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DUALITY FOR A CLASS OF MINIMAL SURFACES IN Rn+ι
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Abstract. Much is known about the geometry of a minimal surface in Euclidean space
whose Gauss map takes values on a linear subspace of the quadric hypersurface. We consider
minimal surfaces whose Gauss maps take values on rational normal curves. These are the
non-degenerate minimal surfaces with smallest possible Gaussian images. We show that the
geometry of such a minimal surface may be understood in terms of an auxiliary holomorphic
curve on the total space of a line bundle over the Gaussian image. This is related to classical
osculation duality. Natural analogues in higher dimensions of Enneper's surface, Henneberg's
surface and surfaces with Platonic symmetries are described in terms of algebraic curves.

Introduction. Let M be a Riemann surface and suppose that φ : M —> /? w + 1 is a

branched minimal immersion. Locally at least, φ = Re(V0, where ψ : M —> C Λ + 1 is a null

holomorphic curve. This means that the Gauss map yψ = [dψ/dξ] : M —>• Pn takes values

on the quadric hypersurface Qn-\ = (ZQ + + z% = 0 ) . The Grassmannian of oriented

2-planes in Rn+ι may be identified with Qn-\ and the Euclidean Gauss map γψ of φ, which

takes values in the former, is thus identified with γψ ([2]).

A natural approach to the study of minimal surfaces in /?" + 1 via their Gauss maps is

to fix a curve Q in Qn-ι, and consider the class of minimal surfaces whose Gauss maps

take values on Q. Alternatively, one might simply stipulate some condition on the Gaussian

image. Perhaps the first condition to consider is that yψ(M) lies on a linear subspace of

Qn-ι Lawson ([14]) showed that in even dimensions this is equivalent to the existence of an

orthogonal complex structure on R2n, with respect to which φ(M) is a holomorphic curve.

In general such conditions lead to the splitting of φ into a sum of a holomorphic curve and a

branched minimal immersion in lower dimensions, see [4], [10] for further details.

In this paper we study the consequences of Q being a rational normal curve: this is

the next simplest condition to consider after linear constraints. This means that Q is a full

(i.e., Q does not lie on a hyperplane), irreducible algebraic curve of degree n in Pn. Every

such curve is rational, all such curves are projectively isomorphic. Our main result is that if

γψ takes values on such a Q (and is non-constant), then there exists a natural lift of γψ into

the restriction of the hyperplane bundle of Pn to Q, from which the minimal surface can be

recovered, see Section 3. (In general, it may be necessary to pass to the universal cover of M

to define this lift globally.) This fact derives from the existence of a correspondence between

holomorphic curves in C " + 1 whose Gauss maps take values on Q, and free holomorphic

curves in the line bundle over Q. This might be viewed as a kind of 'twistor correspondence',
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where the infinitesimal constraint on one side is encoded into a global aspect on the other. It

turns out that this correspondence is best understood in terms of classical osculation duality

between curves in Pn and its dual P*. This is explained in Section 4.

This approach is most powerful in the case of algebraic minimal surfaces, i.e., surfaces

that are the real parts of null meromorphic curves. In this case the lift describes an algebraic

curve. 'Freeness' means that if we 'write down' an algebraic curve on the line bundle, then

it generates an algebraic minimal surface in / £ " + 1 , whose total Gaussian curvature, end struc-

ture, symmetries and branch locus we can 'read off' the algebraic curve: this is discussed in

Section 5. This facilitates the construction of interesting new examples of minimal surfaces

in / ? π + 1 . For example, in Section 6 we describe higher dimensional analogues of Enneper's

surface, Henneberg's surface and surfaces with Platonic symmetries.

These algebraic minimal surfaces have a natural differential geometric property. First

recall that φ : M ->• Rn+ι is said to be non-degenerate if γψ(M) is a full curve in Pn. Now,

the degree of a full algebraic curve in Pn is at least n. But the area of an algebraic curve in Pn

is 2π times its degree. It follows that non-degenerate algebraic minimal surfaces in R n+ι with

Gauss maps taking values on a rational normal curve are exactly the non-degenerate algebraic

minimal surfaces with the smallest possible Gaussian images.

When n = 2, Q\ is a rational normal curve in P^ and every minimal surface in R3

derives from a curve in the line bundle of degree 2 over β i Th e 'freeness' of the curve

underlies the Weierstrass formulae in free form of [23]. We describe analogous formulae in

higher dimensions. This is done directly by a simple integration by parts in Section 2: in

Section 3 their geometric meaning is explained.

This approach to minimal surfaces in R3 was indicated by Hitchin in [8]. In [20] we

amplified this and explained how it relates to a classical construction of Lie which is described

in [3]. This paper describes a generalization of the classical construction to higher dimensions.

The key point is that there is an analogous construction when we generalize Q\ to other

rational normal curves. We do not expect to see such a simple picture when we generalize Q\

to higher dimensional quadrics. (However there is a similar construction which applies to all

minimal surfaces in/?4, see [19], [22].)

The author thanks the referee for useful comments.

1. Preliminaries.

(1.1) In this section we introduce some terminology and notation. For basic facts con-

cerning minimal surfaces in Rn+λ and complex geometry we refer the reader to [10], [14],

[15] and [6], respectively.

(1.2) For the sake of brevity we make the following

DEFINITION. A full curve ψ : M -> C " + 1 which is such that the Gauss map γψ :

M -> Pn takes values on a rational normal curve Q is referred to here as a Q-curve.

DEFINITION. If φ : M -> Rn+ι is a non-degenerate branched minimal immersion

such that γφ : M -> Pn takes values on a rational normal curve, then we say that φ describes

a Λ-surface.
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DEFINITION. By a Calabi curve ψ : M -> Cn+ι we mean a holomorphic curve whose

Gauss map γψ = [dψ/dξ] : M -+ Pn has the following property: away from its branch

points, γψ induces a metric of constant Gaussian curvature from the Fubini-Study metric.

It follows immediately from a result of Calabi ([1]) that if ψ is full, then γψ must take

values on some projective isometry of ΊZn, the image of pn : P\ -> Pn, where

and furthermore, the induced Gaussian curvature equals 2/n.

REMARKS, (i) The real part of a <?-curve ψ : M -> C"1"1"1 describes a Λ-surface in

Rn+ι if and only if Q lies on Qπ_i.

(ii) Full Calabi curves generate all ^-curves by linear transformation. This follows

from the fact that every rational normal curve in Pn is projectively isomorphic to ΊZn.

(1.3) REMARKS, (i) If there exists U e U(n + 1) such that UΊln c Qn-u then

the construction described here gives all branched minimal surfaces in Rn+ι whose Gaussian

image have constant curvature. Note that for n = 3, no such U exists and consequently, if a

minimal surface in R4 has Gaussian image with constant curvature k, then k = 1 or 2; 2/3

is not possible, see Section 5 of [10] and [18]. In [5] it is shown that such a U exists for

every even dimensional space with dimension m > 10. These minimal surfaces in Rm with

Gaussian image of constant curvature 2/(m — 1) derive naturally from curves in a line bundle

of degree m — I onP\.

(ii) The metric dsίί, induced by a Calabi curve ψ : M —• Cn+ι, satisfies the Ricci-

Lawson condition, i.e., away from the (isolated) points where the Gaussian curvature Kψ = 0,

the metric dί2^ — (—K ψ)n^n^2^dsί is flat. Note that this is an intrinsic condition. See [11],

[13], [14], [18].

2. Weierstrass formulae.

(2.1) In this section we derive Weierstrass formulae in free form. We state the formulae

for full Calabi curves; analogous formulae for Λ-surfaces follow immediately from the fact

that any Λ-surface φ : M -> Rn+ι has a representation of the form: φ := Re(Tψ), for some

full Calabi curve ψ : M -+ C " + 1 and T e GL(n + 1, C) such that TΊln C Qn-\. (Such T

exist and are easy to write down, see Section 6 for examples.)

(2.2) Let M be a Riemann surface and suppose that ψ : M -> Cn+ι is a full Calabi

curve. From [1], there exists U e U(n + 1) and a holomorphic differential η on M such that

where g = p~ι 077. (The fullness assumption may be dropped here once the obvious

modifications are made, cf. [10].)
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Conversely, if g : M -+ C is meromorphic and η is a holomorphic differential on M such

that η, gη,... , gnη have no periods and whenever g has a pole of order m at /? e M, η has a

zero at p of order at least nm, then ^r, defined as above, gives a Calabi curve ψ : M —• C1"1"1.

(This is analogous to the usual Weierstrass formulae for null curves, cf. [14].)

(2.3) Now (locally) reparameterise ψ by its Gauss map: i.e., suppose that g~x exists

on an open set V c Pi, and furthermore that / : V -> C holomorphic, satisfies

where g(ξ) = ζ and /("+ 1) denotes the (n + l)-derivative of / with respect to ζ. Substituting

y(n+i) m t 0 m e above formula and changing the variable to ζ, we integrate by parts to obtain:

where ψ = (Vr0, > ^«)

REMARK. When n = 2, these formulae are equivalent to the integrated form of the

Weierstrass representation formulae for minimal surfaces in R3, cf. [20].

3. Duality.

(3.1) Here we derive the correspondence mentioned in the introduction. Technically it

is simpler to describe this by starting on the bundle side:

Let Cn be the total space of the holomorphic line bundle of degree n over P\ and let

O(n) denote the sheaf of germs of local holomorphic sections of π : Cn —• Pi. Recall that

<timH°(Pι,O(n)) = n + L

DEFINITION. A global holomorphic section σ e H°(P\, O(n)) that vanishes to order

n at some point of Pi is said to be normal.

The lines of normal sections comprise a curve of degree n, Λn C Pn = P(H°(P\, O{n))).

The map q : Pi -> Pn given by q(ζ) = {σ e H°(P\, O(n))\ σ vanishes to order n at ζ} gives

a canonical identification of Pi with Λn.

(3.2) Let C(Λi) denote the affine cone in H°(P\, O(n)) over Λn. The hyperplane

Πζ = {σ G H°(Pι,O(n));σ(ζ) = 0} intersects C(Λi) with multiplicity n along #(f).

This follows because if σ vanishes at ζ then it cannot vanish to order n elsewhere on Pi.

Such a hyperplane is said to be normal. Observe that a normal line lies on a unique normal

hyperplane.

77 = U^GPI Πζ is the kernel of the evaluation map

Pi x H°(PU O(n)) -> Cn , (f, σ) ^ σ(?) ,

which is surjective, and hence there is the following isomorphism:

Cn ~ (Pi x H°(PuO(n)))/Π = {affine normal planes in H°(PU O(n))}.
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Observe that / e Cn is dual to the affine normal plane 77/ c H°(P\, O(n)) of global

sections that pass through / and consequently, / lies on the image of a global section σ iff σ

lies on 77/.

REMARK. For n = 1, the normality constraint is vacuous. For n = 2, normality=nullity.

(3.3) A full curve ψ : M -> H°(Pu O(n)) is an Λ-curve if (dψ/dξ)(ξ) is a normal

section for each ξ e M. Identifying Λn with Pi via q, and thus viewing the Gauss map γψ as

a map to Pi, for γψ non-constant,

Γψ : M -> Cn ,

given by Γψ(ξ) = ψ(ξ)(γψ(ξ)), is a globally defined lift of the Gauss map: we call it the

associated map oϊψ. Γψ(ξ) may be viewed as the (unique) affine normal plane, with normal

direction γψ(ξ), that passes through the point ψ(ξ) e H°(P\, O(n)).

(3.4) It is not hard to show that if γψ is non-constant, then Γψ determines ψ. Let

Spe(O(n)) denote the etale space of O(n) (see [24] for definition). There is a (canonically

defined) holomorphic map

)-+ H°(PuO(n)),

which is given on stalks by

Ψn : O(n)ζ -• O(n)ζ/(I^1 0 O(n)ζ) -^ H°(PU O(n)),

where lζ is the ideal sheaf of holomorphic functions vanishing at ζ.

(3.5) Let Qn C Spέ(O(n)) denote the set of germs of global sections. The following is

an immediate generalization of results described in [20]:

PROPOSITION, (i) The holomorphic curve Ψn : Spe((9(n)) -+ H°(Pχ, O{n)) is an

Λn-curve, and its associated map, which is defined on Spέ(O(n))\Qn, is given by Γψn {[σ\) =

σ(ζ).

(ii) If ψ is an Λn-curve, with γψ non-constant, then V H M = ^n ° ^Z, where M =

{ξ £ M\ there exists some neighbourhood Vofξ such that Γψ(V) is transverse to the fibre

π~ι(γψ(ξ))}9 and Γ* : M -• Spέ(C?(n)) is the natural lift of Γψ over M.

REMARK. Ψn o Γf describes the curve of global sections that osculate Γψ (Λf).

(3.6) If an Λn-curve ψ : M -> H°(P\, O{n)) has non-constant Gauss map, then

locally trivializing Cn one can write, away from branch points of γψ,

where / is a (locally defined) holomorphic function. Thus if we choose the basis βo,... , βn

for H°(Pι,O(n)), where

n\
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then

/ d \n/2

f(ζ) ί — J = ψθ o Yψl(ζθ)βθ(ζ) + ~ + ψn° Yψ\ζώβn(ζ) + O[(ζ ~

where, as in (2.3),

This elucidates the geometric meaning of fin the Weierstrass formulae of 2.3: f is an

implicit description of the associated map of the curve ψ.

4. Duality from the 'compactified view'.

(4.1) In this section we recast the results of the previous section in terms of osculation

duality.

Let βk = π*βk and let ^(ζ", η) = η(d/dζ)n/2 denote the tautological section of π*O(n) ->

Cn. For n > 1, H°(Cn, O) = C and hence the complete linear system \H°(Cn, π*O(n))\ is

parameterized by P(H°(Cn, π*O(n))). Moreover, since \H°(Cn, π*O(n))\ is base point free

it follows that there exists a holomorphic map i = ιπ*θ{n) : £« ~^ P(H°(£n, π*O(n)))*, cf.

Section 1.4 in [6].

(4.2) An elementary power series argument shows that {$)> » &, 77} is a basis for

H°(Cn, π*O(n)). With respect to this basis

1 : Cn -• P(H°(Cn, π*O(n)))* -

is given by ι(ζ, η) = [βo(ζ),... , βn(ζ)> vV- t n u s observe that Cn is embedded and compact-

ified to C(Ίll), the projective cone over Ίl\ = [βo(ζ),... , βn(ζ), 0].

Tin is the image of the zero section, has degree n and lies on the hyperplane H = (zn+ι =

0). The vertex of C(Tll) is v = [0, . . . , 0, 1]: C{Tln) = Cn U {v}.

(4.3) Now fix £0 e Til and consider the hyperplanes of P(H°(£n, π*O(n)))* that

intersect Tln at ζo with multiplicity n. Such an osculating hyperplane either cuts out on C(Tll)

the image of a normal section or, if it passes through v, the image of the fibre through ζo (with

multiplicity n). Accordingly, a hyperplane that osculates Tln will be called normal.

(4.4) Consider the 'dual' variety in P * + 1 = P(H°(Cn, π*O(n)))9 whose points param-

eterise the normal hyperplanes of Pn+\. A hyperplane osculating Tln at £0 cuts out the zero

divisor (sλ) of a global section of π*O(n) of the form: sλ(ζ, η) = (λη + (ζ - ζo)
n)(d/dζ)n/2,

for some λ e C.

To find the dual variety explicitly in coordinates we write:

00(?o. λ)βo(ζ) H hfl/i(fo>λ.)j8,,(f) +α«+i(Co, *7)*? = (λ/7 + (f - ζo)n/n\) I -—

which gives:

, λ ) , . . . ,an+i(ζo, λ)] = 1, \/nζo,... , / ί j £ o , . . . , £Q, λ .
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Thus the points corresponding to normal hyperplanes, together with (the vertex) H* =

[0, . . . , 0, 1] e P * + 1 , comprise C(ΊZn) c P*n+V the projective cone over ΊZn c v* = (an+\ =

0).

(4.5) ΊZn is dual to ΊZn in the sense that for each ζo eΊll, there exists a unique normal

hyperplane that Osculates' C(ΊZn) along K T Γ " 1 ^ ) ) * and thus passes through v. This gives a

point on ΊZn c v*. Similarly, 7^ can be recovered from 7£w.

Observe that C(ΊZn) — {v} parameterizes the set of hyperplanes of P * + 1 that osculate ΊZn,

and v corresponds to the hyperplane that cuts out ΊZn on C(ΊZn). Thus the construction is

symmetric.

(4.6) The natural inclusion H°(PU O(n)) -> H°(Cn, π*O(n)), given by σ -> π*σ,

gives P(H°(P\, O{ή))) ~ v*, where Λz is identified with ΊZn.

This gives the component 'at infinity' of the isomorphism

P(H°(Cn,π*O(n))) - H°(PuO(n))UP(H0(PuO(n))),

which, off v*, is given by observing that the zero divisor associated to a C* of global sec-

tions of π*O(n) over Cn is the image in Cn of a global section of O(n) over Pi . Using the

coordinates introduced above we rewrite this as: P * + 1 = C " + 1 U v*.

This isomorphism gives: C(ΊZn) ~ C(Az) U Λn

REMARK. ΊZn parameterizes the set of normal lines through H*, whereas v}n parame-

terizes the normal hyperplanes through H*. The duality ΊZ^ΊZl reflects the fact that through

the origin, each normal line in H°(P\, O{n)) lies on a unique normal hyperplane and con-

versely that a normal hyperplane contains a unique normal line.

(4.7) We are now in a position to describe the correspondence of Theorem 3.3 from the

point of view of classical osculation duality between curves in Pn+\ and P * + 1 , (see [6] for

osculation duality). For, observe that a global section osculates a curve on Cn if and only if

the hyperplane that cuts out the image of the global section on C(ΊZl) osculates the image of

the curve on C{ΊVn) c Pn+ι m * n e classical sense.

From this point of view the map Ψn described in (3.3) is just an 'intrinsic' description

of the classical nth associated map of a curve lying on C(ΊZn) c ^ + i Moreover, the nature

of osculation duality determines that the associated map of an ΊZn -curve is just the (inverse)

nth associated map. The fact that a curve is the compactification of an Kn-curve in C " + 1 , is

equivalent to the fact that its associated map takes values on C{V}n).

Given a full holomorphic map T : M ->- P π +i, let T* : M -> P * + 1 denote the nth

associated map (with similiar notation for maps into the dual) so that T** = T.

THEOREM. IfT:M-+ C(ΊZl) is full, then T* : M -• Cn+ι U v* is an Un-curve.

Conversely, if ψ : M -> C " + 1 U v* is an ΊZn-curve, then ψ* is full and takes values on

C(Ίll). Also, ψ** = ψ.

It follows that 7£w-curves in C " + 1 are characterized by the fact that in P * + 1 = Cn+X Uv*,

the hyperplanes of P * + 1 that osculate them, osculate the curve on the hyperplane at infinity,

v*, that is cut out by intersection with C(ΊZn) (i.e., ΊZn).
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COROLLARY, ψ : M -> C " + 1 is a full Calabί curve with Gauss map taking values

on U(JZn),for U e U(n + 1), if and only if the osculating hyperplanes osculate the curve

U(1Zn) on the hyperplane at infinity, v*, that is cut out by intersection with C(U(Rn)).

REMARK. Observe that the osculating afίine hyperplane at a point on an 7^-curve is

the unique affine normal hyperplane that contains the tangent normal affine line to the curve

at that point.

(4.8) REMARK. Blowing up the vertex of C(1zl) gives the rational normal scroll

Sn ^ P(Cn Θ Co),

and P * + 1 is thus identified with the linear system \Eo\, see [6] for details and notation. v}n

determines a distinguished irreducible element of | En I a n d normality is defined in |2sn| with

respect to that curve in the obvious way. Thus the above can be reformulated as:

THEOREM. There exists a natural correspondence between 'fulΓ algebraic curves on

Sn and algebraic ΊZn-curves in |£Ό|.

(Here 'full' means that the corresponding curve on C(ΊZn) lies fully in /**+1. So the

non-full curves on Sn are: the (—n)-curve, the fibres and curves in |£ΌI Similiar terminology

applies to curves on Cn.)

REMARK. It is clear that natural compactifications of moduli spaces for ^-curves are

given by appropriate linear systems on Sn. These linear systems are naturally labelled by the

degree of the Gauss map and the class of the curve, cf. [20].

5. Algebraic Λ-surfaces in R n+ι.

(5.1) The correspondence described 'intrinsically' in (3.3) and 'extrinsically' in (4.8)

determines that the Λ-surface described by φ : M ->• Rn+ι derives from the osculation

of a holomorphic curve on Cn. For, φ = Re(Γτ/Ό, as in (2.1). In general though, it may

be necessary to pass to the universal cover of M to achieve this globally, because of the

presence of non-vanishing imaginary periods. Here we discuss the algebraic case, i.e., Λ-

surfaces in R " + 1 that are globally the real parts of meromorphic curves in C " + 1 whose Gauss

maps takes values on a rational normal curve lying on Qn-ι These are the non-degenerate

algebraic minimal surfaces in Rn+ι that have the smallest possible Gaussian images. Such

surfaces derive from the osculation of algebraic curves on Cn. In this section we show how

the geometry of these minimal surfaces may be 'read off' their associated algebraic curves.

REMARK. We do not distinguish between Cn and its compactifications C(JVn) and Sn\

by an 'algebraic curve' we mean an algebraic curve on C(1zl).

(5.2) Suppose that Λ C C(7ln) is a full irreducible algebraic curve, with normalization

χ : A —• A. Let A! = A — χ* - 1 (v*) . χ* - 1 (v*) is the set of poles of the Calabi curve

X* : A! -> C " + 1 . Moreover, suppose that T is chosen as in (2.1) and let φ = Re(Γχ*) :

Al —• Rn+X. φ is an algebraic Λ-surface whose Gauss map takes values on T(ΊZn) c Qn-\-

χ*-i (v*) j s the set of ends of φ.
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(5.3) Completeness. Since φ is the real part of a null meromorphic curve in Cn+X,

it induces a complete semi-metric on A!. ('Completeness' in this context means simply that

every divergent path has infinite length, see [15].)

(5.4) Gauss map. The Euclidean Gauss map of φ, γφ : A -> G+(2, Rn+ι) ~ Qn-u

is identified with the Gauss map of Tχ* in the usual way, [14], and thus with γχ*, the Gauss

map of x*. The latter is given, via the isomorphism ΊZn — 1Zn of 4.5, by projection to the

base Pi from Cn, since π o Γ* = γχ*, see 3.3.

Observe that γχ* is defined over the ends of χ*. This is easy to see in the case of

algebraic minimal surfaces but is also true for the wider class of finitely branched complete

minimal surfaces of finite total Gaussian curvature, see [15].

Moreover, there is no problem defining the Gauss map at points passing through the

vertex of C(1Zn). It is simply a matter of inspecting the corresponding curve on Sn, or equiv-

alently, on Cn. Consequently, (blowing-up if necessary) we have:

(5.5) Ends. The ends of φ occur where A osculates a fibre. For, viewing the corre-

spondence in its extrinsic formulation of (4.7), observe that if A osculates a fibre, this means

that it osculates a hyperplane of Pn+\ that passes through v, and hence the corresponding

point in P * + 1 lies on v*, the hyperplane at infinity of C"*+1.

In particular this applies if the curve passes through v. At such a point the associated

curve actually osculates v*, the hyperplane at infinity itself. We refer to such points as vertex

ends of φ. At non-vertex ends the associated curve osculates the completion of an affine

hyperplane of Cn+ι at infinity.

The number of vertex ends (counted with multiplicity) is given by ev = A £Όo, where

£oo is the exceptional curve on Sn. (Note that A £Ό gives the class of the corresponding

curve.)

Let x = χ(ξ) φ v. Since A osculates the fibre through x, ξ is a branch point of the

Gauss map. (Off the branch locus of the Gauss map, the local inversion of the Gauss map

gives the Weierstrass formula of (2.3).)

Suppose that the affine coordinate ζ, in the base, is centered at π(x). If ξ is a branch

point of γφ, of ramification index q, then q branches of A come together irreducibly at x.

These branches of A have Puiseux series representations given by:

i=p

Substitution into the Weierstrass formula of (2.3) gives:

(i) If p/q > n, then φ(ξ) e Rn+ι and for q > 2, ξ is just a branch point of the Gauss

map of the minimal surface.

(ii) If p/q < n, then ξ is an end of φ.

REMARK. This generalizes 240, [3].
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Observe that if x is a smooth point of A in the branch locus of γφ, then A osculates the

fibre and ξ is an end.

(5.6) Gaussian curvature. On Sn there is the linear equivalence: EQQ ~ EQ — nC,

where C is any fibre. The degree of γψ is equal to the intersection number AC. The total

Gaussian curvature of the semi-metric on A! induced by φ is given by the area of its Gauss

map, [14], consequently:

K = -2πnA C .L
Hence,

K = -2πA (£o -LA!

= -2π deg(A) + 2πev .

In particular, if there are no vertex ends, then

K = -2π d e g U ) .LJΛ'

REMARK. 2π deg(*4) is the area of A in P n +i; it is 'transformed' into Gaussian cur-

vature on the dual curve by osculation duality. The presence of vertex ends diminishes the

absolute value of the total curvature on the dual curve and thus the total multiplicity ev might

be viewed as Gaussian curvature 'lost at infinity'. Observe that non-vertex ends make no

direct contribution to the above formula.

(5.7) Genus. A C Sn exhibits A as a branched cover of Pi . Thus the genus of A is

given by the Riemann-Hurwitz formula.

(5.8) Branch Points of the Induced Metric. First suppose that ξo is not a branch point

of the Gauss map γψ : A! —• P\ and that ζ is an affine coordinate in Pi centred at Yφ(ξo). A

may be represented over a neighbourhood of γψiξo) as f(ζ) = χ o Yφl(ζ). The metric on

the corresponding Calabi curve is given by:

Consequently, / ( n + 1 ) ( fo) = 0 if and only if ξo is a branch point of ds2. It is easy to see that

ds2 and dsί have the same branch locus, and thus the above give branch points in the metric

induced by φ.

Note that these branch points in the induced metric are points where the curve A C P n +i

is hyperosculated by the osculating hyperplane.

REMARK. This is interesting because such points often have intrinsic meaning. For

instance, see (6.2) in [20], where they give the points of order 4 in the group structure of an

elliptic curve. In the case of a canonical curve these are Weierstrass points on the Riemann

surface, see (6.8).

If ξo is a branch point of the Gauss map, then choosing a local coordinate ξ around ξo

such that γψ(ξ) = ξq and writing χ(ξ) = (ξq, /*(§)), the metric on the corresponding Calabi
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curve is:

where f(ζ) = h o γ, ι(ζ) (for a choice of inverse γφ

 ι) and f(n+V denotes differentiation

with respect to the affine coordinate in the base. So the induced metric is branched at such an

ξo iff ξo'lf(n+l)(ξo) = 0. So if h(ξ) ~ ξp, where p = nq + 1, then φ is immersed at ξo,

and if p > nq + 1, then ξo is a branch point in the metric; otherwise ξo is an end.

(5.9) Symmetries. An element of SL(2, C) acts naturally as a bundle automorphism

of Cn by differentiation of the induced Mobius transformation of Pi and tensoring. For

(a
9 =

this is given in coordinates by g+(ζ, η) = ((aζ + b)/(cζ + d), (cζ + d)~nη).

This induces the (unique up to isomorphism) (n + 1)-dimensional representation of

5X(2, C): ^ : H°(P\, O(n)) —• H°(P\, O(n)), where <?(σ) = g"1 oσ o g.

Viewing H°(P\, O(n)) as the (n + 1)-dimensional space of polynomials of degree n,

this is simply g(p(ζ)) = (cζ + d)np((aζ + Z?)/(c£ + d)). Note that this action preserves the

affine cone in H°(PU O(n)) over ΊZn, cf. 3.8 in [20].

If n is even (which we suppose for the rest of this section), then the identity element of

SL(2, C) acts as the identity on H°(P\, O(n)). The irreducible representation of SU(2) thus

obtained induces the unique (n + 1)-dimensional representation of SO(3, R).

Now, suppose that Cn is endowed with a real structure τ such that the action of any

g e SU(2) on Cn commutes with τ. This means that SU(2) preserves the real sections

in H°(P\, O(n)) determined by τ. (This follows because real sections are those that satisfy

τoσoα = σ, where a is the (antiholomorphic) involution of Pi induced by τ. For g e SU(2),

commutativity with τ gives τog~ι oσogoa = g~ι oτoσoaog= g+ι oσog. Soσ is real if

and only if σ is real.) Thus we obtain the (n + 1)-dimensional irreducible real representation

A curve described as a zero locus P(ζ,η) = 0 in Cn is invariant under the action of

g e SL(2, C) if P(g+(ζ, η)) = 0 describes the same curve. Clearly a curve in Cn is invariant

under the action of g* if and only if the associated curve in C π + 1 is invariant under the action

of g.

Suppose that G c SO(3, R) is the symmetry group of a regular polyhedron and G the

corresponding binary group. It follows from the above discussion that an algebraic curve on

Cn which is invariant under the action of G generates via osculation an algebraic Λ-surface in

Rn+ι which is invariant under G acting through the unique (w +1)-dimensional representation

as described above.

REMARK. For n = 2, this reduces to the adjoint representation of SX(2, C), cf. [20].

This case was used by Goursat ([7]) in his prize winning work of 1887. His aim was to de-

scribe algebraic minimal surfaces in R 3 that possess the symmetries of a regular polyhedron.

See (6.8) for some new examples.
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There has been much recent interest in the construction of immersed examples of such

surfaces, see [17], [25].

6. Global Weierstrass formulae and examples.

(6.1) Examples of meromorphic Calabi curves in Cn+X and the associated algebraic

yi-surfaces in Rn+ι can be constructed and studied by writing down a curve in C 2 and con-

sidering its completion in Sn. On the other hand, such a curve is described by a pair of

meromorphic functions (g, f):M — Doo(g) ->• C x Pi, where Doo(g) denotes the divisor of

poles of g. Working in the coordinates ω = — ζ~ι, μ = ζ~nη around the fibre over σo in Cn,

gives the equivalent description (- l/#, g~n f) : M - Do(g) -> C x Pi, where Do(g) is the

divisor of zeros of g.

Global Weierstrass formulae are obtained by considering

f(ξo) + + (9(ξ) - 9(ξo))n^^4
dg n\ dgn

= ao(ξo)+aι(ξo)g(ξ) + +an(ξ0)gn(ξ) + ,

where df/dg = (df/dξ)(dg/dξ)~ι, etc. Of course, the right hand side of the above expres-

sion does not converge at branch points of g, but the coefficients ao(ξo),... , an(ξo), viewed

as functions of ξo, determine a globally defined meromorphic map of M. This curve (after lin-

ear transformation) agrees with the Calabi curve determined by osculation on an open set and

hence on all of M. Observe that it coincides with the curve determined by the corresponding

expansion of g~n f with respect to —l/g. For example, when n = 2, we have, globally on M:

-2 d d
9 fd(-l/g) f dg"

where in a local coordinate £, d/dg = (dg/dξ)~ι(d/dξ), and

ldHf/92) _l 2d
2f df

2d(-l/g)2 2y dg2 ydg J

d(f/g2) 1 dHflg2) _ df fl
d(-\/g) gd(-l/g)2 dg 9 dg2

1 1 dHf/g2) 1 d(f/g2) f _ 1 d2f

2g2d(-\/g)2 gd(-\/g) g2 2 dg2 '

These equations reflect the transformation of coefficients of a global section of 0(2) that

occurs when switching from ζ to ω — — ζ~] coordinates on Pi .

It is easy to write down appropriate transformations for arbitrary n to generate global

Weierstrass formulae for algebraic A -surfaces in Rn+X, but, since they are not canonical,

we limit ourselves to illustrating the procedure in 3, 4 and 5 dimensions. Let / ( t ) denote

dkf/dgk.
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(6.2) Global formulae for algebraic minimal surfaces in R3 are given by (the classical
Weierstrass formulae):

\2 dg2 dg f

02 = Re ( l-(l + g2)^ - ^ T " + '7
\2 dg2 dg ι

See [20].

(6.3) A full meromorphic Calabi curve in C 4 may, after unitary transformation, be

brought into the following form:

where / = fψ = (l/6)(—^ 3 + y/3gψ2 ~ Vϊg2ψι + g3ψo), and # gives the Gauss map of

ψ.
These Calabi curves satisfy ^Ψ^Ψ^ — ̂ ^ 2 = 0 and consequently α> : Λf -> C 4 given

by:

V3 Λ/3 1 1

ω (V̂  + Ψ ) ω i (Ψ V ^ ) ω (ψ ^ ) ω ( ^ + ̂ )

satisfies (ωf

0)
2 4- + (ω 3 ) 2 = 0. Hence substitution of meromorphic functions g, f, such

that / is not a polynomial in g of degree < 3, into the following formulae gives an algebraic

Λ-surfaceinJ?4:

0o = Re((l + <?3)/(3) ~ 3<?2/(2) + 6<//(1) - 6/)

0! = Re(/{(1 - g3)fi3) + 3 / / ( 2 ) - 6gf{l) + 6/})

02 = Re((0 - / ) / ( 3 ) - (1 - 2 ^ ) / ^ - 2gf^)

03 = Rc(i{(g+g2)fi3) - (1 + 2</)/(2) + 2gf{X)}).

REMARK. There exist Weierstrass formulae in integrated form for general null curves

in C 4 , see [19], [22]. For integral formulae see [10].
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(6.4) Full Calabi curves ψ : M -> C5 satisfy 2ψ^ψ'4 + Ψ'iΨ's ~ (V^)2 = ° a n d h e n c e

ω : M -> C5 given by:

ω2 = ~(Ψ\ + ^3)

C04 = —1Ψ2

satisfies (cof

0)
2 + + (ω'A)

2 = 0. Hence substitution of meromorphic functions g, f, such

that / is not a polynomial in g of degree < 4, into the following formulae gives an algebraic

Λ-surfacein/?5:

φ0 = Re ί _ { ( l + # 4 ) / W - 4grfV> 4- 12gιpl) - 24gp
l) + 24/}

01 = Re ( ̂ L{(1 - ^ 4 ) / ( 4 ) + 4g3f{3) - I2g2f{2) + 24gf(l) - 24/}

03 = Re(-/{(0 - ^ 3 ) / (

04 = Re(-ΐV6{^ 2 / ( 4 )

(6.5) Higher Dimensional Enneper Surfaces. The examples described in Theorem 3

of [2], which give complete immersed minimal surfaces with total Gaussian curvature — 2πn

in Λ π + 1 , are generated by osculation of the curve η = ζn+ι in Cn. In dimension 3 this

gives Enneper's surface. These give the 'simplest' non-trivial immersed examples in each

dimension: for any power less than n + 1 , osculation gives a constant map. Any power greater

than n + 1 gives a minimal surface with branch points. (Note that the addition of a polynomial

of degree < n simply results in the translation of the corresponding minimal surface in R n+ι.)

(6.6) Higher Order Enneper Surfaces. The rational examples described above and

those in (6.1) of [20] may be generalized as follows. Letp,q e Nbecoprime v/ithp+q > 3.

Cp,q,n> the curve in C(jVn) obtained by completing the curve in C 2 given by rf = ζp, is

irreducible and rational with normalization given by extending u ι-* (uq,up).

For p < nq + 1, osculation of Cp^n yields complete minimal immersions of C* into

JRΛ+1 with total curvature —2πnq.

For p > nq + 1, osculation gives one ended examples C -> Λ Λ + 1 , with a branch point

at 0 and total curvature —2πnq.

p = nq + 1, is a 'critical' case. It gives one ended immersions into i ? Λ + 1 , with total

curvature —2πnq. This case reduces to (6.5) when q = 1. The n = 2 examples were

discussed in [20] and from another point of view in [12].
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(6.7) Higher Dimensional Henneberg Surfaces. The curve Ί~in+\ in Cn described by

η = ζn+ι + (— iyπ-i^-1 is the sum of two curves which are dual to Enneper type surfaces.

In the coordinates ω = -ζ~ι, μ = ζ~nη\ η = ζn+ι is the curve μ = ω~ι, see (5.9). (The

resulting 'addition' of minimal surfaces was described, from a different point of view, in [16]

for surfaces in R3, see also [21].)

Osculation of this curve gives an (n + 1)-dimensional analogue of the classical Hen-

neberg surface i n R 3 , which is given by n = 2. These surfaces have two (vertex) ends, branch

points at the (n+2)-th roots of unity and Gaussian curvature —2nπ. Recall that the Henneberg

branched minimal immersion factors through a once punctured RP2 to give a branched min-

imally immersed Mobius strip with one end of total curvature — 2π. It is easy to see how to

generalize this feature also, at least to odd dimensions. To illustrate this we now discuss a five

dimensional example.

A full Calabi curve ψ : M -> C 5 satisfies Iψ^ Λ-ψ^- (ψ'2Ϋ = 0. So the curve

θ : M —• C 5 , given by ΘQ = iψo, 0\ = ψ\, #2 = Ψ2, #3 = Ψ3, #4 = iψ4, satisfies

29ft'4 - θ[θf

z + {θf

2)
2 = 0. We now define ω : M -+ C5 by setting:

ω2 = -(θι-θ3)

(03 = γ(6>i+<93)

ω4 = #2

Since (ω'o)
2 + + {ωf

A)
2 = 2θ^θf

4 - θ[θ'z H- (0£)2, it follows that ω is a null curve.

Consider the real structure τ\ : C\ —• £4 given by (f, r/) h^ (—f"1, ?~4y?)- It is

easy to check that the real sections of 0(4), i.e., those invariant under T4, are of the form

αβo + tjSi H- c^2 + dβ3 + ^ 4 , where a = e, b = -d and c = c. It follows that T : C 5 -•

H°(Pi, O(4)) given by Γ(z0, , ZA) = ((zo + iz\)/*/2)βo + (22 + *Z3)ft + z4^2 + (-Z2 +

iz3)β3 + ((zo ~ iz\)/V2)β4, takes Λ 5 c C 5 to the real global sections determined by 14.

Observe that ω = T~ιθ.

The curve Hs, described by g(ζ) = ζ, f(ζ) = ζ5 - ζ~ι in £4, is τ4-invariant. Note that

T4 induces the antipodal map a on Pi . Now, since a global section σ osculates a ^-invariant

curve C at a point /? if and only if XΔ, O σ o α osculates T4(C) at 14(77), it follows from the

above that ω(r4(p)) = ώ(/?) for all p € W5. Consequently, φ(p) = (ω(p) + ώ(p))/2 =

(ω(p) + ω(τ4(p)))/2. It follows that 0(r4(/?)) = 0(p) for all /? G ^5-

Using ζ as a coordinate on H5, we have for φ = (ω + ώ)/2, that 0 ( - ^ ~ 1 ) = </>(̂ ). Thus

φ factors through RP2 to give a branched minimally immersed Mobius strip, with one end,

into R5. The branch points at the sixth roots of unity descend in antipodal pairs to give three
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branch points. Thus we obtain a nondegenerate branched minimally immersed Mobius strip

in R5 with total curvature - 4 π . The algebraic formulae can easily be found from the above.

(6.8) Platonic Surfaces. Following the discussion in (5.7), consider the compactifi-

cations in £2 of the following curves:

(1) η3 + iaζ(ζ4-l) = 0,

(2) 4 8 4

(3)

where a e R — {0}. These were described in [9], following Klein, via the theory of invariant

bilinear forms and polynomials on Pi. (1) is invariant under the binary tetrahedral group, (2)

is invariant under the binary octahedral group and (3) is invariant under the binary icosahedral

group. Each of these curves is smooth in £2.

Via osculation duality:

(1) gives a one parameter family of algebraic minimal surface in R3 with tetrahedral

symmetries. They are genus 4 with 6 (non-vertex) ends and total curvature — 12π. Viewed as

a curve in P3, (1) gives a canonical curve. Consequently the points of hyperosculation, which,

away from ends, give branch points in the metric on the corresponding minimal surface, are

Weierstrass points. Each of the ends, where the curve osculates a hyperplane cutting out a

fibre of the cone in P3, gives a point of hyperosculation.

(2) gives a one parameter family of algebraic minimal surfaces in R3 with octahedral

symmetries. They are genus 9 with 8 (non-vertex) ends and total curvature —Iβπ.

(3) gives a one parameter family of algebraic minimal surfaces in R 3 with icosahedral

symmetries. They are genus 25 with 12 (non-vertex) ends and total curvature —24π.

In each case the curve is invariant under the real structure Γ2(ξ\ η) = (—ζ~ι, ζ~2ή).

Thus the corresponding branched minimal immersion factors through the curve quotiented by

the action of T2 This shows that the corresponding surfaces in R 3 really have half the number

of ends, branch points and total curvature one calculates on the original curve. Compare the

Klein bottle examples in (6.2) of [20].

(6.9) Let us compactify the curves described in (6.8) to obtain (singular) algebraic

curves on £4.

Observe that the action of SU(2) on £4 commutes with τ^. Hence following (5.9), we

obtain from these curves, algebraic ^-surfaces in R5 which are invariant under the action of

the corresponding G c SO(3,R) acting through the real 5-dimensional representation de-

scribed in (5.9). Observe that, since these curves are not Γ4-invariant, these branched minimal

immersions do not factor.

The additional twisting in the bundle renders the curves singular in the fibre over infinity.

Inspection reveals that these singular points give branch points in the Gauss maps of the

corresponding minimal surfaces in R5, not ends. (Namely, the Gauss map onto the rational

normal curve in the quadric Q3 has a branch point.) Bearing this in mind, observe that via

osculation duality:



DUALITY FOR MINIMAL SURFACES 601

(1) gives a one parameter family of algebraic minimal surface in R5 with tetrahedral

symmetries. They are genus 4 with 5 (non-vertex) ends and total curvature —24π.

(2) gives a one parameter family of algebraic minimal surfaces in R5 with octahedral

symmetries. They are genus 9 with 7 (non-vertex) ends and total curvature —32π.

(3) gives a one parameter family of algebraic minimal surfaces in R5 with icosahedral

symmetries. They are genus 25 with 11 (non-vertex) ends and total curvature — 4Sπ.
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