| \leq\|\varphi\|_{L_{1}} \leq C^{-2 m}\|\varphi\|_{L_{1}}
$$

Therefore, we may assume that $C \geq 1$. Since

$$
e^{i \psi(x)}=-|\nabla \psi|^{-2}\left(\Delta e^{i \psi(x)}\right)+i(\Delta \psi)|\nabla \psi|^{-2} e^{i \psi(x)}
$$

we have

$$
\int e^{i \psi(x)} \varphi(x) d x=-\int\left\{\Delta e^{i \psi(x)}\right\} \varphi(x)|\nabla \psi|^{-2} d x+i \int e^{i \psi(x)} \varphi(x) \Delta \psi(x)|\nabla \psi|^{-2} d x
$$

By integrating by parts we have

$$
\begin{aligned}
& \int\left\{\Delta e^{i \psi(x)}\right\} \varphi(x)|\nabla \psi|^{-2} d x \\
& \quad=\int e^{i \psi(x)}\left[\{\Delta \varphi(x)\}|\nabla \psi|^{-2}+\sum_{j=1}^{n} \partial_{j} \varphi(x) \partial_{j}\left(|\nabla \psi|^{-2}\right)+\varphi(x) \Delta\left(|\nabla \psi|^{-2}\right)\right] d x
\end{aligned}
$$

which gives

$$
\left.\left|\int\left\{\Delta e^{i \psi(x)}\right\} \varphi(x)\right| \nabla \psi\right|^{-2} d x \mid \leq C_{3} C^{-2}\|\varphi\|_{W_{1}^{2}}
$$

By making use of the formula

$$
\begin{aligned}
& \int e^{i \psi(x)} \varphi(x) \Delta \psi(x)|\nabla \psi|^{-2} d x \\
&=-\int\left\{\Delta e^{i \psi(x)}\right\} \varphi(x) \Delta \psi(x)|\nabla \psi|^{-4} d x+i \int e^{i \psi(x)} \varphi(x)\left\{\Delta \psi(x)|\nabla \psi|^{-2}\right\}^{2} d x
\end{aligned}
$$

we also have the estimate

$$
\left.\left|\int e^{i \psi(x)} \varphi(x) \Delta \psi(x)\right| \nabla \psi\right|^{-2} d x \mid \leq C_{4}^{\prime} C^{-3}\|\varphi\|_{W_{1}^{2}}+C_{2} C^{-2}\|\varphi\|_{L_{1}} \leq C_{4} C^{-2}\|\varphi\|_{W_{1}^{2}} .
$$

Thus we have proved the inequality (5.1) for the case $m=1$.
From the formula

$$
\int e^{i \psi(x)} \varphi(x) d x=\int e^{i \psi(x)} \varphi_{1}(x) d x
$$

where

$$
\begin{aligned}
\varphi_{1}(x)= & -\{\Delta \varphi(x)\}|\nabla \psi|^{-2}-\sum_{j=1}^{n} \partial_{j} \varphi(x) \partial_{j}\left(|\nabla \psi|^{-2}\right)-\varphi(x) \Delta\left(|\nabla \psi|^{-2}\right) \\
& -i \Delta\left\{\varphi(x) \Delta \psi(x)|\nabla \psi|^{-2}\right\}|\nabla \psi|^{-2}-i \sum_{j=1}^{n} \partial_{j}\left\{\varphi(x) \Delta \psi(x)|\nabla \psi|^{-2}\right\} \partial_{j}\left(|\nabla \psi|^{-2}\right) \\
& -i \varphi(x) \Delta \psi(x)|\nabla \psi|^{-2}\left(\Delta\left(|\nabla \psi|^{-2}\right)-\varphi(x)\left\{\Delta \psi(x)|\nabla \psi|^{-2}\right\}^{2}\right.
\end{aligned}
$$

and the inequality (5.1) for the case $m=1$ it follows that

$$
\left|\int e^{i \psi(x)} \varphi(x) d x\right| \leq C_{4} C^{-2}\left\|\varphi_{1}\right\|_{W_{1}^{2}},
$$

since $\left\|\varphi_{1}\right\|_{W_{1}^{2}} \leq C_{6}^{\prime} C^{-2}\|\varphi\|_{W_{1}^{4}}$. Hence we have the inequality (5.1) for the case $m=2$. Repeating this argument we get the inequality for arbitrary m.

Next, we prove the following
Lemma 5. Let $\psi \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ with support contained in the set $\{\xi ; 1 / 4<|\xi|<$ $4\},|t| \leq 1$, and let $N \geq 1, a>1,1 / N \leq|x| \leq 2 a(4 N)^{a-1}$. Then

$$
\left|\int e^{i x \xi+i t|\xi|^{a}} \psi\left(\frac{\xi}{N}\right) d \xi\right| \leq C(n, a, \psi) N^{n / 2}|x|^{-n / 2}
$$

Proof. Assume that $1 \leq N|x| \leq 2 a|t| 4^{a-1} N^{a}$. Apply Lemma 1 in Sjölin [10] to the integral

$$
K_{N}(t, x)=\int e^{i x \xi+i t|\xi|^{a}} \psi\left(\frac{\xi}{N}\right) d \xi=N^{n} \int e^{i N x \xi+i t N^{a}|\xi|^{a}} \psi(\xi) d \xi
$$

Then, we have

$$
\begin{aligned}
\left|K_{N}(t, x)\right| & \leq C(n, a, \psi)\left(|t| N^{a}\right)^{-n / 2} N^{n} \\
& \leq C(n, a, \psi)\left(\frac{N|x|}{2 a 4^{a-1}}\right)^{-n / 2} N^{n}=C^{\prime}(n, a, \psi) N^{n / 2}|x|^{-n / 2}
\end{aligned}
$$

When $|x|>2 a|t|(4 N)^{a-1}$,

$$
\begin{gathered}
\left.\left.\left|N x+a t N^{a}\right| \xi\right|^{a-2} \xi|\geq N| x|-a| t\left|N^{a}\right| \xi\right|^{a-1} \geq N|x| / 2 \geq a|t| 4^{a-1} N^{a}, \\
\left|\partial_{\xi}^{\alpha}\left(N x \xi+t N^{a}|\xi|^{a}\right)\right| \leq C_{\alpha}\left|\left\{N x+a t N^{a}|\xi|^{a-2} \xi\right\}\right| \quad \text { for any } \alpha
\end{gathered}
$$

holds for any $1 / 4<|\xi|<4$, so that by Lemma 4 we get

$$
\left|K_{N}(t, x)\right| \leq C^{\prime}(n, a, \psi)(N|x|)^{-2 m} N^{n}
$$

Here, m is the least integer such that $2 m>n$. Combining this with the simple inequality $\left|K_{N}(t, x)\right| \leq C(\psi) N^{n}$, we have

$$
\begin{aligned}
\left|K_{N}(t, x)\right| & \leq\left[C(n, a, \psi) N^{n-2 m}|x|^{-2 m}\right]^{n / 4 m}\left[C(\psi) N^{n}\right]^{1-n / 4 m} \\
& =C(n, a, \psi) N^{n / 2}|x|^{-n / 2} .
\end{aligned}
$$

Now, let us prove Lemma 2. It is easy to see that

$$
\begin{aligned}
S_{j}^{*} g(x) & =c_{n} \iint e^{i(x-y) \xi-i t(y)|\xi|^{a}} \psi_{j}(\xi) g(y) d \xi d y \\
S_{j} S_{j}^{*} g(x) & =c_{n} \iint e^{i(x-y) \xi+i\left\{t(x)-t(y)|\xi|^{a}\right.} \psi_{j}(\xi)^{2} g(y) d \xi d y \\
& =\int K_{j}(x, y) g(y) d y
\end{aligned}
$$

where

$$
K_{j}(x, y)=c_{n} \int e^{i(x-y) \xi+i\{t(x)-t(y)\}|\xi|^{a}} \psi_{j}(\xi)^{2} d \xi
$$

The norm of the integral operator $S_{j} S_{j}^{*}$ is obtained from the inequalities:

$$
\begin{equation*}
\int\left|K_{j}(x, y)\right| d x \leq C(n, a, \psi) 2^{j a n / 2}, \quad \int\left|K_{j}(x, y)\right| d y \leq C(n, a, \psi) 2^{j a n / 2} \tag{5.2}
\end{equation*}
$$

which can be proved as follows: It is clear that

$$
\left|K_{j}(x, y)\right| \leq C_{n} \int\left|\psi\left(2^{-j} \xi\right)^{2}\right| d \xi=C_{n} 2^{j n}\|\psi\|_{L_{2}}^{2}
$$

holds for any x and y. Also, we have as in Proof of Lemma 5 that

$$
\left|K_{j}(x, y)\right| \leq C(n, a, \psi) 2^{j(n-2 m)}|x-y|^{-2 m}
$$

holds for any $|x-y| \geq 2 a 2^{(2+j)(a-1)}$, where m is an integer such that $2 m>n$. Hence, by Lemma 5 we obtain that

$$
\begin{aligned}
& \int\left|K_{j}(x, y)\right| d y \\
& \quad \leq C(n, a, \psi)\left\{\int_{|y-x| \leq 2^{-j}} 2^{j n} d y+\int_{2^{-j} \leq|y-x| \leq 2 a 2^{(2+j)(a-1)}} 2^{j n / 2}|y-x|^{-n / 2} d y\right. \\
& \left.\quad+\int_{|y-x| \geq 2 a 2^{(2+j)(a-1)}} 2^{j(n-2 m)}|y-x|^{-2 m} d y\right\}
\end{aligned}
$$

holds for any $x \in \boldsymbol{R}^{n}$. The second inequality in (5.2) can be proved in the same way. Now, from (5.2) we have

$$
\left\|S_{j} S_{j}^{*}\right\|_{\mathcal{L}\left(L_{2}, L_{2}\right)} \leq C^{2} 2^{j a n / 2},
$$

where C is a constant independent of j and $t(x)$, which gives (4.4), because $\|A\|=\left\|A A^{*}\right\|^{1 / 2}$ holds for any bounded linear operator A between Hilbert spaces.
6. Proof of Theorem 4. To prove Theorem 4 we start with

Lemma 6. Let $\psi \in C^{\infty}$ with support contained in the set $\{\xi ; 1 / 4<|\xi|<4\}$, and let j be a positive integer, $I=(0,1), 1 \leq p \leq \infty$, and $a>1$. Define the operator P_{j} by

$$
P_{j}: g \rightarrow c_{n} \int e^{i x \xi+i t|\xi|^{a}} \psi\left(2^{-j} \xi\right) \hat{g}(\xi) d \xi
$$

Then,

$$
\left\|P_{j}\right\|_{\mathcal{L}_{\left(L_{p}\left(\boldsymbol{R}^{n}\right), L_{p}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)\right)} \leq C 2^{j a n / 2}, ~}^{\text {and }}
$$

where C is a constant independent of j.
Proof. We consider P_{j} as an integral operator with $\mathcal{L}\left(C, L_{\infty}(I)\right)$-valued kernel, i.e.,

$$
P_{j} f(x)=\int \vec{K}_{j}(x-y) f(y) d y
$$

where

$$
\vec{K}_{j}(x)=K_{j}(t, x)=c_{n} \int e^{i x \xi+i t|\xi|^{a}} \psi\left(2^{-j} \xi\right) d \xi
$$

Hence, the conclusion follows from the estimate

$$
\int\left\|\vec{K}_{j}(x)\right\|_{\mathcal{L}\left(C, L_{\infty}(I)\right)} d x=\int \text { ess. } \sup _{|t| \leq 1}\left|K_{j}(t, x)\right| d x \leq C(n, a, \psi) 2^{j a n / 2} .
$$

It is clear that

$$
\left|K_{j}(t, x)\right| \leq \int\left|\psi\left(2^{-j} \xi\right)\right| d \xi=2^{j n}\|\psi\|_{L_{1}}
$$

holds for any x. Also, we have as in Proof of Lemma 5 that

$$
\left|K_{j}(t, x)\right| \leq C(n, a, \psi) 2^{j(n-2 m)}|x|^{-2 m}
$$

holds for any $|x| \geq 2 a 2^{(2+j)(a-1)}$, where m is an integer such that $2 m>n$. Hence, by Lemma 5 we obtain that

$$
\begin{aligned}
& \int \text { ess. } \sup _{|t| \leq 1}\left|K_{j}(t, x)\right| d x \\
& \qquad \begin{array}{l}
\leq C(n, a, \psi)\left\{\int_{|x| \leq 2^{-j}} 2^{j n} d x+\int_{2^{-j} \leq|x| \leq 2 a 2^{(2+j)(a-1)}} 2^{j n / 2}|x|^{-n / 2} d x\right. \\
\left.\quad+\int_{|x| \geq 2 a 2^{(2+j)(a-1)}} 2^{j(n-2 m)}|x|^{-2 m} d x\right\}
\end{array} \\
& \quad \leq C^{\prime}(n, a, \psi) 2^{j a n / 2} .
\end{aligned}
$$

Proof of Theorem 4. The results for the case $p=2$ are given in Theorem 2 and Theorem 3. Next, consider the case where $p=1$. It follows from the identity (4.1) that

$$
T_{2} f=\sum_{j=0}^{\infty} P_{j} f_{j}
$$

where

$$
\begin{aligned}
P_{j}: g \rightarrow v(t, x) & =c_{n} \int e^{i x \xi+i t|\xi|^{a}} \psi_{j}(\xi) \hat{g}(\xi) d \xi \\
f_{j}(x) & =c_{n} \int e^{i x \xi} \varphi_{j}(\xi) \hat{f}(\xi) d \xi
\end{aligned}
$$

By this formula we see that

$$
\left\|T_{2} f\right\|_{L_{1}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)} \leq \sum_{j=0}^{\infty}\left\|P_{j} f_{j}\right\|_{L_{1}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)}
$$

which gives with the aid of Lemma 6 that

$$
\left\|T_{2} f\right\|_{L_{1}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)} \leq C \sum_{j=0}^{\infty} 2^{j a n / 2}\left\|f_{j}\right\|_{L_{1}\left(\boldsymbol{R}^{n}\right)} \leq C^{\prime}\|f\|_{B_{1,1}^{a n / 2}\left(\boldsymbol{R}^{n}\right)}
$$

In the same way we have

$$
\begin{aligned}
\left\|T_{2} f\right\|_{L_{\infty}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)} & \leq \sum_{j=0}^{\infty}\left\|P_{j} f_{j}\right\|_{L_{\infty}\left(\boldsymbol{R}^{n} ; L_{\infty}(I)\right)} \\
& \leq C \sum_{j=0}^{\infty} 2^{j a n / 2}\left\|f_{j}\right\|_{L_{\infty}\left(\boldsymbol{R}^{n}\right)} \\
& \leq C^{\prime}\|f\|_{B_{\infty, 1}^{a n / 2}\left(\boldsymbol{R}^{n}\right)}
\end{aligned}
$$

For the case $1<p<2$ (the case $2<p<\infty$) the result follows from that for the cases $p=1,2$ (the cases $p=2, \infty$) and the complex interpolation:

$$
\left[B_{p_{0}, q_{0}}^{\sigma_{0}}, B_{p_{1}, q_{1}}^{\sigma_{1}}\right]_{\theta}=B_{p, q}^{\sigma}
$$

with

$$
\sigma=(1-\theta) \sigma_{0}+\theta \sigma_{1}, \quad \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}
$$

References

[1] A. Carbery, Radial Fourier multipiers and associated maximal functions, in: Recent Progress in Fourier Analysis, Proc. Seminar on Fourier Analysis held at El Escorrial, Spain, 1983, North-Holland Math. Stud. 111. North-Holland, 1985, 49-56.
[2] M. Cowling, Pointwise behaviour of solutions to Schrödinger equations, in Harmonic Analysis, Proc. Conf. Cortona, Italy, 1982, Lecture Notes in Math. 992 (1983), Springer, 83-90.
[3] S. Fukuma, Radial functions and maximal estimates for radial solutions to the Schrödinger equation, To appear in Tsukuba J. Math.
[4] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
[5] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the intial value problem for the Kortweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347.
[6] C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equation, Ann. Inst. H. Poincare Anal. Non Lineaire 10 (1993), no. 3, 255-288.
[7] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Kortweg-de Vries equation via the contraction principle, Comm. Pure and Appl. Math. 46 (1993), no. 4, 527-620.
[8] T. Muramatu, On Besov spaces of functions defined in general region, Publ. RIMS, Kyoto Univ. 6 (1970/1971), 515-543.
[9] T. Muramatu, On Imbedding of Besov spaces of functions defined in general region, Publ. RIMS, Kyoto Univ. 7 (1971/1972), 261-285.
[10] P. SJÖLIN, Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110(2) (1994), 105-114.
[11] H. Tribel, Multiplication properties of the spaces $B_{p, q}^{s}$ and $F_{p, q}^{s}$, Quasi-Banach algebra of function, Ann. Mat. Pura Appl. (4) 113 (1977), 33-42.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8571
Japan

Department of Mathematics
Chuo University
1-13-27 Kauga, Bunkyo-ku, Tokyo, 112-8551
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 42B25; Secondary 35Q55.
 Key words and phrases. Maximal function, Besov norm, Schrödinger equation.

