Tohoku Math. J.
51(1999), 433446

A CONSTRUCTION OF K-CONTACT MANIFOLDS BY A FIBER JOIN
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Abstract. In this paper we introduce a process of making a fiber join of regular X -
contact manifolds and then construct some explicit examples of K -contact flows which gener-
ate contact transformations of a torus. We also discuss the equivalence of these examples.

1. Introduction. A contact flow ¢; is a flow which is generated by the Reeb vector
field of a contact manifold (M, «). It preserves the contact form « and the contact plane field
kera. A contact flow ¢, is called a K-contact flow if there exists a metric g on M such that ¢,
is an isometry. In this case the triple (M, «, g) is called a K-contact manifold ([2, 3]).

Suppose we are given a K -contact manifold (M, «, g). If M is compact, the closure of
a K-contact flow {¢; |t € R} in the isometry group of (M, g) makes a compact connected
abelian Lie group, hence isomorphic to T* for some integer k. Clearly this action of the
torus 7T also preserves « and g. Thus a compact K -contact manifold (M, ¢, g) has a Tk-
action which preserves both o and g. We will see that this property of T*-action on a contact
manifold characterizes the “K-contactness” and k satisfies 1 < k < n + 1 when dimM =
2n + 1 (see Proposition 2.1). We call (M, «, g) with this T*-action a K -contact manifold of
rank k. A typical class of examples of K-contact manifolds of rank 1 is a family of regular
K -contact manifolds (M, «, g). A regular contact manifold (M, ) consists of a pair of a
principal S'-bundle M over a symplectic manifold (W, w) and a connection one-form a. A
metric g is given by ¢ = m*gw @ (¢ ® ), where gw is a Riemannian metric compatible with
o and 7 is the bundle projection M — W (see Example 2.4).

In this paper we will present a method of constructing a K-contact manifold of rank
k > 2 out of K-contact manifolds of rank 1 by making use of join construction in topology.

Let (Mo, g, go), - - . , (Mp, i, gn) be regular K -contact manifolds and L ; an associated
complex line bundle of M; — W foreach j (j =0, 1,...,n). From these we construct a
K -contact manifold (Mo * s - - - * ¢ My, By, gr) of rank n+ 1. Here Mo - - - % f My, is the unit
sphere bundle S(Lo®- - -@® L,) and B, is a contact form with a parameter A = (Ag, ... , A,) €
R"t1_ We call the resulted K -contact manifold a fiber join of (Mo, ag, 90), - - . , (My, &y, Gn).

Applying a fiber join construction to three dimensional regular K -contact manifolds, we
obtain infinitely many distinct K -contact structures on Xy x S2"*1 and Zox $#"*+! (X, is a
closed Riemannian surface of genus g) which are not 7" *!-equivariant. Namely, we obtain
the following:
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THEOREM 4.5. For n > 1 there exist infinitely many different K-contact equivalence
classes of K-contact flows on g x §*"+! and X g% §2n+1.

The author would like to express his gratitude to Professor Tadayoshi Mizutani and Pro-
fessor Yoshihiko Mitsumatsu for their continuous encouragement and helpful discussions.

2. The torus action on K-contact manifold. A contact form on a (2n + 1)-dimen-
sional smooth manifold M is a one-form « such that ¢ A (da)” is everywhere nonzero. The
pair (M, @) is called a contact manifold. A contact form « determines a unique vector field Z
on M such thata(Z) = 1, da(Z, X) = 0 for any vector field X on M. We call Z and the flow
¢; generated by it the Reeb vector field and the contact flow, respectively. A 2n-dimensional
distribution D on M defined by D := ker « is called a contact plane field. From the definition
of @ and D, it is obvious the two-form da is non-degenerate on D. Namely, da induces
a symplectic structure on D. In this situation, it is well-known that there exists a positive
definite metric gr and an almost complex structure J on D such that gr (X, Y) = da(X, JY),
gr(JX,JY) = gr(X,Y) forall X, Y € I'(D) (the set of smooth sections of a vector bundle
D) (see [1]). The pair (gr, J) is said to be compatible with do. We can extend g7 on D to
whole T'M by requiring g7 (Z, X) = 0 for any vector field X on M. Thus we get a Riemannian
metric g := gr @ (¢ ® a) on M, which is called an adapted metric to the contact form «.
Note that an adapted metric g is not unique, depending on the choice gr.

Now we define a K -contact manifold.

DEFINITION. Let (M, ) be a contact manifold with the Reeb vector field Z. If there
exists an adapted metric g to o on M such that Z is a Killing vector field with respect to g,
that is,

2.1 Lzg=0,

then we call (M, «, g) a K-contact manifold. Here Lz is the Lie differentiation in direction of
Z.

We call « and g of a K -contact manifold (M, «, g) the K-contact form and the K-contact
metric, respectively. We also call the flow ¢, generated by the Reeb vector field Z of the
K -contact form « the K-contact flow of (M, «, g).

In general, a contact flow ¢, preserves the contact form «. This is because we have
Lza = 0 from the definition of the Reeb vector field Z. It follows that a K -contact manifold
(M, a, g) has an R-action induced by {¢; | ¢ € R} which preserves both « and g¢.

The following proposition characterizes a K -contact manifold.

PROPOSITION 2.1. Let (M, @) be a (2n+ 1)-dimensional contact manifold and ¢, the
contact flow. If we assume that M is compact, then the following statements are equivalent.

(1) There exists an adapted metric g to « such that (M, «, g) is a K-contact manifold.

(2) There exist a torus T* such that 1 < dim(T*) < n + 1, a smooth effective Tk
action {h, |u € T*} on M, and a homomorphism W : R — T* with dense image such that
o1 = hy ().
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PROOF. We will prove (1) = (2). Since M is compact, by Meyer-Steenrod theorem
(see [7]), the isometry group Isom(M, g) of (M, g) is a compact Lie group. It follows that the
closure of {¢; |t € R} in Isom(M, g) is a compact connected abelian Lie group, and hence is
isomorphic to a torus T* for some integer k.

We now prove k < n+ 1. Let I'(T M) be the Lie algebra of the vector field on M and V
the Lie algebra determined by the image of the Lie algebra homomorphism Lie(T*) > & —
d/dt lz=0 exp(t&§) € I'(TM). Here exp : Lie(T¥) — T* is the exponential map. Let Z be
the Reeb vector field of (M, «). We denote by RZ a trivial line bundle spanned by Z. By
the isomorphism TM = D @ RZ we have a unique decomposition X = X + a(X)Z for
X € V and X € I'(D). From the fact that (X) is a T*-invariant function and [X, Y] = 0
for any X,Y € V, we see that [)_(, f’] = 0 for any X,Y € V. It follows that if we denote
by X1, ..., Xi the fundamental vector fields of T*-action determined by a basis of the Lie
algebra Lie(T%), there is an open set U such that X1, ..., Xk determine a (k — 1)-dimensional
integrable distribution on U tangent to D. It is well-known that the maximal dimension of
integrable submanifolds of the contact distribution is n,so0k — 1 < nand hence k <n + 1.

We will prove (2) = (1). From the fact that 9o = « and the closure of {¢; |t € R}
is isomorphic to T*, we have ke = « forall u € T*. Namely, « is invariant under the
T*-action, and so is da. In this case we can also take a positive definite metric gr and an
almost complex structure J, which is compatible with the symplectic form da on D, to be
invariant under this T*-action (see [1, 15]). Thus we have a metric ¢ = g7 @ (¢ ® «) and it
is invariant under the action of TX. In particular, we have Lzg = 0, and hence (M, «, g) is a
K -contact manifold. q.ed.

The property of T*-action of Proposition 2.1 characterizes the “K -contactness”. Namely,
we may consider a K -contact manifold as a manifold which has an action of the torus T*
containing the contact flow as a dense image, and hence the action of T* preserves both o and
9.

DEFINITION. (M, «, g) is called a K-contact manifold of rank k if the closure of the
K -contact flow {¢; |t € R} in Isom(M, g) is isomorphic to a k-dimensional torus T*.

As a result of Proposition 2.1, we see that in the case of the contact flow on the compact
contact manifold (M, «) there is no difference between an isometric flow and a Riemannian
flow. Namely, we get the following:

COROLLARY 2.2 ([15]). If a contact flow on a compact manifold is a Riemannian
flow, then, (changing the transverse metric, if necessary), it is a K-contact flow.

PROOF. Let (M, o) be a compact contact manifold with the Reeb vector field Z. As-
sume that a contact flow ¢, of Z is a Riemannian flow, that is, there exists a transverse metric
gr to the contact flow ¢, (a positive definite metric on the contact plane field ker ) such that
Lzgr = 0. Note that g7 needs not to be compatible with the symplectic form do. Then Z
is a Killing vector field with respect to a Riemannian metric § = gr ® (¢ ® «). So ¢, is an
isometric flow. Since the closure of {¢; |t € R} in Isom(M, g) is isomorphic to a torus, ¢,
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satisfies the condition (2) in Proposition 2.1. Therefore there exists a K-contact metric g on
M, and hence ¢; is a K -contact flow. q.e.d.

We will give two typical classes of examples of K-contact manifolds. They are needed
for the construction in Section 3.

EXAMPLE 2.3 ((2n+ 1)-dimensional K -contact manifold of rank n+1). Let $2"*1 =

{z = o,...,22) € C"| T _42;z; = 1} be a (2n + 1)-dimensional unit sphere in
complex (n+ 1)-space C"+!. We denote the polar coordinate of C"*! by (rg, 60, ... , n, 6p).
For rationally independent positive constants Ag, ... , A,, we take
n n
2.2) o =V=1/23 Aj@jdzj — zjdzj) = Y Ajrlde;.
Jj=0 Jj=0

Then it is easily seen that «;, is the contact form on $2*+! with the Reeb vector field
n

2.3) Xo=v=1)_ 1/x;(z;9/0z; — 2;0/3Z;) .
j=0

Let ¢} be the contact flow of X;, and

2.4) (€T, ..., eV=Tm) ) = (¢ Tz, . eV Ting,)

- (20, ...

E)

where (eV~10, ... eV=lin) € T"+1 C (C*)"*!, be the standard T"*!-action on g2+l
Then we have

(2.5) @20, ... zn) = (V7T gy VT,

Since Ao, ... , A, are rationally independent, the closure ¢} - z of the orbit go," - Z coincides
with the orbit 7! . z for any z € §2"*!. Thus, by Proposition 2.1, there exists an adapted
metric g to «; such that (S2"+1, ay, g») is a K-contact manifold of rank n + 1. Here g is
given by choosing a transverse metric gr on ker o) and setting gy = g7 @ (a) @ ay).

We define a S'-action on §2*! by

eV (20, V20,6V 100y, eV 10 g

25 20) = (e¥ %20,

for e‘/_—w e §!' ¢ C* and positive integers qi, ... ,qn. Choose an integer p such that
p and each g; are relatively prime, and consider the action restricted to [ez” kv/=16/p |k =
0,1,...,p— 1] = Z/pZ of the above S'-action. Then $¥**1/(Z/pZ) is also a K-contact
manifold of rank n+ 1 with the K -contact form and the K -contact metric induced from $2*+!,

REMARK. (1) The choice of gr on ker«, is not unique. However, for example, we
can choose it to be the restriction of a Riemannian metric

n n
2.6) 2> aj(drj @ drj +rdf; ® db)) (= V=1 ajdz; ®dz,->
j=0

=0

on C"t! to kera;.
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(2) Take {rg,...,A,} so that Ag, ..., A, form a k-dimensional vector space over Q.
Then there exists a subgroup T of 7"*! and a T*-action induced by (2.4) such that for
z € §2"*1 the closure of the orbit ¢, - z coincides with the orbit T¥ - z. Thus we obtain a
K -contact manifold (S2"+1, o, gp) of rank k. In particular, if we take Ao = -+ = A, =1,
then we get the K -contact manifold of rank 1 such that a K-contact flow determines the Hopf
S!-fibration §>*+!1 — CP".

EXAMPLE 2.4 (K-contact manifold of rank 1). Let (W, w) be a symplectic manifold
whose symplectic two-form determines a de Rham cohomology class contained in the image
of H3(W; Z) — H%*(W; R). Then there exists a principal S'-bundle ¥ : M — W whose first
Chern class is equal to [w] € H 2(M ; Z) and a connection one-form n on M with the curvature
form dn = 7*w ([6]). Hence 7 is a contact form on M whose contact flow of arbitrary point
is a principal S!-orbit. It follows that by Proposition 2.1, there exists an adapted metric g to
such that (M, 7, g) is a K-contact manifold of rank 1. Here gis given by g = t*gw & (n ®1n),
where gw is a Riemannian metric compatible with w on W. We call this K -contact manifold
a regular K -contact manifold and its contact flow a regular K-contact flow. We also call the
principal S L_fibration (M, 7, g9) = (W, w) the Boothby-Wang fibration ([4]).

3. A fiber join of regular K-contact manifolds. In this section we will present a
method of construction of a K -contact manifold of rank n 4 1 out of (n + 1)-pieces of regular
K -contact manifolds.

For j = 0,1,...,n, let (M}, nj, gj) be a (2m + 1)-dimensional regular K-contact
manifold, whose Boothby-Wang fibration p; : (M;, nj, g;) — (W, w;) has the same base
space W. Let L; be the total space of the associated complex line bundle of p; : M; — W.
Then L; carries a Hermitian metric » induced by a canonical Hermitian metric on C. We
denote the norm on L ; determined by 4 and its natural lift to the Whitney sum Lo @ --- @ L,
by the same letter r; : L; — R. In this situation we define a fiber join Mo *¢ - - - x5y My of
My, ..., M, to be the unit sphere bundle

n
G.1) S(Loea---eaLn):{ueLoeB--~eaL,, er(v)2=l}
Jj=0
of Lo@---® Ly.
REMARK. In the above construction, we are actually taking the join of the fibers of
Mo, ... , M, over each point of W. Recall than n + 1 times join S! % - - - % §1 = §2*+1,

We will show that on Mg * ¢ - - - %y M), there exist a K-contact form and its Reeb vector
field, which are naturally induced from those of M;’s.

For this, we denote a polar coordinate and a real coordinate of C by (7, 8;) and (x;, y;),
respectively. We also denote the Reeb vector field of ; and its natural lift to M; x C by the
same letter X ;. Similarly, we denote the natural lifts of the differential forms or vector fields
on M; and C (such as n) to M; x C by the same letter. Let L(} be the complement of the zero
section of L j. Then we have the following:
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LEMMA 3.1. (1) Foreachj, the one-formn;—df; on M x (C—{0}) and the vector
field Zj = 1/2{X;j—(x;3/dy; —yjd/dx;)} on M x C are projectable. Namely, there exist a
smooth one-form B on L(} and a smooth vector field Z ; on L ; such that pr}'.‘ (Bj) =nj —dob;
and (prj)*(Zj) = Zj hold, where prj : Mj x C — Lj is the natural projection. Also B;
and Z; satisfy the following:

(3.2) Bi(Zj)=1, B;j@/drj)=0, drj(Z;)=0, dB;j=r}(w)),
where t; . Lj — W is the projection.

(2) Foreachj, rjzﬁ i and dBj extend to the S Linvariant smooth one-form and two-form
on Lj, respectively. The restriction of 2rjdrj A Bj to the fibers of Lj is a nowhere zero

two-form.

3) Pu
3.3) Hj={XeTLj|ixQrjdriABj)=0}, V;={XeTLj|ixdB;=0}.

Then we have a direct sum decomposition TL; = H; ® Vj and Hj = n*TW.

PROOF. First we will prove (1) and (2). Let S 1 act in the standard fashion on C. We
consider the diagonal S'-action on M; x C. Then the one-form n; — dé; is invariant by
this S'-action on M; x C. We also have (n; — d6;)(X; + 3/06;) = 0, where 0/360; :=
xjd/dyj — y;j0/dx;. Namely, n; — df; is a basic form. Hence there exists a one-form B;
on L(]). such that pr}‘ (Bj) = nj — dB;. Moreover rjz.ﬁ ; is extended to whole L ; as a smooth
one-form, since sz.de ; is extended to whole M; x C.

Since we have L Xj+d /39j)(2 i) =0o0n M x C, we see that there exists a smooth vector
field Z; on L; such that d(prj)(Zj(x)) = Zj(prj(x)) forallx € M; x C.

Next we verify the equations (3.2). The first three equations are obtained by direct
calculations. Namely, 8;(Z;) = pr;‘(ﬂj)(zj) = (nj —do;)(Z;) = 1, Bj@/drj) =
(nj — d6;)(@/dr;) = 0,drj(Z;) = drj(Zj) = 0. The equations df; = n}‘(a)j) follows
fromdn; = pjw;, where pj : Mj x C > W.

By using the equations (3.2) and the Cartan formula Lx = txd +dux, we get Lz, (rj?ﬁ )
= 0. Namely, rjz.ﬂ ; is a one-form on L which is invariant by the § I_action determined by
Z;.

The two-form pr;‘(2rjdrj A Bj) =2rjdrj Anj — 2rjdrj A df; is nowhere zero on the
fibers of M; x C — W. Hence 2r;dr; A B; is also nowhere zero on the fibers of L; — W.

We will prove (3). Let Hj, V; be subbundles of T(M; x C) defined by

Hj:={X e T(M; x C)|n;(X) = 0,1x(2F;dF; Adb;) = 0},
Vi:={X e T(Mj x C) | ixdn; = 0}.

Then we have the direct sum decomposition 7'(M; x C) = H i @ Vj. By using equations
pr}’.‘(erdrj A Bj) = 2rjdrj An; — 2rjdrj A dfj and dn; = pr;‘dﬁj, this direct sum
decomposition gives rise to the direct sum decomposition T7L; = H; @ V;. Here H; = {X €
TLj|txQ2rjdri ABj)=0},V; ={X eTL;|ixdB; =0}. q.e.d.
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We extend each vector field Z; on L; to the one on Mg %y --- x5 M, as follows, and
denote it by the same letter. By using the canonical projection Pj : Lo x --- x L, — L; and
the inclusionmap / : TLj — TLg x --- x T Ly, defined by I'(wj) = (0,... ,wj,...,0) for
wj € TLj,wehave [oZjoPj: Lox---X L, — TLox---xTL,. Namely, the vector field
Z;j is extended to the one on Lo X - - - X L. Itis a vector field along the fiber of Lo x - - - x Ly,
and preserves the norm 3~ _, rjz.. It follows that its restriction to Mg * s - - - % My, is tangent
to Mg x5 --- %y My, and hence Z; is extended to the vector field on Mg *f - - -y M,.

We consider the pull back of the one-form r]zﬂ i on L; by the composition map My * ¢
<ok Mp — Lo®---® L, — Lj, and denote it by the same letter.

THEOREM 3.2. For j = 0,1,...,n, let (Mj,nj, g;) be a 2m + 1)-dimensional
regular K-contact manifold with the Boothby-Wang fibration (M, nj, g;) — (W, ;). Let
7w Moxyg---xg My — W be the projection. IfZ';zo Aj rjzn*wj is non-degenerate on t*TW
for some non-zero constants A, . .. , Ay, then we have

(1) the fiber join My %5 --- %5y My of My, ... , My, is a 2m + 2n + 1)-dimensional
K-contact manifold with the K-contact form

(3.4) Bri=Y AjriB;.
=0

Its Reeb vector field and a K-contact metric are given by

n

(3.5) Zi=) 1MZj, a=g BB,
j=0
where gr is a positive definite metric on ker ;.

(2) If we choose {Ag, ..., Ay} so that Ay, ..., A, form a k-dimensional vector space
over Q, (Mo'* f o xf My, Bx, 92) is a K-contact manifold of rank k. In particular, if
A0, ... , An are rationally independent, then (Mo - - - f My, By, 9).) is a K-contact manifold
of rank n + 1.

PROOF. First we prove that B, is a contact form on Mg *¢ - -- *yr M,. We put R? =
>0 r]z. Since dBj = m*wj, by a direct calculation, we have

n m
2RAR A By A (dﬁ)‘)””'” =Xg--- AnRz 2rodroABo A A2rndry ABn A <Z Ajr%n*wj)
=

onLo®---®L,.

By the assumption, Ao---An 3 j_gA; rjz.n*w ; is non-degenerate on 7*T W and clearly
R? # O on L% :=Ly®---® L, — {zero-section}. From this together with Lemma 3.1, we
see that 2RdR A By A (dBr)™" # 0 on LO. It follows that we have By A (dBy)"" # 0
on Mg xf --- x5 My, that is, By is a contact form on Mg x5 --- *f My. Its Reeb vector
field is given by Z; = Z;=0 1/x;Z;. This is because it holds that 8,(Z,) = R? =1 and
1z, dBr = Yo 2rjdrj =00n Mo*ys - *f M.
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We will show the K -contactness of (M * - - -x f My, ). Using the one-parameter group
@] of Z;, we define a T"+!-action on Mg %5 - - - My by

(3.6) (€T, eVTmy  (uo, ..y v) = (@000, B vm),

where(e‘/‘_”",... ,e‘/:—”") eT"andv = (vg, ..., vn) € Moxf---%f My CLo® - @
Ly. Let ¢} be the contact flow of Z;. Then we have

3.7 Y0 = (B /20y V00 - - » B/, Vn) -
Constants Ag, . .. , A, form a k-dimensional vector space over Q. Thus there exists a subgroup
Tk of T"*! and a T*-action induce by (3.6) such that, for any v = (vo, ..., vs) € Mo *f

-+ -x 5 My, the closure of the orbit 1/1} -v coincides with the orbit 7% - v. Hence, by Proposition
2.1, there exists an adapted metric g, to oz, such that (Mo * ¢ - - -y My, By, g») is a K-contact
manifold of rank k. Here g, is given by choosing gr on ker B, and setting g, = gr ® (8. ®B).

q.ed.

Indeed, there exist sympletic forms w;, j = 0, 1,... ,n, satisfying the condition of
Theorem 3.2 that Z;l':o A jrj?n*w ;j is non-degenerate on 7*T W. For example, let (W, w) be
a symplectic manifold and A;, ¢;, j = 0, 1,...,n, be constants such that A jc; is positive
for all j. Then taking wj, j =0, 1, ..., n, defined by w; = c;w, these satisfy the condition
above.

REMARK. (1) As anexample of gr on ker §8,, we have the restiction of

n n
(3.8) 2) hjdr ®drj+r2Bi ® B+ Y Airint gw.a,
=0 j=0

to ker .. Here gw jisa Riemannian metric compatible with w; on W.

(2) For positive integers q, ... , g, and eV 1 eslcc *, we define the S!-action on
Mo xf --- x5 M, by

(3'9) eJ—_lo : (UO, Vlyeon s Un) = (¢gv01 ¢q1|6v17 ) ¢:;n0vn) )

where (vo, ... , Un) € Mg %5 -+ %5 My.

Let p be a positive integer such that p and g; are relatively prime for all j. We consider
the action restricted to {e?™*V=1/7 | k = 0,1,..., p — 1} = Z/pZ of the S'-action defined
by (3.9). Then its quotient space Mg *y - - - ¥y My /(Z/pZ) is also a K-contact manifold of
rank n+ 1 with K -contact form and K -contact metric induced from those on Mo ¢ - - -x f Mj,.

(3) The unit sphere bundle S(L ;) of L; is a submanifold of Mg *y --- * s My, which
is diffeomorphic to M;. As a metric gr on ker j,, take the one given by (3.8). Then S(L;)
has a K -contact form A;8; and a K -contact metric A j g; which are given by the restriction of
those on Mg *5 -+ *r My to S(L;). In this case (S(L;), A;jBj, A;g;) is called a K-contact
submanifold of (Mo % --- %5 My, By, g1).

DEFINITION. A K-contact manifold (Mo ¢ - - - x ¢ My, By, gy) is called the fiber join
of regular K-contact manifolds (My, no, 90), - .- » (Mn, Nn, gn)-
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Using the construction in Theorem 3.2, we obtain K -contact manifolds (M, «, g) of rank
n + 1 with no effective 7"+2-action which extends the R-action induced by the K-contact
flow and preserves « and g.

PROPOSITION 3.3. Let (W, w) be a symplectic manifold with no effective Hamiltonian
S'-action. Take symplectic forms w; = cjw (cj > 0) in the construction of Theorem 3.2.
Then (Mo % - - % f My, Br, g2) has no effective T"+? action which extends the T"'-action
defined by (3.6) and preserves 8, and g;..

REMARK. An example of symplectic manifold which satisfies the condition above is
negatively curved closed Kéhler manifold. It has no torus action at all ([11]). It follows that
starting from this manifold, we can actually construct K -contact manifolds as in Proposition
3.3.

PROOF. Suppose that B, is invariant under some effective 7"+2-action on Mo * kg
M,, which extends the 7" *!-action defined by (3.6). Let (Mo*g---xr My xRy, d(tB))) be the
symplectization of (Mg ¢ - - - x¢ My, B)), where R is the positive real line with coordinate
t. We extend the 7" *2-action on Mo *5 - --*r My to the one on Mg x5 - - - ¢ M, x Ry such
that it acts trivially on R, . Then this 7"+2-action is Hamiltonian. Its moment map u is given
by

i Moky - xp My X Ry € x —> =t (Bax(Zox)s - -+ » Bax(Znx), Brx(Yx)) € R™H2,

where Y is the fundamental vector field determined by the action of the last factor S of
T"t2 = T+l % §'. Since u is constant on any T"*2-orbit ([1, Proposition 3.5.6]), the
compositionmap i ;= prou: Myo*s---xyf M, x Ry — R"™t1 is also constant on it. Here
pr is the projection to the first n + 1 factor. Thus vector fields Zy, ..., Z,, Y are tangent
to any regular level &~ (&) of fi, and hence i~ (£) has an effective 7"+2-action. Choosing
& = —(\o, ..., An) as a regular value of ji, i~ (&) is a principal 7"+!-bundle over W with
an effective 7" +2-action. It follows that the orbit space i~ (£)/T"*! is diffeomorphic to W
and that it is a symplectic manifold (W, 3_j_o A j@;) with an effective Hamiltonian S'-action.
From Y _yAjw; = (X j_g }jcj)w, we see that the symplectic manifold (W, ®) also has an
effective Hamiltonian S!-action. This contradicts the assumption. g.e.d.

4. The equivalence of K-contact manifolds. In this section we will study the fol-
lowing two equivalence classes among the K-contact flows of the compact connected K-
contact manifolds of rank k. Let (M1, «1, g1), (M2, a2, ¢2) be two such manifolds with Reeb
vector fields Z;, Z,. Let (p,“), <p,(2) denote their K-contact flows, respectively.

DEFINITION. (a) Two K-contact flows <p,(1), <p,(2) are said to be strictly equivalent if

there exists a diffeomorphism & : M; — M, such that ®*ap = ca; for some positive con-
stant ¢. (b) Two K-contact flows <p,(1), %(2) are said to be K-contact equivalent if there exists
a Tk-equivalent contact diffeomorphism ® between (M1, a1, g1) and (M3, ap, g2). Here a
contact diffeomorphism implies that ®*a; = fo; for some everywhere nonzero function f

on M.
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If (pt(l), %(2) are strictly equivalent, we have d® o Zj(x) = cZ; o ®(x), and hence

Do <p,(1)(x) = (pg) o @ (x) for all x in M. Namely, after changing the parameter ¢ of <p,(2) into
ct, there exists an R-equivariant diffeomorphism @ on M with respect to R-actions induced
by <p,(l), (pg)‘ From the definition, it is obvious if two K-contact flows are strictly equivalent,
they are K-contact equivalent. The following two propositions show that the coverse is not

always true.
PROPOSITION 4.1.  For any rationally independent read constants ». = (Ao, ... , An)
and A = (Ao, ..., An), the K-contact flows <p,)‘, <p,)‘ defined by (2.5) on S*"*! are K-contact

equivalent. Moreover, they are strictly equivalent if and only if A coincides with ck as a set
for some positive constant c.

PROOF. First we will prove that ¢}, <,atX are K -contact equivalent for any A, A. Consider
a diffeomorphism &, 7 : §?**! — §2+! defined by

n 1/2
D, ;@0 z) = | | Ro/R0)'”? / (Zwimm) 20.---
@.1) J=0

n 1/2
(An/in)l/z/ (Z(Aj/ij)z/'ij) Zn
j=0

Then &, ; is a T"*+!-equivariant diffeomorphism and ‘D;/;“X = (Z';zo()»j/ij)zﬁj)_laA.

Hence ¢}, ¢} are K -contact equivariant.

We will prove the second statement. Assume that ¢} and (pf‘ are strictly equivalent.
Namely, there exists a diffeomorphism @ such that ®*a; = ca; for some positive constant
c. Then @ is a R-equivariant diffeomorphism with respect to R-actions induced by g2, and
go}. It follows that the set of isotropy groups (Ao/c)Z, ..., (As/c)Z of <p§‘, coincides with
that of AoZ, ... , AnZ of (p,j‘, where uZ = {2wuk|k € Z}. Hence A coincides with cA as
a set. Conversely, assume that A coincides with c\ as a set for some positive constant c;

(Ag, ..., An) = c(ia(o), - ,5\(,(,,)), where o denote a permutation of {0, 1,...,n}. Con-
sider a diffeomorphism @ : §2n+1 5 §2n+1 defined by @(20, ... ,2n) = (Z6(0), - - - » 2o (n))-
Then we have ®*«; = ca;. Hence @}, @} are strictly equivalent. q.e.d.

A similar result holds for the contact flows of (3.7) in Section 3.

PROPOSITION 4.2.  For any rationally independent read constants A = (Ao, ... , An)
and . = (Ag, ..., An), the K-contact flows lﬁ,)‘, 1//,)‘ defined by (3.7) on Mo ¢ - - - %y M, are
K-contact equivalent. Moreover, they are strictly equivalent if and only if A coincides with cA
as a set for some positive constant c.

PROOF. We only show that v/}, 1//,5‘ are K -contact equivalent for any A, A. (The second
statement is proved by an argument similar to that in Proposition 4.1.)
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We define the bundle automorphism ¥, /i of Lo®---&® L, by

n 1/2
¥, 5o, ..., vn) = | | Ro/Ro)"/? / (Z(Aj/i,-)rjw,-)Z) vo, ...,
j=0

4.2)
" 172
(n /A2 / <Z<A,~/A,»)r,-(v,~)2> Un
Jj=0
for (vo,...,vn) € Lo® --- @ L,. Then this preserves the norm Z;zo r2. Thus we have
its restriction to Mo *y --- %y My. Itisa T"*+!-equivariant diffeomorphism and W;/,iﬂi =
(Xhoorj/x j)rj2.)_l By.. Therefore yr* and v are K -contact equivalent. q.e.d.

In [13], Takahashi showed that there exists a deformation of the K-contact flow on a
manifold as follows. Let (M, «, g) be a K-contact manifold with Reeb vector field Z. Let V
be a vector field on M which satisfies the following three conditions:

4.3) Lyg=0, [V,Z]=0, 1+4+a(V)>0.
Consider a one-form & and a Riemannian metric g defined by

4.4) d=0+aV)le, j=1+a(V) 'gre@ea,
where gr is the restriction of g to ker . Then we have following:

THEOREM 4.3 ([13]). (M, @, g) is a K-contact manifold with Reeb vector field Z+V .

K -contact flows ¢}, ¥* in Propositions 4.1 and 4.2 are both strictly equivalent to the
ones obtained by the above deformation out of the K -contact flow of the K -contact manifold
of rank 1, which we shall see as follows.

The K-contact flow (pt)‘ of ($¥t1 @, g») 1is strictly equivalent to the one
obtained by deforming the Reeb vector field Z. = /—1 Z'j'-zo(z j0/0zj — zj9/9z;) of
(211, ge), where ¢ = (1,...,1). Indeed, for u; satisfying 1 + u; = A, take V =
V=13 mj(zjd/dzj — Z;8/3Z;) and consider & and §, defined by (4.3). Then we have
a = (1+ >0 ﬂijZj)—lag and ®}&, = ay, where @, is a diffeomorphism defined by
“.1).

In the same way, the K -contact flow 1//,’\ of (Mo*g---%5 My, By, gp) is strictly equivalent
to the one obtained by deforming the Reeb vector field Z, = Z?:o Zjof (Mg *f --- *f
My, Be, g:), where € = (1,..., 1). In this case we take V = Z?:OMJ'Z]’ where 1 is the
same as the above one.

In general, we apply the deformation in Theorem 4.3 for the following situation. Let
(M, a, g) be a K-contact manifold of rank 1. We assume that there exists the T*-action
preserving « and g which satisfies the following three conditions; (1) k > 2, (2) T* contains
the K -contact flow of (M, «, g), and (3) there is no T*+1_action which extends this T*-action.
Then the Reeb vector field Z takes the form Z = Z';;(l](EM) j» where (§x); is the vector field

defined by (&) (x) = d/dt |,_yexp(t§;) - x at x € M for a basis &, . .. , &—1 of Lie(T*).
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Let Ap, ..., Ax—1 be positive constants such that Ag, ... , Ax—1 form a r-dimensional vector
space over Q, where 1 < r < k. We take a vector field V = le‘-_l Aj(épm); and consider &
and g defined by (4.3). Then we have the following:

COROLLARY 4.4. (M, @, g) is a K-contact manifold of rank r with Reeb vector field
Z + V and is T*-equivariantly contact diffeomorphic to (M, a, g).

PROOF. The identity map gives a T*-equivariant diffeomorphism between (M, c, g)
and (M, a, g). q-ed.

We will show that there exist K -contact flows which are not K -contact equivalent. They
are not obtained by the deformation in Corollary 4.4 out of the same K -contact flow of the
K -contact manifold of rank 1.

Let ¥, be the closed Riemann surface of genus g and XyxS?"*! be the non-trivial
52"+1_bundle over X ¢. Then our main theorem is the following:

THEOREM 4.5. For n > 1 there exist infinitely many different K-contact equivalence
classes of K-contact flows on g x S*"+! and X% 2 +1.

We will first consider the K-contact equivalence for K -contact flows of K -contact man-
ifolds of rank n + 1 we constructed in Theorem 3.2.

Let (Mo, 10, 90), - - . » (Mo, 1, gn) and (Mo, 7o, 3g)s--- , (M,,, Nn, g) be two sets of
regular K -contact manifolds whose Boothby-Wang fibrations have the same base space. Then
the images S(Lg), ..., S(Ly) of My, ... , M, in Mo* - - -x f M, and the images S(Lo), ...,
S(Lyp) of My, ... , My in Mg % kg M, are two sets of points whose isotropy groups are
isomorphic to 7" (see Remark (3) of Theorem 3.2). Hence if there exists a T"+!-equivariant
diffeomorphism & between Mg ¢ - - - xy M, and Mo XKfooookf M,, S(Lo), ..., S(L,) are
mapped to S(L Preees S(L,) by @ such that (changing the order of suffix, if necessary),
S(L ) is T"*!-equivariantly diffeomorphic to S(L j) for all j. Thus M; is § I_equivariantly
diffeomorphic to M j for all j. From the definition, it is obvious that K -contact flows on reg-
ular K -contact manifolds are K -contact equivalent if and only if they are isomorphic to each
other as principal S!-bundles. Therefore we have the following:

LEMMA 4.6. If K-contact flows of (Mo %5 --- xf My, Br, gr) and (Mo Kfooee ok
M,, By, G,) are K-contact equivalent, then K-contact flows of (Mj,nj, gj) and (M~, Nj» g}j)
are K-contact equivalent for all j (changing the order of suffix, if necessary).

Let (Mo, no, 90), ... , (Mn, Nn, gn), (n > 1), be three-dimensional regular K -contact
manifolds, whose Boothby-Wang fibration have the same closed Riemann surface X, of genus
g as base spaces. Then there are only two diffeomorphism classes of Mo %y --- x5 M,
because Mo *y --- x5 M, is the $27+1_pundle over X4 and they are classified by the second
Stiefel-Whitney class of the bundle (see [8], Proposition 1.12). More precisely, we have the
following:

PROPOSITION 4.7. Let M, ... , My, be as above. Then the fiber join Mo ¢ - - - %y My
is diffeomorphic to X4 x §¥+1 if 3"i_owj is even class, and to Zgx S+l if Yowjis
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odd class. Here 2‘5,;(52”Jrl is the non-trivial S*"-bundle over X4 and wj is the second
Stiefel-Whitney class associated with M ;.

PROOF OF THEOREM 4.5. Since H 2(Z,‘g; Z) = Z, there exist infinitely many different
isomorphism classes of principal S!-bundles over X 4. From this result together with Lemma
4.6 and Proposition 4.7, we obtain Theorem 4.5. q.e.d.

Finally, we discuss some related problems.

Let ¢, be a non-singular flow generated by a vector field Z on a manifold M. Let RZ
be the trivial line bundle spanned by Z and D the smooth codimension one distribution on
M transverse to RZ. Then ¢ is said to be transversely symplectic Riemannian flow if there
exist a symplectic structure @ and a positive definite metric gr on D such that Lzw = 0,
Lzgr = 0. From the definition, it is obvious that a K-contact flow of a K -contact manifold
(M, a, g) is such a flow. In this case, D is a contact plane field ker  and a symplectic structure
on it is given by da. In [10], Molino suggested the following problem:

PROBLEM 1. Classify the transversely symplectic Reimannian flows on closed con-
nected 5-manifolds.

The case of n = 1 in Theorem 4.5 gives examples of such flows. Further examples are
given by introducing a surgery along a closed K -contact flow in [16].
We have the following problems related to Theorem 4.4.

PROBLEM 2. Are there different K-contact flows on a sphere bundle over the sym-
plectic manifold W such that dim W > 4?7

The author does not know whether there exists a symplectic manifold W such that the
isomorphism classes of the sphere bundle over W are finite and dim W > 4.

PROBLEM 3. Are there K-contact flows of K-contact manifolds of rank n + 1 on a
(2n + 1)-dimensional manifold which are not K -contact equivalent to each other?

By the fiber join of regular K -contact manifolds, it is impossible to construct the (2n+1)-
dimensional K -contact manifold of rank n + 1.
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