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CIRCULAR UNITS IN THE Zp -EXTENSIONS OF REAL ABELIAN
FIELDS OF PRIME CONDUCTOR
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Abstract. The aim of this paper is to compute the cohomology groups of circular units
in the Zp -extensions of a real abelian field of prime conductor. Even though the generators
of circular units are described very complicatedly, their cohomology groups turn out to be as
simple as one can expect compared to the cohomology groups of full unit group found by
Iwasawa.

1. Introduction and notation. Let ζn be a primitive n-th root of 1 and Pn the mul-

tiplicative subgroup of Q(ζn)
x generated by {±1} and {1 — ζ%\0 < a < n}. Then the group

of cyclotomic units of Q{ζn) is defined to be

where EQ^H) is the unit group of Q(ζn)- The group of cyclotomic units enjoys many important

properties such as the index theorem (cf. [7]). In general, for an abelian field F, Sinnott [6]

defines the group of circular units of F as follows: For each n > 2, let

F^ = FΠQ(ζn) and CF> = NQ{ζn)/F,(CQ{ζn)).

Then the group CF of circular units of F is defined to be the multiplicative subgroup of Fx

generated by CF> for all n > 2 together with —1. Note that if n is prime to the conductor of

F, then F'n= Q and so CFι = {1}. Thus there are only finitely many n's to be considered in

the definition of CF.

Let k be a real subfield of Q(ζq) for an odd prime q and fcoo = U«>o ^n the Zp-extension

of k = ko for an odd prime p with (/?, q) = 1. Here, kn means the n-th layer of the Zp-

extension, not k Π Q(ζn). For each n > 0, we denote the group of circular units of kn by Cn.

Then the index theorem of Sinnott says the following:

INDEX THEOREM (Sinnott [6]). Let En be the unit group ofkn, and hn the class num-

ber of kn. Then [En : Cn] = 2Cnhn for some integer cn.

For each integer s > 1, we choose a primitive 5-th root ζs of 1 so that ζj = ζs if

s\t. Let K = Q{ζq), F = Q(ζp) and K' = Q{ζpq). We denote their cyclotomic Zp-

extensions by KOQ, FOO, and K^, respectively. Let σ be the topological generator of the

Galois group Γ = GaliK'^/K') which maps ζpn to ζpt
p for all n > 1. Restrictions of

σ to various subfields are also denoted by σ. Let k(P) be the decomposition subfield of k
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for p and let Δ = Gal(A:/Jt), Δ = Gal(AVβ), Ap = Gal(£/fc(/7)), Δ* = Gal(it/β) and

Δkp = Gdl(k(p)/Q). Let [k : Q] = d and [k(P) : β] = /, so there are / prime ideals in

A: above p. Elements of Δ, Δ or Ap will be denoted by τ's, and those of Δ* and Δ ^ p by

yo's. The Frobenius automoφhism of K for /? or its restriction to k is denoted by τp. Let /?

be the set of all roots of 1 in the ring of the /?-adic integers, i.e., R = {ω e Zp\ωp~ι = 1}.

Then R can be regarded as the Galois group Gal(F/β) or any Galois group isomorphic to it

such as Gdl(Fn/Qn), where Qn is the subίield of Fn of degree pn over β. For m > n, let

Gm,π be the Galois group Gdl(K'm/K'n) and Λfm̂  the norm map Nκ>m/K>n from ^ to K'n.

We will abbreviate Gm,o and Λfm?o by G m and Nm, respectively. Gm,M will also mean the

Galois groups Gdϊ(km/kn), Gal(Fm/Fn) and Gal(β m /β π ) . Similarly, Nm j / 2 will have various

meanings. Finally we fix a generator ψn of the character group of Gal(βπ/β) such that

ψn(σ) = ζpn. In this paper, we will compute the following cohomology groups of circular

units.

THEOREM. Suppose p\d = [k : β ] . Then, for m > n > 0, we have the following.

(i) cZm>n=cn,
(2) H\Gm%n, Cm) - ι \

(3) ^ - 1 ( G m , , , C m ) ^

Since Gm,π is cyclic, all the other Tate cohomology groups are isomorphic to one of

(2) and (3). Cohomology groups of circular units over arbitrary real abelian fields are still

unknown except when A: is a real quadratic field (cf. [4]) and when k = Q(ζq + ζ~ι) is the

maximal real subfield of Q(ζq) (cf. [3]).

We finish this section with a theorem of Ennola on relations of cyclotomic units which

will be useful in subsequent sections.

THEOREM (Ennola [1]). Suppose δ = Y[\<a<n(l - ζ%Ya is a root of 1 for some in-

tegers xa. Then for any even character χ of conductor n, Y(χ, 8) = 0, where Y(χ, δ) =

2. Lemmas. In this section, we prove a series of lemmas that we need in the proof of

the theorem in Section 1.

LEMMA 1. Let χ be an even character of conductor n, and δ\, <$2, δ cyclotomic units

n). Then

(1)

(2) Y(χ,δy) = χ(γ)Y(χ,δ)foranyγ

PROOF. These two follow immediately from the definition of Y.

In computing cohomology groups, we will often see circular units of kn of the forms

Π <£ω

+.-tfT). Π (^.- f f ) . and
ωeR,τeA ωeR,τeAp a
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We summarize their values Y(χψί, *) for χ e Ak or χ e Δ^p in the following lemma.

LEMMA 2. For χ ψ 1 and for every 1 < j < pn with (j, p) = l,we have

(1)

\ ωeR,τeA

(2)

= (p — l)t(Δ
p
)χ(b)ψn(aq) for χ e Δ ^

ωeR,τeA
p

(3)

Y (xΨL Π Π K"+• ~
l ) X a

)
=
 °

 /or χ e
 ̂

\ a ωeR /

PROOF. Since the proofs for (2) and (3) are similar to that of (1), we will only prove

(1).

Note that

1 Γ /uίjύ) ^^τ\ 1 ί y o Cύ /i j.—aωfbτ\

ωeR,τeA ωeR,τeA

= (root of 1) x P | (
ωeR,τeA

Since Y(χψb, root of 1) = 0, we have

sΔ / ωeR,τeA

tn+\

χ{bpn+x)ψJ

n(aq)
ωeR,τeA

= (p-l)#(A)χ(bpn+ι)xlfi(aq).

In the following lemma we solve a system of linear equations involving characters of

kn/Q).

LEMMA 3. Suppose that integers <?/,£,/ satisfy

0<l<pn
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for all j with 1 < j < pn+x, (j, p) = 1 and for all nontrίvial characters χ e Δ&. Then

\ eoi+e if l = k = 0,
aj i i = {

[ eii otherwise

for some integers eij and e.

PROOF. Write the equation as

Let bi = Σι ic aι,k,iΨJ

n+\(σι+kpn). As χ runs through all the nontrivial characters of Δ^, we

have d — 1 equations in d unknowns b\, , bd. Since the (d — 1) x d matrix with entries

χ(Pi) is of rank d — 1, the solution space is of one-dimensional. Since b\ = = bd = 1 is

a solution, the general solution is of the form b\ = = bd = e for some e.

Fix i and put ai^j = Q,*. Then we have

6<k<p

As 7 varies, this gives a system of pn+x — /?" linear equations in pn+x unknowns {c/^ | 0 <

/ < /Λ 0 < k < p}. Let A be the {pn+x - pn) x /?n + 1 matrix with entries ψj

nJtX{σι+kpH).

Then the equation reads AX = E, where X = ( , ci^, Y and E = (e, - - ,eY. Clearly,

χ 0 = (e, 0, , 0/ is a solution of AX = E. So the general solution for AX = E is given

by X = Xo + Y with AY = O. Since the rank of A is /?"+1 - /?\ the rank of solutions of

AY = O must be pn. For each s, 0 < s < pn, let Ys = ( , //,*, )' be such that

f ί 0 if Iφs,
f l ' k = \ 1 i f / = 5 .

Then y5 is a solution since £o<*</7 ̂ + 1 ( σ s + ^ π ) = 0 for all j . Since {Ys \ 0 < j < pn) is

independent, this set provides all the solutions to AY = O. Hence, the solutions for AX = E

is

0<s<pn

Therefore

oj +e if l = k = 0,
[ eij otherwise.

In the next two lemmas, we examine Cn for n > 0.

LEMMA 4. Form > n > 0, Cn =
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PROOF. Clearly, Cn D CoNm,nCm. To prove the converse, note that an element u of

Cn can be written as u = uou\ un, where for each k > 1, u^ is of the form

- π <
ωeR,τeΔ

aijσ'pj

Since

we have

Π<

Similarly,

So Uk e Nm,nCm for each k > 1 and thus w G CoNm,nCm.

LEMMA 5. rank Λ ^ / ^ Co = / - 1.

PROOF. Note that the group of circular units of k^P) is generated by — 1 and Nk/k{p) O)

Thus Nk/k{p)Co is of finite index in the full unit group Ek{p) of k(p) by the index theorem of

Sinnott [6]. Therefore, rankNk/kip)Co = rankEk{p) =1 — 1.

3. Computation of Cm

m'n. Clearly, Cn c C m

m n . For the converse, it is enough to

check when m = n + 1, i.e., C ^ j 1 " c Cn. Take w G cf+j 1 ' " . We can write u as

for some un e Cn and integers αιχt, bi^ Since uσP = M, we may assume un = 1. Now

apply Lemma 1 and Lemma 2 to the relation uσP = u with characters of the form ^

with 1 < j < pn+ι, (j, p) = 1 and nontrivial characters χ G Δ^ to obtain

ω,τ,l,kj
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Therefore

Hence by Lemma 3,
ί eOj +e if / = fc = 0,

Qi k i = { t

' ' [ eij otherwise.
Thus

φ φ l=k=0
k,ω,τ,ί i,ω,τ i,ω,τ

ωj,k

= Π<<
0<k<p

k,ω,τ,i i,ω,τ

ω,l,k

Note that the first two products in the above expression are elements in Cn, while the last two

are in β π + i . Hence u = vnvn+\ for some υn in Cn, vn+\ in Qn+\ Then apply Lemma 1 and

Lemma 2 again to get un+\ e Qn after similar computation.

4. Computations of H°(Gm,n, C m ). Since Cn = CoNm,nCm by Lemma 4, the natu-

ral map

Co -> Cn -> Cn/Nm,nCm

is surjective. Thus

H°(Gm,n, Cm) = Cn/Nm,nCm - Co/Co Π Λ^C™ .

Let C^ be the subgroup of Cm generated by circular units of the form Y\ωeR τeA (ζa^+\ — ζqτ)

with pm+ι \ a. Then clearly Cm = CoC'm and Nm,nC'm = Cn. Hence Nm,nCm = cζ~nC'n.

Therefore

H°(Gmtn, cm) - Co/Co n cf" V; - Co/cf~\co n c;>.
Next we claim that

Co

p c Co Π C^ c yyCo = {w e Co I Nk/k{p)u = 1}

The first inclusion follows from the equality (1 - ζq)
τp~x — WωeR^p ~ ??)• T o check the

second one, take u e CQ Π C'n and write u as

11 ( ς π + , - c
a,b ωeR,τeΔ

for some integers f(a,b).By taking ^ , we have

d,ω,τ d,τ
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for some integers g(d). Therefore Nk/k{p)u
pn = 1 and the second inclusion follows. Since

NCQ/C^ is annihilated by [k : β] , which is prime to p, we obtain

H°(Gm,n, Cm) ~ Co/Cf ~\Co Π C'n) = C0/cf~n

NC0 .

For convenience, we denote Nk/k{p) simply by N. By Lemma 5, we know that NCQ

modulo {± 1} is a free abelian group of rank / — 1. Let £i, £2, , £/-1 be elements of Co such

that [N(ξ\)9 N(ξi), , N(ξι-\)} generates NCo modulo {±1}, and let Do be the subgroup

of Co generated by {ξ\, £2, » £/-i}. Then

[Co : D0NC0] = [NCo : ^D0][yvC0 : Λ^C0] = 1 or 2.

Therefore

π. (O m , n , Cm) ~ — ffl_n - (Z//? Z)
(£1, ••• ,ξι-\)P NC0

as desired.

5. Computation of H~ι(Gm,n, Cm). Let {p\, , p/_i, p/ = id} be a set of coset

representatives of Δ / Δ p . For each 1 < / < / — 1, let

Snj = Π ^ ~ ̂
 aΠd π

« = Π <
ωeR ωeR

τeA
p

Then

Nn,n-l&nj = ft ̂  " ̂'^
 =
 Π ^ "

and

^ί«., = Π <C - C ^ ) = Π d -

since τ^ permutes Ap. Also, obviously Nn(π%~1) = 1.

We claim that H~ι(Gn, Cn) ~ (Z/pnZ)1 and is generated by {5Πti, , 5π,/-i, π^" 1 } .

Then from the inflation-restriction sequence

0 -• / / ^ G , , C^w π) - ^ / / 1 ( G m , Cm) - ^ / / ^ G ^ , C m ) ,

we obtain

0 -• (Z/pnZ)1 -> (Z/pmZ)1 -> H\Gm,n, Cm),

since the first cohomology group Z/1 is isomorphic to H~ι by the cyclicity of the Galois

groups. Thus (Z/pm~nZ)1 injects into Hι(Gm,n, Cm). Since the Herbrand quotient for the

unit group Em is # ( G m ^ ) = pm~n and since Em/Cm is a finite group, the Herbrand quotient

for Cm is also pm~n (cf. [5]). Thus #(Z/pm-nZ)1 = #H{(Gm,n, Cm) = p<lfI-/I>/. Therefore

^ - 1 (G m , π , Cm) ^ (Z/pm~nZ)1 and is generated by

<res(V.),- 1 < f 1 ) / ( 1 ) ^ 1 ^ " ' " 1
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It remains to justify the claim: If δ°\ δ^i^π^ ~X)aι = uσ

n~
x for some un e Cn, then

a\ = = a\ = 0 mod pn.

We will prove this by induction on n. For simplicity, write <$; for δ\j, and suppose that

^αj $^ιπ(σ-i)aι __ uσ-\ ^ o r s o m e M ^ Ci. As in the proof of Lemma 4, we can write

u = uou\, where wo € Co and u\ is of the form

u ι =

We apply Ennola's theorem with the character ψ\χ, χ e Δk,p, to the equation

S? i f i " / ^ - 1 ^ = u\~x to obtain

J ] aiYWiχ,δi) = {ψχ{σ) - l)Y(ψiχ, m).

Thus by Lemma 2,

for some algebraic integer a(χ) depending on / . Since p \ # ( Δ / 7 / Δ ) , we get

By letting χ vary over all nontrivial characters of ΔktP, we have a linear equation MA =

0 mod(^ p — 1), where M is the (/ — 1) x (/ — 1) matrix with entries χ(p/) and A =

(tfi, , ai-iY. Let N be the (/ — 1) x (/— 1) matrix with entries χ(p^). Then since

det(NM') = /z~2, p \ d e t M . Therefore A = O moά{ζp - 1), and hence mod p. Since each

ai = 0 mod p for 1 < i < I - 1, we get π[σ~l)aι = vσ

χ~
x for some v\ in C\. This implies that

πχ

ι = uiαo for some α?o € /:. As ideals, we have (πχ

ι) = (αo)> which is impossible unless

aι = 0 mod /?, since primes of /: above p ramify totally in k\. This proves the claim for n = 1.

Now we prove the claim for n assuming the result for n — 1. Suppose

r,a\ ~ai-i (σ-\)aι _ σ - l

for some w« G Cn. By applying Nn^n-\ to both sides, we have

C-1,1 C-u-iπi-71 ) Ω / =
 (A^/I^-IW^Γ"1 G C^Γ/ .

Then by the induction hypothesis, a\ = = «/ = 0 mod ?"" 1 . Let at = pn~xb[ for

1 < i < I. Note that

n-\ δpH~l E ,(1-

and
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Therefore δ"^ . δ^xπko~'m = uσ

n~
ι reads

for some vn e Cn. By the injectivity of the inflation map

tl (υi, CjJ — tl \\j\, CiJ T tl \\jn, L,n) — tl \\jn, Lyn) ,

δb

χ\ δχ

ι^χπ^~X^bι must be in C°~ι. Thus b\ = = b\ = 0 mod /? and so a\ = =

«/ = 0 mod pn. This finishes the proof.

REMARK. Let Γ = Ga\(koo/k) = l^mGn and Coo = UΠ>O^Λ τ h e n b y taking the

limit under the inflation maps, we have Hι(Γ, Coo) — (Qp/Zp)
1. On the other hand, Iwasawa

[2] found that Hι(Γ, £oo) = (QP/Zp)
ιΘM for some finite group M, where £Όo = U«>o En

Therefore the cohomology groups of circular units are as simple as one can expect. Moreover,

the natural inclusion Coo —• £<x> induces a homomorphism Hι(Γ, Coo) -^ Hι(Γ, £oo) and

it is natural to ask if this map is injective. Recently, however, this map was found not to be

injective in general (cf. [4]). The kernel of this homomorphism seems to be related with the

capitulation, but not well understood by the author so far.
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