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Abstract. Vogan-Zuckerman's standard representation X for a real reductive group

G(R) is constructed from a ̂ -stable parabolic subalgebra q of the complexified Lie algebra g of

G(R). Adams and Vogan showed that the set of 0-principal K -orbits in the associated variety

Ass(X) of X is in one-to-one correspondence with the set BL_ /K of Λ'-conjugacy classes

of #-stable Borel subalgebras of large type having representatives in the opposite parabolic

subalgebra q~ of q. In this paper, we give a description of B^/K and show that Bq/K φ 0
under certain condition on the positive system of imaginary roots contained in q. Furthermore,

we construct a finite group which acts on Bq/K transitively.

0. Introduction. Let G be a complex connected reductive algebraic group and τ :

G -> G a complex conjugation which defines a real form G(R) of G. Let Θ : G -> G be a

(complexified) Cartan involution of G which commutes with τ. Write K = {g e G; θ(g) — g]

and g = £ + $ the Cartan decomposition with respect to Θ. For a closed subgroup H of G,

we denote its Lie algebra by the corresponding small German letter f) and its group of real

points by H(R). Let Q = LU be a ^-stable parabolic subgroup of G with ^-stable and τ-

stable quasisplit Levi factor L, and with unipotent radical U. Let H be a ^-stable and r-stable

maximal torus of L such that H(R) is a maximally split Cartan subgroup of L(R). Then for a

quadruplet (q, //(/?), <5, v) of ^-stable data for G(R) and a minimal parabolic subgroup Pι(R)

of L(R)9 the standard (g, ^Γ) -module

X = XG(Λ)(q, //(«), 6, v) =

is defined in [V], where we write lnάp ,L the parabolic induction by a real parabolic subgroup

and (7£0)dιm(un*) the cohomological parabolic induction by a ^-stable parabolic subalgebra.

In [AV], Adams and Vogan described the set Ass(X)0~pr/^ of ^-principal ^-orbits

in the associated variety of the standard (g, Λ^-module X f°r a quasisplit group G(R).

Ass(X)0~pΓ/ΛΓ is parametrized by the set B^_/K of ^Γ-conjugacy classes of ^-stable Borel

subalgebras of large type (cf. Definition 1.1 (ii)) which have representatives contained in q~,

where q~ is the opposite parabolic subalgebra of q.

In this paper, corresponding to each l-principal nilpotent L Π K-orbit O\ in I Π 5, we

construct a ^-stable Borel subalgebra b(O[) of g contained in q. If the positive system Σ of

imaginary roots of ί) contained in u is of large type (cf. Definition 1.1 (i)), we show that b(O[)

is of large type for a suitable choice ofO[. This implies the converse of a result of Adams and
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Vogan ([AV, Proposition 6.30(a)]) which claims that if Σ is of large type, Σ is special with

respect to some Λ'-conjugacy class of 0-stable Borel subalgebras of g of large type. Thus we

obtain that B^/K φ 0 if and only if Σ is of large type. Furthermore, we find a finite group

FL((\) which acts on B^/K transitively. The construction of b(O[) also gives an algorithm to

obtain B%/K.

Finally we mention the relation between the closure of the A^-orbit of b := PL + u in

the flag variety and the list C := {b(O[)} of ^-stable Borel subalgebras of g. Let BQ be the

set of Borel subalgebras of g (flag variety) and π : T*BQ -> g* the moment map. By the

identification g* ~ g which is given by a G -invariant bilinear form on g, we can regard π as

π : T*BQ — » g. Let Y/ (i = 1, . . . , n) be the ΛΓ-orbits contained in the closure K - b C B$

and Zj (j = 1, . . . , m) the ^f-orbits in BQ generated by the Borel subalgebras in C. Then Zy

(j = 1, . . . , m) are closed orbits contained in K b and we have

)= u °
(for the definition of Ind*((ί, q) f Q)(~%/L Π K), see 1.4). The proof of this result will be

given in a forthcoming paper.

1. # -stable Borel subalgebras of large type. In this section, we review the basic

facts on ^-stable Borel subalgebras of large type. We also recall the relation among the K-

conjugacy classes of # -stable Borel subalgebras of large type which have representatives con-

tained in a 0-stable parabolic subalgebra q, g-principal nilpotent J£ -orbits in $ which have

representatives contained in q and the induction of nilpotent orbits by q.

1.1. Preliminaries. Let G be a complex reductive algebraic group defined over R and

τ : G -> G a complex conjugation which defines the real form G(R) = {g e G; τ(g) = g}

of G. Let θ : G — >> G be a (complexified) Cartan involution of G which commutes with τ.

Throughout this paper, we use the following notation. For a closed subgroup of G, its Lie

algebra is denoted by the corresponding small German letter. The involution of g, which is

induced from τ (resp. θ), is also denoted by τ (resp. θ). Write K := {g e G; θ(g) = g}

and g = £ + s the Cartan decomposition with respect to θ. The action of G on g is always

understood to be the adjoint action. For a τ -stable subset A of G (resp. g), we write A(R) =

[x G A; τ( c) = x}. For a Cartan subalgebra ί) of g, we denote by 7?(g, ί)) the root system of

g with respect to f) and gα the root space corresponding to a root α e Λ(g, ί}). For a ί)-stable

subspace V c g, we write R(V, ί)) := (ot e /?(g, ί}); gα C V}. If ϊ) is ^-stable, we write

^(K ί))ιΛ (resp. R(V, f))#) the set of imaginary (resp. real) roots in R(V, ί)):

R(V, W / Λ = {α e Λ(V, ί)); 0(α) = α} , R(V, f))* - {α e Λ(V, ί)); θ(α) = -α}

The set of all nilpotent elements in g (resp. 5, g(/?)) is denoted by Λ/"0 (resp. Λ/*5, Λ/"g(j?)). The

set of orbits in Λ/"g (resp. Λ4, λf$(R)) under the action of G (resp. A^, G(R)) is denoted by

(resp.
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1.2. Basic facts on 0-stable Borel subalgebras of large type. Let ί) be a 0-stable Car-

tan subalgebra of g and Σ a positive system of /?(g, ί))//?. We say that a 0-stable parabolic

subalgebra q of g belongs to (ί), Σ) if the following conditions are satisfied:

(l.l.a) f ) C q

(l.l.b) Write q = (-+- u the Levi decomposition of q such that ί) C ί. Then f) is a maximally

split Cartan subalgebra of I.

(l.l.c) Σ = R(u, f))ijf (hence I is quasisplit).

DEFINITION 1.1 ([AV]). (i) Let f) be a 0-stable Cartan subalgebra of Q. A positive

system Σ of R(&, ί))//? is called of large type if every simple rootα of Σ is non-compact (i.e.,

Qa C 5).

(ii) A #-stable Borel subalgebra b of Q is called of large type if every simple root of

R(b, rj) is complex or non-compact imaginary for any ^-stable Cartan subalgebra ί) C b. We

write By the set of 0-stable Borel subalgebras of Q of large type.

(iii) For a ^-conjugacy class B e B^/K, a ^-stable parabolic subalgebra q of Q is

called special (with respect to B) if there exists b e B such that b C q.

(iv) Let () be a 0-stable Cartan subalgebra of g and I the Levi subalgebra of g containing

ί) such that R(l, ί)) = /?(g, ί))/?. A positive system Σ of /?(g, tym is called special (with

respect to B) if there exists a special ^-stable parabolic subalgebra q = ί -f u such that Σ =

* (u, W, *

REMARK 1.2. (i) For a ̂ -stable Borel subalgebra b of g, bis of large type if and only

if there exists a ^-stable Cartan subalgebra rj of b such that every simple root of R(b, rj) is

complex or non-compact imaginary, since any ^-stable Cartan subalgebras in b are conjugate

under the action of B Π K.

(ii) In the setting of Definition 1.1 (iv), we can verify that Σ is special with respect to

β(e By/K) if and only if there exists a special ^-stable parabolic subalgebra q7 of g which

belongs to (ί), Σ) (cf. Proof of Proposition 2.8(ii)).

PROPOSITION 1.3. (i) ([AV, Proposition 6.30(a)]) Let f) be a θ-stable Cartan sub-

algebra of Q and Σ a positive system of R(Q, f)) t jR. If Σ is special (with respect to some

B e &\IK\ Σ is of large type.

(ii) ([AV, Proposition 6.25]) Let b be a θ-stable Borel subalgebra of g and i C b a

θ-stable Cartan subalgebra (such Vs are all conjugate under the action of B Π K). Then the

positive system R(b, ί))//? is of large type if and only i f b is of large type.

A nilpotent element X e g is called g-principal if X is regular in g. We write Λ/^~pΓ

(resp. Λ/s0~pΓ, Λ/^(^
Γ) the set of g-principal elements in Λ/"g (resp. Λ4, Λ/*0(/?)).

PROPOSITION 1.4 ([AV, Proposition 6.24]). The following conditions on θ are equiv-

alent.

(a) g is quasisplit (i.e., there exists a Borel subalgebra o/g defined over K).

(b)
(c)
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(d) For any θ -stable Cartan subalgebra ί) 0/0, R(Q, f))/# has a positive system of large

type.

(d') There exists a θ -stable Cartan subalgebra f) 0/0 such that R($, ί))//? has a positive

system of large type.

1.3. The correspondence [Λ/j? pr/^]q — B^/K. Let α be a maximal abelian sub-

space of 5 Π [g, 0] and define a finite group FG by

FG := {« G exp(α); Ad(α2) = id} .

REMARK 1.5. FG normalizes K and satisfies Ad(NG(ϊ)) = Ad(WG(s)) = Aά(FGK)

(cf. [02]).

The natural correspondence between B^/K and the set J\fg~^τ /K of Λ'-orbits in J\Γj pr

is given as follows. For x G J\f% pr, we can take a normal S-triple (h, x, y) (h G £, y G 5)

(cf. Kostant and Rallis [KR]). Since h is a regular semisimple element of 9, t := 3g(/ι) is a

^-stable Cartan subalgebra of 0. Define a Borel subalgebra b D t of 0 by R(b, t) = {α e

/?(0, t); α(/z) > 0} and write Z\ the set of simple roots in R(b, t). Then we have Δ — {α G

/?(0, t); α(/z) = 2}. Since [h, x] — 2;c, x can be written as a sum

for some root vectors XQ, G 0α \ {0} and it holds that 9(Xa) = —X0(a) (a G Δ). Hence any

roots in Δ are complex or non-compact imaginary, so that b is of large type. Since x e b

and x is 0-principal, b is the unique Borel subalgebra containing x. Then the correspondence

x ι-> b defines a map

PROPOSITION 1 .6 ([AV, Proposition A.7]). The map φ : Af£~pτ/K -+ B^/K is a bi-

jection. Furthermore the finite group FG acts naturally and transitively on the sets J\ίj pr / K

and By/K, where the map φ is Fc-equivariant.

Let Q — LU be a #- stable parabolic subgroup of G with (9 -stable Levi factor L. For a

maximal abelian subspace α/, of [I, (] Π 5, we write

FL = {a G exp(αL); Aά(a2) { = id{] , F£ - {a G FL Aά(a2) = idg} .

We put

β£ := {b eB^ kb c q for some k G K} , [Λ/5

9~pr/^]q := [O G λf*~^/K; OΠq ^ 0} .

Then we have the following

PROPOSITION 1.7. 77ze raα/? φ in Proposition 1.6 induces a bijection

these sets and the bijection is F^-equίvarίant.
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1.4. Induction of nilpotent orbits by 0-stable parabolic subalgebras. Let Q = LU be
0-stable parabolic subgroup of G with ^-stable Levi factor L and unipotent radical £/, and
write q = I -f u its Lie algebra. We put

KL:=LΠK, s L : = l Π s .

DEFINITION 1.8. (i) For a nilpotent /Sf^ -orbit O E NSL/KL, there exists a unique

nilpotent ^f-orbit O in λίs such that (O + u Π 5) Π O is open and dense in O -h u Π $. We write

0 = Ind*((l,q) ϊa)(0)eλf8/K.

(ii) For a subset 5 G 2^ /KL o f λ f 5 L / K L , we write Ind^ ((I, q) t fl) (5) the set of orbits
in {Ind^((ί, q) t 0)(O; C e 5} which are maximal with respect to the closure relation. This
defines a map

Ind^(([,q)tg):2Λ/"^/^->2Λ/'^.

PROPOSITION 1 .9 ([O2, Proposition 2.4]). Let Q = LU be a θ-stable parabolic sub-
group of G with θ-stable Levi factor L and unipotent radical U. Suppose that L is quasi-

split. Then the set [Ind*((l, q) t fl)(Λ^~pr/^L)]g"pΓ of ^-principal K-orbίts in Ind*((l, q) t

0)(Λ/5L

 PΓ/^L) can be written as

[Ind*((l, q) t 0)(Λ/£pr/*L)]0-pr = [Λ/TPΓ/*Πq -

2. A construction of a # -stable Borel subalgebra of large type. Throughout this
section, we write H a τ -stable and # -stable maximal torus of G, Σ a positive system of

R(Q, f))ιj? and Q = LU a ^-stable parabolic subgroup of G with 0-stable Levi factor L and
unipotent radical U of which Lie algebra q = I + u belongs to (ί), Σ). In this section, for a

nilpotent orbit O[ G J\fs~
pτ/KL, we construct a ̂ -stable Borel subalgebra β((9[) of 0 contained

in q. If Z1 is of large type, we will show that b(O[) is of large type for a suitable choice of
O[. This implies the converse of Proposition 1.4(i) which says that if Σ is of large type, Σ
is special with respect to some B e B^/K. Furthermore, we find a subgroup F^(q) of FL

which can act onB^/K transitively. We see that F^(q) = F^ifθ is of inner type, and hence

conclude that the action of F£ on B^/K ~ [Λ/",?~pΓ//Πq is transitive.
Let (q, H(K), δ, v) be a quadruplet of 6>-stable data and X = XG(R)(<\, H(R), 8, v) the

corresponding standard (g, ^)-module. Suppose that Σ is of large type. Then, via the iden-
tification Q 2± g* by a G-invariant bilinear form on g, the set Ass(X)0~pr/^ of g-principal
K -orbits contained in the associated variety Ass(X) of X is described in [AY] and coincides

where we write q~ the opposite parabolic subalgebra of q([O2]). Hence the construction of
b(O{) gives an algorithm to obtain Ass(X)Q~pτ/K and F/,(q) = F^(q~) is a finite group
which acts on Ass(X)Q~pτ/K transitively.

2.1. Certain Cay ley transforms associated with (-principal KL -orbits in SL> Let us
first recall the Sekiguchi correspondence.



132 T. OHTA

THEOREM 2. 1 (Sekiguchi [S], see also [Ol]). For a nilpotent orbit ΌQ e λίs/K, there

exists an S- triple (h,x,y)of$ satisfying the following conditions:

(2.1. a) A e C, *, y e 0,

(2.1.b) τ(h) = -h,τ(x) = y,

(2.1.c) c € 00-
(Wfe c<2// #« S-triple satisfying (2.1.a-b) a strictly normal S-triple.} Such an S-triple (h, x, y)
is unique up to conjugation of K(R).

For (h,x, y),we write

hR = i(x - y ) , XR = (x + y + ιA)/2 , yR = (x + y - ih)/2 .

Then (hR, XR, yR) is an S-triple of$(R) such that

θ(hR) = -hR, θ(xR) = -yR.

Write OR := G(R)xR e ΛfQ(R)/G(R) the G (R) -orbit of XR. Then the correspondence

O0 f-^ OR defines a bijection

which we call the Sekiguchi correspondence.

Let PL = HNi be a τ-stable Borel subgroup of L. Write b := PL + u the Borel

subalgebra of 0. Since [I, I] Π f) Π s is a maximal abelian subspace of [ί, I] Π 0, we can take

FL = {a e exp([l, I] Π ί) Π 5); Aά(a2) | { = id[}

as a finite group associated to L (cf. 1.3). By [S], we can take an S-triple (A^, Λ:^, y%) of i(R)

satisfying the following conditions:

(2.2.a) A^ e ί),

(2.2.b) θ(hQ

R) = -hQ

R9θ(x%) = -y°,

(2.2.c) x%enL(R)nλΓ^.

Since the action of FL on Aί^τ/L(R) is transitive (cf. Proposition 1.6), the subset C :=

FLXR C ΠL(/?) contains representatives ofλί[^
τ/L(R). Fix an element XR := ax% (a G FL)

and put

Then the S-triple (A/?, XR, yR) also satisfies the conditions (2.2.a-c). Let us write Δ(fι, ί))

the set of simple roots of R($L, ί)) We notice that α(A^) = 2 for a e Δ($L, ί)) and that XR

can be written as XR = Y^0(eΔ^L ^ Xa, where Xa (a e ^\(pL, ί))) is a non-zero root vector
in Qa. Corresponding to the S-triple (A#, XR, yR), define elements SXR and σ^ of L by

(2.3) s jcj := e\p(πi(xR + j/?)/4) , σXR := sR .

We also write s = SXR and σ = σ^ for short. Define an S-triple ( h 0 , x β , yβ) by

(2.4) A# := sXRhR , ^ := J^ΛΛ , yβ := ^y/? .

Then we have the following.
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LEMMA 2.2. (i) ho, *0, ye can be written as

hθ = -i(xR - yπ) , xβ = (XR + yR~ ihR)/2 , yθ = (XR + yR + ι

(A0 , JC6> , ye) is a strictly normal S-triple of I.

(ii) // holds that hR = ί(xθ - y#), XR = (xθ + yθ + ί h θ ) / 2 , yR = (xe + .y/9 - * A0)/2.

Therefore the Kι-orbit KLXΘ £ Aί5L

pτ/Kι corresponds to the L(K)-orbίt L(R)xR via the

Sekiguchi correspondence SL : NSL/KL -> λί[(R)/L(R).

(iii)

(iv)

PROOF. Let

0 \ /O 1 /O 0\

= ̂  0Jbe the canonical basis of sl(2, C). Since 5L(2, C) is simply connected, the homomorphism φ :

sί(2, C) -> g defined by (A/?)ι H^ hR, (XR)\ \-> XR, (y/?)ι M* y/? induces a homomoφhism

Φ : SL(2, C) -> G which makes the following diagram commutative:

exp I I exP
) -̂ > G

Therefore, to show (i) and (iii), it is sufficient to show that the corresponding equalities hold

in sl(2, C) or 5L(2, C). It is easily verified that

si := exp(τπ{(.κΛ)ι + (j/?)ι}/4) = — I .

which implies (i). The equality s4 = exp(τr/(/z/?)ι) = ί _ J in SL(2, C) implies (iii).

(ii) and (iv) easily follow from (i). q.e.d.

LEMMA 2.3. (i) σί) = ί). Hence σ acts on R(&, ί)) <xs an element of the Weyl group

WG — Nc(H)/H ofG. Then we have σ/?(p/,, ί)) = — /?(pL, ί)) In particular, the element of

WL = NL (H)/H defined by σ is the longest element of WL .

(ii) σ~lΘR(b, ί)) = R(b, ίj). Hence b is an Ad(σ-1) o θ -stable Borel subalgebra of&.

(iii) For any root a, e R(Q, ί)), we have

a = ±Xa (χa G g«) .

In particular, Ad(σ2) ^ = id[.

(iv) ^oAd(^) = Aά(s~l)oθ andθ oAά(s~l) = Ad(s)oθ.

(v) Γ/z^ action of σ on R($, ί)) commutes with that ofθ.

(vi) sb C q is a θ -stable Borel subalgebra of&.
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PROOF, (i) Since HR is a regular element of [, the centralizer 3ί(^tf)(^ ί)) of HR in ί

is a Cartan subalgebra and hence 3t(^fl) = ί). Therefore we have

The assertion σ/?(pL, ί)) = -R(fL, f)) follows from #(pL, f j ) = {« e Λ(I, ί)); α(Λj?) > 0}
and σA/? = — HR.

The facts σ#(pL, ()) = -Λ(pL, ί}), 0/?(pL, ΪO = ~#(pL, f)), σu = u and 0(u) = u
imply (ii).

(iii) follows from Lemma 2.2(iii), ct(hR) e Z (a e #(g, ί))) and β(AΛ) e 2Z (β e

(iv) follows from 0(5) = s"1.

By (iii), the action of σ2 on R(Q, ί)) is trivial. Then (v) follows from 0(σ) = σ"1.

Since b is stable under the action of Ad(σ-1) o 0 = AdO"1) o θ o Ad (5), we have

<90b) = ,sb. q.e.d.

Let us write ί)c = ^ί).

LEMMA 2.4. ί)c w α θ -stable Cartan subalgebra of$ containing a Cartan subalgebra

oft.

PROOF. Since σf) = f), we have

0(ί)c) - 0(jf j) - j-1^ - ̂ (σ-1^) - ί)c .

Hence f)c is 0-stable. Since ί)c C .sb and ,sb is a 0-stable Borel subalgebra of Q (Lemma

2.3(vi)), R($, ί)c) have no real roots. Therefore ί)c contains a Cartan subalgebra of B. q.e.d.

LEMMA 2.5. (i) FL acts on the set (sXRb', XR e C — FIX®} transitively.

(ii) IfBq/K φ 0, {sXRb\ XR e C} contains a representative ofB^/K.

PROOF. For XR e C and a e FL, since saXR = asXRa~l and a~lb = b, we have

saXRb = asXRb. This implies (i).

Let us write (λ£, XQ, y$) the normal S-triple corresponding to (Aj, ;c$, ̂ ) by (2.4). Then

we have

and hence KL(aχQ) e NSL/KL corresponds to L(R)(ax^) e Λ/1(Λ)/L(Λ) by the Sekiguchi

correspondence. Since C — FLX% contains representatives of N{~jj*/L(R), FIX® contains

those of λfs~
pτ/KL.

Here we notice that B^/K ^ [Ind*((ί, q) t g)(Λ/"5

l~pr/^L)]0~pΓ (cf. Proposition 1.7,

Proposition 1.9). For any B\ e B^/K, there exists ax® e FLx® (a e FL) such that Ό\ :=

Indθ(([, q) t β)(^L(fl^)) corresponds to /?ι via the above correspondence. Then O\ is

the unique 0-principal A^-orbit which meets Kι(ax®) -f (u Π 5). Take Y e u Π $ such that

fljc^ + F G U I . Then

- u) c so (PL + u) = so baxR T axR
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and hence saxo b e B\. q.e.d.

2.2. A construction of a ^-stable Borel subalgebra of large type. Let H, Σ, q = ί 4- u

and b be as in 2.1. The main theorem of this section is the following.

THEOREM 2.6. If Σ is of large type, then B^/K is non-empty.

To prove Theorem 2.6, it is sufficient to show the following

THEOREM 2.7. If Σ is of large type, we can choose XR e C = FLx% (cf. (2.2)) such

that SXR b is a θ-stable Borel subalgebra of large type.

Theorem 2.6 implies the following.

PROPOSITION 2.8. Let ί) be a θ-stable Cartan subalgebra of$ and Σ a positive sys-

tem of R(&, \))iR.

(i) If Σ is of large type, then Σ is special with respect to some B £ B^/K.

(ii) For any θ-stable parabolic subalgebra q = I + it o/g which belongs to (f), Σ), Σ

is of large type if and only ifB^/K φ 0.

PROOF, (i) Let us take a $-stable parabolic subalgebra q' = [' + u' which belongs to

(ί), Σ) such that R(Ϋ, ί)) = /?(α, ί))/?. Then by Theorem 2.6, there exists bi e B^ such thaty
bi C q'. Hence Σ is special with respect to K{b\] e B^/K.

(ii) The "only if" part is just Theorem 2.6. To prove the "if" part, suppose that B^ /K Φ

0. Take bi e B^ such that bi C q. Let V be the Levi subalgebra of g such that I' D f) and

R(l',ty = /?([, f))j? = #(fU f))fl Let t c Γ be a fundamental Cartan subalgebra of Q (cf.
Lemma 2.4). Since bi contains a fundamental Cartan subalgebra of g, and any fundamental

Cartan subalgebras in q are Q Π ̂ f-conjugate, we can assume that t C bi by taking a QΠ K-

conjugate of bi instead of b i . Define a parabolic subalgebra q' = [' + u' by /?(vιx, t) =

fl(bι, t) \ R([f, t). Then u c u7 and hence Σ = #(u, ί})//? = ^(ur, ί))//?. Therefore q7 is a

^-stable parabolic subalgebra of g which belongs to (rj, Σ1) and contains b i . Thus Σ is special

with respect to K{b\} e B^/K. By Proposition 1.3(i), Σ1 is of large type. q.e.d.

Let us define another involution θ' of g by θ' := Ad(σ-1) o θ = AdC?"1) o θ o Ad(5 ).

We consider the isomorphism /?(g, ί)) -> 7?(g, ί)c), (α h-> α := α o Ad(5-1)) of root systems.

Since Θ(α)(sA) = θ'(α)(A) (α e R(&, ί}), Λ e ί)), a root α e R(&, ί}) is non-compact

imaginary (compact imaginary, complex, or real) with respect to θf if and only if, so is ά with

respect to θ. Therefore sb(D ί)c) is of large type with respect to θ if and only if b(D ί)) is of
large type with respect to θ f .

Let us write L W(u, f}) the set of lowest weights of f) (with respect to the positive system

^(pL, ί))) in the [-module u. For α. e LW(u, Pj), we write u(α) the irreducible l-submodule
of u generated by gα and αh the highest weight of u(o?).

LEMMA 2.9. Forα e LW(u, f)), w^ /ιαv^ the following:

(i) u(α) w s-stαble and hence σ-stable.

(ii) σα = ah.

(iii) //ιι(α) w θ-stable, θ(a) = ah.
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PROOF, (i) follows from s e L.

(ii) Since /?(pL, ί)) = {α € ^(0» ())'» a(nR) > 0} and σA/? == — HR, we have σn^ =
n^. This implies

[ΠL,0σα] = [πL,σgα] = σ[σnL, gα] = σ[n~,gα] = 0,

and hence σα = αΛ.

(iii) Since #0u) = n^ and Qβa C u(α), we can show that θa = ah similarly. q.e.d.

To know the action of θf = Ad(σ-1) o θ on root spaces Qa (a e /?(p/,, ί))), we need the

following lemmas.

LEMMA 2.10. Let(h,x,y)beabasίsofsl(2,C)suchthat[h,x] =2x,[h,y] = —2y,

[jc, y] = h. Write σ := exp(τπ(* + y)/2) e 5L(2, C). Lei ί/ &? the irreducible SL(2, C)-

module of dimension k H- 1 (fc > 0). #y /Ae representation theory 0/51(2, C), we c#n choose

a basis u-k, u-k+2, - , w/t_2, MΛ of U such that

(2.5) Al ly = 7W ; , JCMy = -y-My +2 , JMy = —^— M7'_2 .

ΓAe« the action of σ on U is given by

σUj = iku-j (j = -k, -k + 2, . . . , k - 2, k).

PROOF. Let V be the two dimensional s((2, C)-module with basis e, / such that

he — e , jce = 0, ye = f , hf = — f , xf = e , yf = Q.

We may assume that ί/ is the space of symmetric fc-tensors of V : ί/ = 5 f c(V). Moreover,
since e(*+./)/2/(*-./)/2 (-£ < j <k, j e k+2Z) is a basis of ί/ satisfying the condition (2.5),

we may assume w; = e^+ /)/2/^-./)/2. it is easy to see that (x + y)(e + /)* = A:(e + /)*,

which implies σ(e + /)* = ^πι'/2(^ + /)* = /*(e + /)*. We notice that (e + /)* =

Σ7 €Λ+2Z,|7Ί<* ((k-j)/^uJ and A(σw ; ) = σίAdίσ-^A)!!; = σ(-huj) = -jσuj. Then by

comparing the A-weight vectors of weight —7 in 5^ ( ( k - j ) / 2 ) σ u j — σ(e+f)k = ik(e+f)k =

Σ ((k-j)l^h WC haVC (()t-; )/2)σM7 = ((^+;-)/2)^W-7 and heΠCe σM7 = ̂ "- ^C d

LEMMA 2.11. Suppose that u(α)(α e LW(u, ())) isθ-stable. Write k := -a(hR) > 0

and define u-k, "-£+2,. • , w^-2, «* e u(α) feyu-jk = Xα andxRUj = (k-j)uj+2/2. Then
we have the following:

(i) A f l W 7 = y'wy, σw ; = i^M-y, w^ e 0αΛ.
(ii) ΓAere exwίj Cα = Cα(;c/j) = ±1, which depends on the choice of XR E C (c/

Lemma 2.12), swcA thatθ(u-k) = Cai
kuk.

(iii) σ

(IV) θ(

PROOF, (i) Write 5 := CA* + C c^ + Cy/j ~ sl(2, C). It is easy to see that -fc is

the A/?-lowest weight in u(α), and that M_jt is a non-zero A/^-weight vector of weight —A:,

which is unique up to a constant. By the representation theory of sl(2, C), Cw-& + Cw_&+2 +
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• -h Cuk-2 + Cuk is the unique irreducible S-submodule of u(α) of dimension k + 1 and

w_£, w-A:+2, - > Mjfc-2, "A: satisfy the same relation as in (2.5).
Since ah(hR) is the /i^-highest weight of multiplicity one in u(α), αΛ(/zj?) = fc and

Mjt e g α Λ. σw ; = ϊ^w-y follows from Lemma 2.10.
(ii) Since hR0(u-k) = O(-hRU-k) = kθ(u-k), there exists c e Cx such that

0(u-k) = cuk By the relation like (2.5), we have

k and uk = —(xκ)ku-k .
k\

Then

1 k ! * / l λ (-1)* / 1 * \ (-1

cuk=θ(u-k) = —0(yRΓθ(uk) = ~(-XRΓ{ -u-k = 77(**)«-* =
A:! /:! \c / c \^ / c

and hence c = ±ik.
(iiϊ) follows from (i) and (ii).
(iv) We notice that

1 1
/ W ιy ίinH u

Then

θ(U-k+ij) =
k(k -\) (k -j

q.e.d.

LEMMA 2.12. Suppose that u(a)(a e LW(u, ί})) w θ-stable.
(i) Cα(βxΛ) = α(fl2)Cα(jcΛ) (β G FL).

(ii) IfR(u(ot), ί})//? 7^ 0, α(β2) = I for any a e FL. In particular, Ca(xR) is indepen-
dent of the choice O/XR e C.

PROOF, (i) Cα(fljcΛ)Xα = σ-χ

l

Rθ(Xa) = (aσXRa~lΓlO(Xa) = aa

aσ-R

lθ(aXa) = a(a)aσ-R

lθ(Xa) = a(a)a{Ca(XR)Xu] = a(a2)C0ί(xR)XC(.
(ii) Take γ e R(u(a), f)), Λ. Then y can be written as γ = a +

for some n^ e Z>Q. Since y(α) = 1 and β(a) = ±1 (β E Z\(pL, ί))), we have a (a) =

To prove Theorem 2.7, we have to show that b is of large type with respect to θf =
"1) o θ for some XR € C. The set Z\(b, ί}) of simple roots corresponding to b is decom-

posed as Δ(b, f)) = Δ(fL, ί))U(Δ(b, f))Π/?(u, (})) and clearly ^(b, ϊ))ΠΛ(u, ()) C LW(ιι, f)).
Since XR = Ea6^(pL,W x« for some Xα e gα and σ~R

lθ(xR) = σ~R

l(-yR) = -XR, we have

σ~Rθ(Xa) = —Xa-\e(a\ for « ^ ^(pL, ί)) Hence the roots in zl(pL, ί)) are complex or
a

non-compact imaginary with respect to Ad^"1) o θ.
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Take a e Δ(b, ί}) Π 7?(ιι, ί)). If u(α) is not ^-stable, a is complex with respect to

AdCσ^1) o θ. Suppose that u(α) is 0-stable. Then σ~R

lθ(a) = a, that is, a is imaginary

with respect to Aά(σ~R

l) o θ. By Lemma 2.11, we have σ~R

lθ(Xa) = Ca(xR)Xa. There-

fore, to prove Theorem 2.7, it is sufficient to prove the following proposition. In particular,

for XR e C = FLXR, Theorem 2.7 holds for XR if and only if XR satisfies the condition of

Proposition 2.13(ii).

PROPOSITION 2.13. Suppose that Σ = #(u, f)), Λ is of large type.

(i) For a root a e Δ(b, ί))Π/?(u, ί)), assume that u(a) is θ-stable, and that R(n(a), ί})//?

Φ 0. Then Ca(xR) = -\foranyxR εC = FLx^.

(ii) We can choose XR e C such that CU(XR) = —I for any root a e Δ(b, f)) Π R(u, ί))

with the properties that u(α) is θ-stable and R(n(a), f))/# = 0.

The proof of this proposition will be given in Subsection 2.3.

Now suppose that B^/K φ 0. We would like to construct a subgroup Fι(q) of FL which

acts onBq/K transitively.

Let F//q) be the subgroup of FL consisting of elements a e FL satisfying the following

condition:

(2.6) a (a) = ±1 for a e Δ(b, ίj) Π Λ(u, ί}) such that 0(ιι(α)) = u(α).

By Lemma 2.5, we can choose x^ e C = FLXR such that sx\ b <Ξ β£. Then for a e FL,

a(sx\b) = saχ\b e B^ if and only if the condition (2.6) is satisfied (i.e., a e F^(q)).

Hence FL(C\) acts on [sXRb'9 XR e C, sXRb e B^} transitively: {sXRbm, XR e C, sXRb e B^} =

FL(C[){SX\ b}. Again by Lemma 2.5, FL(CI){SXI b} contains representatives of B^/K. There-

fore we have a bijection FL(q){sxιb}/ ~^ B^/K. Here the equivalence relation ~ in
IS

FL(C{){SX\ b} is defined as follows: for bp b^ e FL((\){SX\ b}, we write b*j ~ b^ if there exists

k e K such that b£ = fcbp
ΊS

PROPOSITION 2.14. Suppose that B^/K φ 0. The quotient set FL(C(){SXI b}/ ~ ΛΛJ

an action of FL(C[) which is induced from that of FL(C\) on FL(C\){SY\ b}. Therefore, via theXR

bijection FL(C\){SXI b}/ ~ -^ B^/K, FL(C\) acts on B^/K transitively.

PROOF. Suppose that b^ ~ b€
2 (bp bc

2 e FL(q){sχ\ b}). We first show that bc

} and bc

2

are L Π ̂ -conjugate. Let ty (_/' = !, 2) be a 0-stable Cartan subalgebra of g containing a

Cartan subalgebra of ί such that t/ C b^ Π I (cf. Lemma 2.4). Since t j and t2 are conjugate

by an element of L Π ̂ , we may assume that ti = ii =: t. Since b^ Π [ and b2 Π ί are

Borel subalgebra of I containing t, there exists g e NL(Ϊ) such that b2 Π [ = g ( b j Π [). Then

gb\ = ^ ( b ^ Π l + u) = bc

2ni + gu= b | n ϊ + ιι= bc

2.
Iζ

On the other hand, since b\ ~ bξ, there exists fc e N^-(t) such that b2 = kV(. Thus

g~lkb\ = b j and hence the element of WG(i) = NG(i)/T defined by g~lk is 1: g~lk e T.

Therefore k e gT c L and k e A' Π L.
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Then for a e FL(q), we have abc

2 = (aka~l)(abc

l). Since FL C NL(L Π K), ab\ and
abc

2 are also AT -conjugate. q.e.d.

Suppose that θ is of inner type. Then the action of σ~l oθ on R(b, f)), which is the graph
automorphism defined by θ, is trivial. It follows that #(u(α)) = u(α) for any α e z\(b, rj) Π

Λ(ιι, [)). Therefore, if α e FL(q),α(fl) = ±1 for any α 6 /HpL, ί))U(z\(b, ί))Π#(u, f))) and
hence Aά(a2) = idg. This implies F/,(q) = F^7. Since F^ naturally acts on B^/K, we have
the following

COROLLARY TO PROPOSITION 2.14. Suppose that B^ /K φ 0 and θ is of inner type.

Then the action of Fζ on B^/K is transitive.

REMARK 2.15. Let (q, H(R), <5, v) be a quadruplet of ^-stable data and X =
X<7(fl)(q, H(R), δ, v) the corresponding standard (0, ^)-module. Suppose that Σ is of large
type. Then, via the identification g ~ 9* by a G-invariant bilinear form on 9, the set
Ass(X)Q~pτ/K of 0-principal ^-orbits contained in the associated variety Ass(X) of X is

described in [AV] and coincides with [Λ/"5

0~pr/ΛΠq-:

where we write q~ the opposite paraboric subalgebra of q([O2]). Hence, via the above iden-
tification, F/,(q) = F/Xq~) acts on Ass(X)0~pr/A^ transitively. In particular, if θ is of inner
type, F£ = FL(q) = FL(q~) naturally acts on Ass(X)Q~pr/K transitively.

In order to reduce the proof of Proposition 2.13, we need the following lemma.

LEMMA 2.16. (i) There exists a θ -stable parabolic subalgebra qf = [f -h ιιx of Q

which belongs to (Σ, f)) such that qr C q and R(\! ', f)) = /?([, \})R = R(&, f})/?.
(ii) IfB^/K φ 0for qf of(ϊ), Proposition 2.13 holds for q = ί + ti.

PROOF, (i) Define the Levi subalgebra Γ by /?([', ί)) = /?(l, f))Λ and take A € / (f)(Λ)Π
^) such that α(Λ) φ 0 for any a e R(i, f)) \ /?([, ί))/j. Let qi = [' + ιi[ the parabolic subalgebra

of I defined by Λ ( q ι , ί)) = {α e /?([, ί)); α(Λ) > 0}. Then q r = q i + u satisfies the condition

(ii) Suppose that B^/K φ 0. It follows from qr C q that B^/K φ 0. Since

{^b; XR e C} contains a representative of B^/K, there exists XR e C such that sXRb is
of large type with respect to θ. By the remark after Proposition 2.8, β is of large type with
respect to Ad(σ~R

l) o θ. Therefore Proposition 2.13 holds for q. q.e.d.

By Lemma 2.16, to prove Proposition 2.13, it is sufficient to prove Proposition 2.13 for

q = I + u such that /?([, ϊ)) = /?($, \j)R.
2.3 . The proof of Proposition 2.13. Throughout this subsection, we assume that ί) , Σ ,

q = I + u, PL? β . . . ^e as in Subsection 2.1.
We first give the proof of Proposition 2.13(i), which is based on the following lemma.

LEMMA 2.17. Suppose that u(α) (aeLW(u, ί))) isθ-stable, andthat R(u(a), rj) con-
tains an imaginary root γ . Let us write the highest weight ah 0/u(α) as ah =



140 T. OHTA

(riβ e Z>Q), where Z\(b, f j) is the set of simple roots in R(b, f)). Put

Da := {β e Δ(b, ()); ̂  / 0} , Da Π

/£/ (c; eZ> 0)

and c = Y^j=\ Cj. Let us write XχXa = (adxR)cXa as a sum of root vectors:

7/Ty ^ 0, β/id y w non-compact, then Ca(xR) = — 1 (i.e., σ^1 o 0(Xα) = — Xα).

PROOF. Define w_£, «-&+2, , w*-2» w£ £ u(α) (& := —oί(hn) > 0) as in Lemma
2.11. Since βj(hκ) = 2 and y(hκ) — 0, we have k = 2c. We can write x^Xa = AUQ for

some constant A φ 0: Λ W Q = Σδe/?(u(α) h) ̂  ^^ Lemma 2.1 l(iv), we have

and hence

Since y is non-compact imaginary, we have — Yy — ^(Fκ) = Ca(^)yy. Hence Ca(xR) =

— I. q.e.d.

LEMMA 2.18. In the setting of Lemma 2.17, suppose that the Dynkin diagram of Da

is of type A, B, D, E or G. Then Yγ φ 0.

To prove Lemma 2.18, We need the following two lemmas.

LEMMA 2.19. Let g be a simple Lie algebra of type A, B, D, E or G and f) a Cartan

subalgebra 0/0. Let R+ be a positive system of R := /?(0, rj) and A the base ofR+. Suppose

that a root β e R+ and simple roots β\,βι e A (β\ φ βi) satisfy ht/3 > 3 and that

β - β\,β - β2 e /?+, where we write hiβ the height of β. Then β\ + β2 φ R+ and

β-βλ-β2tR
+.

PROOF. First suppose that R has only one root length. We may assume that (<5, δ) = 2

for any δ e R, where (, ) denotes the inner product on R. It follows that β + βj,β- 2βj φ R

and hence the /fy -string roots through β are β — βj and β. By considering the action of the

simple reflection sβj defined by βj onβ-βj andβ, we have ŝ . (0) = β-2(βj, β ) / ( β j , βj)
βj — β - βj and hence (βj, β) = 1.

If βι + β2 € R, it follows that (β, β\ -h £2} = 2. Hence we have β = β\ + β2 which

contradicts the assumption htβ > 3. Therefore β\ + β2 Φ R Since β\ ± β2 φ R, we have

(^ι,ft> >0 and (βι,#>) < 0. Hence (^i, β2) = 0. This implies sβ2(β-βι) = β-β{-β2 e
/?.

For the cases of type 5 and G2, we can verify Lemma 2.19 directly. q.e.d.
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LEMMA 2.20. In the setting of Lemma 2.19, suppose that a e #+, and β\, . . . , βp e

Δ which are not necessarily distinct. Let X& e Q$ \ {0} (8 e R) and write Xi = Xβi. Then

for two permutations ( i \ , 12, - , ip), (j\, 72, , j p ) 0/1,2,... , p such that

a + ft-! + - + βik , « + £/!+••• + £/* e fl+

for\ <k < p,it holds that

(2.7) adtX^oadtX^o -oad^XXα) - ad^^oadCX^^o . .oad(X7 l)(Xα).

PROOF. We prove (2.7) by induction on /?.

If βip = βjp, (2.7) holds by induction. Suppose that βιp ^ βjp and write

β := α + ft, + ft2 + - + ft, = α + ft, 4- ft2 + - + βjp € *+ .

Since £ - βip, β - βjp e Λ+, we have (0 - ft,) - ft, e Λ+ and ft, + ̂  £ R by

Lemma 2.19. Hence there exists a permutation ( / J , /^ , z' _ j ) of ι'ι, / 2 » > z/?-ι sucn tnat

/' = jp and α + fty + ft 2/ H h ftΛ' e /?+ (1 < k < /? — 1). By induction, we have

aά(Xip_}) o ad(XlV,_2) o - - - o ad^ ,)^) - adίX^^ o ad(X^_2) o - - - o ad(X f /)(X α ).

Similarly, there exists a permutation (y'J, 7^,. . . , j'_^ of 71, 72, . . . , jp-\ such that j ' j =

i p , ot 4- jS7y + jSβ' 4- + βjk' e R+ (1 < k < p - 1) and

ad(Xy>_,) o ad(X7 p_2) o - o ad(X7l)(Xα) - adίX^) o ad(X^_2) o - - - o ad(X;/)(Xα).

Notice that {/;, Ϊ2,... , i f

p _ 2 } = [j[, j^ . . . , j'p_2] = {1, 2 , . . . , p} \ {/p, 7p}. Then by

induction, we have

Y := ad(X f/ ) o - - - o ad(X/;)(Xα) - ad(X,, ) o . - o ad(X;/)(Xα).
p—2. \ J p—2 J1

Consequently, adίX/^oadίX/^o- - .oad(XI 1)(Xα)-ad(X7>)oad(X7 p _ 1 )o. . oad(Xh)(Xα)

= aά(Xip) o adίXf/^) o ad(X;,_2) o - - - o ad(X/ ;)(Xα) - aά(Xjp) o adίX^^ o ad(X^_2) o

- - - o ad(XΛ/)(Xα) = ad([X/p, X j p ] ) ( Y ) = 0. " q.e.d.

Then Lemma 2.18 is an immediate consequence of Lemma 2.19 and Lemma 2.20.

DEFINITION 2.21. (i) A Dynkin diagram Δ, which is attached (white node) o or

(black node) to each node, is called a WB-Dynkin diagram. We write ΔW (resp. ΔB) the

set of roots in Δ to which white (resp. black) nodes are attached: Δ = Δψ U ΔB

(ii) WB-Dynkin diagram Δ is called connected if Δ is connected as an ordinary Dynkin

diagram, and any two black nodes in Δ are not connected with an edge.

(iii) For a WB-Dynkin diagram Δ, the connected WB-Dynkin diagrams, which are

obtained from Δ by erasing the edges connecting two black nodes, are called connected com-

ponents of Δ. For oί G Δ, we write Δ(α) the connected component of Δ containing α.

(iv) For a WB-Dynkin diagram Δ, ΔW is considered as a sum of connected Dynkin

diagrams. For β e ΔW, we write Δ°(β) the connected Dynkin diagram in ΔW containing β.
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EXAMPLE. Suppose that A is the following WB-Dynkin diagram:

A =

Then

β\

Λ°(β4)=
β4

We write Δ^ the WB-Dynkin diagram which we obtain from the Dynkin diagram of
Δ(b, ί)) by attaching white nodes to the roots in A(pι, ί)) and black nodes to those in A(b, f))Π

Now let us give a proof of Proposition 2.13(i) in the case that A^(a) (a e
Δ(b, ί)) Π Λ(u, ί))) is of type A, B, D, E or G.

In the setting of Proposition 2.13(i), suppose that 2lf,(α) is of type A, #, D, E or G2-
Take a ^-imaginary root γ e Λ(ιι(α), fj)/^. Suppose that γ € Σ can be written as γ = γ\ +72

for some γ\, γι e /?(b, ()). Since γ is of the form γ = a + Σβe^pL,*))71/^ (n£ € Z>o),
we may assume that 72 is written as 72 = Σβez\(ρL fyn'ββ f°r some W Λ ^ ^>o Then
0(χz) ^ — ̂ (pL» ί)) and hence 72 cannot be imaginary. This means that γ is simple in Σ.
Since Σ1 is of large type, γ is non-compact. It is easily verified that Da c ^b(α) (Lemma
2.17). Hence Da is also of type A, 5, D, E or G. Then Cα(;cj?) = — 1 follows from Lemma
2.17 and Lemma 2. 18.

According to Lemma 2.16, to prove Proposition 2.13(ii) and the remaining cases of
Proposition 2.13(i), we assume the following.

ASSUMPTION 2.22. Every root of R([, ί)) is 0-real.

It is easy to see that A^ (A^)w and (A^)β are stable under the action of σ"1 o0. Suppose
thatA°(β)(β € (Ab)w = zl(pL,ί}))isnotσ-1o6>-stable. Thenσ-1o6>(Z\°(^))Πz\°(^) = 0
and this implies θ(Δ°(β)) Π (-Δ°(β)) = 0 (cf. Lemma 2.3(i)). Hence Δ°(β) has no real
roots. This contradicts Assumption 2.22.

REMARK 2.23. Under Assumption 2.22, Δ°(β) (β e (Ab)w) is σ~l o 0-stable.

LEMMA 2.24. Under Assumption 2.22, Δ°(β) (β e (Δ^)w) and the action of σ~{ oθ
on Δ°(β) are given in the following list.

(1)
βl β2 βl βn-l βn

O _ O _ O _____ O _ O , σ-1 o θ(βi) = βn-i + ι

(2)
σ ~ 1 o 0 = i d



(3)

(4)

(5)

(6)

(7)

(8)

0-STABLE BOREL SUBALGEBRAS OF LARGE TYPE

—o- , σ~[oθ=id

β\ β2 βl

o o o— (n : even),

σ~l oθ = id

βi β2 βi
(n : odd),

σ"1 o θ(βi) = βi (1 < ί < n - 2), σ~l o θ(βn-\) = βn

βl βl β* β5 β6

143

σ~l o 0(00 = 06 , σ-1 o 0(03)-= 05 , σ-1 o 6>(04) - 04 , σ~l o Θ(β2) = 02

(9)

(10)

-O O O
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PROOF. Since all roots in Δ° (β) are real and σ defines the longest element of the Weyl

group of Δ°(β) (cf. Lemma 2.3(i)), Lemma 2.24 follows. q.e.d.

Forarootα e (Δ\^)β = Δ(b, f))Π/?(u, ί)) which is considered in Proposition 2.13, (i) or

(ii), it holds that σ"1 o Θ(a} = a. Hence the connected component Δ^(a) of Δ^ containing a

is σ"1 oθ-stable. In the following lemma, we list up the σ"1 oθ-stable connected components

ofΔb.

LEMMA 2.25. Under Assumption 2.22, a σ~l oθ-stable connected component Δ of

Δfr is contained in the following Table I, where we have to consider the cases', the roots in

ΔB, which are put in ( ), are omitted. We attach C (resp. I) to a root a e ΔB such that

σ~l o 0(α) = a and that R(u(a), ί)), Λ = 0 (resp. R(u(a), ϊ))i* φ 0). Ifσ~l o θ is not the

identity, we show the action ofσ~l oθ on Δ. We also show the action ofθ on ΔB If there is a

root a e ΔB such that σ~l o θ(a) = α and R(u(a), ί)),^ φ 0, we show the set R(u(a), ί))//?.

TABLE I.

(A.i)

OίQ

, 0(α0) = α0, Λ(u(α), ίj)/Λ = {α0} .

I

, 0(α, ) = ft + α/ + ft+i (1 < i < π - 1), 6»(αn) = βn+an.

f ) (π > 1),

α1) = α2,σ oβ(ft) = ft,_ί+ι (1 <ι < «), 0(«ι) = α

^ ' < « - D, 6>(αn) = αn + 0n.

+ βn.
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β\

(m > l ,n > 2) ,

6>(α0) = «0 4- A, 0(«, ) = A + «/ + ft+i (1 < i < w - 1), 6>(αm) = £m + αm + 2(«ι + 52 + + $„).

O π > n (n > 2),

6>(α0) = α0 + 2(5! + 82 + + 5n), Λ(ιι(α0), W/Λ = ί«θ + «ι + δ2 + + <$„}•

C

0(α0) = «

(C.ii)

C C

i < π - 1), 6>(αn) = ctn

( Λ > 1 ) ,

C

0(α0) =

C C

, 6>(α/) = ft + αf + ft+1 < i < m - 1),

(m > l , / ι > 2) ,

β\ al β2 a2

C C C C C

θ(aQ)=ocQ + βι,θ(ai) = βi + α/+ft+ι (1 <i < m - 1), 6»(αm) = βm +αw

β\ <*1 ^2 «2 /?n-l tt/ι-1
O - - O - •— — O -

(m > I , Λ > 2, n : even) ,

4- + δn_2) + «n-l +

(» > 1) .

0(α0) = «0 + Λ, 0(α, ) = ft + α, + ft+i (1 < ϊ < π - 1), 0(αn) = an + ̂ rt, 6>(αn+1) = an+l + βn.
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(Zλiii)
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β2

( •-)

θίm-{ βm Oί

- o -o - o—

c c c c c \o δn

(m > \,n > 3,n : odd) ,

σ"1 o θ(δn_\) = δn, σ"1 o θ(δn) = δn_\, (σ~l o θ acts trivially on the other simple roots.) Θ(<XQ) = «o + β\,

θ(ai} = βi + Ui +βi+\ (1 <ι <m- \\θ(am) = βm + am

(D.iv)

β\ <*2 βn-l «n-l

— O -

C C

> 1) ,

σ~l oθ(an) = αn+ι, σ~l o θ(an+\) = an (σ"1 o θ acts trivially on the other simple roots.) 0(«o) = «Q + /

β(α/) - ft + α/ + ft+i (1 < ί < n - 1), 0(αn) - αn+ι + )8n, β(απ+ι) - an + )8Π.

« β\

fc

C

(F4.iv)

(F4.v)
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ft

+ 2β2

(E6.u)

, 0(«2) = «2 + β\

= «ι + βι, Θ(a2) = <x2 + β\ + ft + ft. 0(«3) = α3 + ft-

ft «3 ft

- o

θ(ceι) = «ι + β\ + ft, 0(α2) = «2 + ft, 0(α3) = α3 + ft + ft.

(E6.iv)

β\ β2 βl β* ft

+ 2ft + 3ft + 2ft + ft

ft ft

(αι) = α3,σ-1 o 6>(α2) = α2> σ"1 oβ(ft) = β*-i (1 <i < 3), 0(α2) = α2 + 2ft + ^1 +ft
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θ(a) = a + 2βl + 3ft + 4ft + 3β4 + 2β5

«1 β\ β

•c j

£
0(«l) = «ι +2βι +2

• n *

h β?> <*2 β5

c
β4

)

β2 + ft + /^4» 0(α2) — α2 + 2ft + 2ft

:2 β-$ «3 ft

ι n n j

+ βl + ft.

Ife

(αι) = of] + βι,θ(a2) =<x2+βi+β2+ &, 6»(α3) = α3 + ft + £4.

β\
o—

6>(«ι) =ctl+βl+ ft, 6>(α2) - «2 + ft, 0(«3) = «3 + ft + ft. ^(«4) = «4 + #3

6>(α) = α + 2βι + 3ft + 4ft + 6ft + 5ft + 4β6 + 3ft.

oil

•—

c
^2 ^4 ft ft,

Cί2

-

C

3/5! + 4ft + 2ft + 3β4 + 2ft + β6, Θ(a2) = ct2+βι+ 2ft + ft + 2ft + 2ft
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, 0(α3) =

, 0(«3) = «3 + ft + ft, <9(α4) = α4 + ft.

= «2 + fe. β(α3) = α3 + β2 + ft, 6>(α4) = c*4 + ft

PROOF. Lemma 2.25 can be checked, case by case, by noticing the following facts:
(a) Δ is a connected Dynkin diagram.

(b) σ~ l o0 is an involution of Δ which stabilizes ΔB, ΔW and Δ°(β) for any β G ΔW
(c) Δ°(β) (β G ΔW) is a Dynkin diagram (with an action of σ~l o θ) in Lemma 2.24.

(d) For a e ΔB , σ (a) is highest in the roots of the form α + ΣβeΔw

 cββ (cβ e ̂  >o)

(e) If σ~l o θ(a) — a for a G ΔB, θ(a) is highest in the roots of the form a +
\ _ r r> ft ( r> n C. 7 ^ r\\ G e dL^ί

Now let us give the proof of Proposition 2.13(i) in the remaining cases. We have to show
Proposition 2.13(i) in the cases that Δb(a) is of type C or F4. By Lemma 2.25, we can assume
that Δb(ot) is of type (C.i) with a = «„, or that Δ^(a) is of type (F4.iv) with α = a\ in Table
I. We use the notation in Lemma 2.17.

First suppose that Δ^(a) is of type (C.i):

<*0 βl

(H—°—
I

Then γ := a + βn is an imaginary root in R(u(a), f)). Since XR is a sum of root vectors
Xβ e Qβ \ {0} ()8 G (2\b)w) and [X^, Xα] = 0 for β e (Δb)w \ [ β n ] , we have xRXa =

Yγ £ Qγ \ ί^} Clearly y is a simple root in Σ = R(u, ())/#. Since Σ is of large type, γ is
non-compact. Therefore we have Ca(xR) = — 1 by Lemma 2.17.
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Second suppose that Λ^(a) is of type (/<4.iv):

β2 Cί2

Then γ := a + β\ + β^ is an imaginary root in /?(u(α), ί)). Since α + ^2 and α + 2/3j are not

roots, we have x\ Xa = [Xβ2, [Xβ\, ^cJ] = Yγ £ Qγ \ {0}. It is easy to see that γ is a simple
root in Σ = R(u, f))//?. As before, we have Cα(jt/?) = — 1. Therefore the proof of Proposition

2.13(i) is completed.

As a preparation for the proof of Proposition 2.13(ii), we define an element aβ e PL

(β e Δ(pL, f))) as follows. For β e Δ($L, ί))» which is real by Assumption 2.22, we write

Aβ the element of ί)Π[[, [] such that }/(A£) = δβ,y (γ e Δ($L, ()))» where δβ,γ is Kronecker's
symbol. We write aβ := exp(πz A^).

LEMMA 2.26. (i) aβ e FL for any β e ^(pL,ί)).

(ii) Suppose that ιι(α) (a e LW(u, ί})) is θ-stable. Define nγ e Z>Q (γ e Δ(pL, f}))

by θ(ot) — a = Σ]yez\(ρL,l)) nγΎ (note tnat ^(α) ^ the highest weight of the [-module u(α)).
Then we have

2 11 (ne is even),
β(β>)= -1 (n, is odd).

V

7/ί particular, we have

I £«(*/?) ( W Λ is even),
= \

[-Ca(xR) (nβ is odd).

PROOF. Since /\(pL, ί)) consists of real roots, we have Aβ e f) Π 5. For y e Z\(pL, ί}),

I v /.. / #\

fl^Xy = ̂

Hence Ad(αi) | t = id[.

(ii){β(α)-α}(^) = Π
On the other hand, we have {θ(a) — ot}(aβ) = a(θ(aβ))a(aβl) = oί(a^2) = [a(al)}~{.

Hence a(cfy = (-l)nβ. q.e.d.

REMARK 2.27. Suppose that A and Af (Δ φ Δ f ) are σ"1 o ̂ -stable connected com-

ponents of /άfc, and α is a root as in Lemma 2.26(ii). Suppose that a is contained in the root

system RΔ generated by Z\, and β e Δ'w. By the definition of the connected components

of Z\β, β is not connected by edges to any roots in Δ. Since RA is ^-stable, θ(a) e RA

Hence β does not appear in θ(ct) — a = Σye^(pL {\)nγY : nβ — ® Therefore we have

PROOF OF PROPOSITION 2. 13(ii). It is sufficient to prove Proposition 2.13(ii) under

Assumption 2.22. Hence connected components of Δ^ are WB-Dynkin diagrams in Table I.

For any XR e C and any connected component Δ of Δ^, we will construct an element a e FL,
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which is a product of aβ's (β e ΔW), such that Ca(axR) = — 1 for any a e ΔB with the

properties that σ~l o θ(a) = a and R(u(a), f))//? = 0 (i.e., roots in Table I to which C's

are attached). Then Proposition 2.13(ii) follows, since Ca(aYxR) — Ca(xR) for γ e (Δb)w,

which is contained in another connected component of Δ^ (cf. Remark 2.27). Since there

exists no root to which C is attached in the cases (A.i), (A.iii), (#.iii), we do not need to

consider these cases.

Let us consider the case when A is of type (Λ.ii):

OίO βl Oil β2 Oί2 Oίn-2 βn-\ &n-\ βn Oίn

• o o •— — o o (n ^ Ό

We first show that Π/Lo c<*t (**) = ί"1)"4"1 for anY XR £ C. Write the root γ := α0 + β\ +
«ι + β2 4- α?2 + + βn + &n Since y — βj (I < j < n) are not roots, γ e LW(ιι, ()). By

the action of θ on α/ and )S7 , we have 0(χ) = y and hence γ e Σ. Notice that R(u(γ), ί)) =

^(u(χ), ί))ιj? = {y} It is easily verified that γ can not be written as a sum γ = γ\ + 72 for

χι, X2 ̂  -Σλ Hence y is simple in Σ. Since Z1 is of large type, γ is non-compact. Then we

have CY(XR) = -1 by Lemma 2.17.

Write XR = Σ"=ι Xβj and Xγ = [Xαo, [X^, , [Xαι , [. . . [X^, XαJ . . . ] e fly \ {0},

where X§ (δ e Δ) is a non-zero root vector in Q§. Since the action of σ"1 o 0 on Δ is trivial

and a"1 o 0(*Λ) = -̂ , we have σ~l o θ(Xft.) = -Xβj. By σ'1 o 0(Xα.) = Cα|.(ΛΛ)Xα|.

and σ"1 o θ(Xγ) = Cγ(xR)Xγ — — Xy, we have

-Xy =σ~l oθ(Xy) = (-l)n

/=o

Hence Π?=o Q (^/?) = (-l)π+1. We notice that

R), Caι (aβjXR), . . . , Caj_{ (aβ.XR), CUj (aβjxR), . . . , Cα/l (aβjxR))

by Lemma 2.26. Therefore we can take an element a of the subgroup (aβj 1 < j < n) of

generated by [aβj 1 < j < n} such that Cα/ (fl.x/f) = — 1 for 0 < / < n. In the case when

or cxn is omitted, the proof is easier.

Similar proofs can be done in the cases (B.i) and (Z?.ii).

Consider the case when Δ is of type (C.i):

(n > 1).
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By Lemma 2.26,

(Cao(aβjxR), Cai (aβjXR), . . . , C0ίj_l (aβjxR), Caj(aβjxR), . . . , Cα/l_, (aβjxR))

)' Cα, (*/?), . . . , Can_2(xR), -Can_} (**)) (j = n).

Therefore we can take a e (a p . ; 1 < j < n) such that Cai(axR) = — 1 for 0 < / < n — 1.

The proof of the case in (C.i), when c*o is omitted, is similar.

The proofs of the remaining cases except (D.ii), (Ej.iv) and (E%.v) are similar to that of

the case (C.i).

Consider the case when Δ is of type (D.ii):

αo

C

βl
Ol

C

h «2

C

βn-\ β-l

c £-°\

«„
^c

(n > 1) ,
^ α > z + ι

C

Notice the WB-Dynkin diagram obtained by omitting an+\ Then we can take a e

(aβj\ 1 £ j < n) such that Cai(axR) = — 1 (0 < i < n) by the case (Λ.ii). Noticing the

WB-Dynkin diagram consisting of an, βn, an+\, we have Cα/l (xR)Can+λ (XR) = (— I)2 by the

case (Λ.ii). Hence we have Cttn+] (XR) = — 1.

The proofs of the cases (D.ii) when αo is omitted, (E-j.iv) and (E$.v) are similar to the

above one.

Therefore the proof of Proposition 2.13(ii) is completed.
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