
Tohoku Math. J.

51(1999), 329-364

SINGULAR INVARIANT HYPERFUNCTIONS ON THE SPACE
OF REAL SYMMETRIC MATRICES

Dedicated to Professor Takeshi Hirai on his sixtieth birthday

MASAKAZU MURO

(Received March 26, 1998, revised April 14, 1999)

Abstract. Singular invariant hyperfunctions on the space of real symmetric matrices of
size n are discussed in this paper. We construct singular invariant hyperfunctions, i.e., invariant
hyperfunctions whose supports are contained in the set of the points of rank strictly less than n,
in terms of negative order coefficients of the Laurent expansions of the complex powers of the
determinant function. In particular, we give an algorithm to determine the orders of poles of the
complex powers of the determinant functions and the support of the singular hyperfunctions
appearing in the principal part of the Laurent expansions of the complex powers.

Introduction. A complex power of a polynomial is an important material to study in

contemporary mathematics. We often encounter integrals of complex powers of polynomi-

als in various aspect; for example, zeta functions of various types, hypergeometric functions

and their extensions, kernels of integral transformations and so on. There are many impor-

tant problems we have to solve. In particular, the explicit calculation of the exact orders of

poles and the principal parts of the Laurent expansions at the poles with respect to the power

parameter is an essential problem.

In this paper, we study the microlocal structure of the complex power of the determinant

function on the real symmetric matrix space, and compute the exact order of poles with respect

to the power parameter (Theorem 2.2). Moreover, we determine the exact support of the

principal part of the pole (Theorem 2.3).

By these theorems, we can construct a suitable basis of the space of singular invariant

hyperfunctions on the space o f « x n real symmetric matrices V := Symn(R). The hyper-

functions belonging to the basis are expressed by the coefficients of the Laurent expansion of

I det(x)|5, the complex power of the determinant function. We estimate the exact order of the

poles of I det(jc)|5 and give the exact support of the negative-order coefficients of the Laurent

expansion of | det(jc) \s.

In Section 1, we introduce some notions and basic properties on the complex power

function P^a's\x) on the space of real symmetric matrices. In the next section (Section

2), the main theorems are stated without proof. In Section 3, we explain principal symbols

σΛ(pίa's](x)) of the regular holonomic hyperfunction P^a's\x) on the Lagrangian subvariety
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A and the coefficient functions c/'*(5, s) on the connected Lagrangian component ΛJ'k. We

investigate some distinguished properties of the coefficient functions and give the recursion

relation formula. They will play a crucial role in the proof of the main theorems. However,

since the purpose of this article is to calculate the singular invariant hyperfunctions explicitly,

we only give an outline of the principal symbol theory. For details, see Kashiwara [4], [5],

Kashiwara-Kawai [6], Kashiwara-Shapira [9], and so on. In the last three sections (Section 4,

Section 5, Section 6), the proof of the main theorems is given.

We can obtain the same results on similar matrix spaces, for example, the space of com-

plex Hermitian matrices or quaternion Hermitian matrices. They will appear in the forthcom-

ing article [14].

We list here some related works on this topic. Similar results has been obtained by Blind

[1] and [2] by a functional analytic method. Gelfand and Shilov [3] is the first elementary

text on the complex powers of polynomials. Raϊs [15] treated invariant distributions from his

original view point. Satake [16] and Satake-Faraut [17], Sato-Shintani [18] and Shintani [19]

are the works on zeta functions associated to the symmetric matrix space, which is closely

related to the hyperfunctions treated here.

ACKNOWLEDGMENT. The author expresses his hearty thanks to the reviewer of this

paper for useful comments and kind suggestions.

1. Complex powers of the determinant function. In this section, we explain our

problem more precisely, introduce some notions and notations, and state some preliminary

known results. They are well-known results and we omit the proof.

1.1. Some fundamental definitions. Let V := Sym« (R) be the space of n x n symmet-

ric matrices over the real field/? and let GLn(R) (resp. SLn(R)) be the general (resp. special)

linear group over R. Then the real algebraic group G := GLn(R) acts on the vector space V

through the representation

(1) p(g) : x H> g x *g,

with x e V and g e G. We say that a hyperfunction f(x) on V is singular if the support of

f(x) is contained in the set S := {x e V | det( c) = 0}. We call 5 a singular set of V. In

addition, if f{x) is SLn(R)-invariant, i.e., f(g x) = f(x) for all g e SLn(R), we call / (*)

a singular invariant hyperfunction on V.

Put P(x) := det(x). Then P(x) is an irreducible polynomial on V, and is a relative

invariant corresponding to the character det(#)2 with respect to the action of G, i.e., P(p(g)

x) = det(g)2P(x). The non-singular subset V — S decomposes into n + 1 open G-orbits

(2) Vi : = [x e Symn(R)\sgn(x) = (/, n - ι)}

with / = 0, 1,... , n. Here, sgn(x) for x e Symn(R) is the signature of the quadratic form

#jt(5) = / v - x v on v e Rn. We let for a complex number s e C,

(3) \P(x)\s
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Let y(V) be the space of rapidly decreasing smooth functions on V. For f(x) e &*(V), the

integral

(4) Z, (/,*):= ί \P(x)\s

if(x)dx,
Jv

is convergent if the real part ΐϋs of s is sufficiently large and is meromorphically extended

to the whole complex plane. Thus we can regard \P(x)\s

t as a tempered distribution with

a meromorphic parameter s e C. We consider a linear combination of the hyperfunctions

\P(x)\ϊ

(5)
ι=0

with 5 G C and a := («o, a\,... ,an) e Cn+ι. Then p[fl'5J(jt) is a hyperfunction with a

meromoφhic parameter s e C, and depends on β e C n + 1 linearly.

REMARK 1.1. Hyperfunctions (or microfunctions) with a meromoφhic parameter is

defined as follows. Let D be a domain in C. We say that u(s, x) a hyperfunction (or a micro-

function) with a holomoφhic parameter s e Z) if it satisfies the Cauchy-Riemann equation

with respect to 5 on D. We say that u(s, x) a hyperfunction (or a microfunction) with a mero-

moφhic parameter s e D if it is a hyperfunction (or a microfunction) with a holomoφhic

parameter s e D — K with a discrete subset K of D, and, for each so £ £\ there exists

m e Z>o such that (5 — so)mu(s, x) is holomoφhic with respect to s near so. For the detail

of the properties on hyperfunctions (or microfunctions) with a holomoφhic parameter, see [7,

those after Definition 3.8.4].

1.2. Basic properties and some known results on complex powers. The following the-

orem is easily proved by the general theory of b-ϊunctions. See, for example, [13].

THEOREM 1.1. 1. P[a's\x) is holomorphic with respect to s e C except for the

poles at s = -{k + l)/2 with k = 1, 2,

2. The possibly highest order of the pole ofpίa^ (x) at s = — (k + l)/2 is given by

[ ψ j ( * = 1 , 2 , . . . , n - l ) ,

(6) * LfJ (k = n,n + l,... , andk + nisodd),

L ^ J (Ifc = n, H + 1, . . . , αrcd A: + n is even).

Here, [xj means the floor ofx e R, i.e., the largest integer which does not exceed x.

Any negative-order coefficient of a Laurent expansion of P^a^ (x) is a singular invariant

hyperfunction, since the integral

(7) [f(x)P[^s](x)dx = Σ zi(f>
J 1=0

is an entire function with respect to s e C if f(x) € CQ°(V - 5), where CQ°(V - 5) is the
space of compactly supported C°°-functions on V — S. Conversely, we have the following
proposition.
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PROPOSITION 1.2 ([12], [13]). Any singular invariant hyperfunction on V is given as

a linear combination of some negative-order coefficients of Laurent expansions of pίa's\x)

at various poles and for some a e C Λ + 1 .

PROOF. The prehomogeneous vector space

(G,V) := (GLn(R),Symn(R))

satisfies the sufficient conditions stated in [12] and [13]. One is the finite-orbit condition and

the other is that the dimension of the space of relatively invariant hyperfunctions coincides

with the number of open orbits. D

1.3. Orbit decomposition. The vector space V decomposes into a finite number of

G-orbits;

(8) V:= LJ Sj
0<i<n

0<j<n-i

where

(9) S{ : = {x e S y m n ( R ) | s g n ( x ) = ( j , n - i - j)}

with integers 0 < i < n and 0 < j < n — i. A G-orbit in S is called a singular orbit. The

subset Si := {x e V\ rank( t) = n — i] is the set of elements of rank n — i. It is easily seen

that S := LJi</<« $i a n c* S/ = L\o< j<n-i tf Each singular orbit is a stratum which not only

is a G-orbit but is an SLn(R)-orbit The strata {S{}\<i<n,o<j<n-i have the following closure

inclusion relation

no) S/DS/;/US/ + 1 ,

where Sj means the closure of the stratum Sj.

The support of a singular invariant hyperfunction is a closed set consisting of a union of

some strata Sj. Since the support is a closed G-invariant subset, we can express the support

of a singular invariant hyperfunction as a closure of a union of the highest rank strata, which

is easily rewritten in terms of a union of singular orbits.

2. Statement of the main results. In this section we state the main problems and

results. When we give a complex n + 1 dimensional vector a e C n + 1 , we can determine the

exact order of poles of P^a's\x) and the exact support of the hyperfunctions appearing in the

principal part of the Laurent expansion. We shall give the statements of the theorems in this

section without proof. The proof will be given in Section 5.

2.1. Main problem. When we consider complex powers of relatively invariant poly-

nomials, we naturally ask the following questions.

PROBLEM 2.1. What are the principal parts of the Laurent expansion of P^a^(x)

at poles? What are their exact orders of poles? What are the supports of negative-order

coefficients of a Laurent expansion of P^a^ (x) at poles?
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In order to determine the exact order of the pole of P^a^ (x) als = so, we introduce the
coefficient vectors

(11) d^[s0] := (d{
o
k)[sol d[k)[s0l... , d(

n
k\[s0]) e ((Cn + 1)*)n-*+ 1

with k = 0, 1 , . . . , n. Here, (Cn+1)* means the dual vector space of C"*+1. Each element of
d^[so] is a linear form on a e C n + 1 depending on so € C, i.e., a linear map from C"+ 1 to C,

(12) d^k)[s0] : C"+ 1 9 2 h^ (df W 2 ) G C .

We denote

(13) (d{k)[sol a) = ((d«\sol a), (d[%o\, a),... , (d™k[s0], a)) e Cn~k+γ.

DEFINITION 2.1 (Coefficient vectors d{k)[so\). Let SQ be a half integer, i.e., a ra-

tional number given by g/2 with an integer q. We define the coefficient vectors

(k = 0, 1,... , n) by induction in the following way.

1. First, we set

(14) d^[s0] := (40)fo>L Λ o

such that ( 4 O ) [ so] , a) : = «/ for i = 0, 1 , . . . , « . Next, we define d{l)[s0] by

(15) J ( 1 )[5 0] := (d™[sold[l)[so],. . ,d{

n

ι\[s0]) e ( (C" + 1 )*)"

with df\s0] := 4O)[^o] + ΦoWjπ[*<>]. H e r e '

{ I if so is a strict half integer,

( 1)^0+1 xf J 1 S a nA strict half integer means a rational number given by q/2 with an odd integer q.

2. Then, by induction on k, we define the coefficient vectors d^ [so] for k = 0, 1,... , «

by

(17) 4< ££,
with rff +1>[S0] := df-%o] - dfl-%Q\ and

(18) d^[s0] •= (d^isol d\2%ol.. , fiM e

Then we have the following proposition.

PROPOSITION 2.1. Let so be a half integer. Then we have the following results.

1. There exists an even integer io in 0 < io < n + 1 such that

^ _̂  f φ 0 for all odd i in 0 < / < io
(19) (d">[s0la)is .

[ == 0 for all odd i in n > i > io •

2. There exists an odd integer i\ in — 1 < i\ < n + 1 such that

0 for all even i inO < i < ί\ ,(20) < r f W 5 > « π , ,, . . .
[ = 0 /orα//eveni inn > i > j
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PROOF. Let so be a half integer. For an integer / in 0 < / < n — 2 and a e C " + 1 , if

(rf(/)|>oL 2) = 0, then (rf(/+2)|>oL a) = 0 from the definition of d(i)[sol In other words, if

(rf(/+2)[5θL a) φ 0, then (d{i)[sol 5) ^ 0. Hence we have the result. D

2.2. Results on the poles of the complex power functions. Using the above mentioned

vectors rf^On], we can determine the exact orders of poles of P^a^(x).

THEOREM 2.2 (Exact orders of poles). By using the coefficient vector d^ [so] defined

in Definition 2.1, the exact orders of poles of P^a's\x) are computed by the following algo-

rithm.

1. The exact order P^a's\x) at s = —(2m + l)/2 (m = 1, 2, . . . ) is given in terms of

the coefficient vector d^2k)[-(2m + l)/2],

(a) If\<m< n/2, then P^a^ (x) has a possible pole of order not greater than m.

• P[^s](x) is holomorphic if and only if{d{2)[-(2m + l)/2], a) = 0.

• For a fixed integer p in 1 < p < m, P^a's\x) has pole of order p if and only if

(d(2P+2)[-(2m + l)/2], a) = 0 and {d{2p)[-(2m + l)/2], a) φ 0.

• P&s](x) has pole of order m if and only if (d{2m)[-(2m + l)/2], a) φ 0.

(b) If m > n/2, ί/ze/i P^'5^(x) /ẑ s a possible pole of order not greater than n' :=

\nβ\.

• P^s](x) is holomorphic if and only if{d{2)[-(2m + l)/2], 5) = 0.

• For a fixed integer p in 1 < p < n\ P^a^(x) has pole of order p if and only if

{άP-P+2\-(2m + l)/2], a) = 0 fl/w/ {d{2P)[-(2m + l)/2], 5) ^ 0.

• P [ 5 ' 5 ] (x) has pole of order n' if and only if (d{n~l)[-(2m + l)/2], a) φ 0 (w/ẑ π n

w oJd) or (dr(")[-(2m + l)/2], a) φ 0 (wA^π n w even).

2. Ŵ  obtain the exact order at s = —m (m = 1, 2, . . .) in terms of the coefficient

vectors d{2k+X)[-m].

(a) Ifl<m<n/2, then P^a^ (x) has a possible pole of order not greater than m.

• P&s\x) is holomorphic if and only if(dil)[-m], a) = 0.

• For a fixed integer p in 1 < p < m, P^a's\x) has pole of order p if and only if

[ _ w ] i ^) = 0 and (di2P~l)[-ml a) φ 0.

has pole of order m if and only if {d{2m-l)[-ml a) φ 0.

(b) Ifm> n/2, then P[a's\x) has a possible pole of order not greater than n' :=

• P [ 5 ' J ] ( J C ) is holomorphic if and only if{d{l)[-m], a) = 0.

• For a fixed integer p in 1 < p < n\ P^a's\x) has pole of order p if and only if

• P^a-S\x) has pole of order nr if and only if (d^[—m], a) φ 0 (when n is odd) or

(d^n~ι^[—m], a) φ 0 (when n is even).

2.3. Results on the supports of the principal symbols. The exact support of P^a^ (x)

is given by the following theorem.
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THEOREM 2.3 (Support of the singular invariant hyperfunctions). Let q be a positive

integer. Suppose that P^a's\x) has pole of order p at s = —(q + l)/2. Let

(21) P&<*\x) = £ P^+ι^(x) (s + i ± i )
w=-p \

be ί/i£ Laurent expansion of P^UjS\x) at s = —{q -+- l)/2. 77*e support of the Laurent expan-

sion coefficients P ^ ' ~ ( ^ + 1 ) / 2 ] ( J C ) w contained in S ifw < 0.

1. Lei # Z?e β« even positive integer. Then the support of P{^'~ (x) for w =

— 1, —2,. . . , —p is contained in the closure S-2W More precisely, it is given by

(22) Supp(P£5 -(*+1)/21(jc)) = ( J Sj_2w.

je{0<j<n+2w\(d{Γ2w\-{q+\)/2U)φ0}

2. Let q be an odd positive integer. Then the support of Pw (x) far w =

— 1, —2, . . . , — p is contained in the closure S-2w-\- More precisely, it is given by

(23) Supptptf'-^1)/2^)) = U Sj__2w_{ .
+l)/2],fl)7έ0}

Here, Supp(—) means the support of the hyperfunction in (—).

3. Principal symbols of invariant hyperfunctions. In this section, we review the

notion of principal symbols of simple holonomic microfunctions and coefficient functions

with respect to the canonical basis of principal symbols. Our proof is on the line that we

reduce the pole of the order and the support of the Laurent expansion coefficients of the hy-

perfunction of P^a's\x) to those of the microfunction sp(P [α'^(;c)). We adopt the manner

that we calculate the coefficient functions (Definition 3.2) of sp(P^a^(x)) instead of dealing

with the microfunction itself, since it is not easy to handle the microfunction directly. Propo-

sition 3.7 and Proposition 3.8 guarantee that the calculation of the coefficient functions is

equivalent to that of the microfunction. Lastly, in Proposition 3.9 and Proposition 3.10, we

shall give recursion relations (59) and (60) among the coefficient functions. Then our problem

is finally reduced to the estimate of the orders of poles of the coefficient functions, which are

meromorphic functions in s explicitly computed by the recursion formula (59).

3.1. Microfunctions on the cotangent bundle. Let 23y be the sheaf of hyperfunctions

on V and let Cy be the sheaf of microfunctions on the cotangent bundle T*V of V. We have a

natural isomorphism sp:

(24) sp : £ v -^> τr*(ev)

and an exact sequence

(25) 0 -• Λv -> £v -• π*(ev\τ*v-v) -* 0.

Here, π is the projection map from the cotangent bundle T*V to V and Ay is the sheaf of real

analytic functions on V. By the isomorphism (24), we can regard a hyperfunction f(x) on

V as a microfunction sp(/(x)) on Γ*V. In this article, we often identify the hyperfunction
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f(x) on V with the microfunction sp(/(x)) on T*V through the isomorphism (24). We call

the support Supp(sp(/(x))) the singular support of f(x).

REMARK 3.1. In this paper, the sheaf Gy means the sheaf of microfunctions on Γ* V,

not on Γ* V — V. It was originally denoted by Cy when Sato introduced the notion of micro-

function originally. Roughly speaking, the sheaf of microfunctions Cy on Γ* V is the union

of the sheaf of hyperfunctions 23 y and the sheaf Qv\τ*v-v- When the notion of microfunc-

tion was introduced as a singular part of a hyperfunctions, it often meant the sheaf Qγ\τ*v-v-

However, in this article, we always mean by the sheaf Cy the one on the whole space T*V.

3.2. Holonomic systems for relatively invariant hyperfunctions. We consider invari-

ant hyperfunctions on V under the action of G as solutions to a holonomic system. Let f(x)

be a hyperfunction on V. We say that f(x) is a χs-invariant hyperfunction if

(26) f(p(g)χ) = χ(gYf(χ)

for all g e G with s e C and χ(g) := det(#)2. Then, it is a hyperfunction solution to the

following system of linear differential equations Ms obtained by taking infinitesimal actions

ofG,

(27) Ms : (ldp(A)x, —) - sδχ(A) ) u(x) =0 for all A e 0 .

V\ Bxl )
Here, 0 is the Lie algebra of G; dp is the infinitesimal representation of p; δχ is the infini-

tesimal character of χ. The system of linear differential equation (27) is a regular holonomic

system and hence the solution space is finite dimensional. See [13] for details.

The characteristic subvariety of the holonomic system (27) is denoted by ch(M5). It is

given by

(28) ch(Ms) := {(x,y) e T*V\(dp(A)x,y) =0 for all A e 0}.

The characteristic variety has the following irreducible component decomposition,

(29)
i=0

with Ai = Γ£ V, where T£ V stands for the conormal bundle of the orbit S, of rank n — i. It

is well-known that the singular support of the hyperfunction solution to Ms is contained in

ch(M,).

REMARK 3.2. In this article, the singular support of a hyperfunction f(x) means, by

definition, the support of sp(/(jc)) in Γ* V, and not in Γ* V - V.

We denote by V* the dual vector space of V. The cotangent bundle T*V is naturally

identified with the product space V x V*. Since the group G acts on V* by the contragredient

action, V x V* admits a G-action. The characteristic variety ch(M5) is an invariant subset in

V xV*, and it decomposes into a finite number of orbits. See [10, Proposition 1.1].
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PROPOSITION 3.1. The holonomic system JAS is simple on each Lagrangian subvari-

ety Ai. The order ofJAs on Ai is given by

(30) oτάA QΛS) = —is .
1 4

The irreducible Lagrangian subvarίeties Ai and Λ/+i have an intersection of codimension

one.

PROOF. The orders on Ai are calculated in [10]. The intersections of codimension one

among Ai's are also given there. See the holonomy diagrams in [10]. D

3.3. Principal symbols on simple Lagrangian subvarieties. Recall the definition of a

principal symbol on a simple holonomic system defined in [10], which was originally defined

by [4] and [5]. Let A be a non-singular Lagrangian subvariety and let u(x) be a local section

of a microfunction solution to a simple holonomic system M whose support is A. We denote
1

by OA (W) the principal symbol of u{x) on A. It is a real analytic section of V I Φ Λ I Φ A / I ^ V I

where VΊΦΛI a n d vΊ^vl a r e the sheaves of half-volume elements on A and V, respectively.

For the precise definition, see [10, Definition 2.7] and also the definitions in [4] and [5]. As

explained in [10], the map

(31) σy\ : w H> σ^(w)

is a linear isomorphism from the space of microfunction solutions to the space of principal

symbols of the holonomic system Ms. In other words, there is a one-to-one correspondence

between the local sections of the microfunction solution to Ms and those of its principal

symbol.

When we consider a hyperfunction solution to the holonomic system Ms, it suffices to

handle the global section of the principal symbol on a open dense subset of ch(M5). We shall

explain the meaning below. The final statement will be given in Proposition 3.7.

First, we introduce the open dense subset A° of Ai and consider the solutions on A°.

DEFINITION 3.1 (Open dense subset in Λ°). Let Ai be one of the irreducible compo-

nents of ch(M5) defined in (29). We define the subset A° by

(32) A°i := Ai - \J Aj .

It is an open dense subset of Ai.

The open subset A° consists of several open connected components, each of which is a

G-orbit. Furthermore, Λ° is a non-singular algebraic subvariety and an open dense subset in

PROPOSITION 3.2. The open set A°t of Ai decomposes into the following G-orbits

(33) Λ°= LJ Λf'k

~0<k<i
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with

(34)

Here,

and Ip is the identity matrix of size p. Each orbit Λj' is a connected component in A°.

3.4. Canonical basis of principal symbols. We shall give a canonical basis of the prin-

cipal symbol following [8] and [10]. Let Λ° be the open subset defined by Definition 3.1 and

let ΛJ' be a connected component in Λ°. We define a non-zero real analytic section £?/' (s)

J\ωΛj,k(x,y)\.

PΛMx,y):=P(τf(x,y))/(σ(x,y)y mΛ.
ΛJ.

(37) ω j,k(x,y) :=
π-[(\dx\)Λdσ(.

σ(x,y)μΛ / dσ(x, y)

where σ := σ(jc, y) is a function on V x V* defined by σ \= (x, y)/n\ π is the projection

map from the subvariety

(38) W :={(*, 3O G Γ*V|(dp(Λ)jc,y) = 0 for all A e 6 0} C V x V*

to V, when 0o •= {̂  ^ ®|5χ(Λ) = 0}; mA( and /x̂ ,. are the constants such that — m^.s —

βΛi/2 is the order of M^ on A[. In particular, mvi/ = / and μA{ = Hi + l)/2 in our case.

The section ί?/' (5) depends on s e C holomoφhically.

PROPOSITION 3.3. Let u(s, x) be a microfunction solution with a complex parameter

s £ C to the holonomic system M 5 and let Aj' be a connected component in Λ°. Then we

have:

1. The principal symbol σΛμ(u(s,x)) is written as a constant multiple of the real

analytic section of Ω-' (s)/ s/\dx\ as follows

(39) σAj.k(u(s, x)) = c{'h(s) Ωjr\s)/y/\dx~\.

Here, \dx \ is a non-zero volume element on V defined by

(40) \dx\ := Λ
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with
f

χ =

χ\\ X\2 ••

X\2 *22 '

\X\n X2n X>nn/

i k i k

Conversely, if the constant multiplication term cy (s) is given on each Ay , then the corre-

sponding microfunction solution u(s,x) satisfying (39) is determined uniquely.

2. cJy (s) is a holomorphίc (resp. meromorphic) function in s e C, if and only ifu(s, x)

depends on s e C holomorphically (resp. meromorphically).

PROOF. 1. This assertion is deduced from the definition of the principal symbol on

prehomogeneous vector space. See [8] for details.

2. This is easily seen, since the isomorphisms sp in (24) and OA in (31) are C[s]-linear,

where C[s] is the polynomial ring of s, and are commutative with the Cauchy-Riemann opera-

tor d/ds. In fact, we see that σAμ (u(s, x)) depends on s holomorphically (resp. meromorphi-

cally) if and only if u(s, x) is a holomorphic (resp. meromorphic) function on s e C because

σΛj,k(u(s,x)) satisfies the Cauchy-Riemann equation with respect to s e C if and only if

u(s, x) also satisfies it. Then, if u(x, s) is holomorphic (resp. meromorphic) with respect to

s, then cJy (s) is a holomorphic (resp. meromorphic) function ins e C, since ί?/' (s)/Λ/\dx\

in (39) is non-zero and depends on s e C holomorphically. D

3.5. Hyperfunction solutions and coefficient functions. In this paper we consider hy-

perfunction solutions to Ms of the form

(41)
i = 0

with a = (ao, a\,... ,an) e Cn+ι introduced in (5). Since P^a^(x) is a hyperfunction with

a meromorphic parameter s e C, the microfunction sp(P^a's\x)) and its principal symbols

σΛJ,k(pίa's\x)) depend on s e C meromorphically. In the particular case (39), we define the

coefficient functions of P^a^(x) on the Lagrangian connected component Λj' as a function

of 2 and s.

DEFINITION 3.2 (Coefficient functions). Let

(42) σΛj,k(PMW) := c/'*(S, s)ΩJ'k(s)/y/\dΓ\

i k -* i k -*

with cy (a,s) being a meromorphic function ins e C. We call c\" (a, s) a coefficient function

or simply a coefficient o

(43)

^(x) on ΛJ' with respect to the canonical basis

Ωl'k(s)/y/\dΓ\.

Then the coefficient functions cJy (a, s) depend on a e Cn+ι linearly and on s e C

meromorphically.
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PROPOSITION 3.4. Let P{aus]{x) and P[a2's\x) be two hyperfunction solutions to the

holonomic system JΛS. If their coefficient functions coincide on each Aγ :

(44) c/ f*(5i,ί) = c/ f Λ(3 2, j),

then we have a\ — a2. In other words, two hyperfunction solutions having the same coefficient
i k

functions on all Aj' 's coincide with each other.
PROOF. Recall the following fact on the uniqueness of hyperfunction solutions to a

holonomic system. It is proved by the same argument as in the main theorem in [11].

LEMMA 3.5. Let f\ (x) and f2(x) be two hyperfunctions whose singular supports are

contained in (J/=o A '» t n e characteristic variety of the holonomic system lήs. Ifsp(f\(x)) =
sP(/2θO) on the open set U/Lo A°» t n e n Λ W coincides with f2(x) as a hyperfunction on V.

Lemma 3.5 asserts that a microfunction solution to Ms is determined by the given data

on U?=o A° Therefore we only need to consider the microfunction solutions on U?=o A°

instead of on the whole characteristic variety ch(M5).

By Proposition 3.3, if (44) is satisfied, then sp(P["^s] (x)) = sp(P["2>s](x)) on each

Lagrangian connected component Aj' and hence they coincide on the open set U/=o A°

Thus, from Lemma 3.5, we have P[a^s](x) = P["2's](x), which means a\ — a2. •
/ k

For a microfunction solution on each Lagrangian connected component Af , we have

the following equivalent conditions.
PROPOSITION 3.6. The following three conditions are equivalent.
1. The microfunction sp(P^a's\x))\Λj,k has pole of order p at s = so.

2. The principal symbol σAμ (sp(P [ α"^ (x))) has pole of order p at s = so.

3. The coefficient cy (a, s) has pole of order p at s = so.

PROOF. By Proposition 3.3-2, the microfunction sp(P^a's\x))\Λik, the principal sym-

bol σΛik(sp(P^a's\x))), and the coefficient c/' (2, s) are all meromorphic with respect to

s e C, since P^a's\x) is a hyperfunction with a meromorphic parameter s e C.

The equivalence of the first two follows from the fact that the isomorphism OA in (31)

is C[s]-linear. In fact, from the general theory of principal symbols of simple microfunc-

tion (see [4]), a principal symbol of a non-zero simple microfunction is non-zero and a sim-

ple microfunction with a non-zero principal symbol is non-zero. Then the principal symbol

σΛj,k((s - so)psp(PM(x))) = (s - so)pσΛJ,k(sp(P[^s](x))) is non-zero at s = so if and

only if (s — so)psp(P^a's\x))\Λj,k is non-zero at s = so.

The equivalence of the second two follows from (39) and that Ωj' (s)/y/\dx\ is holo-
morphic and non-zero at all s € C. D

PROPOSITION 3.7. The following three conditions are equivalent.
1. P ^ ' ^Ot) has pole of order p at s = so.
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2. sp(P[α"^(jt))|, m Ao has pole of order p at s = so.

3. All the coefficient functions in {c{'k(a, s) | 0 < i < TZ, 0 < j < n - i, 0 < k < i]

have pole of order not greater than p at s = SQ and at least one coefficient of them has pole of

order p at s = SQ.

PROOF, the equivalence of 2 and 3 follows from Proposition 3.6, since

Ϊ = 0 0<i<n
0<j<n-i

0<k<i

We now show that the condition 2 follows from the condition 1. If P^'^Qc) has pole of

order p at s = so, then (s — so)p P^a's\x) is a non-zero holomorphic function at s = so with

respect to s. Then

sp(( s - so)pP[B's](x)) = (s- so)
psp(P[B>s](x))

is also holomorphic at s=so and it is non-zero there. (Note that we consider the microfunction

on the whole Γ* Vbut not on Γ * F - V. See Remark 3.1.) Since (s -so)
psip(P[^s](x)) | u ? ΛO

is holomorphic at s = so, sp(P [ ί *' 5 ] (x))l ,n Λo has pole of order not greater than p at s = so.

If the order is strictly less than /?, then (s — so)psp(P^a's\x))\\ m ΛO\ _ is a zero func-
'U/=0 Λi s~s0

tion. Then (s — so)pP^a's\x)\s=s is zero by Lemma 3.5. This is a contradiction. Therefore

sp(P [β'5^(x))|, m Ao has pole of order p at s = so. This means that the condition 2 follows

from the condition 1.

We shall show that the condition 1 follows from the condition 2. If sp(P[α'5^(jc)) |, ,„ ΛO

has pole of order p at s = so, then

(s - so)psp(P^s](x))\UnQΛo = sp((j - so)pP[^s](x

is non-zero and holomorphic at s — so. We note that (s — so)pP[a's\x) is a hyperfunction

whose singular support is contained in U ί = o ^ ' ^ P^a's\x) has pole of order > p, then

the singular supports of the Laurent expansion coefficients of order > p are contained in

U/*=o Λi — UΊ=o Λ°i and hence it is empty by Lemma 3.5. Then the hyperfunction P^aiS\x)

has pole of order p at s = so. Therefore, (s — so)pP^a's\x) is non-zero and holomorphic at

5 = 50. Thus, P^a's\x) has pole of order p at s = so. This means that the condition 1 follows

from the condition 2. D

3.6. Laurent expansions of coefficient functions. We give the Laurent expansion co-

efficients of P^a's\x) and c{' (a, s) in the following definitions.

DEFINITION 3.3. Suppose that the complex power function P^a's\x) has pole of or-

der p at s = so. We give the Laurent expansion of P^a's\x) at s = so by

00

(45) P[S's](x) - Σ P&''
w=—p
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Here,

(46) Pj?'50lW

is the Laurent expansion coefficient of degree w of P^a's\x). For the coefficient c/' (a, s),

we give the Laurent expansion at s = so by

oo

(47) c/ *(2,,)=
u

Here,

is the Laurent expansion coefficient of degree w of c/' (2,5). Since the order of the pole of
i k ->

q ' (α, ̂ ) at s = so is not greater than /?, some of the beginning Laurent expansion coefficients

of (47) may be zero.

We can express the support of Pw (x) in terms of the Laurent expansion coefficients

of c\" (3,5"). Namely, we have the following proposition.

PROPOSITION 3.8. Suppose that P[ά's](x) has pole of order p at s = sO Let (45) be

the Laurent expansion of P^a's\x) at s = SQ. Then we have

(49) Suppί/f ^OO) = U S/

with L := {(i,j) e Z 2 |ord ί = ί 0(c/'*(3,s)) > -w for some k e Zί l [O, i ] j . Here, [0,i]

means the closed interval in Rfrom 0 ίo / «n<i ord 5 = 5 0 (q ' (α, 51)) stands for the order of pole
i k -*

ofcγ (β, s) at s = so.
PROOF. For a hyperfunction f(x) on V, we have

Supp(/(jc)) = π(Supp(sp(/(x))))

by the isomoφhism (24). Therefore, we have

(50) Supp(/f'5o](*)) = π(Supp(sp(Λif'5o](x)))).

Let ^ be an integer satisfying —p < —q < +oo. If sp(P^a's\x))\ j,k has pole of order q

i k -»

at 5 = 5o, then the pole of q ' {a, s) dX s = so is of order q (Proposition 3.6). We have the
Laurent

(51)

by (45).

(52)

expansion

sp(P [a'5](;c))

On the other hand, let

σΛj,k(sp(I

oo

w=—q

Aa s](x))) =

sp(PίS

0 0

w=—q

so](x

ifα s

))|^ c

- (s - \W
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be the Laurent expansion of the principal symbol σAμ ( sp(P [ ί M ] (*))). Then we have

( 5 3 ) ^ Λ t o ) , »

for —q<w< +00.

Now we have the following Laurent expansions,

= c/'*(5, s)Ωf'k(s)/y/\dΓ\

00

= Σ'&«).«•<'-«>
w=—q

(55) c/ *(a,,)= Σ c^so)u • (s - so)u

u=-q

(56)

Note that the Laurent expansion coefficients Ωf^ 0 , Ω^ p . . . in (56) are non-zero

linearly independent half-volume forms on Λj' . The proof of this fact is given in the fol-

lowing way. Let f(x) be a non-zero, non-constant, real-valued and real analytic function

on an open set of a real analytic manifold. Then, the Laurent expansion coefficients 1,

log l/OOIί (log \f(χ)\)2i - of the complex power \f(x)\s with respect to the complex vari-

able s are linearly independent, since we may regard | f(x) \ as a real variable. By the definition

(35), we have

Ωl'k(s):=\PAj.k(x,y)

Put f(x) := P μ(x, y). Then f(x) is a non-zero, real-valued and real analytic function on

the open set Λj' of the real analytic manifold A[. f(x) is a non-constant function, since

it vanishes on the boundary A^k Π Λ + i if i > 0. If i = 0, then f(x) = det(x) and

hence it is a non-constant function. Then, we see that the Laurent expansion coefficients

Ωf's Q,Ω 'S p . . . are non-zero linearly independent half- volume forms on Λj' .

Then all the Laurent expansion coefficients
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in (54) are non-zero if c/^ s)_ φ 0. This means that all the Laurent expansion coefficients

of negative order of σ j,k(P^a's\x)) are not zero. Hence the support Supp(sp(P^ ° (*)))

i k

contains Λf' if — q < w < σo, which shows that

π(Supp(sp(/'ia *](Jc))))

-' U Ί>
(58) \(/,M)€L"

= U «W *

- u */.
where

L" := {(/, 7, *) e Z3 I oidJ=J0(c/'*(5, J ) ) > -u ; at J = s0},

L' := {(/, j , k)eZ3\ ordJ=Jo(c/'*(3, s)) >-wats = s0},

L := {(/, y) G Z2 I ordJ = l ϊ 0(c/'*(2, J ) ) > -u; for some fc in [0, /] Π Z at 5 =

The equality between the first line and the second line of (58) is obtained from Lemma 3.5,

since the singular support of each Laurent expansion coefficient Piΰ (x) is contained in

IXoΛ- •
REMARK 3.3. sp(Pw's°\x)) may not be a simple microfunction. Then we cannot

consider the principal symbol of sp(Pw's°\x)) in the way that [4] or [5] have defined. By

using the property that sp(P^'s°\x)) is a regular holonomic microfunction, we can also give

the definition of the principal symbol sp(Pw's°\x)) directly, but we do not need to do it

because, in our case, the principal symbol of sp(P^ (JC)) is obtained as a Laurent expansion

coefficient of a simple microfunction with a meromorphic parameter s.

3.7. Relations of coefficient functions. We give the analytic relations (59) combining

the coefficient functions of a hyperfunction solution to the holonomic system Ms. By the

formula (59), we can compute all the coefficients c\' (a, s) (0 < / < n, 0 < j < n — ι, 0 <

k < i) from the base coefficients cfc (α, s) = aj (0 < j < n). The propositions obtained in

this subsection enable us to estimate the order of poles of the coefficient functions. We use

effectively the following two relations (59) and (60) in the proof of the main theorem after the

next section together with Proposition 3.7 and Proposition 3.8.
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PROPOSITION 3.9. The coefficient functions on A°t and Λ°+1 have the following rela-

tion. These relations depend on s e C meromorphically.

q + 1 (a,s)

(59)
exp(-fΛ/=T(ί-2*))

q (α,j)

„ c/'*(5,ί) J "
See [10, Theorem 2.13]. The above relations are the case of Symn(R).

PROPOSITION 3.10. The coefficient functions on Λ° and Λ°+2 have the following re-

lations.

(60)

c/;*2

+ 2(5,ί)

2π

-7Tv^T(^ + A:))

^ T ^ - A: + /))

^T(5 + k))

(i-2k))

- π V ^ T ^ -k + /

c (a,s)

relations depend on s e C meromorphically.

We obtain these formulas by applying the relation formula (59) twice.

4. Estimates of the orders of the coefficient functions. By the recursion formula

(59), we see that all the coefficient functions are meromorphic functions ins e C and depend

on a e C " + 1 linearly and that they can be explicitly computed recursively. Since Proposition

3.7 and Proposition 3.8 claim that the calculation of the order of poles and the determina-

tion of the support of the Laurent expansion coefficients of pla's\x) are reduced to those of

the coefficient functions, the rest of the essential problem is the explicit computation of the

coefficient functions.

In this paper, we give estimates for the orders of coefficient functions from above and

below (Proposition 4.2 and Proposition 4.4, Proposition 4.9 and Proposition 4.11) instead of

computing the closed forms of the coefficient functions. This may not be the best way for the

proof, but we need not write the closed forms of the coefficient functions in our proof. The

proof is carried out by inductions and we need some repeated arguments. In order to avoid
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repetitions, we shall give complete proof for the case of orders at strict half integers in the first

subsection and give abbreviated proof for the case of orders at integers in the next subsection

by skipping the parallel part of the proof.

4.1. Laurent expansions of the coefficient matrices. We define the coefficient matrices

to estimate the coefficient functions. In the proof in this section the notation for the coefficient

matrices turns out to be useful.

DEFINITION 4.1 (Coefficient matrix). 1. We define the coefficient matrix c"'*(3, s)

andc/'*(α, s) as the 1 x (n — z)-matrix

(61) cf{a, s) = (c^ίfl, s), cj'k(a, s) cP'*(5, s))

and the i x 1-matrix

(62) c/ (3, s) = '(cj °(a, s), cjΛ(a, s),... , cjJ(a, s)),

respectively. The coefficient matrix c*'*(a, s) is defined to be the i x (n — i) matrix

(63) c'''&,s) = (cJrk0,s)) 0<k<i .
0<j<n-i

2. We define the order of pole of a coefficient matrix to be the maximum of the orders

of the entries in the matrix. For example, the order of pole of c*'*(3, s) is the maximum of

the orders of the entries in (cj'k(a, s)) o<k<i
0 j i

Let p be the order of pole of P[α"^(jc) at s = so. Then the Laurent expansion of

c*'k(a, s), cj'm(a, s) and c*'#(2, s) are given in the following form.

oo

(64) cΐk(a,s)= Σ eU0
w=—p

OO

c\<-(a(65) c\<-(a,s)= Σ
w=—p

(66) cϊ'G,s)=
w=—p

Some of the beginning Laurent expansion coefficients may be zero in these Laurent expan-

sions because the orders of poles of these coefficient functions are not greater than the order

of P[a's](x).

PROPOSITION 4.1. Let so be a half integer satisfying so < — 1 and let io be an integer

in 0 < Ϊ'O < n — 1. We suppose that io is even and so is a strict half integer or that io is odd

and so is an integer. Then c*o'
#(3, s) and c*'J+λ (α, s) have poles of the same order at s = SQ.
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PROOF. Note that SQ + (ΪQ -f 2)/2 is a strict half integer in both cases. We consider the

relation (59) in a neighborhood of s = SQ. Then the relation matrix between

7 + 1,k ,-+ v"
c\ (a,s)

and ' .,
_ c/fΛ(2,j)

depends on s e C holomorphically and is invertible near s = SQ. The inverse matrix also

depends on s holomorphically, and hence c*'*(5, s) and ^ ' ^ ( 3 , s) have poles of the same

order at s = SQ. D

4.2. The case at strict half integers.

PROPOSITION 4.2. Let SQ := —(2m + \)/2(m = 1,2,...). For a fixed integer p

satisfying 0 < p < m and 2p < n, we suppose that {d^2p^[sQ], a) φ 0. Then c^J(a, s) has

pole of order qfor q = 0, 1,... , p at s = SQ.

It is verified that c*'*(5, s) has pole of order at most q for q = 0, 1,... , p at s = SQ

from the relations (59). Then what we have to prove is that it has pole of order at least q for

q = 0, 1,... , p at s = SQ. For this purpose, we have only to prove the following Proposition

4.3, since we then have c ! ' V x Φ 0 for q = 0, 1,...,/?.

PROPOSITION 4.3. Under the same condition as in Proposition 4.2, we have

c*' r = (nzc)a x (d^Mso], a) for q = 0, 1,... , p, where (nzc)^ is a non-zero con-
Δq,\a,so),—q i ^ ι T

stant depending on q.
PROOF. We prove the following statement (A)p for p = 0, 1,... by induction on p:

(67) (A)p : (nzc)^ x {d{2^[s0l a) for q = 0, 1,... , /?, where

(nzc)^ is a non-zero constant depending on q.

When p = 0, ( Λ o L 2) = a φ 0 and c£0^h_q = cJ;J5fJo)>o = a for all possible q.

This means that (Λ)o is true.

Next we prove (A) r +i under the assumption (A) r. Since (rf^2r+2^[^ol»2) ^ 0 implies

{d{2r)[s0l a) φ 0 (Proposition 2.1), we have c^° ( 5 5Q) _^ = (nzc)^ x (έ/(2^[s0], 2) for $ =

0, 1,... , r if (A)r is true. We have only to prove

(68) \ ( 2 2 )

From (60),

(69) x ( + v^Texp(-πV=T(ί + 2r))c£°(5, s)

- V^Texpί+π-V^ϊ(ί + 2r))4+2'°(a, s)).

Note that Γ( ί + (2r + 3)/2) has pole of order 1 at ί = so- Indeed, since r + 1 < p < m,

so + (2r + 3)/2 is a non-positive integer. Then cJ

2

η

r+2(ά, s) has pole of order r + 1 if c£. (2, s)
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or c2* ' (3, s) has pole of order r at s = so and if

(10) v(r)—cl° W+ 2 '° ^ 0

both of which assumptions are valid at least one j from the induction hypothesis (A)r and the

hypothesis of (A) r+i. This follows from that

+VC :Texp(-7rVCT( lyo + 2r)) = -V^TexpC+πV^T^o + 2r)),

since so is a strict half integer.

By taking the Laurent expansion coefficient of degree — r — 1 of (69), we have

(71) c£-+2,(5,50),-r-l = ( n o n " z e r o c o n s t ) x vf

Here (non-zero const.), a non-zero constant, does not depend on j . Then c2r+2(a, s) has pole

of order r -f-1 if (70) is valid for at least one index j . On the other hand, by (70), (71) and the

assumption (Λ) r, we have

c '°
L2r+2,(a,s0),-r-l

_ , 0,0 1,0 w-2r-2,0 x

(72) = (non-zero const.) x (^ r ) , υ | r ) , . . . , v^]_2r_2)

= (non-zero const.) x (nzc)r

x (i42r)[sol a) + (42r)[s0l a),... , <4^_2fa)], 3) + (^-l^ol, 5»

= (non-zero const.) x (nzc)r x {dS2r+V)[sQ\, a),

which implies (68) by putting

(nzc) r +i = (non-zero const.) x (nzc) r.

Thus we have (A) r + i . •

PROPOSITION 4.4. Let so := -(2m + l)/2 (m = 1,2,...). For a fixed integer p

satisfying 0 < p < m and 2p + 2 < n,we suppose that (</(2/7+2) [soL 5) = 0. Then c*2*(a, s)

has pole of order at most p for q = /?,/? + 1,. . . at s = SQ.

PROOF. We prove the following (B)p for all /? = 0, 1,. . . by induction on p:

If (rf ( 2^+ 2 )[s0], 2) = 0, then c* p

#

+ 2 / (3, ί) has

(73) (B)p : pole of order at most p at s = so for / =

0, 1,. . . satisfying 2p -\-2f < n.

LEMMA 4.5. (B)o is true. In other words, if{d(2)[so], a) = 0, then c2*(a, s) is holo-

morphic at s = so for f = 0, 1, . . . .

PROOF. We show that

(74) cJ

2f(a, s) = ( - l ) c ^ 2 ' (5, s) for all j = 0, 1,. . . , n - 2 / - 2,

and

(75) c2f(a, s) is holomorphic at s = so for all j = 0, 1,... ,n — 2/ ,
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by induction on / for / = 0, 1,... with 2/ < n.

If (rf^[so]» 5) = 0, then we have by definition

Since cJ

0' (a, s) = aj, this means that

(76) 4'°(B

fl, a) + (dfl2[sol a) = a} + aj+2 = 0.

The coefficient CJQ (a, s) is a constant and hence is holomorphic. (74) and (75) are verified

for / = 0. This is the first step of the induction on / .

Next we prove (74) and (75) for / = q + 1 under the assumption that (74) and (75) have

been proved for / = 0, 1,... , q. Since the matrix relation in (60) does not depend on j , the

property (74) for / = q + 1 follows from the property (74) for f = q. Indeed, we have

(77)

(a,s)

(a,s) (a,s)

j+
LC2q

for all j by the induction hypothesis (74) for / = q. In addition, since the matrix in (60) does

not depend on j , we have

(78)

i,k /-* \

cJ

2q+2(a, s)

cJ

2q+2(a,s)

cJ

2qj;2{a,s)

(a,s)

for all j by using the relation (60). This means (74) for / = q + 1.

We see that the order of pole at s = so of £2^+2^' s) m a v ^ e greater by 1 than that of

£2'* (5, s) by the gamma factor of the relation matrix in (60). However, the growing of the

order of the pole is canceled from the property (74) for / = q. We shall prove it below.

For c ^ " 2

2 ( 5 , s), we have by (60) with i = 2q

H
(79) x ( - k)) - exp(+π V ^ k)))

x cJ

2q(a,s)

is holomoφhic at s = so, since

Γ



350 M. MURO

has pole of order 1, ( - exp(-7rV-T(5 + k)) - e x p ( + π yf-ϊ(s + k))) has zero of order 1,

and cJ

2

k(a, s) is holomorphic, at s = SQ. For c2 +2 ^ ' s^ w e n a v e b γ (60) w * t n * = ^q

(80) x ( (- exp ( + - 7 ^ 1 ( 2 4 - 2k)) + exp (--V^Qq - 2k)))
\\ \ 2 / V 2 / /

x c2 (3, s) + I —2cos I -π(2s + «'

0(-
ΓI+ 2-ψ) (" 2 c o s Q

is holomoφhic at s = so. In fact, we see easily

Γ

i k -*

has pole of order 1 and cJ

2q (a, s) is holomorphic, at s = so. On the other hand,

7r(2s + 2

- U _ ι _ 1 _^

has zero of order 1 at s = so, since so is a strict half integer. Then c ^ + 2 (β ' i S) ^s holomoφhic

at 5 = 5"o.

For c ^ + 2 ( 2 , 5), we have

(81) x (+ exp(π V^T(5 + k + 2<?)) + exp(-π V ^ O + Λ 4-

X C ^ ((2,5)

is holomorphic at s = so, since

has pole of order 1, (+ exp(7ry^T(s + k + 2q)) + exp(—7r>/^T(5 -h A: + 2q))) has zero of

order 1, and cJ

2q (a, s) is holomoφhic, at s = ^o.
I If I ^ -^ / jt" — I — 1 i ]ζ

Thus we see that c2 + 2 (β, s), ^ + 2 ( β ' ^) a n ( ^ c2^+2(β ' 5^ a r e a ^ h° lo m °φhi c at s = ô

for all possible indices j and k if c2 ' (5, s) are all holomoφhic at s = so for all possible

indices j , k. This means (75) with / = q + 1. D

Thus we have verified (#)o This is the first step of the proof by induction of (B)p

for all integers p. Next we proceed to the second step of the proof by induction. We prove

(B)r under the assumption that we have verified (B)r-\. Supposing that (B)r-\ has been
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verified, the verification of (B)r is carried out by proving the following statement (Of with

the non-negative-integer index / , which is proved for all / = 0, 1,... by induction on / .

(82) (C)f : c 2 r + 2 / ^ ' s) ^ a s P°le °f o r ^ e r a t m o s t r 3Xs = SQ.

(B)r is equivalent to (Of with / = 0, 1, — The proposition (C)o has already been verified

by the relations (60), since there appear Γ-functions with poles only r times in c^*(5, s).

Therefore, we have only to show that (Of implies (C)/+i for the proof of (B)r. We prove

two lemmas Lemma 4.6 and Lemma 4.7, and then prove (C)/+i by Lemma 4.8 under the

assumption (Of-

For a complex vector a := (ao,a\,... ,an) e Cn+\ we defined' e C " + 1 andfc e C " + 1

by

(83) a := (0, 0, ^o, « i , . . . , ΛΠ_2) and fe := a + a ; .

Then we have

(84) 4 + 2 / ( 3 ' 5 ) = c£+2f& *)

for all possible indices j , since the relation matrices (59) do not depend on j . Therefore, we

have

(85) <£ + 2 / ( 2 , s) = c£+2f(b - a\ s) = c£+2f(b, s) - c^. + 2 / ( 5 ' , s)

LEMMA 4.6. (d^lsol b) = 0 for all k > 2.

PROOF. For k > 2, we have

(4 2 r )^ol, b) = (42r)[s0l 5 + 2') = ( 4

by the hypothesis in (B)r. D

LEMMA 4.7. For j > 2, r/ẑ  coefficient cJ

2^+2q(b, s) (q > 0, 2r + 2q < n) has pole of

order at most r — 1 at s = so.

PROOF. We denote b = (bo, b\,bi,... ,bn) and put V := (b'Q, b[, 62» *bn), where

Z?Q and fcj are arbitrary numbers. Then we have

for all j > 2, since (dfr)[so\, bf) is determined independently of bf

Q and b[, and (ί/j2r)[^o], fe)

is determined independently of bo and b\. We see that
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for all j > 2, since both sides are determined only by Φ2, ^ 3 , . . . ,bn) e Cn ι . On the other

hand, we may determine b'o and b\ so that

(d£r)[s0],bf) = (d[2r)[s0],b') =0.

Then we have {d^2r\so\,b!) = 0 by Lemma 4.6. By the induction hypothesis (2?)r-i,
C2r+2 ^ ' S^ ~ C2(r-l)+2( +1)^ ' ^ ^ a S P°^e °̂  0 Γ ( ^ e r a t m o s t r ~ 1 f°Γ a ^ 7 ^ ^ - ~1

Therefore, c^*^ (b, s) = c^'^ (b', s) has pole of order at most r — 1 for all j > 2 and for

all <? > 0 with 2r + 2^ < n. D

LEMMA 4.8. The coefficient c*H-2f+2^' s^ n a s P°^e °f order at most r at s = so.
Namely, (C) y + i is true.

PROOF. Note that

Γ J+ 2 ' ex

(86)

L2r+2/ (a,s)
C2r+2f

LC2r+2f

2f(a,s)

(a,s)
L2r+2/V"^7

from (85). We can compute the orders of poles of the elements in

L2r+2/+2^

C2r+2/+2(
(87)

from the orders of poles at s = so of the elements in (86) by using the relation (60). In the fol-
/ k4-2 -> 7 k-\-\ -* ΐ k -*

lowing, we shall prove that the coefficients c2r+2 f+2^ ' s^ C2r+2f+2(a> s^ a n c^ c2r+2 f+2^ ' s^
have poles of order at most r by case-by-case calculation.

7 k 4 - 2 -+

First, we consider the coefficient c2r+2f4-2^' s^- ^ r o m m e relation (60), we see that

(88) x ( -

x ( -

, 2r + 2/ +

2 7 ' V" ' 2

-πV^Ϊ(s + k)) - exp(+π V^T(i +

, 2r + 2 / + 2 \ / , 2r + 2/ + 3

, s)

Is)

has pole of order at most r at s = SQ. Indeed, we see easily

2r + 2/ + 2\ „ / , 2r + 2/ + 3

• ( • 2 / V 2

has pole of order 1 at s = so, (— exp(—π*f^Λ(s + k)) — exp(+πVΓ-^Γ(^ + k))) has zero
i k -*

of order 1 at s = so, since so is a strict half integer, c^^Aa, s) has pole of order < r at

s = so by the induction hypothesis (C)/, exp(—π V^ϊ(s + k)) is holomorphic at s = SQ, and
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:_ι_2 h -»

< (r — 1) at s = SQ by Lemma 4.7. Then we have proved that
/ k-\-2 -»

^ 5 ) ̂ a S P° at most r als = so.
7 k-\-\ -»

Next, we consider the coefficient ^2r+2/+2^' s^- F r o m t n e relation (60), we have

2π V 2 ) \ 2

x (- exp (+|v / ΓT(2r + 2/ - 2*)) + exp (-|v/ I ΓT(2r + 2/ - 2t)))

xcJ

2'r
k

+2f{a,s)

x Γ-2cos Qπ(2a + 2r

1 / 2r + 2/ + 2\ /
(89) + -Γ (s + — f - j Γ (* +

x exp ( + | V^T(2r + 2/ - 2*)) 4%ffφ, s)

x ^-2cos Qπ(2ί + 2r

x exp (+1^^1(2^- + 2/ - 2ft)) <££

because

(- exp (+|V^Ϊ(2r + 2/ - 2ft)) + exp (-|V^T(2r + 2/ - 2ft))) = 0,

since r, /, £ are all integers. Then we see that ^2r+2/+2^β's^ ^ a s P°^e °f o r < ^ e r a t m o s t r a t

5 = ,so Indeed, we see easily

has pole of order 1 at s = so, — 2cos(7r(2s + 2r + 2/)/2) has zero of order 1 at 5 = so,

since so is a strict half integer, c^^Λa, s) has pole of order < r at s = so by the induction

hypothesis (C)/, exp(π V—T(2r + 2/ — 2k)/2) is a constant, and ^ ^ / ( ^ ^) n a s P°^e °̂

order < (r — 1) at ,$• = SQ by Lemma 4.7, because SQ is a strict half integer. Then we have

proved that ^r+2f+2^ ' i S ) ^ a s P°^e °̂  o r ( ^ e r a t m o s t r a t s = sθ-
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Lastly, we consider the coefficient C2r+2f+2@> s^' F r o m t n e relation (60), we see that

x (+ exp(+τr V-lCs - k + 2r + 2/)) + exp(+τr Λ/^Ϊ(S - k + 2r + 2/)))

(90) x4f

x (- exp(+τr V^Tίs - * + 2r + 2f)))c{^f(b, s)

has pole of order at most r at 5 = so. Indeed, we see easily

has pole of order 1 at s = so, (+ exp(+7r>/—Tfa — £ + 2r + 2/)) + exp(+πV^-T(^ — & +

2r + 2/))) has zero of order 1 at s = so, since so is a strict half integer, <^ + 2 f (2, s) has pole

of order < r at s = so by the induction hypothesis (C)/, exp(+π\/^ϊ(s — £ + 2r + If)) is

holomorphic at s = so, and c ^ ^ / ^ ' 5 ) n a s P°^e °̂  o r c l e r < (r — 1) at 5 = ô by Lemma 4.7.

Then we have proved that c^^f+2^α' s^ n a s P°^e °̂  0 Γ ( ^ e r a t m o s t r a t s = ô
/ £-4-2 -» / i t + 1 -»

In the above arguments for the order of pole of C 2 ^ + 2 ^ + 2 ^ ' 5 ^ c2r+2/+2^' s^ a n ( ^
7 k -* ί k -*

C2r+2f+2(a' s^>we c a n t a ^ e ι ^ e m c ^ e x ^ t 0 be an arbitrary possible integer. Then c^^^^a, s)

has pole of order at most r at s = so for all indices k in 0 < k < 2r + 2/ + 2. Thus we see

that ^2r+2/+2^' •*) ̂ a s P°^e °f o r c ^ e r a t m o s t r a t J — 5o The proof above does not depend

on the index j . Then c *r+2f+2^' s^ ^ a s P°^e °̂  o r < ^ e r a t m o s t Γ a t s = so- Π

By Lemma 4.8, we see that (C)/ implies (C)/+i. Then (C)/ is valid for all / =

0, 1,... by induction on / , which means that {B)r is valid. Thus we have (B)r, which means

that (B)r-\ implies (B)r. This is the second step of the proof by induction of (B)p for all

p = 0, 1, Therefore, by induction on p, we have (B)p for all p. This completes the proof
of Proposition 4.4. D

4.3. The case at integers.

PROPOSITION 4.9. Let so := -m (m = 1,2,...). For a fixed integer p satisfying

1 < p < m and 2p - 1 < n, we suppose that (d^2p~l)[-m], a) φ 0. Then c^*_χ(a, s) has

pole of order qfor q = 1,... , p at s = so.

We have only to prove the following Proposition 4.10 for the same reason as in the case

Proposition 4.2.
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PROPOSITION 4.10. Under the same condition as in Proposition 4.9, we have
c2q-\,(Z,s0),-q = (nzc)<? x (d{2q~l)[sol 2) far q = 1,2,. . . , p, where (nzc)^ is a non-zero

constant depending on q.

P R O O F . We prove the following (A)p for p = 1,2,. . . by induction on p.

( Λ ) ^

where (nzc)^ is a non-zero constant depend-

ing on q .

We shall prove (A)\. From the assumption, we have (*/(1)[soL 2) φ 0, hence there exists

an integer j such that

By the relation (59),

By taking the residue of (92), we have

Cί,'(k*0),-<7 = ( n o n " z e r O COnst ) X ( ( - l

where (non-zero const.) is a non-zero constant that does not depend on j . Then we have

cUa,s0),-i = (non-zero const.) x (d(l)[s0],a).

This means that (Λ)i is true.

Next we have to prove (A)r+i under the assumption (Λ) r. Since (ί/ ( 2 r + 1 )[^o]9 2 ) ^ 0 im-

plies (d(2r-ι\sol a) φ 0 (Proposition 2.1), we have < ^ ° _ l f ( ί U w = ( n z c ^ x ^ " 1 ) ^ ] ^ )

for q — 1,2,... , r. Then we have only to prove

(93) C2r\lΛa,so),-r-l = ^ZC^^ X ( ^ ^ o l 2) .

However, the proof of this equation is almost the same as that for the equation (68). We do

not repeat the proof. D

PROPOSITION 4.11. Let so := — m (m = 1,2,...). For a fixed integer q satisfying

0 < p < m and 2p + 1 < n, we suppose that {d{2p+l)[-m], a) = 0. Then c\*_χ(a, s) has

pole of order at most p for q = p, p + 1,.. . at s = SQ. Here, we consider CQ'*(2, S) instead

ofc*_^{a, s) when p = q = 0.
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PROOF. We shall prove this proposition by showing the following (B)p for all p =

0, 1,. . . by induction on p.

If (έf<2*+1>[j0], 2) = 0, then c ^ # _ 1 + 2 / ( 3 , s) has

pole of order at most p at s = so for / =

0, 1,. . . . Here, we are considering c^m(a, s) in-

stead of cl'*(2, s) when p = f = 0.

LEMMA 4.12. (B)o is true. In other words, if (d{l)[so],a) = 0, then cj'*(3, J ) is

holomorphic at s = SQ and c*/-i (**> •*) Z5< holomorphic at s = so for f = 1,2,

PROOF. CQ'*(2, S) is holomorphic at s = so clearly, since CQ (a, s) = aj.

For the proof of holomorphy of c^_χ{a,s) Άis = so for / = 1, 2 , . . . , we have only to

show that

(95) c£+ 1(5, ί) = c£J I (5,s)
and that

(96) C2/H-I (^' s) ^s holomorphic at s = .so

by induction on /? for p = 0, 1, The proof is almost the same as Lemma 4.5 except the

first step of the induction.

Now we give the proof for p = 0. If (*/(1)[so], a) — 0, then we have

(ήl)[sola) = ( d f \ s o l Z ) ^ ( ^ U f l ^ ι

Since CQ' (a,s) = aj,

(97) 4°(2,
Then we have

[ .7 + 1,0,-
C 0 ^ S

CQ (a,s)

for all j . Since the matrix in (59) does not depend on j , we have

,99) .{-a,,

by using the relation (59). This means

(100) c{\a, s) = c{+ 2 ' (3, s) for all j .

The relation (97) shows that c*'*(5, s) are holomorphic at s = so through the relation

(59). Indeed, by the relation (59), we have

Γ( + 1) π
(101)

x (cJQ°(a, s)
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and

(102) y\o^ Λ Γ(s + 1) /π Γ - \
c\ (β, s) = — exp {-V-l(s + 1)J

x (exp(τrV^Λ(s + l))c£°(S, s) + c^+1'°(2, *))

for all j . Then, by (97), c\Λ{a, s) and c ['0(α, s) are holomorphic at 5 = so for all j . This

means that c{'*(5, s) is holomorphic at s = so for all j . Thus the case of p = 0 has been

proved. D

Thus we complete the proof of (B)o

Next we have to prove (B)r under the assumption that we have verified ( # ) Γ - i . However,

this induction procedure is almost the same as the proof of Proposition 4.4. We have only to

set the vector b := a — a' instead of b := a + a! in the proof of Proposition 4.4. The argument

may be complicated but is completely parallel with the one given in the proof of Proposition

4.4. D

4.4. Exact orders of the coefficient functions. Now we can describe all the orders of

poles of coefficient functions as a corollary to Theorem 2.2. The following Corollary 4.13

plays an important role in the proof of Theorem 2.3.

COROLLARY 4.13 (Exact orders of the coefficient functions). The exact orders of

poles of the coefficient functions c*'#(2, s) are determined by the following rule.

1. Let 5o be a strict half integer not greater than —1. Then there is an integer p such

that the orders of pole at s = so ofc^* (a,s) and c*'*+ j (a, s) are qfor q with 0 < q < p, and

the order of pole ofc*'*(a, s) is not greater than pfor i with 2p + 2 < i.

2. Let so be an integer greater than —1. Then there is an integer p such that the orders

of pole at s = so of* c\*x (3, s) and c^{a, s) are qfor q with 0 < q < /?, and the order of

pole o/c*'*(3, s) is not greater than pfor i with 2p + I <ί. Here we supose c^*(2, s) = 0.

PROOF. We prove the first assertion. By Corollary 2.1, there exists an integer p such

that {d{2p)[so],a} φ 0 and {d{2p+2)[so\,ά) = 0. By Propositions 4.2 and 4.4, we have

the result for all c*'*(3, s) with even /. On the other hand, by Proposition 4.1, we see that

c*'*+1 (a,s) has pole of the same order as c*{*(β, s) at s = so for all integers q. Then we have

the result for all c*'*(3, s) with arbitrary /.

The second assertion is proved in the same way by using Propositions 4.9 and 4.11

instead of Propositions 4.2 and 4.4. D

5. Proof of the theorem on the exact order. We shall give the proof of Theorem 2.2

in full detail for the case l,(a) and 2,(a). Since the proof for other cases is almost the same,

we explain only essential points instead of giving proof. We have proved the estimate of the

order of the poles in the preceding section. What we have to do here is to point out which

proposition should be applied for the proof of each case.
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5.1. Proof of the case of l(a). The case l(a) consists of three assertions. We do not

have to prove the converses obviously. If we establish all the statements, then the converses

are automatically true, since all the possible cases are proved.

LEMMA 5.1. Let so : = - ( 2 m + l ) / 2 (ro = 1,2,...). If(d{2)[-(2m + l)/2], a) = 0,

then pίa's\x) is holomorphic at s — so-

PROOF. By applying Proposition 4.4 in the case of p = 0, all the coefficients c^'ia, s)

(q = 0, 1,...) are holomorphic at s = so. Then, by Proposition 4.1, all the coefficients

c*2*+χ(a,s) (q = 0, 1,...) are holomorphic at s = so. Therefore, all the coefficients

c*'#(5,5) (0 < i < n) are holomorphic at s = sO Thus, by Proposition 3.7, P["'s](x) is

holomorphic at s = so.

LEMMA 5.2. Let so := -(2m + l)/2 (ra = 1, 2 , . . . ) . For a fixed integer p satisfying

1 < p <mand2p <n,if(di2P+2)[-(2m + l)/2],ά) = 0 and (rf(2^[-(2rn + l)/2], a) # 0,
then pίa's\x) has pole of order p at s = so.

PROOF. From the conditions (d{2P)[-(2m + l)/2],3) φ 0 and (d{2p+2)[-(2m +

l)/2], a) = 0, all the coefficients c*'"(3, s) with even / have poles of order at most p, and the

coefficient c^'ia, s) has pole of order p by Proposition 4.2 and 4.4. On the other hand, by

Proposition 4.1, c^+i (2, s) has pole of the same order as cJ

2}
m(a, s) at s = so for all integers

/. Then all the coefficients c*'*(2, s) (0 < i < n) have pole of order at most /?, and at least

one of them has pole of order p. Thus, by Proposition 3.7, P^a's\x) has pole of order p at

s = so. •

LEMMA 5.3. Let so := -{2m + l)/2 (m = 1,2,...) and suppose that 2m < n. If

(έf(2m)[-(2m + l)/2],5) φθ, then PM(x) has pole of order mats = s0.

PROOF. Since (έ/(2m)[-(2m +1)/2], 2) / 0, the coefficient c*^(2, s) has pole of order

m by Proposition 4.2 in the case p = m. On the other hand, P^s\x) has pole of order at most

m by Theorem 1.1, since we are considering the poles at s = —(2m + l)/2 with m < n/2.

Then all the coefficients c*'*(2, s) (0 < i < n) have pole of order at most m, and at least

one of them has pole of order m. Thus, by Proposition 3.7, P^a^(x) has pole of order m at

s = so.

By Lemmas 5.1, 5.2 and 5.3, we complete the proof of Theorem 2.2,l(a).

5.2. Outline of the proof of the case of l(b). The proof of the case of l(b) is almost

parallel with that of the case of l(a). We only need Lemmas 5.1 and 5.2, and Proposition 4.2,

since the conditions for other lemmas and propositions are invalid. The proof is valid without

modification.

5.3. Proof of the case of 2(a). The case 2(a) can be proved almost in the same way as

case l(a). However, we need some modifications of the lemmas and the propositions together

with the proof.



SINGULAR INVARIANT HYPERFUNCTIONS 359

LEMMA 5.4. Let so := -m (m = 1, 2 , . . . ) . If{d(l)[-m],a) = 0, then P^s](x) is

holomorphic at s = so.

PROOF. Clearly, the coefficients CQ'*(2, S) = a is holomorphic at s = so. By Proposi-

tion 4.11 of the case of p = 0, all the coefficients c*'*_ { (a, s) (q = 1, 2, . . .) are holomorphic

at 5 = so. Then, by Proposition 4.1, all the coefficients c*'*(3, s) (q = 1, 2, . . .) are holo-

morphic at •$• = so. Therefore, all the coefficients c*'*(3, s) (0 < i < n) are holomorphic at

s = so. Thus, by Proposition 3.7, P^a's\x) is holomorphic at s = so. •

LEMMA 5.5. Let so := —m (m — 1, 2 , . . . ) . For a fixed integer p satisfying 1 < p <

mandlp- 1 < «, */(d ( 2 ^ + 1 ) [-m], 2) = 0 and (d{2p-χ)[-m], a) φ 0, then P&s](x) has

pole of order p at s = so.

PROOF. From the conditions (d{2p~l)[-m], a) φ 0 and (έ/ ( 2^+ 1 )[-m], 5) = 0, all the

coefficients c*'*(2, s) with odd / have pole of order at most p, and the coefficient c\ ' V (2, 5)

has pole of order /? by Propositions 4.9 and 4.11. On the other hand, by Proposition 4.1,

£*;•*_! (2, s) has pole of the same order as c* ;^ (α, s) at s = so for all integers /. Then all the

coefficients c*'*(3, s) (0 < / < «) have pole of order at most p, and at least one of them has

pole of order p. Thus, by Proposition 3.7, P^a^ (x) has pole of order p at s = so. •

LEMMA 5.6. Let so := —m (m = 1,2,...) and suppose that 2m — 1 < n. If

{d{2m-l)[-m],ά) φ 0, then P^s\x) has pole of order m at s = s0.

PROOF. Since (d{2m~l)[-m], a) φ 0, the coefficient c*m-i^' ι S) h a s P o l e o f o r d e r m

by Proposition 4.9 in the case p = m. On the other hand, P^s\x) has pole of order at most

m by Theorem 1.1, since we are considering the poles at s = —m with m < (n + l)/2. Then

all the coefficients c*'*(2, s) (i = 1, 2 , . . . , n) have pole of order at most m, and at least one

of them has pole of order m. Thus, by Proposition 3.7, P[a's\x) has pole of order mats = so.

D

By Lemmas 5.4, 5.5 and 5.6, we complete the proof of Theorem 2.2,2(a).

5.4. Outline of the proof of the case of 2(b). The proof of the case of 2(b) is almost

parallel with that of the case of 2(a). We only need Lemma 5.4 and Lemma 5.5, and Proposi-

tion 4.9 for the same reason of the proof of the case l(b).

6. Proof of the theorem on the exact support. In this section we shall give a proof

of Theorem 2.3 as an application of Propositon 3.8. We shall determine the support of the Lau-

rent expansion coefficients of P^a's\x) by applying Proposition 3.8. This is nothing but esti-

mating the support of the Laurent expansion coefficients of the microfunction sp(P^-a's\x)).

The support of the Laurent expansion coefficients of P^a's\x) is the projection image of the

support of the Laurent expansion coefficients of sp(P[a>s](x)) by the map π : Γ*V M> V.

Then the lower dimensional strata may be contained in the closure of the higher dimensional

strata. In the proof below, we have to extract the highest dimensional strata necessary for the

exact determination of the support.
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6.1. Preliminaries for the proof. In the proof, we let so : = - (<7 +1) /2. By Proposition

3.8, we have (49):

(103) Supp(P£5 Sol(*)) = U Sj

with L := {(ι, j) e Z2 \ oτds=So(cJrk(ά, s)) > -w for some k e Z Π [0, /]}. Therefore, we
/ k -»

have only to calculate the orders of the coefficient functions cγ {a, s) at s = so. Since we

have supposed that P^a's\x) has pole of order p at s = so in this proof, we have

(104) P < | i ± ! j < i ± l = -so

by (6). Let

(105) 1/(50, p) := I(ι ,y) e Z 2 ^ ( 5 , . ) has pole of order > pforsome j
[ fc with 0 < k < i at s = so J

6.2. The case at strict half integers. First, suppose that q is an even integer. Namely,

5o is a strict half integer.

LEMMA 6.1. Suppose thatO < i < —2w. Then we have

PROOF. By Proposition 4.2, c*'*(<3, s) has pole of order strictly less than — w at s = so

i f θ < / < -2w. D

On the other hand, if 0 < io < — 2w, then for all jo, we have

i>-2w
0<j<n-i

Thus, if 0 < /n < —2w, then for all jo, we have

(106) 5/^Π ( J S / =
(ϊ,y)€ί/(jo,-u;)

LEMMA 6.2. 7/70 > - 2 M ; and (ι'o, 70) e ί/(jo, -

(107) 5jc U 5/.
(/,y)eί/(50,-u;)

ί=—2w

PROOF. Suppose that there exists an integer z'n with ι'o > —2M; and an integer 70 i n

0 < 70 < n — /o such that c/°'"(α, 5) has pole of order > — w. If i'o is odd, then cJ^*γ(a, s)

and c / ^ ' ί S , s) have poles of the same order as c/°'"(α, 5) by Proposition 4.1. Thus we may

assume from the beginning that there exists an even integer i$ > —2w and an integer 70 in

0 < 70 < n — ί'o such that c/°'*(α, s) has pole of order > — w. We prove that there exists an

integer 71 in 70 < 71 < 70 + (ι'n + 2M;) such that c ^ ^ (2, ̂ ) has pole of order > — w at s = SQ.
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In order to prove this, we deduce contradiction by assuming that c]}_2w (#, s) has pole of order

< — w at s = SQ for all integers j \ with yo < yi < jo + O'o + 2w).

We define the coefficient functions c'/' (3, s) with the renumbered index j by setting

(108) c'/ fc(5,S):=/

for integers ι, y, & with 0 < / < /o, 0 < y < ι'o — i and 0 < k < i. Then, the coefficient vectors

c' j^iά, s) and c'*'*(a, s) are defined in the same manner as in the definitions of c/'*(3, s) and

c*'#(3, s ) and so on. Note that the set of coefficients

(109)

0<k<i

satisfy the relations (59), since the relation matrices in (59) do not depend on the index j .

Then we can apply Corollary 4.13,1 to the set of coefficients (109). If

has pole of order strictly less than —w,\henc'''*(a,s) with — 2w < i has pole of order strictly

wless than — w at s = so. Then c7'*(3, s) = c/°'*(3, s) has pole of order strictly less than —

at s = so, a contradiction. Then at least one of the coefficients in {cJ^2w(a, s)}jo<j<jo+io+2w

has pole of order — w at s = so.

Thus, if there exists an integer z'o > — 2w and an integer yΌ with 0 < yo < n — /o such that

c/°'#(3, s) has pole of order > — w, then there exists an integer j \ with yo < yΊ < yΌ

such that cJJ_2w(a, s) has pole of order > — w at s = so- Then, we have 5/° c SJ_[2w by (10),

and (—2w;, yΊ) e U(so — w). D

Therefore, we have

u u
{iJ)eU(so,-w)

i>—2w
(iJ)eU(so,-w)

i=—2w

and hence

Thus, by (106), we obtain

(110)

U */= U
(iJ)eU(so,-w)

i>—2w
(iJ)eU(sQ,-w)

i=—2w

Sj= */•
(i,j)eU(so,-w)

i=—2w

cJ — II &

(iJ)eU(so,-w)

LEMMA 6.3.

(Il l) {(/, y) G U(so,-w)\i = ~2w} = {(-2wJ) e Z2
" 2 u ; ) ^ o ] , 3) φ 0}.

PROOF. By substituting q := —w in Proposition 4.3, the index (—2iϋ, y) belonging to

Φ ®- Then cJ^'2w(a, s) has pole
y g q p

the set on the right-hand-side of (111) satisfies cJ^2
2w & s \ +w
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of order -w at s = so and hence the index (-2w, j) belongs to the set on the left-hand-side.

The converse is also true. Then we have (111). •

Therefore, when q is an even integer,

' 5 o ]( t)) = ( J Sj (by Proposition 3.8),
(iJ)eU(so,-w)

[j S{ (by (110)),
(iJ)eU(so,-w)

i=-2w

U s-2w % (in))-
0<j<n+2w

This means the result (22).

6.3. The case at integers. Secondly, suppose that q is an odd integer. Namely, so is an

integer.

LEMMA 6.4. Suppose thatO < ί < -2w - 1. Then we have

(iJ)φU(so,-w).

This is proved in the same way as in Lemma 6.1. We use Proposition 4.9 instead of

Proposition 4.2.

On the other hand, if 0 < /n < — 2w — 1, then for all jo we have

(112) sjn
(iJ)eU(so,-w)

LEMMA 6.5. Ifio > —2w — 1 and (ι'o, Jo) e U(so, —w), then

(113) Sjc (J S/.

i=-2u;-l

This is proved in the same way as in Lemma 6.2. We use Proposition 4.1,2 and Corollary

4.13,2 instead of Proposition 4.1,1 and Corollary 4.13,1.

Therefore, we obtain

(Π4) ( J S/= ( J Sj,
(iJ)eU(so,-w) (iJ)eU(so,-w)

i=-2w-l

in the same way as in the proof of the case q even.

LEMMA 6.6.

( 1 1 5 ) {(/, j ) e ί / ( j 0 , -w)\i = -2w -

= {(-2w - 1, j) e Z2 I (ή'2w-l)[s0], a ) φ θ ) .
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This is proved in the same way as in Lemma 6.3 by using Proposition 4.10 instead of

Proposition 4.3.

Therefore, when q is an even integer,

'5°](JC)) = U Sj (by Proposition 3.8),
(i,j)eU(so,-w)

u si
(iJ)eU(so,-w)

SJ_2u>-\ (by (115)).
0<y<w+2u;+l

j

This means the result (23).

Thus, we complete the proof of Theorem 2.3.
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