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Abstract. Vogan-Zuckerman’s standard representation X for a real reductive group
G (R) is constructed from a 6-stable parabolic subalgebra q of the complexified Lie algebra g of
G (R). Adams and Vogan showed that the set of g-principal K -orbits in the associated variety
Ass(X) of X is in one-to-one correspondence with the set Bg_ /K of K-conjugacy classes

of 6-stable Borel subalgebras of large type having representatives in the opposite parabolic
subalgebra q~ of q. In this paper, we give a description of Bé‘ /K and show that BqL /K #0
under certain condition on the positive system of imaginary roots contained in q. Furthermore,
we construct a finite group which acts on BqL /K transitively.

0. Introduction. Let G be a complex connected reductive algebraic group and 7 :
G — G a complex conjugation which defines a real form G(R) of G. Let6 : G —- G be a
(complexified) Cartan involution of G which commutes with 7. Write K = {g € G; 6(g) = g}
and g = & + s the Cartan decomposition with respect to 6. For a closed subgroup H of G,
we denote its Lie algebra by the corresponding small German letter b and its group of real
points by H(R). Let Q = LU be a 6-stable parabolic subgroup of G with #-stable and t-
stable quasisplit Levi factor L, and with unipotent radical U. Let H be a 6-stable and t-stable
maximal torus of L such that H (R) is a maximally split Cartan subgroup of L(R). Then for a
quadruplet (q, H(R), §, v) of 6-stable data for G (R) and a minimal parabolic subgroup Py (R)
of L(R), the standard (g, K)-module

i 14
X = Xow(@, HR),8,v) = (R (ndj % 6 @ v)

is defined in [V], where we write Indf,&a}h the parabolic induction by a real parabolic subgroup
and (R§)4m®"?Y the cohomological parabolic induction by a §-stable parabolic subalgebra.

In [AV], Adams and Vogan described the set Ass(X)8 P'/K of g-principal K -orbits
in the associated variety of the standard (g, K)-module X for a quasisplit group G(R).
Ass(X)97P'/K is parametrized by the set B(II‘_ /K of K-conjugacy classes of #-stable Borel
subalgebras of large type (cf. Definition 1.1(ii)) which have representatives contained in q~,
where q~ is the opposite parabolic subalgebra of g.

In this paper, corresponding to each [-principal nilpotent L N K-orbit Oy in [N 5, we
construct a f-stable Borel subalgebra b(Oy) of g contained in g. If the positive system X' of
imaginary roots of f contained in u is of large type (cf. Definition 1.1(i)), we show that b(Oy)
is of large type for a suitable choice of O|. This implies the converse of a result of Adams and
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Vogan ([AV, Proposition 6.30(a)]) which claims that if X is of large type, X is special with
respect to some K -conjugacy class of §-stable Borel subalgebras of g of large type. Thus we
obtain that B’& /K # @ if and only if X' is of large type. Furthermore, we find a finite group
F (q) which acts on BqL /K transitively. The construction of b(Oy) also gives an algorithm to
obtain Bg /K.

Finally we mention the relation between the closure of the K-orbit of b := p; + uin
the flag variety and the list £ := {b(Oy)} of §-stable Borel subalgebras of g. Let By be the
set of Borel subalgebras of g (flag variety) and = : T*B; — g* the moment map. By the
identification g* =~ g which is given by a G-invariant bilinear form on g, we can regard 7 as

m:T*Byg — g. LetY; (i =1,...,n) be the K-orbits contained in the closure K - b C By
and Z; (j = 1,... , m) the K-orbits in By generated by the Borel subalgebras in L. Then Z;
(j =1,...,m) are closed orbits contained in K - b and we have
n m
* _ * _ 2
n (U TYiBg> = U (T} By) = U @
i= = Oelnd’ (1, q) 1 g) N P'/LNK)

(for the definition of Ind? ([, q) 1 g) (./\f[lggr/ LN K), see 1.4). The proof of this result will be
given in a forthcoming paper.

1. O-stable Borel subalgebras of large type. In this section, we review the basic
facts on 6-stable Borel subalgebras of large type. We also recall the relation among the K-
conjugacy classes of 9-stable Borel subalgebras of large type which have representatives con-
tained in a 6-stable parabolic subalgebra g, g-principal nilpotent K -orbits in s which have
representatives contained in q and the induction of nilpotent orbits by q.

1.1. Preliminaries. Let G be a complex reductive algebraic group defined over R and
T : G — G acomplex conjugation which defines the real form G(R) = {g € G; t(g9) = g}
of G. Let 6 : G — G be a (complexified) Cartan involution of G which commutes with t.
Throughout this paper, we use the following notation. For a closed subgroup of G, its Lie
algebra is denoted by the corresponding small German letter. The involution of g, which is
induced from t (resp. 6), is also denoted by 7 (resp. 8). Write K := {g € G;6(g9) = g}
and g = ¥ + s the Cartan decomposition with respect to 6. The action of G on g is always
understood to be the adjoint action. For a -stable subset A of G (resp. g), we write A(R) =
{x € A; t(x) = x}. For a Cartan subalgebra § of g, we denote by R(g, h) the root system of
g with respect to b and g, the root space corresponding to a root ¢ € R(g, ). For a h-stable
subspace V C g, we write R(V,h) := {a € R(g,h); g« C V}. If b is O-stable, we write
R(V, h)ir (resp. R(V, h)R) the set of imaginary (resp. real) roots in R(V, b):

R(V.,b)ig ={x € R(V,b);0(0) =}, R(V,h)r={ax € R(V,b);0()=—a}

The set of all nilpotent elements in g (resp. s, g(R)) is denoted by Ny (resp. Ns, Ngr)). The
set of orbits in N (resp. Ns, Nyr)) under the action of G (resp. K, G(R)) is denoted by
N/ G (tesp. Ns/K, Ng)/ G(R)).
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1.2. Basic facts on 6-stable Borel subalgebras of large type. Let b be a 6-stable Car-
tan subalgebra of g and ¥ a positive system of R(g, h);g. We say that a 6-stable parabolic
subalgebra q of g belongs to (f, X') if the following conditions are satisfied:

(1.1.a) hCq

(1.1.b) Write g = [+ u the Levi decomposition of q such that ) C [. Then b is a maximally
split Cartan subalgebra of I.

(1.1.c) X = R(u, h);g (hence [ is quasisplit).

DEFINITION 1.1 ([AV]). (i) Leth be a 6-stable Cartan subalgebra of g. A positive
system X of R(g, h);r is called of large type if every simple root & of X' is non-compact (i.e.,
ga C 9).

(i) A 6-stable Borel subalgebra b of g is called of large type if every simple root of
R(b, b) is complex or non-compact imaginary for any #-stable Cartan subalgebra ) C b. We
write Bé the set of §-stable Borel subalgebras of g of large type.

(iii) For a K-conjugacy class B € B’g“ /K, a 6-stable parabolic subalgebra q of g is
called special (with respect to B) if there exists b € B such that b C q.

(iv) Letbh be a 6-stable Cartan subalgebra of g and [ the Levi subalgebra of g containing
h such that R(I, h) = R(g, h)r. A positive system X' of R(g, h);r is called special (with
respect to 3) if there exists a special 6-stable parabolic subalgebra q = [ + u such that ¥ =
R(u, bh)ig.

REMARK 1.2. (i) Fora6-stable Borel subalgebra b of g, b is of large type if and only
if there exists a 6-stable Cartan subalgebra h) of b such that every simple root of R(b, b) is
complex or non-compact imaginary, since any 6-stable Cartan subalgebras in b are conjugate
under the action of BN K.

(i) In the setting of Definition 1.1(iv), we can verify that X' is special with respect to
B(e B’g /K) if and only if there exists a special 6-stable parabolic subalgebra q' of g which
belongs to (h, X') (cf. Proof of Proposition 2.8(ii)).

PROPOSITION 1.3. (i) ([AV, Proposition 6.30(a)]) Let h) be a 6-stable Cartan sub-
algebra of g and X' a positive system of R(g, h)ir. If X is special (with respect to some
Be Bé/K), X is of large type.

(ii) ([AV, Proposition 6.25]) Let b be a 6-stable Borel subalgebra of g and t C b a
6-stable Cartan subalgebra (such t's are all conjugate under the action of B N K). Then the
positive system R(b, b)ig is of large type if and only if b is of large type.

A nilpotent element X € g is called g-principal if X is regular in g. We write ./\/gg_p '
(resp. NP, gg(}')") the set of g-principal elements in N (resp. N, Nyw)).

PROPOSITION 1.4 ([AV, Proposition 6.24]). The following conditions on 6 are equiv-
alent.

(a) g is quasisplit (i.e., there exists a Borel subalgebra of g defined over R).

b) NP0

©) Bé #* 0.
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(d) For any 6-stable Cartan subalgebra Y) of g, R(g, ):r has a positive system of large

type.
(d') There exists a O-stable Cartan subalgebra b of g such that R(g, b)ig has a positive

system of large type.
1.3. The correspondence [NZ P'/K lqg = Bé /K. Let a be a maximal abelian sub-
space of s N [g, g] and define a finite group Fg by
Fg := {a € exp(a); Ad(a?) = id} .
REMARK 1.5. Fg normalizes K and satisfies Ad(Ng (¥)) = Ad(Ng(s)) = Ad(FgK)
(cf. [02]).
The natural correspondence between Bé /K and the set NP /K of K-orbits in N, 59 s

is given as follows. For x € ./\fsg_pr, we can take a normal S-triple (h,x,y) (h € &,y € 5)
(cf. Kostant and Rallis [KR]). Since # is a regular semisimple element of g, t := 34(h) is a
0-stable Cartan subalgebra of g. Define a Borel subalgebra b D t of g by R(b,t) = {« €
R(g, t); a(h) > 0} and write A the set of simple roots in R(b, t). Then we have A = {« €
R(g, t); a(h) = 2}. Since [h, x] = 2x, x can be written as a sum

X = Z(xeA Xa

for some root vectors X, € go \ {0} and it holds that 6(Xy) = —Xg() (@ € A). Hence any
roots in A are complex or non-compact imaginary, so that b is of large type. Since x € b
and x is g-principal, b is the unique Borel subalgebra containing x. Then the correspondence
x > b defines a map

¢ N P/K —> By/K .

PROPOSITION 1.6 ([AV, Proposition A.7]). The map ¢ : N§ ™' /K — BL/K is a bi-

jection. Furthermore the finite group Fg acts naturally and transitively on the sets N& P /K
and B§ /K, where the map ¢ is Fg-equivariant.

Let Q = LU be a 6-stable parabolic subgroup of G with 6-stable Levi factor L. For a
maximal abelian subspace a; of [[, [] N5, we write

Fi = {a eexp(ay); Ad@@®) | =idi}, FP = {a € F;Ad(@®) = idg} .
We put
B{; :={beBL;kb Cqforsomek e K}, [N P/Klq:={0eNT/K;0Nq#0}.

Then we have the following

PROPOSITION 1.7. The map ¢ in Proposition 1.6 induces a bijection
NG P /K]q~ B /K .

F 1? acts on these sets and the bijection is F LG -equivariant.
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1.4. Induction of nilpotent orbits by 6-stable parabolic subalgebras. Let Q = LU be
0-stable parabolic subgroup of G with 6-stable Levi factor L and unipotent radical U, and
write q = [ + u its Lie algebra. We put

K =LNK, s;:=I[Ns.

DEFINITION 1.8. (i) For a nilpotent Kz -orbit O € N, /K|, there exists a unique
nilpotent K -orbit O in N such that (O +uNs)NO is open and dense in O +uNs. We write

O =Ind’((1, 9) t 9)(O) e No/K .

(ii) Forasubset S € 2Ve/XL of N, /K, we write Ind? (1, q) 1 g)(S) the set of orbits
in {Ind® (1, ) 1 9)(C); C € S} which are maximal with respect to the closure relation. This
defines a map

Ind® (1, q) 4 g) : 2Ver /KL 5 oNe/K
PROPOSITION 1.9 ([O2, Proposition 2.4]). Let Q = LU be a 6-stable parabolic sub-
group of G with 6-stable Levi factor L and unipotent radical U. Suppose that L is quasi-
split. Then the set [Ind® (1, q) 1 g)(N;;P'/KL)]B—Pf of g-principal K-orbits in Ind® (1, q) +
9 (N, ;;pr/ K1) can be written as

[Ind’ (L, 9) 1 g) (Ve P/ K1)19 P = [NEP/K],.

2. A construction of a 6-stable Borel subalgebra of large type. Throughout this
section, we write H a t-stable and 6-stable maximal torus of G, ¥ a positive system of
R(g, h)ir and Q = LU a 0-stable parabolic subgroup of G with 0-stable Levi factor L and
unipotent radical U of which Lie algebra q = [ + u belongs to (h, ). In this section, for a
nilpotent orbit O; € ./\/_,,[L_pr /K1, we construct a 6-stable Borel subalgebra b(QO) of g contained
in q. If X' is of large type, we will show that b(O)) is of large type for a suitable choice of
O. This implies the converse of Proposition 1.4(i) which says that if X is of large type, ¥
is special with respect to some B € Bé/ K. Furthermore, we find a subgroup Fi(q) of Fi,
which can act on Bé /K transitively. We see that F (q) = Ff if @ is of inner type, and hence
conclude that the action of F¥ on B /K ~ [N?™™/K]q is transitive.

Let (q, H(R), 8, v) be a quadruplet of #-stable data and X = Xg®)(q, H(R), 5, v) the
corresponding standard (g, K)-module. Suppose that X is of large type. Then, via the iden-
tification g >~ g* by a G-invariant bilinear form on g, the set Ass(X)# P'/K of g-principal
K -orbits contained in the associated variety Ass(X) of X is described in [AV] and coincides
with [J\/'sg_pr/K]q—:

Ass(X)® P /K = INE /K ]q- = B /K |

where we write q~ the opposite parabolic subalgebra of q([02]). Hence the construction of
b(Oy) gives an algorithm to obtain Ass(X)8 P'/K and Fr(q) = Fr(q™) is a finite group
which acts on Ass(X)#7P'/K transitively.

2.1. Certain Cayley transforms associated with [-principal K -orbits in s;. Let us
first recall the Sekiguchi correspondence.
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THEOREM 2.1 (Sekiguchi [S], see also [O1]).  For a nilpotent orbit Oy € N/K, there
exists an S-triple (h, x, y) of g satisfying the following conditions:

(2.1.a) het x,yes,

2.1.b) th)=—h,t(x) =y,

(2.1.c) x € Og.
(We call an S-triple satisfying (2.1.a-b) a strictly normal S-triple.) Such an S-triple (h, x, y)
is unique up to conjugation of K (R).

For (h, x, y), we write

hr=i(x —y), xp=@&+y+ih)/2, yr=x+y—ih)/2.
Then (hgr, xR, YR) is an S-triple of g(R) such that

0(hg) = —hr, O(xR) =—)r.

Write Ogp := G(R)xg € ./\fg(R) /G (R) the G(R)-orbit of xg. Then the correspondence
Oy +— Og defines a bijection

SG : Ns/K = N/ GR),
which we call the Sekiguchi correspondence.

Let P, = HN_ be a t-stable Borel subgroup of L. Write b := p; + u the Borel
subalgebra of g. Since [[, [] N h N s is a maximal abelian subspace of [[, [] N s, we can take

Fr = {a e exp([l, 1N hNs); Ad(a?) |, = id(}

as a finite group associated to L (cf. 1.3). By [S], we can take an S-triple (h%, xg, yg) of [(R)
satisfying the following conditions:

(22.2) h% e,

(22b) O(h%) = —h%, 0(xp) = =2,

0 [—pr
(22c) xgenL(R) ﬂ./\/I(R) .

Since the action of F; on N‘I[(;';"/ L(R) is transitive (cf. Proposition 1.6), the subset C :=

F Lxg C nz (R) contains representatives of ,/\/'[((;;;r /L(R). Fix an element xg := axg (a € Fr)
and put

(hR. xR, YR) = (ahg, axp, ayg) .
Then the S-triple (hg, xg, yr) also satisfies the conditions (2.2.a—c). Let us write A(pz, b))
the set of simple roots of R(pr, h). We notice that a(hg) = 2 for @ € A(pr, h) and that xg
can be written as xg = ZaeA(pL,h) X, where X, (¢ € A(pr, b)) is a non-zero root vector
in go. Corresponding to the S-triple (g, xg, yr), define elements sy, and oy, of L by

(2.3) Sxg ‘= exp(mwi(xgr + yR)/4), Oxg = sz .

We also write s = Sy, and 0 = oy, for short. Define an S-triple (hg, xg, ys) by
2.4) hg := SxghR, Xo := SxgXR, Y6 := Sxzx)R-

Then we have the following.
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LEMMA 2.2. (i) hg, xg, yo can be written as
he = —i(xg —YR), X9 = (XR+YR—IihR)/2, Yo = xR+ YR+ihR)/2.

(hg, xo, Yo) is a strictly normal S-triple of |.

(ii) It holds that hg = i(xg — yg), XR = (xo + Yo + ihg)/2, yr = (xo + yo — ihg)/2.
Therefore the K -orbit Kpxg € N;L_Pr/ K| corresponds to the L(R)-orbit L(R)xg via the
Sekiguchi correspondence St : Ny, /K1 — Nigy/L(R).

(iii) s* = exp(wihg).

(iv) ohr = —hRr, 0XR = YR, OYR = XR.

PROOF. Let

(hR).=((1, _01) (xR>1=<g é) oo =(§ o)

be the canonical basis of s[(2, C). Since SL(2, C) is simply connected, the homomorphism ¢ :
sl(2,C) — g defined by (Ag); — hg, (xgR)1 — xgr, (Yr)1 > yg induces a homomorphism
@ : SL(2,C) — G which makes the following diagram commutative:

2,00 % g
exp { L exp
SL2,0) 2 G

Therefore, to show (i) and (iii), it is sufficient to show that the corresponding equalities hold
in sl(2, C) or SL(2, C). It s easily verified that

1 .
s = exp(mi{(xg)1 + (yrR)1}/4) = 7 (ll i) )

_01 _01) in SL(2, C) implies (iii).

(ii) and (iv) easily follow from (i). q.e.d.

which implies (i). The equality s;‘ = exp(mwi(hRr))) = (

LEMMA 2.3. (i) ol =h. Hence o acts on R(g, h) as an element of the Weyl group
We = Ng(H)/H of G. Then we have o R(pr, ) = —R(pL, b). In particular, the element of
Wi = Np(H)/H defined by o is the longest element of Wy .

(i) o~ '@R(b,h) = R(b, h). Hence b is an Ad(c~") o 8-stable Borel subalgebra of g.

(iii) For any root @ € R(g, b), we have

02Xy =X, = +X, (X € ga).

In particular, Ad(c?) ’[ =id;.
(iv) 0oAd(s) =Ad(s ") o0 and 6 o Ad(s™') = Ad(s) o 6.
(v) The action of o on R(g, h)) commutes with that of 6.
(vi) sb C qis a0-stable Borel subalgebra of g.
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PROOF. (i) Since hpg is a regular element of [, the centralizer 3;(Ag)(D h) of hg in |
is a Cartan subalgebra and hence 3((hg) = h. Therefore we have

obh =31(ohr) =31(—hr) = 1.

The assertion 6 R(pr, h) = —R(pr, h) follows from R(p., h) = {«¢ € R, h); a(hr) > 0}
and o hR = —hR.

The facts o R(pr,h) = —R(pL,h),0R(pL,h) = —R(pL,h), ou = uand 6(u) = u
imply (ii).

(iii) follows from Lemma 2.2(iii), a(hg) € Z (¢« € R(g,h)) and B(hg) € 2Z (B €
R(L, b)).

(iv) follows from O(s) = s~ 1.

By (iii), the action of o2 on R(g, ) is trivial. Then (v) follows from 6(c) = oL

Since b is stable under the action of Ad(c™!) 08 = Ad(s™') 0 6 o Ad(s), we have
6(sb) = sb. q.e.d.

Let us write h¢ = sbh.

LEMMA 2.4. 4 isa 6-stable Cartan subalgebra of g containing a Cartan subalgebra
of &.

PROOF. Since oh = 1§, we have

0(h°) =0(sh) =s~'h=s(c""h) =p°.

Hence h° is 6-stable. Since h¢ C sb and sb is a 6-stable Borel subalgebra of g (Lemma
2.3(vi)), R(g, h°) have no real roots. Therefore )¢ contains a Cartan subalgebra of &. q.e.d.

LEMMA 2.5. (i) FL actson the set {sxzb; xp € C = FLxg} transitively.

(i) IchLI/K # 0, {sxxb; xg € C) contains a representative ofBé‘/K.

PROOF. For xg € C and a € Fp, since Sgx, = asxka_1 and a~'b = b, we have
Saxg® = asx,b. This implies (i).

Let us write (hO, xg R yg) the normal S-triple corresponding to (h0 R xg, yg) by (2.4). Then
we have

saxg(axg) = asxga_l(axg) = a(sxgxg) = axg (a € Fr)

and hence K (ax)) € Ns, /K corresponds to L(R)(axy) € Nigry/L(R) by the Sekiguchi
correspondence. Since C = F, Lxg contains representatives of N, [[(}P))r /L(R), F, Lxg contains
those of ./\fg,[;pr /KL.

Here we notice that B5 /K — [Ind’((l, q) 1 @) (NP /K 1)1 (cf. Proposition 1.7,
Proposition 1.9). For any B; € Bé/K, there exists axg € FLxg (a € Fr) such that O :=
Ind?((1, q) 1 9)(K L(axg)) corresponds to B via the above correspondence. Then O is

the unique g-principal K-orbit which meets K, (axg) + (uNsg). Take Y € uN s such that
axg + Y € O;. Then

axg +Y= saxg(axg) +Ye saxg(axg +u) C Saxg(PL +u) = saxgb
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and hence Saxd b € B;. g.e.d.

2.2. A construction of a 6-stable Borel subalgebra of large type. Let H, ¥, q=1+u
and b be as in 2.1. The main theorem of this section is the following.

THEOREM 2.6. If X' is of large type, then B{;/K is non-empty.
To prove Theorem 2.6, it is sufficient to show the following

THEOREM 2.7. If X' is of large type, we can choose xg € C = FLxg (cf. (2.2)) such
that sxx b is a 0-stable Borel subalgebra of large type.

Theorem 2.6 implies the following.

PROPOSITION 2.8. Let h) be a 6-stable Cartan subalgebra of g and X a positive sys-
tem of R(g, h)ir.

(i) If X is of large type, then X is special with respect to some B € Bé /K.

(ii) For any 6-stable parabolic subalgebra q = [ + u of g which belongs to (), X), ¥
is of large type if and only ifBé/K #* 0.

PROOF. (i) Let us take a 6-stable parabolic subalgebra ' = ' + u’ which belongs to
(h, X) such that R(I', h) = R(g, h)g. Then by Theorem 2.6, there exists b; € Bé such that
b1 C q'. Hence X is special with respect to K{b,} € Bé/K.

(i) The “only if” part is just Theorem 2.6. To prove the “if” part, suppose that qu“ /K #
). Take b; € Bé such that b; C q. Let I’ be the Levi subalgebra of g such that [’ O § and
R(',h) = R(I,h)r = R(g,h)r. Let t C ' be a fundamental Cartan subalgebra of g (cf.
Lemma 2.4). Since b; contains a fundamental Cartan subalgebra of g, and any fundamental
Cartan subalgebras in g are Q N K -conjugate, we can assume that t C by by takinga Q N K-
conjugate of by instead of bj. Define a parabolic subalgebra ¢ = ' + v’ by R(W/,t) =
R(b1,t) \ R(I',t). Then u C ' and hence ¥ = R(u, h);g = R/, h);g. Therefore ¢ is a
0-stable parabolic subalgebra of g which belongs to (b, X) and contains b;. Thus X is special
with respect to K{b}} € Bé/K. By Proposition 1.3(i), X' is of large type. q.e.d.

Let us define another involution 6’ of g by 8’ := Ad(c™ ) 06 = Ad(s™!) 0 6 o Ad(s).
We consider the isomorphism R(g, b) S R(g, h°), (@ — & := a0 Ad(s~1)) of root systems.
Since O(@)(sA) = 6'(@)(A) (¢ € R(g,h), A € h), aroot @ € R(g,h) is non-compact
imaginary (compact imaginary, complex, or real) with respect to 8’ if and only if, so is & with
respect to 8. Therefore sb(D h°) is of large type with respect to 6 if and only if b(D ) is of
large type with respect to 6.

Let us write LW (u, ) the set of lowest weights of  (with respect to the positive system
R(pL, H)) in the [-module u. For « € LW (u, b), we write u(a) the irreducible [-submodule
of u generated by g, and o’ the highest weight of u(a).

LEMMA 2.9. Fora € LW(u, ), we have the following:
(i) uw(w) is s-stable and hence o -stable.
(i) oa=a".

(iii) Ifu(a) is O-stable, 6(a) = .
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PROOF. (i) follows froms € L.
(ii)) Since R(pr,h) = {¢ € R(g,h); a(hg) > 0} and chg = —hg, we have ony =
n; . This implies

[nL, goal = [0, 0g0] = olony, gol = oln;, 841 =0,

and hence oo = a”.

(i) Since #(nz) = n; and gae C (), we can show that fo = o”

similarly. q.e.d.

To know the action of 8’ = Ad(c~!) o 6 on root spaces gy (¢ € R(pr, b)), we need the
following lemmas.

LEMMA 2.10. Let (h, x, y) be a basis of s(2, C) such that [h, x] = 2x, [h, y] = -2y,
[x,y] = h. Write o := exp(mwi(x + y)/2) € SL(2,C). Let U be the irreducible SL(2, C)-
module of dimension k + 1 (k > 0). By the representation theory of s1(2, C), we can choose
abasisu_g,u_gy32, ... ,Uuk-2, ug of U such that

. k—j k+j
2.5) hu; = juj, xujz——z——uj+2, yuj = 2J

Uj-2.
Then the action of o on U is given by

ouj=i‘u_j (G=—-k—k+2,....k=2k).

PROOF. Let V be the two dimensional sl(2, C)-module with basis e, f such that
he=e, xe=0, ye=f, hf=—f, xf=e, yf=0.
We may assume that U is the space of symmetric k-tensors of V : U = S¥(V). Moreover,
since e®+ /2 fk=D/2 (_k < j <k, j € k+2Z) is abasis of U satisfying the condition (2.5),
we may assume u; = eWH+ D12 fk=D/2 Tt is easy to see that (x + y)(e + f)* = k(e + f)X,
which implies o (e + f)* = ek™/2(e + f)* = ik(e + f)*. We notice that (e + f)* =
Zjek+22,|j|5k ((k_l;.)/z)uj and h(ou;) = U(Ad(a_l)h)uj = o(—huj) = —jou;. Then by
comparing the h-weight vectors of weight —j in ) ((k_kj) /2)0 uj=oe+f)f =ike+f)k =

ko k ko .

> (yy2)i*ujs we have (5 p)ouj = () )i*u—j and hence ou; = i*u_;.  qe.d.
LEMMA 2.11. Suppose thatu(a)(o € LW (u, b)) is 0-stable. Writek := —a(hg) > 0

and defineu _j, u_y2, ... ,ug—2,ux € W) byu = Xq and xguj = (k— jluj12/2. Then

we have the following:
(i) hgruj = juj,ou; = iku_j, Uk € Ggh-

(i) There exists Cy = Cq(xg) = %1, which depends on the choice of xg € C (cf.
Lemma 2.12), such that 0 (u_y) = Cyi*uy.

(i) o7 '0b0(Xq) = CoXq.

(V) O(u—ks2j) = (—1)! Coi*up_s;.

PROOF. (i) Write S := Chgr 4+ Cxg + Cyg =~ sl(2,C). It is easy to see that —k is
the hgr-lowest weight in u(a), and that u_x is a non-zero hg-weight vector of weight —k,
which is unique up to a constant. By the representation theory of s[(2, C), Cu_x + Cu_y42 +
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«++ 4+ Cug—2 + Cuy is the unique irreducible S-submodule of u(x) of dimension k£ + 1 and
U_g, U—k42, - - - » Ug—2, Ui satisfy the same relation as in (2.5).

Since a*(hR) is the hg-highest weight of multiplicity one in u(x), «”(hg) = k and
U € gyn. ouj = i*u_; follows from Lemma 2.10.

(i) Since hrO(u—_x) = O0(—hgu—_;) = kO(u_g), there exists ¢ € C* such that
0(u—_x) = cug. By the relation like (2.5), we have

1 k 1 k
U_p = }_!(yk) up and u; = F!(XR) U_k.

Then

1 1 1 - (1 —1F
cur=0@u_) = —0(R) 0 (w) = — (—xp)* | —u_y ) = D — (R uy ) = D U
k! k! c c k! c

and hence ¢ = +i*.
(iii) follows from (i) and (ii).
(iv) We notice that

1

U—g42j = k-1 (k—j+ 1)(XR) u_i and ux_n; = k=D (=t 1)(yR) U .
Then
1 .
O(u—rt2j) = PR R 1)(—)’R)Je(u_k)
Co(—1)/i* ; ,
- k(k—1) ( . (]1 ij + 1)(yR)juk = (_1)jcotikuk—2j .
g.e.d.

LEMMA 2.12. Suppose that u(a)(a € LW (u, b)) is 8-stable.

(i) Calaxg) = a(@)Co(xr) (a € F1).

() If R(w(e), h)ir # 9, a(a®) = 1 for any a € Fy. In particular, Cy(XR) is indepen-
dent of the choice of xg € C.

PROOF. (i) Co(axr)Xa = 0,40(Xa) = (acga™")7'0(Xe) = aola™16(Xa) =
ac'0(aX,) = a(a)ac;'0(X,) = a(a)a{Co(xp) Xo} = a(a?)Co (xg) X

(ii) Take y € R(u(wx), h);g. Then y can be written as y = o + ZﬂeA(pL,b) ngpB
for some ng € Z>p. Since y(a) = | and B(a) = £1 (B € A(pr, b)), we have a(a) =
y(a) nﬂeA(pL,b) B(a) ™" = *£1. g.e.d.

To prove Theorem 2.7, we have to show that b is of large type with respect to 6’ =
Ad(ax}l) o 0 for some xg € C. The set A(b, ) of simple roots corresponding to b is decom-
posed as A(b, h) = A(pL, hU(A(b, h)NR(u, b)) and clearly A(b, h)NR(u, h) C LW (u, b).
Since xg = Y_yea(p,.5) Xo for some X, € go and o' (xg) = 0! (—yr) = —xr, we have
aale(Xa) = —‘Xa);lle(a) for o € A(pr,b). Hence the roots in A(pr, h) are complex or

non-compact imaginary with respect to Ad(ax_kl) 00.
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Take ¢ € A(b,h) N R(u, h). If u(w) is not O-stable, o is complex with respect to
Ad(ax;‘) o 6. Suppose that u(x) is f-stable. Then ax;le(oz) = a, that is, o is imaginary
with respect to Ad(ax;l) o 6. By Lemma 2.11, we have JX;IO(XQ) = Cq(xR)Xy. There-
fore, to prove Theorem 2.7, it is sufficient to prove the following proposition. In particular,
forxg € C = F Lxg, Theorem 2.7 holds for xg if and only if xg satisfies the condition of
Proposition 2.13(ii).

PROPOSITION 2.13. Suppose that ¥ = R(u, b);g is of large type.

(i) Foraroota € A(b, h)NR(u, b), assume that u(e) is 0-stable, and that R (u(a), h)ir
# (. Then Cy(xg) = —1 forany xg € C = FLxg.

(ii)) We can choose xg € C such that Cy(xg) = —1 for any root a € A(b, h) N R(u, bh)
with the properties that u(a) is 0-stable and R(u(a), h);g = 0.

The proof of this proposition will be given in Subsection 2.3.

Now suppose that Bé /K # (. We would like to construct a subgroup F (q) of F, which
acts on By /K transitively.

Let F1(q) be the subgroup of F consisting of elements a € F|, satisfying the following
condition:

(2.6) a(a) = %1 for @ € A(b, h) N R(u, ) such that 6 (u(x)) = u(w) .

By Lemma 2.5, we can choose x,'e eC= FLxg such that sx}zb € Bé. Then fora € Fy,
a(sx’](b) = sax’:tb € Bé if and only if the condition (2.6) is satisfied (i.e., a € FL(q)).
Hence F1 (q) acts on {sy,b; xg € C, s5xb € Bé} transitively: {sxzb; xgr € C,5:4b € Bé} =
Fr (q){sx’lzb}. Again by Lemma 2.5, FL(q){sx}eb} contains representatives of BCLI/K. There-

fore we have a bijection FL(q){Sx’lz b}/ 3 BqL /K. Here the equivalence relation X in

Fy (q){sx}(b} is defined as follows: for b{, b5 € FL(q){st.(b}, we write b{ X b5 if there exists
k € K such that b§ = kb{.

PROPOSITION 2.14. Suppose that Bg/K # (). The quotient set FL(q){sxkb}/ X has
an action of Fy.(q) which is induced from that of F1(q) on Fr (q){sx’.z b}. Therefore, via the

bijection Fy, (q){sxllzb}/ £3 Bé/[(, F;(q) acts on Bé/K transitively.

PROOF. Suppose that b X b5 (b], b5 € FL(q){SXIIib}). We first show that b{ and b3
are L N K-conjugate. Let t; (j = 1,2) be a §-stable Cartan subalgebra of g containing a
Cartan subalgebra of € such that t; C b; N [ (cf. Lemma 2.4). Since t; and t; are conjugate
by an element of L N K, we may assume that t; = t; =: t. Since b{ N [ and b5 N [ are
Borel subalgebra of [ containing t, there exists g € Ny (t) such that b5 N [ = g(b{ N [). Then
gbi =g(biNI+u) =b5NI+gu=>0b5NI+u=>0s.

On the other hand, since b{ X b, there exists k € Nk (t) such that b5 = kb{. Thus
9~ 'kb§ = bS and hence the element of W (t) = NG (t)/T defined by g 'kis 1: g~k € T.
Therefore k € gT C Landk € KN L.
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Then for a € Fr(q), we have ab$ = (aka‘l)(abf). Since F; C Np(L N K), ab{ and
abs, are also K -conjugate. q.e.d.

Suppose that 8 is of inner type. Then the action of o~ 106 on R(b, h), which is the graph
automorphism defined by 6, is trivial. It follows that 6 (u(«)) = u(w) for any @ € A(b, h) N
R(u, b). Therefore, if a € Fr(q), x(a) = £1 forany a € A(pr, h) U (A(b, h) N R(u, h)) and
hence Ad(a?) = idg. This implies F1(q) = FF. Since F{ naturally acts on By /K, we have
the following

COROLLARY TO PROPOSITION 2.14. Suppose that BCL( /K # ¥ and 0 is of inner type.
Then the action of F LG on Bé‘ /K is transitive.

REMARK 2.15. Let (q, H(R),5,v) be a quadruplet of O-stable data and X =
X ®)(q, HR), §, v) the corresponding standard (g, K)-module. Suppose that X is of large
type. Then, via the identification g ~ g* by a G-invariant bilinear form on g, the set
Ass(X)¥7P'/K of g-principal K-orbits contained in the associated variety Ass(X) of X is
described in [AV] and coincides with [N /K ]q-:

Ass(X)SPT/K = (N& /K- ~ B /K,

where we write q~ the opposite paraboric subalgebra of g([O2]). Hence, via the above iden-
tification, Fr (q) = Fr(q™) acts on Ass(X)% P'/K transitively. In particular, if 6 is of inner
type, Ff = Fr(q) = Fr(q7) naturally acts on Ass(X)9 P'/K transitively.

In order to reduce the proof of Proposition 2.13, we need the following lemma.

LEMMA 2.16. (i) There exists a 0-stable parabolic subalgebra @ = U + v of g
which belongs to (X, ) such that ' C q and R(I', §) = R(Il, h)r = R(g, h)r.
(ii) IfB’q“,/K # @ for q' of (i), Proposition 2.13 holds for q = [ + u.

PROOF. (i) Define the Levisubalgebral by R(I', h) = R(l, h)g and take A € i (h(R)N
£) such that «(A) # 0 forany & € R(I, h) \ R(l, h)Rr. Let q; = '+ u the parabolic subalgebra
of [ defined by R(q;, h) = {« € R(I, h); a(A) > 0}. Then ' = q; + u satisfies the condition
of (i).

(i) Suppose that BCLI,/K # @. It follows from q¢' C q that B'q“/K # (. Since
{sxgb; xg € C} contains a representative of Bé /K, there exists xg € C such that s,,b is
of large type with respect to 6. By the remark after Proposition 2.8, b is of large type with
respect to Ad(ox;l) o 6. Therefore Proposition 2.13 holds for q. q.e.d.

By Lemma 2.16, to prove Proposition 2.13, it is sufficient to prove Proposition 2.13 for
= [+ u such that R(l, ) = R(g, h)r.
2.3. The proof of Proposition 2.13.  Throughout this subsection, we assume that f), X,
q=1I0+4+u,pr,b... are as in Subsection 2.1.
We first give the proof of Proposition 2.13(i), which is based on the following lemma.

LEMMA 2.17. Suppose that u(a) (e € LW (u, 5y)) is 0-stable, and that R (u(a), ) con-
tains an imaginary root y . Let us write the highest weight o of u(a) as a" = ZﬂeA(b,b) ngp
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(ng € Z >0), where A(b, ) is the set of simple roots in R(b, by). Put
Dot = {ﬂ € A(b, b)’ nﬂ # 0} ) DC( n A(va b) = {:Bl’ ,32’ AR ] ﬁr} )

.
y=a+ ) cjBj (cj€Zxo)
j=l1

and c = Z;zl cj. Let us write xfeXa = (ad xg)“ Xy as a sum of root vectors:

xpXa= Y. Y5 (Ysegs).
SeR(u(a),bh)

IfY, # 0, and y is non-compact, then Co(xg) = —1 (i.e., 0! 00(Xo) = —Xa).
PROOF. Define u_j, u_g43,... ,ux—2,ux € u(a) (k := —a(hg) > 0) as in Lemma

2.11. Since B;(hg) = 2 and y(hg) = 0, we have k = 2c. We can write xp X, = Aug for
some constant A # 0: Auo = 3 sc p(u(a).p) ¥s- By Lemma 2.11(iv), we have

0(u0) = O(u—k+20/2)) = (—D¥?Co(xr)i*ur—202) = Co(xr)u00 ,

and hence

Yo W) =Cular)| Y. Y
SeR(u(a),h) SeR(u(a),h)
Since y is non-compact imaginary, we have —Y, = 0(Y,) = Cy(xg)Y,. Hence Cy(xg) =
—1. g.e.d.

LEMMA 2.18. In the setting of Lemma 2.17, suppose that the Dynkin diagram of D,
isoftype A, B, D, E or G. Then Y,, # 0.

To prove Lemma 2.18, We need the following two lemmas.

LEMMA 2.19. Let g be a simple Lie algebra of type A, B, D, E or G and ) a Cartan
subalgebra of . Let R be a positive system of R := R(g, h) and A the base of Rt. Suppose
that a root B € R™ and simple roots By, B2 € A (B # PBo) satisfy ht B > 3 and that
B — Bi,B — Bo € RT, where we write ht B the height of 8. Then Bi + B2 ¢ R and
B—B1— B2 € RY.

PROOF. First suppose that R has only one root length. We may assume that (§, §) = 2
forany § € R, where (, ) denotes the inner product on R. It follows that 8 + B, B —28; ¢ R
and hence the 8;-string roots through 8 are B — B; and B. By considering the action of the
simple reflection sg; defined by B; on 8 — B; and B, we have sg, (B) = B—2(B;, B)/(Bj, Bj)-
Bj = B — Bj and hence (B8, B) = 1.

If B1 + B2 € R, it follows that (8, B + B2) = 2. Hence we have B = B; + f2 which
contradicts the assumption ht 8 > 3. Therefore 81 + B> ¢ R. Since B1 £+ B2 ¢ R, we have
(B1, B2) = Oand (B1, B2) < 0. Hence (B1, B2) = 0. This implies sg, (B—pB1) = B—B1—p2 €
R.

For the cases of type B and G, we can verify Lemma 2.19 directly. g.e.d.
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LEMMA 2.20. In the setting of Lemma 2.19, suppose that € R, and B, ..., Bp €
A which are not necessarily distinct. Let X5 € gs \ {0} (6 € R) and write X; = Xg,. Then
Jor two permutations (i1, iz, ... ,ip), (j1, j2, ..., jp) of 1,2,..., p such that

@+ B+ + By, ot 4By € RT
for 1 <k < p, it holds that
2.7) ad(X;,)oad(X;, ;)o---ocad(X;)(Xq) = ad(X;,)oad(X;, ) o---0ad(X;)(Xq) .
PROOF. We prove (2.7) by induction on p.
If Bi, = Bj,» (2.7) holds by induction. Suppose that g;, # 8, and write

ﬂ:=a+ﬂ,‘,+ﬂi2+'~-+ﬁip=a+ﬂj,+ﬁj2+"'+ﬁjp€R+.

Since 8 — Bi,, B — Bj, € R™, we have (8 — Bi,) — Bj, € R™ and Bi, + Bj, ¢ Rby
Lemma 2.19. Hence there exists a permutation (i, i5, ... ,i;,_l) of iy, i2,... ,ip—1 such that
./

i, =Jjpanda+ B+ B+ +py € R* (1 <k < p —1). By induction, we have
ad(Xi,,q) o ad(X,'pgz) o---oad(X;)(Xy) = ad(Xi;P,) o ad(Xi;?_z) 0---0 ad(X,-;)(Xa) .

Similarly, there exists a permutation (j{, j3, ... ’j;7~1) of j1, j2, ..., jp—1 such that jl’a_1 =
ipa+Bj+Bjy+ - +B eRT(1<k<p-1and

ad(Xj,_,) 0 ad(X, ;) o -+~ 0 ad(Xj)(Xa) = ad(Xj )oad(Xj )o---oad(X;)(Xa).

Notice that {i{, ij, ... ,i;}_z} = {j]Jgr--- ,j[’kz} = {1,2,..., p} \ {ip, jp}. Then by
induction, we have

Y i=ad(Xy ) o oad(Xy)(Xe) = ad(Xy )o---0ad(X;)(Xa).

Consequently, ad(Xip)oad(Xipﬁl)o- . -oad(X,-l)(Xa)~ad(ij)oad(ij_‘ )o---0ad(X ;) (Xy)

=ad(X;,) cad(Xy )o ad(X; )o---oad(X;)(Xe) —ad(Xj)oad(Xy )oad(X;y )o
p—1 p-2 1 P Jp—l jp—-2

-0 ad(Xj{)(Xa) = ad([X;,, X, D) =0. q.e.d.

Then Lemma 2.18 is an immediate consequence of Lemma 2.19 and Lemma 2.20.

DEFINITION 2.21. (i) A Dynkin diagram A, which is attached (white node) o or
(black node) e to each node, is called a WB-Dynkin diagram. We write Aw (resp. Ap) the
set of roots in A to which white (resp. black) nodes are attached: A = Ay U Ap.

(ii) WB-Dynkin diagram A is called connected if A is connected as an ordinary Dynkin
diagram, and any two black nodes in A are not connected with an edge.

(iii) For a WB-Dynkin diagram A, the connected WB-Dynkin diagrams, which are
obtained from A by erasing the edges connecting two black nodes, are called connected com-
ponents of A. For o € A, we write A(cr) the connected component of A containing .

(iv) For a WB-Dynkin diagram A, Ay is considered as a sum of connected Dynkin
diagrams. For B € Aw, we write A°(8) the connected Dynkin diagram in Ay containing 8.
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EXAMPLE. - Suppose that A is the following WB-Dynkin diagram:

B a1 ar B ﬁ3<fﬂ4
A= o L ° :
o3
Then
a B B * B2 B3  PBa
Alaz) = A(Bg) = , A°B)= o0— 06— 0o -
o3

We write Ap the WB-Dynkin diagram which we obtain from the Dynkin diagram of
A(b, h) by attaching white nodes to the roots in A(pr, ) and black nodes to those in A(b, h)N
R(u, h).

Now let us give a proof of Proposition 2.13(i) in the case that Ap(x) (¢ € (Ap)p =
A(b,h) N R(u, b)) isof type A, B, D, E or G.

In the setting of Proposition 2.13(i), suppose that Ap(e) is of type A, B, D, E or G.
Take a 6-imaginary root y € R(u(e), h);g. Suppose that y € X' can be writtenas y = y1+y2
for some y1, 2 € R(b, h). Since y is of the form y = o + ZﬂeA(pL,b) ngB (ng € Z ),
we may assume that y, is written as y2 = 3 gcap,.p) n’ﬂﬂ for some njy € Z>o. Then
0(y2) € —R(pr, b) and hence y, cannot be imaginary. This means that y is simple in X.
Since X is of large type, y is non-compact. It is easily verified that Dy, C Ap(x) (Lemma
2.17). Hence D, is also of type A, B, D, E or G. Then C,(xg) = —1 follows from Lemma
2.17 and Lemma 2.18.

According to Lemma 2.16, to prove Proposition 2.13(ii) and the remaining cases of
Proposition 2.13(i), we assume the following.

ASSUMPTION 2.22. Every root of R(l, b) is 6-real.

Itis easy to see that Ay, (Ap)w and (Ap) g are stable under the action of o 1o6. Suppose
that A°(B) (B € (Ap)w = A(pL, h))is not o~ of-stable. Then o~ 1oh(A%(B)NA°(B) =0
and this implies 8(A°(B8)) N (—A°(B)) = @ (cf. Lemma 2.3(i)). Hence A°(B) has no real
roots. This contradicts Assumption 2.22.

REMARK 2.23. Under Assumption 2.22, A°(B) (B € (Ap)w) is o~ o 9-stable.

LEMMA 2.24. Under Assumption2.22, A°(B) (B € (Ap)w) and the action ofa'1 of
on A°(B) are given in the following list.
(D
B B B3 Bn-1 Bn

o—o0—0 -+ —0—0 , a“oé(ﬂ,-):ﬁn_iH

2
o—0—0 "+ —0——a =D > o lof=id
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3)
o—oO0—0 + —0——aTXZD olof=id
4
ﬁn—l
Bt B B Bn—3 Pn-2_o
5 o o -+ —O o< P (n :even),
o lop=id
&)
ﬂn—l
B B B3 Bn—3 Bn—2_o
o o.__o_..._o_o< P (n :odd),
o lo0B)=8 1<i<n-2), o '08(Bu1)=Bn
(6)
o o o> o log=id
7
== - o7 lof =id
(8)
Bt B Bs  PBs Be
B2
o700 =PBs., o 08BN =PBs. o' ob(B)=Ps, o' 08(B) =h

©)

oo o, o lof=id

(10)

143
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PROOF.  Since all roots in A°(p) are real and o defines the longest element of the Weyl
group of A°(B) (cf. Lemma 2.3(i)), Lemma 2.24 follows. q.e.d.

Foraroota € (Ap)p = A(b, h) N R(u, h) which is considered in Proposition 2.13, (i) or
(ii), it holds that o ~! 0 () = . Hence the connected component Ay () of Ap containing o
is 0 ! 0#-stable. In the following lemma, we list up the o ! 0@-stable connected components
of A b-

LEMMA 2.25. Under Assumption 2.22, a o~ o0-stable connected component A of
Ay, is contained in the following Table 1, where we have to consider the cases; the roots in
Ap, which are put in (), are omitted. We attach C (resp. 1) to a root « € Ap such that
o1 08(x) = « and that R(u(w), h)igr = 9 (resp. R(u(a), h)ir # 9). If 7! 0 8 is not the
identity, we show the action of 6~ 06 on A. We also show the action of 6 on Ag. If there is a
roota € Ag such thato~' 0 6(e) = « and Ru(w), h)ir # @, we show the set R(u(x), b)igr.

TABLE L.
(A.Q)
@Q
e - Olxg)=ap, Ru),bh)g={ap}.
I
(A.ii)
@Q B o] B o -2 Pn-1 -1 Pn on
(&) —0——0— o - . ——0—e—0—+e) (21,
C C C C C C

O(ag) =g+ B1,0() =B + i + Bit1 (1 =i <n—1),0(an) = n +on.
(A.iii)
ay B B2 Bn_1 Bn an
ol ob()) =2, 07 00(Bi) = Buip1 (1 i <n),0(a) =y +P1+--+Bn, 0(e2) =y + 1 + -+ B

(B.1)

) B o) B o -3 Ppn-1 an-1 PBn an
(o—)————o——o—o——o——o—o—o——oi. (nz1),
C C C C C C

O(ap) =ap+ p1,0()=Fi +o; + i1 (1 <i <n—1),0(xn) = an + Pn.



§-STABLE BOREL SUBALGEBRAS OF LARGE TYPE 145

(B.ii)
o B o) B a Um—1 Bm am 8 ) -1 bn
() —O0—e—0—o - - —@ - O— -+ —O
C C C C C

(m=1,n>2),

O(xg) =g+ B1,0(x;) =B +a; +Bir1 1 <i <m—1),0(@m) =PBm+am+2(8) +8 +--+ ).

(B.iii)
o 1 3 Sn—2  Op-1 On
e—o0o—0o -..—0—a_>>o rx2),
1

0(ap) =g +2(81 + 82 + - -- + 8n), R(u(g), h)ig = {og + 81 + 82+ -+ +8n).

(C.i)
o B o] B2 o -2 Pn-1 -1 Bn an
(6 —0—e——0—e - —o—0 e —a=<—w» @n2D,
C C C C C 1

O(ap) = o+ B1,0(a;) = Bi + i + Bt (1 <i =n—1),6(an) = an + 2Bs, R(u(an), h)ir = {on + Bn}.

(C.ii)
) Bi o] B o) Um—1 Bm Um 8 ) -1 dn
C C C C C

m>1,n>2),

O(ag) =g+ B1,0()) =B +a; + fiy1 1 <i <m—1),0(@m) = PBm +om +2061 +82+ - +8,-1) + n.

(D.Q)
5 ‘Sn—l
%) B1 @) B2 ) Un—1  PBm U 8 8 n—2
(&O—0—e—0—0 - —6—O0O——0——0— -
c C C C C 8n

(m>1,n>2,n:even),

O(ag) =ap+B1,0()) =B+ +Bip1 1 <i <m—1),0(m) =Bm+om+201+--+8,-2)+8_1+8n.

(D.ii)
[e7]
o B1 o B2 o Bn-1 fe
(&) —0———o— 00— -- n=1,
¢ C C ®p+1

O(ag) =g+ B1,0(x;)) =B +; + Biy1 1 i <n—1),0(n) = an + Bn, 0(epy1) = Apg1 + Bn.
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(D.iii)
5 ‘Sn-l
) B1 o B2 @ Ui PBm o 81 33 n—2
() —0— o — 0 o - —o . o -
C C C C c 8n

(m=>1,n>3,n:0dd),

o1 00(,_1) = 8n, 071 00(8y) = 8,_1, (7! 06 acts trivially on the other simple roots.) 8(cg) = ag + B,
Ol)=pF+ai+pfiy1 (1 <i=m—1),0(am)=Bm+om+201+ - +8-2)+3—1 +n.

(D.iv)
(7]
o B o) B2 %3 Bn—1 fo
(o) T TS (n>1)),
C C C Up+1

o lob(ay) = Upils o~ lo O(ap41) = ap (67106 acts trivially on the other simple roots.) 8(xg) = ag + 1,
O(a)) =B +oi +Biv1 (1 <i <n—1),0(an) = ayy1 + Bn, 0(ept1) = an + Ban.
(F4.1)

.__Qim—o s 9((1)2(1'+3ﬂ1+4ﬂ2+2/33.

o—a>>—o—-e : @)= +2H+3p+a.

C
(Fy.iii)
o) B o B2
oo > o . fap=at+p, b@)=F+unt+h.
C C
(F4.iv)
o) Bi B2 o
g > —e
1 C

0(ay) =y +2B1 + 267, 0(a2) = ap + 287 + By, R(u(ey), h)ir = (a1 + B1 + B2}
(F4.v)
Bi o] B2 o)

o—e«—so—=e : YN=ptat+h bl@)=a+h.

C C
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(Ga.0)

[

B
é}, G(a)=a+,6

C

(Ga.ii)

B o
$ , B@)=a+38.
C

(Eg.1)
a) Bi B2 B3 o
C C

Ba

0(ay) = ) +2B1 + 282 + B3 + Ba, 0(2) = o + 283 + 28 + B + Ba.

(Eg ii)
aj Bi o B3 a3
C C C

B2
0(ay) = ay + B1,0(x) = az + B1 + B2 + B3, 6(a3) = a3 + B3.
(Eg.iii)

B o) B2 a3

=
[N

C C
cl*

0(ay) = ay + B1 + B2, 0(a2) = o + B2, 6(e3) = a3 + B2 + B3.

(Eg.iv)
B B2 B3 Ba

e

o1 08(B) = P—iro "  0B(@) =, 0(x) = + By +2B2 +3B3 +2B4 + Bs.

o
o ®

(Eg.v)
o) B B2 B3 o3

cl%

o7 o) = a3, 07 0B(@) =ap, 071 0 8(B) = Ba—i (1 <i <3),6(02) = g + 2By + B1 + B3.
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(E7.)
o B2 B3 Ba Bs Be
.- —0

C
B1

0(@) = o +2B1 +3B2 + 483 +3B4 + 285 + Pe.

(E7.ii)
aj A B B3 o) Bs

. o
C C
Ba

O(a)) = a1 +2B1 +2B2 + B3 + Ba, 0(p) = ap + 283+ 2B2 + By + B4 + Bs.

(E7 ii)
oy B a B3 a3 B4

C C C
B2

O(ay) =) + B1, 0(az) =z + By + B2 + B3, 0(3) = a3 + B3 + Ba.

(E7.1v)
B aj B2 a3 B3 oy

O L 2 L 4 o
C C C
c|*

0(ay) = oy + By + B2, 6(a2) = ap + B2, 0(a3) = a3 + B2 + B3, 0(ag) = ag + B3.

(Eg.i)
B B3 Ba Bs Be B o
o Y

C
B
O(a) =a+2B) +3P2 +4B3 +6B4 + 585 + 4B +367.

(Eg ii)
o] B1 B2 B4 Bs Bes a

P O
@

C C
B3

O(ay) = a) +3B) +4B2 +2B3 + 3P4 + 285 + B, 0(x2) = ap + B1 + 282 + B3 + 2P4 + 285 + 2P¢.

®
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(Eg.iii)
o) B B2 Ba %) Bs a3
C C
B3
0(ay) = oy +2B) +2B2 + B3 + P4, 0(2) = a3 + B1 +2B2 + B3 + 284 + Bs, 0(a3) = a3 + Bs.
(Eg.iv)
o Bi o B3 o3 Ba ay
C C C C
B2
O(ay) = ay + B1,0(a2) = ag + 1 + B2 + B3, 0(a3) = a3 + B3 + B4, 0(ag) = a4 + B3.
(Eg.v)
B o) B o3 B3 L7 Ba
O— o— - O
C

C C
cl%

O(ay) =ay + B1 + B2, 0(xz) = az + B2, 0(a3) = a3 + B2 + B3, 0(cta) = g + B3 + 4.

PROOF. Lemma 2.25 can be checked, case by case, by noticing the following facts:

(a) A isaconnected Dynkin diagram.

(b) o086 is an involution of A which stabilizes Az, Aw and A°(B) forany B € Awy.

(c) A°(B) (B € Aw) is a Dynkin diagram (with an action of 6 ! 0 §) in Lemma 2.24.

(d) Fora € Ap, o () is highest in the roots of the form o + Zﬂe/_xw cgPB (cg € Z>p).

() Ifo~'ob(@ = afora € Ap, 6(x) is highest in the roots of the form o +
ZﬂeAw cgB (cp € Z>9). qg.e.d.

Now let us give the proof of Proposition 2.13(i) in the remaining cases. We have to show
Proposition 2.13(i) in the cases that Ap(«) is of type C or F4. By Lemma 2.25, we can assume
that Ap () is of type (C.i) with & = «,, or that Ay () is of type (F4.iv) with @ = «; in Table
I. We use the notation in Lemma 2.17.

First suppose that Ap () is of type (C.i):

ag Bi B2 a2 an-2 Pn-1 An—1 Pn ap =0

(o—)——o—o——o————o— —0—0——0——@ (n=1).

Then y := a + B, is an imaginary root in R(u(a), h). Since xg is a sum of root vectors
Xp € gp \ {0} (B € (Ap)w) and [Xp, Xa] = O for B € (Ap)w \ {Bn}, We have xg Xo =
Y, € gy \ {0}. Clearly y is a simple root in X' = R(u, h);g. Since X is of large type, y is
non-compact. Therefore we have Cy (xg) = —1 by Lemma 2.17.
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Second suppose that Ap(e) is of type (Fy.iv):

a; B B

>0 e (@=a).
I C

Then y := «a + B) + B2 is an imaginary root in R(u(), h). Since o + 8, and @ + 28; are not
roots, we have x,% Xo = [Xp,,[Xp,, Xa]l =Y, € gy \ {O}. Itis easy to see that y is a simple
rootin X' = R(u, b);r. As before, we have C, (xg) = —1. Therefore the proof of Proposition
2.13(i) is completed.

As a preparation for the proof of Proposition 2.13(ii), we define an element ag € Fy
(B € A(pL, b)) as follows. For B € A(pr, h), which is real by Assumption 2.22, we write
Apg the element of hN[L, [] such that y (Ag) = dp,, (¥ € A(pr, b)), where 8g,,, is Kronecker’s
symbol. We write ag := exp(wiAg).

LEMMA 2.26. (i) ag e Fp forany B € A(pL,b).

(ii) Suppose that u(a) (@ € LW (u, b)) is 6-stable. Definen, € Z>o (y € A(pr, b))
byb(ax) —a = ZVEA(PLJ)) nyy (note that 6(a) is the highest weight of the -module u(a)).
Then we have

a(aé) _ {1 (ng %s even),
—1 (ngisodd).
In particular, we have

Co(xR) (ng is even),

Caltprn) = {_Ca(xR) (ng is odd).

PROOF. Since A(py, h) consists of real roots, we have Ag € h Ns. Fory € A(p., h),

Xy,  #B,

agX, =" VADX, = "y X, =
4 v T l-x, =8

Hence Ad(ag) |, =id.

(i) {0(@) — @}(@p) = [T, cap,p) ¥(@p)"” = Blap)™ = (—1)".
On the other hand, we have {0(a) — a}(ag) = a(9(ag))a(a51) = a(agz) = {a(a%)}_l.
Hence a(aé) = (—=1)"8. q.e.d.

REMARK 2.27. Suppose that A and A’ (A # A’) are 0 ~! o 6-stable connected com-
ponents of Ay, and « is a root as in Lemma 2.26(ii). Suppose that « is contained in the root
system R, generated by A, and B € A;,. By the definition of the connected components
of Ap, B is not connected by edges to any roots in A. Since R, is 0-stable, O(«w) € Ra.
Hence 8 does not appear in 0(a) — o = ZVGA(PLJJ) nyy : ng = 0. Therefore we have
Co(agxr) = Co(xR).

PROOF OF PROPOSITION 2.13(ii). It is sufficient to prove Proposition 2.13(ii) under
Assumption 2.22. Hence connected components of Ay are WB-Dynkin diagrams in Table 1.
For any xg € C and any connected component A of Ay, we will construct an elementa € Fy,
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which is a product of ag’s (B € Aw), such that Cy(axg) = —1 for any o € Ap with the
properties that 67l o0(@) = @ and R(u(x), hir = @ (i.e., roots in Table I to which C’s
are attached). Then Proposition 2.13(ii) follows, since Cy(ayxg) = Cq(xg) for y € (Ap)w,
which is contained in another connected component of Ay (cf. Remark 2.27). Since there
exists no root to which C is attached in the cases (A.i), (A.iii), (B.iii), we do not need to
consider these cases.

Let us consider the case when A is of type (A.ii):

(od4] Bi [e3] B2 (%) an-2 Pn-1 on_1 Ba Qan
. . - o — 0 e o o @=1.
C C C C C C

We first show that n:l:o Cy; (xR) = (—=D"*! for any xg € C. Write the root y := ag + f1 +
ay + By +ax+ -+ By +ap. Since y — B (1 < j < n)arenotroots, y € LW(u, ). By
the action of 6 on «; and B, we have 6(y) = y and hence y € X'. Notice that R(u(y), h) =
Ru(y), h)ir = {y}. Itis easily verified that y can not be written as a sum y = y; + y, for
y1,y2 € X. Hence y is simple in X. Since X' is of large type, y is non-compact. Then we
have C, (xg) = —1 by Lemma 2.17.

Write xg = Z;’.legj and X, = [Xog, [Xp,, [Xop, [ [ X8, Xa, ).+ -1 € gy \ {0},
where X5 (§ € A) is a non-zero root vector in gs. Since the action of o106 on A is trivial
and o' 0 O(xg) = —xg, we have 0! 0 0(Xp,) = —Xp,. By 07! 0 0(Xy,) = Co; (xR) X,
ando ! 00(X,) = C, (xg)X, = —X,, we have

Xy =0"'00(X,) = (-1)"[ | Cay xR)X,, -

i=0
Hence [ Cq; (xg) = (—1)"*!. We notice that
(Cao(aﬁij)» C(xl (aﬁij)9 SR C‘xj—l (aﬁij)’ Caj (aﬁij)a ey CO(,, (aﬂij))
= (C(X()(xR)’ Cb‘tl (XR), LR ] —Caj_; (XR)’ —C(Xj (-xR)v L] Ca,, (.XR))

by Lemma 2.26. Therefore we can take an element a of the subgroup (ag;; 1 < j < n) of Fp
generated by {aﬂj; 1 < j < n} such that Cy, (axg) = —1 for 0 < i < n. In the case when g
or «, is omitted, the proof is easier.

Similar proofs can be done in the cases (B.i) and (B.ii).

Consider the case when A is of type (C.i):

a P11 o P 2 2 Bn-1 an-1 Bun oy

O — e —O——e - & O e ——T="» (n>1).
C C C C C I
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By Lemma 2.26,
(Cag(ap;xR), Co\(ag;xR), - .. , Ca;_,(ag;XR), Cu;(ag;XR), - - . , Ca,_,(ap;XR))

(Cao(xR), Coy (xR), - - . , =Cq;_; (xR), —Cq;(xR) ... , Cq,_, (xr)) (1< j=<n—1),
(Coy(xR)s Cay (xR), - - . , Ca,_,(xR), —Ca,_, (XR)) (=n.
Therefore we can take a € (ag;; 1 < j < n) such that Co,(axg) = —1for0 <i <n—1
The proof of the case in (C.i), when ap is omitted, is similar.
The proofs of the remaining cases except (D.ii), (E7.iv) and (E3.v) are similar to that of
the case (C.i).
Consider the case when A is of type (D.ii):

a
a Hf ar B Bn-1 @n—1 PBn Cn
. o - o o ... n=1,
C C C C An+1
C
Notice the WB-Dynkin diagram obtained by omitting «,+;. Then we can take a €
(a,gj; 1 < j < n) such that Cy,(axg) = —1 (0 < i < n) by the case (A.ii). Noticing the
WB-Dynkin diagram consisting of &y, B4, an11, we have Cy, (xg)Cq,,, (Xg) = (-1)2 by the
case (A.ii). Hence we have Cq,  (xg) = —1.

The proofs of the cases (D.ii) when « is omitted, (E7.iv) and (Eg.v) are similar to the
above one.
Therefore the proof of Proposition 2.13(ii) is completed.
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