Tohoku Math. J. 52 (2000), 61–77

INVARIANT SUBVARIETIES OF LOW CODIMENSION IN THE AFFINE SPACES

KAYO MASUDA AND MASAYOSHI MIYANISHI

(Received June 8, 1998, revised January 26, 1999)

Abstract. Let W be an irreducible subvariety of codimension r in a smooth affine variety X of dimension n defined over the complex field C. Suppose that W is left pointwise fixed by an automorphism of X of infinite order or by a one-dimensional algebraic torus action on X. In the present article, we consider whether or not X is then an affine space bundle over W of fiber dimension n - r. Our results concern the case r = 1 or the case r = 2 and $n \le 3$. As by-products, we obtain algebro-topological characterizations of the affine 3-space.

0. Introduction. Let k be an algebraically closed field of characteristic zero, which we fix as the ground field throughout the present article and assume to be the complex field C whenever we have to depend on the topological arguments. Let β be an algebraic automorphism of the affine space A^n of dimension n and W an irreducible hypersurface of A^n . We call W a *coordinate hyperplane* if there exists a system of coordinates $\{x_1, \ldots, x_n\}$ of A^n such that W is defined by $x_1 = 0$. We first pose the following question:

QUESTION. If β is of infinite order and leaves W pointwise fixed, is W a coordinate hyperplane after a suitable change of coordinates on A^n ?

Indeed, the answer is affirmative if n = 2 (see Corollary 1.10).

We consider the question in the case n = 3 with an additional hypothesis. Namely, we prove the following (see Corollary 2.9):

THEOREM. Suppose n = 3. If β is diagonalizable (see Section 2 below for the definition), then W is a coordinate hyperplane after a suitable change of coordinates on A^3 .

As a by-product, we obtain the following algebraic characterization of the affine space of dimension 3 (see Theorem 2.10).

THEOREM. Let X = Spec A be a nonsingular affine threefold. Then X is isomorphic to the affine space of dimension 3 if and only if the following conditions are satisfied:

(1) Pic X = (0) and $A^* = k^*$, where A^* is the set of invertible elements of A.

(2) There exist an irreducible hypersurface W of X and a diagonalizable automorphism β of infinite order such that β leaves W pointwise fixed and that W has Kodaira dimension $-\infty$.

We next consider the case of codimension two. Let W be an irreducible subvariety of codimension 2 in a nonsingular affine variety X of dimension n defined over the complex field

¹⁹⁹¹ Mathematics Subject Classification. Primary 14L30; Secondary 14F45.

C. Suppose that a one-dimensional algebraic torus G_m acts on X in such a way that W is the fixed-point locus X^{G_m} . Our main result in the codimension two case is Theorem 4.2, which characterizes the affine 3-space among the acyclic affine threefolds. In this article, we say that a nonsingular algebraic variety X is *acyclic* if all the reduced integral homology groups of X vanish. An acyclic surface is called a *homology plane*.

We are indebted to R. V. Gurjar for various suggestions and ideas in Sections 3 and 4, especially the proof of Theorem 3.1.

1. The case n = 2. Let *C* be an irreducible curve on the affine plane $A^2 = \operatorname{Spec} k[x, y]$ and $f \in k[x, y]$ an element which generates the defining ideal of *C*. Let *X* be the complement of *C* in A^2 . So, $X = \operatorname{Spec} k[x, y, f^{-1}]$. Let β be an algebraic automorphism of A^2 of infinite order which stabilizes the curve *C*, i.e., $\beta(C) = C$. Then β induces an automorphism on *X* and on the coordinate ring $k[x, y, f^{-1}]$ of *X*. We denote the induced *k*-algebra automorphism of $k[x, y, f^{-1}]$ by the same symbol β . We denote by $\overline{k}(X)$ the Kodaira dimension of *X*. First of all, we note the following result (cf. Iitaka [6, Theorem 11.12]).

LEMMA 1.1. If $\bar{\kappa}(X) = 2$, then Aut (X) is a finite group.

Since X has an automorphism β of infinite order, it follows that $\bar{\kappa}(X) \leq 1$.

LEMMA 1.2. If $\bar{\kappa}(X) = -\infty$, then f = x after a suitable change of coordinates. The automorphism β is written as

$$\beta(x) = ax$$
, $\beta(y) = by + g(x)$

with $a, b \in k^*$ and $g(x) \in k[x]$.

PROOF. Since $\bar{\kappa}(X) = -\infty$, there exists an A^1 -fibration $\varphi' : X \to B'$, which extends naturally to an A^1 -fibration $\varphi : A^2 \to B$, where B' is an open set of a smooth curve B. Then the curve C is contained in a fiber of φ . Hence C is isomorphic to A^1 , since every fiber of φ is a disjoint union of finitely many smooth components which are isomorphic to A^1 (cf. [12, Lemma 4.4]). By a theorem of Abhyankar-Moh-Suzuki (cf. [11]), we may and shall put f = x after a change of coordinates. Since $\beta(C) = C$, it follows that $\beta(x) = ax$ with $a \in k[x, y]$. Since $\beta^{-1}(C) = C$, we have $\beta^{-1}(x) = bx$ with $b \in k[x, y]$. Then a is an invertible element of k[x, y], i.e., $a \in k^*$. Write

$$\beta(y) = g_0(x)y^n + g_1(x)y^{n-1} + \dots + g_n(x)$$

with $g_i(x) \in k[x]$. Considering the Jacobian determinant J of $\beta(x), \beta(y)$ with respect to x, y, we have

$$J = a(ng_0(x)y^{n-1} + \dots + g_{n-1}(x)) \in k^*$$

Q.E.D.

This implies that n = 1 and $g_0(x) = b \in k^*$. So we are done.

LEMMA 1.3. Suppose $\bar{\kappa}(X) = 0$ and X is NC-minimal (see [4] for the definition). Then f = xy + 1 after a suitable change of coordinates. The automorphism β is written as

$$\beta(x) = ax, \beta(y) = a^{-1}y$$
 or $\beta(x) = ay, \beta(y) = a^{-1}x$

with $a \in k^*$.

PROOF. By Fujita [4, (8.13), (8.64)], X is isomorphic to either $P^2 - (\ell_1 + \ell_2 + \ell_3)$ with non-confluent lines ℓ_1 , ℓ_2 , ℓ_3 or $P^2 - (C + \ell)$ with a smooth conic C and a line ℓ meeting each other in two distinct points. In the former case, X is isomorphic to $A_*^1 \times A_*^1$, where A_*^1 denotes the affine line A^1 with one point deleted off and the reduced multiplicative group $\Gamma(X)^*/k^*$ is a free abelian group of rank two, where $\Gamma(X)$ is the coordinate ring of X. Meanwhile, since $\Gamma(X) = k[x, y, f^{-1}]$ with an irreducible element f, $\Gamma(X)^*/k^*$ has rank one. So, the latter case takes place. Then f = xy + 1 after a suitable change of coordinates. We shall determine the automorphism β . Since $\beta(f) = cf$ with $c \in k^*$, we have

$$\beta(x)\beta(y) + 1 = c(xy + 1)$$

or

$$\beta(x)\beta(y) = cxy + (c-1),$$

where the right side is irreducible unless c = 1. So, c = 1 and $\beta(x)\beta(y) = xy$. The result follows readily from the unique irreducible decomposition of $\beta(x)\beta(y)$. Q.E.D.

If X is not NC-minimal and $\bar{\kappa}(X) = 0$, then X is obtained from an NC-minimal one by applying the sub-divisional blowing-ups or half-point attachments (cf. [4]). Then it is easy to see that X has an A_*^1 -fibration. In the case of $\bar{\kappa}(X) = 1$, by Kawamata's theorem [7, 12], X has an A_*^1 -fibration. So we consider the case where X has an A_*^1 -fibration $\rho : X \to B$. Considering the possible extensions of ρ on A^2 and also making use of the classification of the standard forms of generically rational polynomials with two places at infinity (cf. [20,16]), we have the following result (see [1] for the detail).

LEMMA 1.4. Let X be the complement in A^2 of an irreducible curve C defined by f = 0. Suppose that $\bar{\kappa}(X) \ge 0$ and X has an A_*^1 -fibration $\rho : X \to B$. Then, after a suitable change of coordinates, the polynomial f is written in one of the following forms:

- (I) Case where the given A_*^1 -fibration $\rho: X \to B$ extends to an A_*^1 -fibration $\tilde{\rho}: A^2 \to \tilde{B}$:
 - (1) $f = x^m y^n + 1$, where m, n > 0 and gcd(m, n) = 1. In this case, $B \cong A_*^1$ and $\tilde{B} \cong A^1$.
 - (2) $f = x^m (x^l y + p(x))^n + 1$, where l, m, n > 0, gcd(m, n) = 1 and $p(x) \in k[x]$ with deg p(x) < l and $p(0) \neq 0$. In this case, $B \cong A_*^1$ and $\tilde{B} \cong A^1$.
- (II) Case where the given A_*^1 -fibration $\rho: X \to B$ is not extended to an A_*^1 -fibration on A^2 :
 - (3) $f = a_0(x)y + a_1(x)$, where $a_0(x)$, $a_1(x) \in k[x]$, $gcd(a_0(x), a_1(x)) = 1$, $deg a_1(x) < deg a_0(x)$ and $a_0(x)$ has two or more distinct linear factors. In this case, the A_*^1 -fibration $\rho : X \to B$ extends to an A^1 -fibration $\tilde{\rho} : A^2 \to \tilde{B}$, where $B = \tilde{B} \cong A^1$.
 - (4) $f = x^m y^n$ with m, n > 0 and gcd(m, n) = 1. In this case, the closures of the fibers of the A_*^1 -fibration $\rho : X \to B$ form a linear pencil $\{x^m \lambda y^n\}$ parametrized by $\lambda \in \mathbf{P}^1 = k \cup \{\infty\}$, which has the point of origin as a base point. Furthermore, $B \cong A^1$.

Note that the case (4) above is obtained by Lin-Zaidenberg's theorem [5] which asserts that an irreducible curve C on A^2 , defined over the complex field C, which is topologically contractible is defined by $x^m = y^n$ in terms of a suitable system of coordinates $\{x, y\}$ on A^2 . We shall look into the automorphism β in each of the above four cases.

LEMMA 1.5. In the case (1) in Lemma 1.4, an automorphism β stabilizing the curve C is written as

$$\beta(x) = ax$$
, $\beta(y) = by$

with $a, b \in k^*$ and $a^m b^n = 1$. We can write $a = u^n$, $b = \zeta^m u^{-m}$ with $u \in k^*$ and an mn-th root of unity ζ . So, β is of finite order if and only if u is a root of unity.

PROOF. As in the proof of Lemma 1.3, we have

$$\beta(x)^{m}\beta(y)^{n} + 1 = c(x^{m}y^{n} + 1)$$

with $c \in k^*$. So,

$$\beta(x)^m \beta(y)^n = c x^m y^n + (c-1) \, .$$

where the right side is irreducible unless c = 1. Hence c = 1 and $\beta(x)^m \beta(y)^n = x^m y^n$. Since gcd(m, n) = 1, we have

$$\beta(x) = ax, \beta(y) = by \text{ with } a, b \in k^*,$$

where $a^m b^n = 1$. The rest of the assertion is readily verified.

LEMMA 1.6. In the case (2) of Lemma 1.4, an automorphism β stabilizing the curve C is written as

$$\beta(x) = ax, \quad \beta(y) = a^{-l}y$$

with $a^m = 1$. So, β is of finite order.

PROOF. Note that $x^l y + p(x)$ is an irreducible polynomial. Write

$$p(x) = c_0 x^{l-1} + c_1 x^{l-2} + \dots + c_{l-1}$$

with $c_{l-1} \neq 0$. As in the proof of Lemmas 1.3 and 1.5, we have

$$\beta(x)^m (\beta(x)^l \beta(y) + p(\beta(x)))^n = x^m (x^l y + p(x))^n.$$

Since gcd(m, n) = 1, we have $\beta(x) = ax$ with $a \in k^*$, and

$$a^{m/n}(a^l x^l \beta(y) + p(ax)) = \zeta(x^l y + p(x)),$$

where $\zeta^n = 1$. Hence it follows that

$$a^{l+m/n}\beta(y) = \zeta y$$
, i.e., $\beta(y) = a^{-(l+m/n)}\zeta y$.

Furthermore, by comparing constant terms, we have

$$a^{m/n}c_{l-1} = \zeta c_{l-1}$$
, i.e., $a^{m/n} = \zeta$,

whence $a^m = 1$, and $\beta(x) = ax$, $\beta(y) = a^{-l}y$. Then $\beta^m = 1$, and β is of finite order.

Q.E.D.

Q.E.D.

LEMMA 1.7. In the case (3) in Lemma 1.4, an automorphism β stabilizing the curve C is of finite order.

PROOF. Note that $\bar{\kappa}(X) = 1$ (cf. [1, Lemma 3.11]) and that the A_*^1 -fibration $\rho : X \to B$ is canonical for the surface X in the sense that it is determined by a log pluri-canonical system $|n(D + K_V)|$ for $n \gg 0$, if (V, D) is a smooth compactification of X with boundary divisor D of simple normal crossings. Hence the automorphism β preserves the A_*^1 -fibration ρ (cf. [1, Lemma 3.3] for the detail). This implies that a fiber $x = \lambda$ of ρ is transformed to a fiber $x = \mu$. Namely,

$$\beta(x-\lambda) = c(x-\mu)$$
 and $c \in k^*$.

Hence we have

$$\beta(x) = cx + d$$
 with $c, d \in k$ and $c \neq 0$.

The fibration ρ has singular fibers, which are by definition not isomorphic to A_*^1 , over the points α with $a_0(\alpha) = 0$. If β is of infinite order and if $a_0(x) \notin k$, then there would be infinitely many singular fibers. Hence $a_0(x) = a_0 \in k$ or β is of finite order. In the former case, the curve C is isomorphic to A^1 , and $\bar{\kappa}(X) = -\infty$ by a theorem of Abhyankar-Moh-Suzuki. So, β is of finite order. Q.E.D.

LEMMA 1.8. In the case (4) of Lemma 1.4, an automorphism β stabilizing the curve C is written as

$$\beta(x) = ax, \quad \beta(y) = by,$$

where $a, b \in k, ab \neq 0$ and $a^m = b^n$.

PROOF. Note that β preserves the pencil $\{x^m - \lambda y^n\}$ with $\lambda \in P^1$ by the same reason as in the proof of Lemma 1.7. The pencil has two multiple fibers mA and nB, where A and B are defined by x = 0 and y = 0, respectively. Since gcd(m, n) = 1, it follows that $\beta(x) = ax$ and $\beta(y) = by$ with $a, b \in k$ and $ab \neq 0$. Since $\beta(f) = cf$ with $c \neq 0$, we have $a^m = b^n$.

Q.E.D.

Summarizing the above results, we obtain the following result:

THEOREM 1.9. Let β be an automorphism of A^2 of infinite order such that β stabilizes an irreducible curve C defined by f = 0. Then, after a suitable change of coordinates, β and f are written in one of the following forms:

- (1) f = x; $\beta(x) = ax$, $\beta(y) = by + g(x)$ with $a, b \in k^*$ and $g(x) \in k[x]$.
- (2) $f = xy + 1; \beta(x) = ax, \beta(y) = a^{-1}y \text{ or } \beta(x) = ay, \beta(y) = a^{-1}x, \text{ where } a \in k^*.$ (3) $f = x^m y^n + 1; \beta(x) = ax, \beta(y) = by, \text{ where } mn > 1, \gcd(m, n) = 1, a, b \in k^*$
- and $a^m b^n = 1$.
- (4) $f = x^m y^n$, gcd(m, n) = 1; $\beta(x) = ax$, $\beta(y) = by$ with $a, b \in k^*$ and $a^m = b^n$.

COROLLARY 1.10. Let β be as in Theorem 1.9. Suppose, furthermore, that β leaves C pointwise fixed. Then β and f are written as

$$f = x$$
; $\beta(x) = ax$, $\beta(y) = y + xh(x)$,

where $h(x) \in k[x]$. In particular, the curve C is a coordinate line after a change of coordinates on A^2 .

2. Higher-dimensional case. Let X = Spec A be a nonsingular affine variety of dimension *n* such that Pic X = (0) and $A^* = k^*$. We shall begin with the following result:

LEMMA 2.1. Let W be an irreducible hypersurface of X, and let β be a nontrivial automorphism of X such that

(1) β leaves W pointwise fixed, and

(2) β induces a nontrivial action on I/I^2 , where I is the defining ideal of W. Then W is nonsingular.

PROOF. (I) Since A is factorial, the ideal I is principal. Let $u \in A$ be an element such that I = (u). Since $\beta(W) = W$, one may write $\beta(u) = au$ with $a \in A$. Since β^{-1} also leaves W pointwise fixed, one may write $\beta^{-1}(u) = bu$. Then we have

$$u = \beta^{-1}(\beta(u)) = \beta^{-1}(au) = \beta^{-1}(a)\beta^{-1}(u) = \beta^{-1}(a)bu,$$

whence $\beta^{-1}(a) \in A^* = k^*$. So, $a \in k^*$. Since β induces a nontrivial action on I/I^2 , it follows that $a \neq 1$.

(II) Let $Q \in W$ be a closed point and $\{x_1, \ldots, x_n\}$ a system of local coordinates of X at Q. In the completion $\hat{\mathcal{O}}_{X,Q} = k[[x_1, \ldots, x_n]]$, write

$$u=\sum_{i\geq m}u_i(x_1,\ldots,x_n),$$

where u_i is the *i*-th homogeneous part and $m \ge 1$. Since $\beta(Q) = Q$, one can write

$$\beta(x_i) = \sum_{j=1}^n b_{ij} x_j + (\text{terms of degree} \ge 2).$$

Then we have

$$\beta(u) = u_m \left(\sum_{j=1}^n b_{1j} x_j, \dots, \sum_{j=1}^n b_{nj} x_j \right) + (\text{terms of degree} \ge m+1)$$
$$= a \sum_{i \ge m} u_i (x_1, \dots, x_n).$$

Hence

$$u_m\left(\sum_{j=1}^n b_{1j}x_j,\ldots,\sum_{j=1}^n b_{nj}x_j\right) = au_m(x_1,\ldots,x_n).$$

This implies that the matrix $B = (b_{ij})$ is not the identity matrix.

(III) Suppose that Q is a singular point of W. Then we have

$$\underline{m}_{W,Q}/\underline{m}_{W,Q}^2 = \underline{m}_{X,Q}/\underline{m}_{X,Q}^2,$$

where $\underline{m}_{W,Q}$, $\underline{m}_{X,Q}$ are the maximal ideals of the local rings $\mathcal{O}_{W,Q}$, $\mathcal{O}_{X,Q}$, respectively, and the automorphism β induces the identity automorphism on $\underline{m}_{W,Q}/\underline{m}_{W,Q}^2$, while β acts on

 $\underline{m}_{X,Q}/\underline{m}_{X,Q}^2$ via the matrix *B*. This is a contradiction to a conclusion in the step (II). Hence *W* is nonsingular. Q.E.D.

We denote by G_m a one-dimensional algebraic torus.

PROPOSITION 2.2. Let G_m act nontrivially on an n-dimensional nonsingular affine variety X = Spec A defined over the complex field C with Pic X = (0) and let W be an irreducible hypersurface such that the G_m -action leaves W pointwise fixed. Then W is nonsingular. Suppose, furthermore, that X is a contractible threefold with $A^* = C^*$. Then $X \cong W \times A^1$. If $\bar{\kappa}(W) = -\infty$ or $X = A^3$ in particular, we have $W \cong A^2$, and X is isomorphic to the affine space of dimension 3 with W as a coordinate hyperplane.

PROOF. Let u be a generator of the defining ideal I of W. Then we have $t \cdot u = \chi(t)u$ for $t \in G_m$ with $\chi(t) \in A^* = C^*$. Then χ is a multiplicative character of G_m . Write $\chi(t) = t^m$, where $m \neq 0$. In fact, if m = 0, then the G_m -action is trivial near the points of W. But this is not the case. Hence W is nonsingular by Lemma 2.1 (see also Fogarty [3]).

For any point $P \in X$, we have

$$\lim_{t \to 0} t \cdot P \in W \quad \text{if } m > 0$$

and

$$\lim_{t\to\infty}t\cdot P\in W\quad\text{if }m<0\,.$$

Hence W is the fixedpoint locus X^{G_m} and, by Bialynicki-Birula [2], X is an A^1 -bundle over W. Meanwhile, W is also the algebraic quotient $X//G_m$, since G_m acts on X along the fibers of the A^1 -bundle. So, W is a contractible surface by Kraft-Petrie-Randall [9], because so is X by the hypothesis. Then Pic(W) = (0) by [4, 1.20]. This implies that the A^1 -bundle over W is trivial. Namely, we have $X \cong W \times A^1$. Write W = Spec B, where B is identified with the G_m -invariant subalgebra of A. Note then that B is a factorial domain with $B^* = C^*$. If $\bar{k}(W) = -\infty$ in particular, W is isomorphic to A^2 by the characterization of the affine plane (cf. [12]). If $X = A^3$, then $W \cong A^2$ by the cancellation theorem [12].

We extend Proposition 2.2 to a case where G_m is replaced by a single automorphism of infinite order. Let A be an affine domain over k, i.e., a k-algebra domain which is finitely generated over k. A k-automorphism β of A is called *rational* if, for every $w \in A$, the k-vector space $\sum_{i\geq 0} k\beta^i(w)$ is finite-dimensional. A k-automorphism β of A is called *diagonalizable* if β is rational and if the action of β on $\sum_{i\geq 0} k\beta^i(w)$ is diagonalizable, i.e., there exists a certain k-basis $\{v_1, \ldots, v_r\}$ of $\sum_{i\geq 0} k\beta^i(w)$ such that $\beta(v_i) = a_i v_i$ with $a_i \in k^*$ for $1 \leq i \leq r$. Note that given a G_m action on X = Spec A the automorphism $x \mapsto t \cdot x$ of X, with t a general point of G_m , induces a diagonalizable k-automorphism of A. We shall begin with the following simple but useful result.

LEMMA 2.3. Let A be an affine domain and β a diagonalizable automorphism of A. Let I be an ideal of A such that $\beta(I) \subseteq I$. Then, for any element $v \in A$ such that $\beta(v) \equiv v \pmod{I}$, there exists an element $v' \in A$ such that $\beta(v') = v'$ and $v' \equiv v \pmod{I}$. PROOF. Let $V = \sum_{i\geq 0} k\beta^i(v)$. Then V is finite-dimensional. Since β is diagonalizable, we may choose a k-basis $\{v_1, \ldots, v_r\}$ of V such that $\beta(v_j) = a_j v_j$ $(1 \leq j \leq r)$ for $a_j \in k^*$. Note that $\beta^i(v) \equiv v \pmod{I}$ for every $i \geq 0$. Since v_j is a k-linear combination of $\{\beta^i(v)\}_{i\geq 0}$, it follows that $\beta(v_j) \equiv v_j \pmod{I}$ for every $1 \leq j \leq r$. Let $\overline{v_j}$ be the residue class of v_j modulo I. Since $\beta(v_j) = a_j v_j$, we have $a_j = 1$ provided $\overline{v_j} \neq 0$. After a change of indices, suppose that $\overline{v_j} \neq 0$ for $1 \leq j \leq s$ and $\overline{v_j} = 0$ for $s + 1 \leq j \leq r$. Write

$$v = c_1 v_1 + \dots + c_s v_s + c_{s+1} v_{s+1} + \dots + c_s v_r$$

and let

$$v' = c_1 v_1 + \dots + c_s v_s \, .$$

Q.E.D.

Then $\beta(v') = v'$ and $v' \equiv v \pmod{I}$.

We need the following lemma in the subsequent argument.

LEMMA 2.4. Let C be an irreducible nonsingular affine curve with an automorphism β of infinite order. If β has a fixed point, then C is isomorphic to A^1 . Furthermore, if we write $A^1 = \operatorname{Spec} k[t]$, then β is given as $\beta(t) = ct$ with $c \in k^*$.

PROOF. If $\bar{\kappa}(C) = 1$, then Aut(*C*) is a finite group. Hence $\bar{\kappa}(C) \leq 0$. If $\bar{\kappa}(C) = 0$, then *C* is either a complete elliptic curve or is isomorphic to G_m . The first case is obviously not the case. In the second case, every automorphism β of G_m of infinite order is a translation. Hence it has no fixed points. So, the second case is not the case either, and we have $\bar{\kappa}(C) = -\infty$. Then $C \cong A^1$. The last assertion is clear. Q.E.D.

In what follows in this section, we shall work in the following set-up:

Let X = Spec A be a nonsingular affine variety of dimension n with Pic(X) = (0) and $A^* = k^*$. Let W be an irreducible hypersurface of X and β a nontrivial automorphism of X of infinite order. Assume that

(i) β leaves W pointwise fixed, and

(ii) the induced k-automorphism β on A is diagonalizable.

Let L = Q(A) be the function field of X. Then the automorphism β extends to L in a natural fashion. We define a subalgebra B of A and a subfield K of L by

 $B = \{a \in A; \beta^m(a) = a \text{ for some } m > 0\}$

and

 $K = \{\xi \in Q(A); \beta^{m}(\xi) = \xi \text{ for some } m > 0\}.$

It is clear that $B = A \cap K$. Since Pic(X) = (0), the defining ideal *I* of *W* is principal. Let *u* be a generator of the ideal *I*. Then $\beta(u) = au$ with $a \in k^*$.

LEMMA 2.5. The following assertions hold:

(1) The element a is not a root of unity, and β acts nontrivially on I/I^2 . Hence W is nonsingular.

(2) K is the quotient field Q(B) of B, and u is transcendental over K. Furthermore, K is algebraically closed in L.

(3) B is k-isomorphic to A/I. In particular, B is finitely generated over k.

INVARIANT SUBVARIETIES OF LOW CODIMENSION

(4) *B* is a normal subalgebra of *A* of dimension n - 1.

PROOF. (1) Let *P* be a smooth point of *W* and let $v_1, \ldots, v_{n-1} \in A$ be the elements such that the residue classes $\bar{v}_1, \ldots, \bar{v}_{n-1}$ form a local system of parameters of *W* at *P*. Then $\beta(v_i) \equiv v_i \pmod{I}$ for $1 \leq i \leq n-1$. By virtue of Lemma 2.3, we may assume that $\beta(v_i) = v_i$ after a suitable change of the elements v_i . Then $\{v_1, \ldots, v_{n-1}, u\}$ is a local system of parameters of *X* at *P* such that $\beta(v_i) = v_i$ for $1 \leq i \leq n-1$ and $\beta(u) = au$ with $a \in k^*$. We shall show that *a* is not a root of unity. Indeed, the function field *L* of *X* is a finite algebraic extension of the field $k(v_1, \ldots, v_{n-1}, u)$. If *a* is a root of unity, we may replace β by some power β^m and assume that β acts on *L* as an $k(v_1, \ldots, v_{n-1}, u)$ -automorphism. This is impossible because β is of infinite order. Hence *a* is not a root of unity. Then β acts nontrivially on I/I^2 . By Lemma 2.1, *W* is nonsingular.

(2) We shall first show that u is transcendental over the field K. Indeed, if u were algebraic over K, u satisfies a nontrivial algebraic equation

(†)
$$u^N + \xi_1 u^{N-1} + \dots + \xi_N = 0 \quad \text{with} \quad \xi_i \in K.$$

By replacing β by β^m with some m > 0, we may assume that $\beta(\xi_i) = \xi_i$ for $1 \le i \le N$. Then β permutes the roots of the above equation (†). But this is impossible because $\beta(u) = au$, where a is not a root of unity. Hence u is transcendental over K. On the other hand, we may choose a system of elements $\{v_1, \ldots, v_{n-1}\}$ of B such that $\{\overline{v}_1, \ldots, \overline{v}_{n-1}\}$ is a local system of parameters of W at a point Q. This implies that $k(v_1, \ldots, v_{n-1}) \subseteq K$ and tr.deg_k K = n - 1. Hence K is algebraic over Q(B). Let η be an element of L such that η is algebraic over Q(B). Then η satisfies a relation

(††)
$$a_0\eta^N + a_1\eta^{N-1} + \dots + a_N = 0$$
 with $a_i \in B$.

Replacing β by β^m for some m > 0, we may assume that $\beta(a_j) = a_j$ for every j. Then $\beta(\eta)$ is also a solution of (††). Since there are finitely many solutions of (††), we have $\beta^m(\eta) = \eta$ for some m > 0. Namely $\eta \in K$. Hence K is algebraically closed in L. If $\eta \in L$ is, in particular, integral over B, then we have $\eta \in A \cap K = B$ because A is normal. The relation (††) implies that $a_0\eta$ is integral over B and hence $a_0\eta \in B$. Therefore $\eta \in Q(B)$. This implies that K = Q(B).

(3) Restricting the residue homomorphism $A \to A/I$ onto B, we have a k-algebra homomorphism $\rho: B \to A/I$. Since β induces a trivial automorphism on A/I, it follows from Lemma 2.3 that ρ is surjective. We shall show that ρ is injective. Namely, we show that $I \cap B = (0)$. Let $w \in I \cap B$, and write $w = uw_1$ with $w_1 \in A$. Then $\beta^m(w) = w$ for some m > 0. This implies that $\beta^m(w_1) = a^{-m}w_1$. Meanwhile, since $\beta(w_1) \equiv w_1 \pmod{I}$, we may express $\beta^m(w_1) = w_1 + uz$ with $z \in A$. Hence we obtain $(a^m - 1)w_1 = -a^m uz$. Since a is not a root of unity, $a^m - 1 \neq 0$. So, we have $w_1 = uw_2$ with $w_2 \in A$ and $w = u^2w_2$. Applying the same argument as above to the expression $w = u^2w_2$, we can show that $w = u^3w_3$ with $w_3 \in A$. Thus $w \in \bigcap_{i \geq 0} I^i$. Now, applying the intersection theorem of Krull [18, Theorem 3.11], we know that $\bigcap_{i \geq 0} I^i = (0)$. Hence w = 0. Alternatively, we could argue that since A is a factorial domain, w cannot be divided infinitely many times by

an irreducible element u unless w = 0. We have thus shown that B is isomorphic to A/I. In particular, B is finitely generated over k. If n = 3, Zariski's lemma [17] also implies that B is finitely generated over k because $B = A \cap K$.

(4) Since we know that B is an affine domain and $B = A \cap Q(B)$, it is clear that B is a normal k-subalgebra of dimension n - 1. Q.E.D.

Since B is finitely generated over k, there exists an integer m > 0 such that $\beta^m(b) = b$ for every $b \in B$. By replacing β by β^m , we may and shall assume without loss of generality that $\beta(b) = b$ for every $b \in B$. Let Y = Spec(B) and $\pi : X \to Y$ a morphism induced by the inclusion $B \hookrightarrow A$. Then the general fibers of π are nonsingular irreducible curves. The automorphism β acts on X along the fibers of π .

LEMMA 2.6. The morphism $\pi : X \to Y$ is an A^1 -fibration, and the generic fiber of π is given as Spec K[u].

PROOF. It follows from the assertion (3) of Lemma 2.5 that W is a cross-section of the morphism π . Let C be a general fiber of π . Then C meets W in one point transversally, and the automorphism β induces an automorphism of C of infinite order. The intersection point of C with W is a fixed point under this automorphism. By Lemma 2.4, C is then isomorphic to A^1 . Hence π is an A^1 -fibration.

Write the generic fiber $X_K := \operatorname{Spec} A \otimes_B K$ as $\operatorname{Spec} K[t]$ with some parameter t. Then β acts on X_K by $\beta(t) = \xi t$ with $\xi \in K^*$. We shall show that $t = \eta u$ with $\eta \in K^*$. Write u as

$$u = \eta_0 t^m + \eta_1 t^{m-1} + \dots + \eta_m \quad \text{with} \quad \eta_i \in K ,$$

where $\eta_0 \neq 0$. Since $\beta(u) = au$ and $\beta(\eta_i) = \eta_i$, we can readily show that $u = \eta_0 t^m$. Choose a general fiber C of π so that the function η_0 is regular and nonzero at the intersection point $P = C \cap W$. The argument in the proof of Lemma 2.5, about lifting a local system of parameters $\{\bar{v}_1, \ldots, \bar{v}_{n-1}\}$ of W at the point P to a system of elements $\{v_1, \ldots, v_{n-1}\}$ of B, shows that

$$\underline{m}_{X,P} = (u, v_1, \dots, v_{n-1})$$
 and $\underline{m}_{W,P} = (v_1, \dots, v_{n-1})$,

where $\underline{m}_{X,P}$ and $\underline{m}_{W,P}$ are the maximal ideals of the local rings $\mathcal{O}_{X,P}$ and $\mathcal{O}_{W,P}$, respectively. Since $u \notin \underline{m}_{X,P}^2$, it follows that m = 1. Hence we conclude that $X_K = \text{Spec } K[u]$. Q.E.D.

Note that $\beta(b) = b$ for every element $b \in B$. For $c \in k^*$, set

$$M_c = \{ w \in A \mid \beta(w) = cw \},\$$

and let

$$\Phi = \{ c \in k^* \mid M_c \neq (0) \}.$$

LEMMA 2.7. The following assertions hold:

- (1) $\Phi = \{a^l \mid l \ge 0\}.$
- (2) $M_{a^l} = Bu^l$ for every $l \ge 0$.
- (3) $A = \bigoplus_{l>0} M_{a^l} \cong B[u].$

PROOF. By Lemma 2.6, $A \otimes_B K = K[u]$. Suppose $w \in M_c$. Then $w = \xi u^l$ for some $\xi \in K$ and $l \ge 0$. Hence $c = a^l$ for some $l \ge 0$. This implies that

$$\boldsymbol{\Phi} = \{a^l \mid l \ge 0\}.$$

Write $\xi = z_2/z_1$ with $z_1, z_2 \in B$. Then we have

$$(*) z_1 w = z_2 u^l \,.$$

Note that u is an irreducible element of A. Suppose u is a factor of z_1 and write $z_1 = uz'_1$. Then $\beta(z'_1) = a^{-1}z'_1$. So, $a^{-1} \in \Phi$, i.e., $a^{-1} = a^m$ with $m \ge 0$. Hence $a^{m+1} = 1$, a contradiction. So, u^l divides w in the equality (*). Hence $\xi \in A \cap K = B$. Namely, $w \in Bu^l$. It then follows that $M_c = Bu^l$, where $c = a^l$.

Now we shall show that $A = \bigoplus_{l \ge 0} M_{a^l}$. Let w be anew any nonzero element of A. Since β is diagonalizable, we have

$$w = c_1 w_1 + \dots + c_r w_r$$

with $\beta(w_i) = a_i w_i$ and $a_i \in \Phi$. So, $w \in \bigoplus_{l \ge 0} M_{a^l}$. Hence $A \subseteq \bigoplus_{l \ge 0} M_{a^l}$. The converse inclusion $\bigoplus_{l>0} M_{a^l} \subseteq A$ is clear. Q.E.D.

Summarizing the above lemmas, we have shown the following result:

THEOREM 2.8. Let X = Spec A be a nonsingular affine variety of dimension n with Pic X = (0) and $A^* = k^*$. Let W be an irreducible hypersurface of X and β a nontrivial automorphism of X of infinite order. Assume that

(i) β leaves W pointwise fixed, and

(ii) β is diagonalizable.

Then $X \cong W \times A^1$. Hence W is a coordinate hyperplane after a suitable change of coordinates of X if W is isomorphic to A^{n-1} , and X is accordingly isomorphic to A^n .

Hence Theorem 2.8 implies the next result:

COROLLARY 2.9. Let $X = A^3$ be the affine space of dimension 3. Let W be an irreducible hypersurface of X and β a nontrivial automorphism of X of infinite order. Assume that

(i) β leaves W pointwise fixed, and

(ii) β is diagonalizable.

Then $X \cong W \times A^1$ and W is a coordinate hyperplane after a suitable change of coordinates.

PROOF. If X is the affine space of dimension 3, the cancellation theorem (cf. [12]) implies that W is isomorphic to the affine plane A^2 . Hence W becomes a coordinate plane after a suitable choice of the coordinates. Q.E.D.

REMARK. Theorem 2.8 shows that an automorphism β on X extends to a G_m -action on X which has W as the fixed-point locus. In fact, the property of β being diagonalizable is immediate if β extends to a G_m -action. We do not know, in general, under which conditions β extends to a G_m -action.

As stated in the introduction, we obtain an algebraic characterization of the affine space of dimension 3.

THEOREM 2.10. Let X = Spec A be a nonsingular affine threefold. Then X is the affine space of dimension 3 if and only if the following conditions are satisfied:

(1) $\operatorname{Pic}(X) = (0)$ and $A^* = k^*$.

(2) There exist an irreducible hyperplane W and a nontrivial automorphism β of X of infinite order such that

- (a) β leaves W pointwise fixed,
- (b) β is diagonalizable,
- (c) W has Kodaira dimension $-\infty$.

PROOF. Suppose X is the affine space of dimension 3 with the coordinates x, y, z. Then we can take a linear hyperplane x = 0 as W and an automorphism β defined by $\beta(x) = ax$, $\beta(y) = y$ and $\beta(z) = z$ with some $a \in k^*$ which is not a root of unity. We shall show the converse. By Theorem 2.8, $X \cong W \times A^1$. Write W = Spec B. Then Pic(W) = (0) and $B^* = k^*$. If W has Kodaira dimension $-\infty$, then $W \cong A^2$ (cf. [12]). Hence $X \cong A^3$.

Q.E.D.

We note that there is an algebraic characterization of the affine space of dimension 3 obtained by the second author [13]. The hypersurface W has Kodaira dimension $-\infty$, for example, provided there is a G_a -action commuting with the given automorphism β .

3. An algebro-topological characterization of the affine plane. In the present and next sections, W is an irreducible subvariety in a non-singular affine variety X of codimension two such that W is the fixed-point locus under a given effective G_m -action on X. A closed orbit O is called a *multiple orbit* if the isotropy group is a nontrivial finite group. We consider first the case where X is a surface and W is a point P. Considering the tangential representation of G_m at the point P, let a and b be the weights. Then $ab \neq 0$ because the fixed-point locus consists only of P. We have the *unmixed* case ab > 0 and the *mixed* case ab < 0. We obtain the following algebro-topological characterization of the affine plane.

THEOREM 3.1. Let X be a nonsingular affine surface with an effective G_m -action. Assume that the fixed-point locus consists of a single point P. If one of the following conditions is satisfied, X is then isomorphic to the affine plane.

(1) The G_m -action is unmixed.

(2) The G_m -action is mixed and X is a homology plane.

(3) The G_m -action is mixed, the algebraic quotient $T := X//G_m$ is a curve isomorphic to the affine line and any closed orbit is not a multiple orbit.

PROOF. (1) If the G_m -action is unmixed, the result is immediate by [2]. An elementary proof is given as follows. We may assume that a > 0 and b > 0. Let A be the coordinate ring of X. Then A is a graded k-algebra

$$A=\bigoplus_{i\geq 0}A_i.$$

Let $A^+ = \bigoplus_{i>0} A_i$. The fixed-point locus is defined by the ideal A^+ . Hence $A_0 = A/A^+ = k$, where k is the ground field. By the hypothesis, $A^+/(A^+)^2 = k\bar{x} + k\bar{y}$ with G_m -action given by

$$t \cdot \bar{x} = t^a \bar{x}, \quad t \cdot \bar{y} = t^b \bar{y}.$$

By the complete reducibility of the G_m -action, we find elements $x \in A_a$ and $y \in A_b$ such that $t \cdot x = t^a x$ and $t \cdot y = t^b y$.

We shall show that A is generated over k by these elements x and y. The proof proceeds by induction on the weight of each element of A. Let z be an element of A. We may assume that z is homogeneous because z is a sum of homogeneous elements. Then the residue class \overline{z} of z by $(A^+)^2$ is a linear combination

$$\overline{z} = c\overline{x} + d\overline{y}$$
 with $c, d \in k$.

Hence $z - (cx + dy) \in (A^+)^2$. So, we may write

$$z - (cx + dy) = \sum_i z_i z'_i \,,$$

where $z_i, z'_i \in A^+$ are homogeneous elements with $\deg(z_i) < \deg(z)$ and $\deg(z'_i) < \deg(z)$. Here the degree of each element is the one in the graded ring A. Hence it is the weight of a semi-invariant element. By the induction hypothesis, we may assume that $z_i, z'_i \in k[x, y]$. Then $z \in k[x, y]$. Thus A = k[x, y] and X is isomorphic to the affine plane A^2 .

(2) Note that X is then a homology plane with A_*^1 -fibration. Since the G_m -action is mixed, by [2], there exist two curves C_1 and C_2 isomorphic to A^1 and meeting each other transversally in the point P. By a general result on the number of the lines contained in a homology plane [15, Theorem 13], we conclude that X is isomorphic to the affine plane A^2 .

(3) Since the G_m -action is mixed, as in the case (2) above, there are two affine lines C_1, C_2 meeting transversally in P. Let $\pi : X \to T$ be the quotient morphism, and let a_1, a_2 be the multiplicities of C_1, C_2 in the fiber $\pi^{-1}(Q)$, where $Q = \pi(P)$. We claim that $d := \gcd(a_1, a_2) = 1$. Suppose otherwise that d > 1. Choose a parameter t of T so that Q is defined by t = 0. Let $T' \to T$ be the branched covering of degree d which totally ramifies at the point Q and the point at infinity. Then T' is the affine line. Let X' be the normalization of the fiber product $T' \times_T X$. Then $X' \to X$ is étale, the projection $\pi_{T'}: X' \to T'$ is an A_*^1 -fibration, and the fiber $\pi_{T'}^{-1}(Q')$ is a disjoint sum of d copies of $a'_1C'_1 + a'_2C'_2$, where C'_1 and C'_2 are affine lines meeting transversally in one point and $a'_i = a_i/d$ for i = 1, 2. This is, however, impossible by [14, Lemma 4]. So, d = 1.

We shall next show that $\pi_1(X) = (1)$. For this purpose, set $X_1 = X - C_2$ and $X_2 = X - C_1$. Let $p_i := \pi |_{X_i} : X_i \to T$ and $C_i^* = C_i - \{P\}$ for i = 1, 2. By the hypothesis that any closed orbit is not a multiple orbit, $p_i : X_i \to T$ is then an A_*^1 -fibration with only one singular fiber which is $a_i C_i^*$. Consider $p_1 : X_1 \to T$, and let $T_1 \to T$ be the branched covering of degree a_1 which totally ramifies at the point Q and the point at infinity. Let X'_1 be the normalization of $T_1 \times_T X_1$. Then $(p_1)_{T_1} : X'_1 \to T_1$ is an A_*^1 -bundle over T_1 . Indeed, the natural morphism $X'_1 \to X_1$ is a finite étale covering and the inverse image of the multiple

fiber $a_1C_1^*$ is a reduced fiber of the A_*^1 -fibration $X'_1 \to T_1$, which consists of several connected components isomorphic to A_*^1 . By [14, Lemma 4], it consists of only one connected reduced fiber isomorphic to A_*^1 . So, $X'_1 \to T_1$ is an A_*^1 -bundle over T_1 . Since any A_*^1 -bundle over the affine line T_1 is trivial, we have $\pi_1(X'_1) \cong \pi_1(A_*^1) \cong \mathbb{Z}$. Since $X'_1 \to X_1$ is a cyclic étale covering of degree a_1 , we obtain an exact sequence:

$$\pi_1(C_1^*) \to \pi_1(X_1) \to \mathbf{Z}/m_1\mathbf{Z} \to 0,$$

where $m_1 | a_1$. (We may apply also a result of Nori [19] to $(p_1)_{T_1} : X'_1 \to T_1$ to obtain the above exact sequence.) This yields an exact sequence

$$\pi_1(C_1) \to \pi_1(X) \to \mathbf{Z}/m\mathbf{Z} \to 0$$

with $m | a_1$ because the natural homomorphism $\pi_1(X_1) \to \pi_1(X)$ is a surjection. Similarly, we have an exact sequence

$$\pi_1(C_2) \to \pi_1(X) \to \mathbf{Z}/n\mathbf{Z} \to 0$$
,

where $n \mid a_2$. Since $gcd(a_1, a_2) = 1$, we end up with a surjection

$$\pi_1(C_1\cup C_2)\to \pi_1(X)\to 0.$$

Since $C_1 \cup C_2$ is simply connected, we have $\pi_1(X) = (1)$. On the other hand, it is easy to see that the Euler number e(X) = 1. Hence X is a contractible surface. Since X contains two affine lines, X is isomorphic to the affine plane (cf. [15, Theorem 13]). Q.E.D.

REMARK. In the unmixed case, we have only to assume that X is a reduced algebraic k-scheme with a G_m -action and that P is the unique fixed point at which X is nonsingular. In fact, let Q be an arbitrary point of X. Then the closure of the G_m -orbit $\overline{G_m \cdot Q}$ passes through the point P. Hence the orbit $G_m \cdot Q$ contains a nonsingular point, whence Q is nonsingular on X.

4. The affine 3-space as an acyclic threefold. We extend the unmixed case of Theorem 3.1 to the higher-dimensional case.

LEMMA 4.1. Let X be a reduced affine algebraic k-scheme and let W be an irreducible closed subscheme of X of codimension two. Suppose the algebraic torus G_m acts on X in such a way that W is the fixed-point locus. Furthermore, assume that W is nonsingular and X is nonsingular near W. We assume that every orbit of a point not in W is non-closed. Then X is an A^2 -bundle over W.

PROOF. Note that the hypothesis implies the smoothness of X. Let A be the coordinate ring of X. Then we may assume that A is a graded ring

$$A = \bigoplus_{i \ge 0} A_i \, .$$

Then A_0 is the coordinate ring of W. Let P be a point of W and \underline{p} the prime ideal of A_0 corresponding to P. Then $A_P := A \otimes_{A_0} A_0/\underline{p}$ is the coordinate ring of the fiber $\pi^{-1}(P)$, where $\pi : X \to W$ is the morphism associated with the inclusion $A_0 \hookrightarrow A$. By Theorem

3.1 and the subsequent remark, $\pi^{-1}(P)$ is nonsingular and is isomorphic to A^2 . Now X is nonsingular and is an A^2 -bundle over W by [2]. Q.E.D.

The arguments using the acyclicity and a G_m -action lead us to an algebro-topological characterization of the affine 3-space among the acyclic threefolds.

THEOREM 4.2. Let X be a nonsingular affine threefold defined over the complex field C. Then X is isomorphic to the affine 3-space A^3 if and only if the following conditions are satisfied:

(1) X is acyclic and endowed with an effective G_m -action.

(2) There exists a nonsingular irreducible subvariety W of codimension two which is the fixed-point locus under the given G_m -action.

(3) X has the logarithmic Kodaira dimension $\bar{\kappa}(X) = -\infty$.

The subvariety W then becomes a coordinate line.

PROOF. The "only if" part is clear. We have only to consider a G_m -action on $A^3 =$ Spec k[x, y, z] given by

$$t \cdot (x, y, z) = (tx, ty, z)$$
 or $t \cdot (x, y, z) = (t^{-1}x, ty, z)$,

where $t \in G_m$. So, we prove the "if" part. Our proof consists of several steps.

STEP (I). W is an affine line and any closed orbit has the trivial isotropy group unless it is a fixed point.

Indeed, let p be a prime number and H_n the subgroup of G_m consisting of p^n -th roots of the unity. Let W_n be the fixed-point locus of X under the induced H_n -action. Then W_n is a closed subset and $W = \bigcap_{n\geq 1} W_n$. Hence $W = W_n$ for some n > 0. By the Smith theory applied to the H_n -action on X with p varying, it follows from the acyclicity of X that W_n is connected and acyclic. Since W is a curve, W is then an affine line. Suppose that there exists a closed orbit $O = G_m \cdot P$ with a nontrivial finite isotropy group G. Let p be a prime number dividing the order of G. Again, by the Smith theory, the acyclicity of X implies that the fixed-point locus under the H_1 -action on X is connected. Hence we may assume that there exists an irreducible subvariety, say V, of codimension one such that V contains W and the orbit O and that V is left pointwise fixed by H_1 . Let P be a point of W and let $t \cdot (u, v, w) = (t^a u, t^b v, w)$ be the induced G_m -action on the tangent space $T_{X,P}$ (cf. the step (II) below). Since W is contained in V, it follows that p divides both a and b. Then G_m acts non-effectively on an open neighborhood of P, hence everywhere on X. This is a contradiction on the effectiveness of the G_m -action. So, we conclude that there are no multiple orbits.

STEP (II). Let P be a point of W and let a, b be the weights of the induced representation of G_m on the tangent space $T_{X,P}$. Namely, after diagonalizing the representation, it is given as

$$t \cdot (u, v, w) = (t^a u, t^b v, w).$$

Then the weights a, b are independent of the choice of P, and gcd(a, b) = 1. Furthermore, if ab > 0, then X is isomorphic to the affine 3-space A^3 .

Indeed, by Luna [10, Lemme, p. 96], there exists a G_m -equivariant morphism $\varphi : X \to T_{X,P}$ such that φ is étale in P and $\varphi(P) = 0$. Then we may assume that the affine line W is mapped isomorphically to the *w*-axis according to the above notation. Then the tangential actions of G_m at the points on W near P are the same as the one at the point P. So, the weights a, b are constant in a neighborhood of the point P on W. Since W is connected, they are constant on W. Suppose gcd(a, b) = d > 1. This implies that there exists an orbit whose isotropy group is a finite nontrivial group. But this is not the case by Step (I). If ab > 0, then X is an A^2 -bundle by [2]. Since W is isomorphic to A^1 , the A^2 -bundle is trivial, and X is isomorphic to $A^1 \times A^2 \cong A^3$.

Hereafter we assume that ab < 0 and call the G_m -action mixed.

STEP (III). Let Y be the quotient variety $X//G_m$ and $\pi : X \to Y$ the quotient morphism. Then we have:

- (1) Y is a nonsingular, acyclic surface,
- (2) $\pi \mid_{W} : W \to \pi(W)$ is an isomorphism and $\pi(W)$ is a closed subvariety of Y,
- (3) *Y* is an affine plane and $\pi(W)$ is a coordinate line.

With the notations in Step (II), we may and shall assume that a > 0 and b < 0. Then the completion of the local ring $\mathcal{O}_{Y,\pi(P)}$ is isomorphic to $C[[u^{-b}v^a, w]]$. It then follows that π embeds W in Y as a nonsingular closed subvariety and that Y is nonsingular near $\pi(W)$. This proves the assertion (2). The smoothness of Y follows from Luna's étale slice theorem [10] if one notes that every closed orbit has a trivial isotropy group unless it is a fixed point. The acyclicity of Y follows from [9]. This proves the assertion (1). For the proof of the assertion (3), we apply Kawamata's addition theorem [8] for $\pi : X \to Y$

$$\bar{\kappa}(X) \geq \bar{\kappa}(F) + \bar{\kappa}(Y) \,,$$

where *F* is a general closed orbit. Since *F* is isomorphic to G_m , we have $\bar{\kappa}(F) = 0$. Since $\bar{\kappa}(X) = -\infty$ by the hypothesis, it follows that $\bar{\kappa}(Y) = -\infty$. Then *Y* is an affine plane [15]. By a theorem of Abhyankar-Moh-Suzuki (cf. [11]), $\pi(W)$ is a coordinate line in *Y*. We write $Y = \text{Spec } C[\xi, \eta]$ with $\pi(W)$ defined by $\eta = 0$.

STEP (IV). Let $\rho : X \to \pi(W)$ be the composite of π and the projection $(\xi, \eta) \mapsto \xi$ from Y to $\pi(W)$. Let Q be a point of $\pi(W)$, $Z = \rho^{-1}(Q)$ the fiber over Q, and let P be the intersection point of Z and W. Then the following assertions hold:

(1) Z is a nonsingular affine surface with a G_m -action.

(2) The point P is the unique fixed point on Z and the induced G_m -action on the tangent space $T_{Z,P}$ has weights a, b.

(3) Z has no multiple orbits.

Let *L* be the line $\xi = \xi(Q)$ on *Y*. Consider $\pi \mid_Z : Z \to L$. Since π is a smooth morphism outside $\pi(W) \subset Y$, *Z* is nonsingular outside $\pi^{-1}(Q)$. With the notations in (II) and (III), we may assume that $\xi = w$ near the point *Q* and that *Z* is a hypersurface $u^{-b}v^a = \eta$

in the (u, v, η) -space near the point *P*. Then it follows that *P* is a nonsingular point of *Z*. Note that $\pi^{-1}(Q)$ is a union of two affine lines meeting at the point *P* and that two affine lines with the point *P* removed off are the G_m -orbits. Hence it follows that *Z* is nonsingular along $\pi^{-1}(Q)$. This proves the assertion (1). The assertion (2) is now clear. The assertion (3) follows from the corresponding property of *X*.

STEP (V). By the step (IV) and Theorem 3.1, we know that each fiber of $\rho : X \rightarrow \pi(W)$ is the affine plane. By Sathaye [21], it is then an A^2 -bundle. Since any A^2 -bundle over the affine line is trivial, we conclude that X is isomorphic to the affine 3-space.

This completes the proof of Theorem 4.2.

REFERENCES

- [1] H. AOKI, Étale endomorphisms of smooth affine surfaces, J. Algebra, to appear.
- [2] A. BIALYNICKI-BIRULA, Some theorems on the actions of algebraic groups, Ann. of Math. 98 (1973), 480–497.
- [3] J. FOGARTY, Fixed point schemes, Amer. J. Math. 95 (1973), 35-51.
- [4] T. FUJITA, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 503-566.
- [5] R. V. GURJAR AND M. MIYANISHI, On contractible curves in the complex affine plane, Tôhoku Math. J. 48 (1996), 459–469.
- [6] S. IITAKA, Algebraic Geometry, Grad. Texts in Math. 76, Springer, New York-Berlin, 1982.
- [7] Y. KAWAMATA, On the classification of non-complete algebraic surfaces, Proc. Copenhagen summer meeting in algebraic geometry, 215–232, Lecture Notes in Math. 732, Springer, Berlin, 1979.
- [8] Y. KAWAMATA, Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one, Int. Symp. on Algebraic Geometry, Kyoto, 207–217, Kinokuniya, Tokyo, 1977.
- [9] H. KRAFT, T. PETRIE AND R. RANDALL, Quotient varieties, Adv. in Math. 74 (1989), 145–162.
- [10] D. LUNA, Slices étales, Bull. Soc. Math. France Mémoire 33 (1973), 81-105.
- M. MIYANISHI, Curves on rational and unirational surfaces, Tata Inst. Fund. Res. Lectures on Math. and Phys. 60, the Narosa Publishing House, New Delhi, 1978.
- [12] M. MIYANISHI, Non-complete algebraic surfaces, Lecture Notes in Math. 857, Springer, New York-Berlin, 1981.
- [13] M. MIYANISHI, An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), 1469–1486.
- [14] M. MIYANISHI, Etale endomorphisms of algebraic varieties, Osaka J. Math. 22 (1985), 345–364.
- [15] M. MIYANISHI, Recent topics on open algebraic surfaces, Amer. Math. Soc. Transl. Ser. 2, 172 (1996), 61-76.
- [16] M. MIYANISHI AND T. SUGIE, Generically rational polynomials, Osaka J. Math. 17 (1980), 339–362.
- [17] M. NAGATA, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965.
- [18] M. NAGATA, Local rings, John Wiley, New York-London, 1962.
- [19] M. NORI, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), 305-344.
- [20] H. SAITO, Fonctions entières qui se reduisent à certains polynômes, I, Osaka J. Math. 9 (1972), 293-332.
- [21] A. SATHAYE, Polynomial ring in two variables over a D.V.R.: A criterion, Invent. Math. 74 (1983), 159-168.

DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICS
HIMEJI INSTITUTE OF TECHNOLOGY	GRADUATE SCHOOL OF SCIENCE
2147 Shosha	Osaka University
Німејі 671–2201	1–1 ΜΑСΗΙΚΑΝΕΥΑΜΑ-CHO
JAPAN	Тоуолака 560–0043
E-mail address: kayo@sci.himeji-tech.ac.jp	JAPAN

E-mail address: miyanisi@math.sci.osaka-u.ac.jp