# INVARIANT SUBVARIETIES OF LOW CODIMENSION IN THE AFFINE SPACES 

Kayo Masuda and Masayoshi Miyanishi

(Received June 8, 1998, revised January 26, 1999)


#### Abstract

Let $W$ be an irreducible subvariety of codimension $r$ in a smooth affine variety $X$ of dimension $n$ defined over the complex field $\boldsymbol{C}$. Suppose that $W$ is left pointwise fixed by an automorphism of $X$ of infinite order or by a one-dimensional algebraic torus action on $X$. In the present article, we consider whether or not $X$ is then an affine space bundle over $W$ of fiber dimension $n-r$. Our results concern the case $r=1$ or the case $r=2$ and $n \leq 3$. As by-products, we obtain algebro-topological characterizations of the affine 3 -space.


0. Introduction. Let $k$ be an algebraically closed field of characteristic zero, which we fix as the ground field throughout the present article and assume to be the complex field $\boldsymbol{C}$ whenever we have to depend on the topological arguments. Let $\beta$ be an algebraic automorphism of the affine space $\boldsymbol{A}^{n}$ of dimension $n$ and $W$ an irreducible hypersurface of $\boldsymbol{A}^{n}$. We call $W$ a coordinate hyperplane if there exists a system of coordinates $\left\{x_{1}, \ldots, x_{n}\right\}$ of $\boldsymbol{A}^{n}$ such that $W$ is defined by $x_{1}=0$. We first pose the following question:

Question. If $\beta$ is of infinite order and leaves $W$ pointwise fixed, is $W$ a coordinate hyperplane after a suitable change of coordinates on $\boldsymbol{A}^{n}$ ?

Indeed, the answer is affirmative if $n=2$ (see Corollary 1.10).
We consider the question in the case $n=3$ with an additional hypothesis. Namely, we prove the following (see Corollary 2.9):

Theorem. Suppose $n=3$. If $\beta$ is diagonalizable (see Section 2 below for the definition), then $W$ is a coordinate hyperplane after a suitable change of coordinates on $\boldsymbol{A}^{3}$.

As a by-product, we obtain the following algebraic characterization of the affine space of dimension 3 (see Theorem 2.10).

Theorem. Let $X=\operatorname{Spec} A$ be a nonsingular affine threefold. Then $X$ is isomorphic to the affine space of dimension 3 if and only if the following conditions are satisfied:
(1) Pic $X=(0)$ and $A^{*}=k^{*}$, where $A^{*}$ is the set of invertible elements of $A$.
(2) There exist an irreducible hypersurface $W$ of $X$ and a diagonalizable automorphism $\beta$ of infinite order such that $\beta$ leaves $W$ pointwise fixed and that $W$ has Kodaira dimension $-\infty$.

We next consider the case of codimension two. Let $W$ be an irreducible subvariety of codimension 2 in a nonsingular affine variety $X$ of dimension $n$ defined over the complex field

[^0]$\boldsymbol{C}$. Suppose that a one-dimensional algebraic torus $G_{m}$ acts on $X$ in such a way that $W$ is the fixed-point locus $X^{G_{m}}$. Our main result in the codimension two case is Theorem 4.2, which characterizes the affine 3 -space among the acyclic affine threefolds. In this article, we say that a nonsingular algebraic variety $X$ is acyclic if all the reduced integral homology groups of $X$ vanish. An acyclic surface is called a homology plane.

We are indebted to R. V. Gurjar for various suggestions and ideas in Sections 3 and 4, especially the proof of Theorem 3.1.

1. The case $n=2$. Let $C$ be an irreducible curve on the affine plane $\boldsymbol{A}^{2}=\operatorname{Spec} k[x, y]$ and $f \in k[x, y]$ an element which generates the defining ideal of $C$. Let $X$ be the complement of $C$ in $A^{2}$. So, $X=\operatorname{Spec} k\left[x, y, f^{-1}\right]$. Let $\beta$ be an algebraic automorphism of $A^{2}$ of infinite order which stabilizes the curve $C$, i.e., $\beta(C)=C$. Then $\beta$ induces an automorphism on $X$ and on the coordinate ring $k\left[x, y, f^{-1}\right]$ of $X$. We denote the induced $k$-algebra automorphism of $k\left[x, y, f^{-1}\right]$ by the same symbol $\beta$. We denote by $\bar{\kappa}(X)$ the Kodaira dimension of $X$. First of all, we note the following result (cf. Iitaka [6, Theorem 11.12]).

Lemma 1.1. If $\bar{\kappa}(X)=2$, then $\operatorname{Aut}(X)$ is a finite group.
Since $X$ has an automorphism $\beta$ of infinite order, it follows that $\bar{\kappa}(X) \leq 1$.
Lemma 1.2. If $\bar{\kappa}(X)=-\infty$, then $f=x$ after a suitable change of coordinates. The automorphism $\beta$ is written as

$$
\beta(x)=a x, \quad \beta(y)=b y+g(x)
$$

with $a, b \in k^{*}$ and $g(x) \in k[x]$.
Proof. Since $\bar{\kappa}(X)=-\infty$, there exists an $\boldsymbol{A}^{1}$-fibration $\varphi^{\prime}: X \rightarrow B^{\prime}$, which extends naturally to an $A^{1}$-fibration $\varphi: \boldsymbol{A}^{2} \rightarrow B$, where $B^{\prime}$ is an open set of a smooth curve $B$. Then the curve $C$ is contained in a fiber of $\varphi$. Hence $C$ is isomorphic to $\boldsymbol{A}^{1}$, since every fiber of $\varphi$ is a disjoint union of finitely many smooth components which are isomorphic to $\boldsymbol{A}^{1}$ (cf. [12, Lemma 4.4]). By a theorem of Abhyankar-Moh-Suzuki (cf. [11]), we may and shall put $f=x$ after a change of coordinates. Since $\beta(C)=C$, it follows that $\beta(x)=a x$ with $a \in k[x, y]$. Since $\beta^{-1}(C)=C$, we have $\beta^{-1}(x)=b x$ with $b \in k[x, y]$. Then $a$ is an invertible element of $k[x, y]$, i.e., $a \in k^{*}$. Write

$$
\beta(y)=g_{0}(x) y^{n}+g_{1}(x) y^{n-1}+\cdots+g_{n}(x)
$$

with $g_{i}(x) \in k[x]$. Considering the Jacobian determinant $J$ of $\beta(x), \beta(y)$ with respect to $x, y$, we have

$$
J=a\left(n g_{0}(x) y^{n-1}+\cdots+g_{n-1}(x)\right) \in k^{*} .
$$

This implies that $n=1$ and $g_{0}(x)=b \in k^{*}$. So we are done.
Q.E.D.

Lemma 1.3. Suppose $\bar{\kappa}(X)=0$ and $X$ is NC-minimal (see [4] for the definition). Then $f=x y+1$ after a suitable change of coordinates. The automorphism $\beta$ is written as

$$
\beta(x)=a x, \beta(y)=a^{-1} y \quad \text { or } \quad \beta(x)=a y, \beta(y)=a^{-1} x
$$

with $a \in k^{*}$.

Proof. By Fujita [4, (8.13), (8.64)], $X$ is isomorphic to either $\boldsymbol{P}^{2}-\left(\ell_{1}+\ell_{2}+\ell_{3}\right)$ with non-confluent lines $\ell_{1}, \ell_{2}, \ell_{3}$ or $\boldsymbol{P}^{2}-(C+\ell)$ with a smooth conic $C$ and a line $\ell$ meeting each other in two distinct points. In the former case, $X$ is isomorphic to $\boldsymbol{A}_{*}^{1} \times \boldsymbol{A}_{*}^{1}$, where $\boldsymbol{A}_{*}^{1}$ denotes the affine line $\boldsymbol{A}^{1}$ with one point deleted off and the reduced multiplicative group $\Gamma(X)^{*} / k^{*}$ is a free abelian group of rank two, where $\Gamma(X)$ is the coordinate ring of $X$. Meanwhile, since $\Gamma(X)=k\left[x, y, f^{-1}\right]$ with an irreducible element $f, \Gamma(X)^{*} / k^{*}$ has rank one. So, the latter case takes place. Then $f=x y+1$ after a suitable change of coordinates. We shall determine the automorphism $\beta$. Since $\beta(f)=c f$ with $c \in k^{*}$, we have

$$
\beta(x) \beta(y)+1=c(x y+1)
$$

or

$$
\beta(x) \beta(y)=c x y+(c-1)
$$

where the right side is irreducible unless $c=1$. So, $c=1$ and $\beta(x) \beta(y)=x y$. The result follows readily from the unique irreducible decomposition of $\beta(x) \beta(y)$.
Q.E.D.

If $X$ is not $N C$-minimal and $\bar{\kappa}(X)=0$, then $X$ is obtained from an $N C$-minimal one by applying the sub-divisional blowing-ups or half-point attachments (cf. [4]). Then it is easy to see that $X$ has an $\boldsymbol{A}_{*}^{1}$-fibration. In the case of $\bar{\kappa}(X)=1$, by Kawamata's theorem [7, 12], $X$ has an $\boldsymbol{A}_{*}^{1}$-fibration. So we consider the case where $X$ has an $\boldsymbol{A}_{*}^{1}$-fibration $\rho: X \rightarrow B$. Considering the possible extensions of $\rho$ on $\boldsymbol{A}^{2}$ and also making use of the classification of the standard forms of generically rational polynomials with two places at infinity (cf. [20,16]), we have the following result (see [1] for the detail).

LEMMA 1.4. Let $X$ be the complement in $\boldsymbol{A}^{2}$ of an irreducible curve $C$ defined by $f=0$. Suppose that $\bar{\kappa}(X) \geq 0$ and $X$ has an $\boldsymbol{A}_{*}^{1}$-fibration $\rho: X \rightarrow B$. Then, after a suitable change of coordinates, the polynomial f is written in one of the following forms:
(I) Case where the given $\boldsymbol{A}_{*}^{1}$-fibration $\rho: X \rightarrow B$ extends to an $\boldsymbol{A}_{*}^{1}$-fibration $\tilde{\rho}:$ $\boldsymbol{A}^{2} \rightarrow \tilde{B}:$
(1) $f=x^{m} y^{n}+1$, where $m, n>0$ and $\operatorname{gcd}(m, n)=1$. In this case, $B \cong A_{*}^{1}$ and $\tilde{B} \cong \boldsymbol{A}^{1}$.
(2) $f=x^{m}\left(x^{l} y+p(x)\right)^{n}+1$, where $l, m, n>0, \operatorname{gcd}(m, n)=1$ and $p(x) \in k[x]$ with $\operatorname{deg} p(x)<l$ and $p(0) \neq 0$. In this case, $B \cong A_{*}{ }^{1}$ and $\tilde{B} \cong A^{1}$.
(II) Case where the given $\boldsymbol{A}_{*}{ }^{1}$-fibration $\rho: X \rightarrow B$ is not extended to an $A_{*}{ }^{1}$-fibration on $\boldsymbol{A}^{2}$ :
(3) $f=a_{0}(x) y+a_{1}(x)$, where $a_{0}(x), a_{1}(x) \in k[x], \operatorname{gcd}\left(a_{0}(x), a_{1}(x)\right)=1, \operatorname{deg} a_{1}(x)$ $<\operatorname{deg} a_{0}(x)$ and $a_{0}(x)$ has two or more distinct linear factors. In this case, the $\boldsymbol{A}_{*}{ }^{1}$-fibration $\rho: X \rightarrow B$ extends to an $\boldsymbol{A}^{1}$-fibration $\tilde{\rho}: \boldsymbol{A}^{2} \rightarrow \tilde{B}$, where $B=\tilde{B} \cong A^{1}$.
(4) $f=x^{m}-y^{n}$ with $m, n>0$ and $\operatorname{gcd}(m, n)=1$. In this case, the closures of the fibers of the $\boldsymbol{A}_{*}^{1}$-fibration $\rho: X \rightarrow B$ form a linear pencil $\left\{x^{m}-\lambda y^{n}\right\}$ parametrized by $\lambda \in \boldsymbol{P}^{1}=k \cup\{\infty\}$, which has the point of origin as a base point. Furthermore, $B \cong \boldsymbol{A}^{1}$.

Note that the case (4) above is obtained by Lin-Zaidenberg's theorem [5] which asserts that an irreducible curve $C$ on $\boldsymbol{A}^{2}$, defined over the complex field $\boldsymbol{C}$, which is topologically contractible is defined by $x^{m}=y^{n}$ in terms of a suitable system of coordinates $\{x, y\}$ on $\boldsymbol{A}^{2}$. We shall look into the automorphism $\beta$ in each of the above four cases.

Lemma 1.5. In the case (1) in Lemma 1.4, an automorphism $\beta$ stabilizing the curve $C$ is written as

$$
\beta(x)=a x, \quad \beta(y)=b y
$$

with $a, b \in k^{*}$ and $a^{m} b^{n}=1$. We can write $a=u^{n}, b=\zeta^{m} u^{-m}$ with $u \in k^{*}$ and an mn-th root of unity $\zeta$. So, $\beta$ is of finite order if and only if $u$ is a root of unity.

Proof. As in the proof of Lemma 1.3, we have

$$
\beta(x)^{m} \beta(y)^{n}+1=c\left(x^{m} y^{n}+1\right)
$$

with $c \in k^{*}$. So,

$$
\beta(x)^{m} \beta(y)^{n}=c x^{m} y^{n}+(c-1),
$$

where the right side is irreducible unless $c=1$. Hence $c=1$ and $\beta(x)^{m} \beta(y)^{n}=x^{m} y^{n}$. Since $\operatorname{gcd}(m, n)=1$, we have

$$
\beta(x)=a x, \beta(y)=b y \quad \text { with } \quad a, b \in k^{*},
$$

where $a^{m} b^{n}=1$. The rest of the assertion is readily verified.
Q.E.D.

Lemma 1.6. In the case (2) of Lemma 1.4, an automorphism $\beta$ stabilizing the curve $C$ is written as

$$
\beta(x)=a x, \quad \beta(y)=a^{-l} y
$$

with $a^{m}=1$. So, $\beta$ is of finite order.
Proof. Note that $x^{l} y+p(x)$ is an irreducible polynomial. Write

$$
p(x)=c_{0} x^{l-1}+c_{1} x^{l-2}+\cdots+c_{l-1}
$$

with $c_{l-1} \neq 0$. As in the proof of Lemmas 1.3 and 1.5 , we have

$$
\beta(x)^{m}\left(\beta(x)^{l} \beta(y)+p(\beta(x))\right)^{n}=x^{m}\left(x^{l} y+p(x)\right)^{n} .
$$

Since $\operatorname{gcd}(m, n)=1$, we have $\beta(x)=a x$ with $a \in k^{*}$, and

$$
a^{m / n}\left(a^{l} x^{l} \beta(y)+p(a x)\right)=\zeta\left(x^{l} y+p(x)\right),
$$

where $\zeta^{n}=1$. Hence it follows that

$$
a^{l+m / n} \beta(y)=\zeta y, \quad \text { i.e., } \beta(y)=a^{-(l+m / n)} \zeta y .
$$

Furthermore, by comparing constant terms, we have

$$
a^{m / n} c_{l-1}=\zeta c_{l-1}, \quad \text { i.e., } a^{m / n}=\zeta,
$$

whence $a^{m}=1$, and $\beta(x)=a x, \beta(y)=a^{-l} y$. Then $\beta^{m}=1$, and $\beta$ is of finite order.
Q.E.D.

Lemma 1.7. In the case (3) in Lemma 1.4, an automorphism $\beta$ stabilizing the curve $C$ is of finite order.

Proof. Note that $\bar{\kappa}(X)=1$ (cf. [1, Lemma 3.11]) and that the $\boldsymbol{A}_{*}^{1}$-fibration $\rho: X \rightarrow$ $B$ is canonical for the surface $X$ in the sense that it is determined by a $\log$ pluri-canonical system $\left|n\left(D+K_{V}\right)\right|$ for $n \gg 0$, if $(V, D)$ is a smooth compactification of $X$ with boundary divisor $D$ of simple normal crossings. Hence the automorphism $\beta$ preserves the $\boldsymbol{A}_{*}^{1}$-fibration $\rho$ (cf. [1, Lemma 3.3] for the detail). This implies that a fiber $x=\lambda$ of $\rho$ is transformed to a fiber $x=\mu$. Namely,

$$
\beta(x-\lambda)=c(x-\mu) \quad \text { and } \quad c \in k^{*} .
$$

Hence we have

$$
\beta(x)=c x+d \quad \text { with } \quad c, d \in k \quad \text { and } \quad c \neq 0 .
$$

The fibration $\rho$ has singular fibers, which are by definition not isomorphic to $\boldsymbol{A}_{*}{ }^{1}$, over the points $\alpha$ with $a_{0}(\alpha)=0$. If $\beta$ is of infinite order and if $a_{0}(x) \notin k$, then there would be infinitely many singular fibers. Hence $a_{0}(x)=a_{0} \in k$ or $\beta$ is of finite order. In the former case, the curve $C$ is isomorphic to $A^{1}$, and $\bar{\kappa}(X)=-\infty$ by a theorem of Abhyankar-MohSuzuki. So, $\beta$ is of finite order.
Q.E.D.

LEMMA 1.8. In the case (4) of Lemma 1.4, an automorphism $\beta$ stabilizing the curve $C$ is written as

$$
\beta(x)=a x, \quad \beta(y)=b y,
$$

where $a, b \in k, a b \neq 0$ and $a^{m}=b^{n}$.
Proof. Note that $\beta$ preserves the pencil $\left\{x^{m}-\lambda y^{n}\right\}$ with $\lambda \in \boldsymbol{P}^{1}$ by the same reason as in the proof of Lemma 1.7. The pencil has two multiple fibers $m A$ and $n B$, where $A$ and $B$ are defined by $x=0$ and $y=0$, respectively. Since $\operatorname{gcd}(m, n)=1$, it follows that $\beta(x)=a x$ and $\beta(y)=b y$ with $a, b \in k$ and $a b \neq 0$. Since $\beta(f)=c f$ with $c \neq 0$, we have $a^{m}=b^{n}$.
Q.E.D.

Summarizing the above results, we obtain the following result:
THEOREM 1.9. Let $\beta$ be an automorphism of $\boldsymbol{A}^{2}$ of infinite order such that $\beta$ stabilizes an irreducible curve $C$ defined by $f=0$. Then, after a suitable change of coordinates, $\beta$ and $f$ are written in one of the following forms:
(1) $f=x ; \beta(x)=a x, \beta(y)=b y+g(x)$ with $a, b \in k^{*}$ and $g(x) \in k[x]$.
(2) $f=x y+1 ; \beta(x)=a x, \beta(y)=a^{-1} y$ or $\beta(x)=a y, \beta(y)=a^{-1} x$, where $a \in k^{*}$.
(3) $f=x^{m} y^{n}+1 ; \beta(x)=a x, \beta(y)=b y$, where $m n>1, \operatorname{gcd}(m, n)=1, a, b \in k^{*}$ and $a^{m} b^{n}=1$.
(4) $f=x^{m}-y^{n}, \operatorname{gcd}(m, n)=1 ; \beta(x)=a x, \beta(y)=b y$ with $a, b \in k^{*}$ and $a^{m}=b^{n}$.

Corollary 1.10. Let $\beta$ be as in Theorem 1.9. Suppose, furthermore, that $\beta$ leaves $C$ pointwise fixed. Then $\beta$ and $f$ are written as

$$
f=x ; \quad \beta(x)=a x, \quad \beta(y)=y+x h(x)
$$

where $h(x) \in k[x]$. In particular, the curve $C$ is a coordinate line after a change of coordinates on $\boldsymbol{A}^{2}$.
2. Higher-dimensional case. Let $X=\operatorname{Spec} A$ be a nonsingular affine variety of dimension $n$ such that Pic $X=(0)$ and $A^{*}=k^{*}$. We shall begin with the following result:

Lemma 2.1. Let $W$ be an irreducible hypersurface of $X$, and let $\beta$ be a nontrivial automorphism of $X$ such that
(1) $\beta$ leaves $W$ pointwise fixed, and
(2) $\beta$ induces a nontrivial action on $I / I^{2}$, where $I$ is the defining ideal of $W$.

Then $W$ is nonsingular.
Proof. (I) Since $A$ is factorial, the ideal $I$ is principal. Let $u \in A$ be an element such that $I=(u)$. Since $\beta(W)=W$, one may write $\beta(u)=a u$ with $a \in A$. Since $\beta^{-1}$ also leaves $W$ pointwise fixed, one may write $\beta^{-1}(u)=b u$. Then we have

$$
u=\beta^{-1}(\beta(u))=\beta^{-1}(a u)=\beta^{-1}(a) \beta^{-1}(u)=\beta^{-1}(a) b u
$$

whence $\beta^{-1}(a) \in A^{*}=k^{*}$. So, $a \in k^{*}$. Since $\beta$ induces a nontrivial action on $I / I^{2}$, it follows that $a \neq 1$.
(II) Let $Q \in W$ be a closed point and $\left\{x_{1}, \ldots, x_{n}\right\}$ a system of local coordinates of $X$ at $Q$. In the completion $\hat{\mathcal{O}}_{X, Q}=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, write

$$
u=\sum_{i \geq m} u_{i}\left(x_{1}, \ldots, x_{n}\right),
$$

where $u_{i}$ is the $i$-th homogeneous part and $m \geq 1$. Since $\beta(Q)=Q$, one can write

$$
\beta\left(x_{i}\right)=\sum_{j=1}^{n} b_{i j} x_{j}+(\text { terms of degree } \geq 2)
$$

Then we have

$$
\begin{aligned}
\beta(u) & =u_{m}\left(\sum_{j=1}^{n} b_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n j} x_{j}\right)+(\text { terms of degree } \geq m+1) \\
& =a \sum_{i \geq m} u_{i}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Hence

$$
u_{m}\left(\sum_{j=1}^{n} b_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n j} x_{j}\right)=a u_{m}\left(x_{1}, \ldots, x_{n}\right) .
$$

This implies that the matrix $B=\left(b_{i j}\right)$ is not the identity matrix.
(III) Suppose that $Q$ is a singular point of $W$. Then we have

$$
\underline{m}_{W, Q} / \underline{m}_{W, Q}^{2}=\underline{m}_{X, Q} / \underline{m}_{X, Q}^{2},
$$

where $\underline{m}_{W, Q}, \underline{m}_{X, Q}$ are the maximal ideals of the local rings $\mathcal{O}_{W, Q}, \mathcal{O}_{X, Q}$, respectively, and the automorphism $\beta$ induces the identity automorphism on $\underline{m}_{W, Q} / \underline{m}_{W, Q}^{2}$, while $\beta$ acts on
$\underline{m}_{X, Q} / \underline{m}_{X, Q}^{2}$ via the matrix $B$. This is a contradiction to a conclusion in the step (II). Hence $W$ is nonsingular.
Q.E.D.

We denote by $G_{m}$ a one-dimensional algebraic torus.
PROPOSITION 2.2. Let $G_{m}$ act nontrivially on an n-dimensional nonsingular affine variety $X=\operatorname{Spec} A$ defined over the complex field $\boldsymbol{C}$ with Pic $X=(0)$ and let $W$ be an irreducible hypersurface such that the $G_{m}$-action leaves $W$ pointwise fixed. Then $W$ is nonsingular. Suppose, furthermore, that $X$ is a contractible threefold with $A^{*}=C^{*}$. Then $X \cong W \times \boldsymbol{A}^{1}$. If $\bar{\kappa}(W)=-\infty$ or $X=\boldsymbol{A}^{3}$ in particular, we have $W \cong \boldsymbol{A}^{2}$, and $X$ is isomorphic to the affine space of dimension 3 with $W$ as a coordinate hyperplane.

Proof. Let $u$ be a generator of the defining ideal $I$ of $W$. Then we have $t \cdot u=\chi(t) u$ for $t \in G_{m}$ with $\chi(t) \in A^{*}=C^{*}$. Then $\chi$ is a multiplicative character of $G_{m}$. Write $\chi(t)=t^{m}$, where $m \neq 0$. In fact, if $m=0$, then the $G_{m}$-action is trivial near the points of $W$. But this is not the case. Hence $W$ is nonsingular by Lemma 2.1 (see also Fogarty [3]).

For any point $P \in X$, we have

$$
\lim _{t \rightarrow 0} t \cdot P \in W \quad \text { if } m>0
$$

and

$$
\lim _{t \rightarrow \infty} t \cdot P \in W \quad \text { if } m<0
$$

Hence $W$ is the fixedpoint locus $X^{G_{m}}$ and, by Bialynicki-Birula [2], $X$ is an $A^{1}$-bundle over $W$. Meanwhile, $W$ is also the algebraic quotient $X / / G_{m}$, since $G_{m}$ acts on $X$ along the fibers of the $\boldsymbol{A}^{1}$-bundle. So, $W$ is a contractible surface by Kraft-Petrie-Randall [9], because so is $X$ by the hypothesis. Then $\operatorname{Pic}(W)=(0)$ by [4, 1.20]. This implies that the $A^{1}$-bundle over $W$ is trivial. Namely, we have $X \cong W \times \boldsymbol{A}^{1}$. Write $W=\operatorname{Spec} B$, where $B$ is identified with the $G_{m}$-invariant subalgebra of $A$. Note then that $B$ is a factorial domain with $B^{*}=\boldsymbol{C}^{*}$. If $\bar{\kappa}(W)=-\infty$ in particular, $W$ is isomorphic to $A^{2}$ by the characterization of the affine plane (cf. [12]). If $X=A^{3}$, then $W \cong A^{2}$ by the cancellation theorem [12].
Q.E.D.

We extend Proposition 2.2 to a case where $G_{m}$ is replaced by a single automorphism of infinite order. Let $A$ be an affine domain over $k$, i.e., a $k$-algebra domain which is finitely generated over $k$. A $k$-automorphism $\beta$ of $A$ is called rational if, for every $w \in A$, the $k$-vector space $\sum_{i \geq 0} k \beta^{i}(w)$ is finite-dimensional. A $k$-automorphism $\beta$ of $A$ is called diagonalizable if $\beta$ is rational and if the action of $\beta$ on $\sum_{i \geq 0} k \beta^{i}(w)$ is diagonalizable, i.e., there exists a certain $k$-basis $\left\{v_{1}, \ldots, v_{r}\right\}$ of $\sum_{i \geq 0} k \beta^{i}(w)$ such that $\beta\left(v_{i}\right)=a_{i} v_{i}$ with $a_{i} \in k^{*}$ for $1 \leq i \leq r$. Note that given a $G_{m}$ action on $X=\operatorname{Spec} A$ the automorphism $x \mapsto t \cdot x$ of $X$, with $t$ a general point of $G_{m}$, induces a diagonalizable $k$-automorphism of $A$. We shall begin with the following simple but useful result.

Lemma 2.3. Let $A$ be an affine domain and $\beta$ a diagonalizable automorphism of $A$. Let I be an ideal of $A$ such that $\beta(I) \subseteq I$. Then, for any element $v \in A$ such that $\beta(v) \equiv v$ $(\bmod I)$, there exists an element $v^{\prime} \in A$ such that $\beta\left(v^{\prime}\right)=v^{\prime}$ and $v^{\prime} \equiv v(\bmod I)$.

Proof. Let $V=\sum_{i \geq 0} k \beta^{i}(v)$. Then $V$ is finite-dimensional. Since $\beta$ is diagonalizable, we may choose a $k$-basis $\left\{v_{1}, \ldots, v_{r}\right\}$ of $V$ such that $\beta\left(v_{j}\right)=a_{j} v_{j}(1 \leq j \leq r)$ for $a_{j} \in k^{*}$. Note that $\beta^{i}(v) \equiv v(\bmod I)$ for every $i \geq 0$. Since $v_{j}$ is a $k$-linear combination of $\left\{\beta^{i}(v)\right\}_{i \geq 0}$, it follows that $\beta\left(v_{j}\right) \equiv v_{j}(\bmod I)$ for every $1 \leq j \leq r$. Let $\overline{v_{j}}$ be the residue class of $v_{j}$ modulo $I$. Since $\beta\left(v_{j}\right)=a_{j} v_{j}$, we have $a_{j}=1$ provided $\overline{v_{j}} \neq 0$. After a change of indices, suppose that $\overline{v_{j}} \neq 0$ for $1 \leq j \leq s$ and $\overline{v_{j}}=0$ for $s+1 \leq j \leq r$. Write

$$
v=c_{1} v_{1}+\cdots+c_{s} v_{s}+c_{s+1} v_{s+1}+\cdots+c_{s} v_{r}
$$

and let

$$
v^{\prime}=c_{1} v_{1}+\cdots+c_{s} v_{s}
$$

Then $\beta\left(v^{\prime}\right)=v^{\prime}$ and $v^{\prime} \equiv v(\bmod I)$.
Q.E.D.

We need the following lemma in the subsequent argument.
Lemma 2.4. Let $C$ be an irreducible nonsingular affine curve with an automorphism $\beta$ of infinite order. If $\beta$ has a fixed point, then $C$ is isomorphic to $A^{1}$. Furthermore, if we write $\boldsymbol{A}^{1}=\operatorname{Spec} k[t]$, then $\beta$ is given as $\beta(t)=c t$ with $c \in k^{*}$.

Proof. If $\bar{\kappa}(C)=1$, then $\operatorname{Aut}(C)$ is a finite group. Hence $\bar{\kappa}(C) \leq 0$. If $\bar{\kappa}(C)=0$, then $C$ is either a complete elliptic curve or is isomorphic to $G_{m}$. The first case is obviously not the case. In the second case, every automorphism $\beta$ of $G_{m}$ of infinite order is a translation. Hence it has no fixed points. So, the second case is not the case either, and we have $\bar{\kappa}(C)=-\infty$. Then $C \cong \boldsymbol{A}^{1}$. The last assertion is clear.
Q.E.D.

In what follows in this section, we shall work in the following set-up:
Let $X=\operatorname{Spec} A$ be a nonsingular affine variety of dimension $n$ with $\operatorname{Pic}(X)=(0)$ and $A^{*}=k^{*}$. Let $W$ be an irreducible hypersurface of $X$ and $\beta$ a nontrivial automorphism of $X$ of infinite order. Assume that
(i) $\beta$ leaves $W$ pointwise fixed, and
(ii) the induced $k$-automorphism $\beta$ on $A$ is diagonalizable.

Let $L=Q(A)$ be the function field of $X$. Then the automorphism $\beta$ extends to $L$ in a natural fashion. We define a subalgebra $B$ of $A$ and a subfield $K$ of $L$ by

$$
B=\left\{a \in A ; \beta^{m}(a)=a \text { for some } m>0\right\}
$$

and

$$
K=\left\{\xi \in Q(A) ; \beta^{m}(\xi)=\xi \text { for some } m>0\right\}
$$

It is clear that $B=A \cap K$. Since $\operatorname{Pic}(X)=(0)$, the defining ideal $I$ of $W$ is principal. Let $u$ be a generator of the ideal $I$. Then $\beta(u)=a u$ with $a \in k^{*}$.

LEMMA 2.5. The following assertions hold:
(1) The element a is not a root of unity, and $\beta$ acts nontrivially on $I / I^{2}$. Hence $W$ is nonsingular.
(2) $K$ is the quotient field $Q(B)$ of $B$, and $u$ is transcendental over $K$. Furthermore, $K$ is algebraically closed in $L$.
(3) $B$ is $k$-isomorphic to $A / I$. In particular, $B$ is finitely generated over $k$.
(4) $B$ is a normal subalgebra of $A$ of dimension $n-1$.

Proof. (1) Let $P$ be a smooth point of $W$ and let $v_{1}, \ldots, v_{n-1} \in A$ be the elements such that the residue classes $\bar{v}_{1}, \ldots, \bar{v}_{n-1}$ form a local system of parameters of $W$ at $P$. Then $\beta\left(v_{i}\right) \equiv v_{i}(\bmod I)$ for $1 \leq i \leq n-1$. By virtue of Lemma 2.3, we may assume that $\beta\left(v_{i}\right)=v_{i}$ after a suitable change of the elements $v_{i}$. Then $\left\{v_{1}, \ldots, v_{n-1}, u\right\}$ is a local system of parameters of $X$ at $P$ such that $\beta\left(v_{i}\right)=v_{i}$ for $1 \leq i \leq n-1$ and $\beta(u)=a u$ with $a \in k^{*}$. We shall show that $a$ is not a root of unity. Indeed, the function field $L$ of $X$ is a finite algebraic extension of the field $k\left(v_{1}, \ldots, v_{n-1}, u\right)$. If $a$ is a root of unity, we may replace $\beta$ by some power $\beta^{m}$ and assume that $\beta$ acts on $L$ as an $k\left(v_{1}, \ldots, v_{n-1}, u\right)$-automorphism. This is impossible because $\beta$ is of infinite order. Hence $a$ is not a root of unity. Then $\beta$ acts nontrivially on $I / I^{2}$. By Lemma 2.1, $W$ is nonsingular.
(2) We shall first show that $u$ is transcendental over the field $K$. Indeed, if $u$ were algebraic over $K, u$ satisfies a nontrivial algebraic equation

$$
u^{N}+\xi_{1} u^{N-1}+\cdots+\xi_{N}=0 \quad \text { with } \quad \xi_{i} \in K .
$$

By replacing $\beta$ by $\beta^{m}$ with some $m>0$, we may assume that $\beta\left(\xi_{i}\right)=\xi_{i}$ for $1 \leq i \leq N$. Then $\beta$ permutes the roots of the above equation ( $\dagger$ ). But this is impossible because $\beta(u)=a u$, where $a$ is not a root of unity. Hence $u$ is transcendental over $K$. On the other hand, we may choose a system of elements $\left\{v_{1}, \ldots, v_{n-1}\right\}$ of $B$ such that $\left\{\bar{v}_{1}, \ldots, \bar{v}_{n-1}\right\}$ is a local system of parameters of $W$ at a point $Q$. This implies that $k\left(v_{1}, \ldots, v_{n-1}\right) \subseteq K$ and $\operatorname{tr}^{\prime} \operatorname{deg}_{k} K=n-1$. Hence $K$ is algebraic over $Q(B)$. Let $\eta$ be an element of $L$ such that $\eta$ is algebraic over $Q(B)$. Then $\eta$ satisfies a relation

$$
a_{0} \eta^{N}+a_{1} \eta^{N-1}+\cdots+a_{N}=0 \quad \text { with } \quad a_{i} \in B .
$$

Replacing $\beta$ by $\beta^{m}$ for some $m>0$, we may assume that $\beta\left(a_{j}\right)=a_{j}$ for every $j$. Then $\beta(\eta)$ is also a solution of $(\dagger \dagger)$. Since there are finitely many solutions of $(\dagger \dagger)$, we have $\beta^{m}(\eta)=\eta$ for some $m>0$. Namely $\eta \in K$. Hence $K$ is algebraically closed in $L$. If $\eta \in L$ is, in particular, integral over $B$, then we have $\eta \in A \cap K=B$ because $A$ is normal. The relation $(\dagger \dagger)$ implies that $a_{0} \eta$ is integral over $B$ and hence $a_{0} \eta \in B$. Therefore $\eta \in Q(B)$. This implies that $K=Q(B)$.
(3) Restricting the residue homomorphism $A \rightarrow A / I$ onto $B$, we have a $k$-algebra homomorphism $\rho: B \rightarrow A / I$. Since $\beta$ induces a trivial automorphism on $A / I$, it follows from Lemma 2.3 that $\rho$ is surjective. We shall show that $\rho$ is injective. Namely, we show that $I \cap B=(0)$. Let $w \in I \cap B$, and write $w=u w_{1}$ with $w_{1} \in A$. Then $\beta^{m}(w)=w$ for some $m>0$. This implies that $\beta^{m}\left(w_{1}\right)=a^{-m} w_{1}$. Meanwhile, since $\beta\left(w_{1}\right) \equiv w_{1}(\bmod I)$, we may express $\beta^{m}\left(w_{1}\right)=w_{1}+u z$ with $z \in A$. Hence we obtain $\left(a^{m}-1\right) w_{1}=-a^{m} u z$. Since $a$ is not a root of unity, $a^{m}-1 \neq 0$. So, we have $w_{1}=u w_{2}$ with $w_{2} \in A$ and $w=u^{2} w_{2}$. Applying the same argument as above to the expression $w=u^{2} w_{2}$, we can show that $w=u^{3} w_{3}$ with $w_{3} \in A$. Thus $w \in \bigcap_{i \geq 0} I^{i}$. Now, applying the intersection theorem of Krull [18, Theorem 3.11], we know that $\bigcap_{i \geq 0} I^{i}=(0)$. Hence $w=0$. Alternatively, we could argue that since $A$ is a factorial domain, $w$ cannot be divided infinitely many times by
an irreducible element $u$ unless $w=0$. We have thus shown that $B$ is isomorphic to $A / I$. In particular, $B$ is finitely generated over $k$. If $n=3$, Zariski's lemma [17] also implies that $B$ is finitely generated over $k$ because $B=A \cap K$.
(4) Since we know that $B$ is an affine domain and $B=A \cap Q(B)$, it is clear that $B$ is a normal $k$-subalgebra of dimension $n-1$. Q.E.D.

Since $B$ is finitely generated over $k$, there exists an integer $m>0$ such that $\beta^{m}(b)=b$ for every $b \in B$. By replacing $\beta$ by $\beta^{m}$, we may and shall assume without loss of generality that $\beta(b)=b$ for every $b \in B$. Let $Y=\operatorname{Spec}(B)$ and $\pi: X \rightarrow Y$ a morphism induced by the inclusion $B \hookrightarrow A$. Then the general fibers of $\pi$ are nonsingular irreducible curves. The automorphism $\beta$ acts on $X$ along the fibers of $\pi$.

Lemma 2.6. The morphism $\pi: X \rightarrow Y$ is an $A^{1}$-fibration, and the generic fiber of $\pi$ is given as $\operatorname{Spec} K[u]$.

Proof. It follows from the assertion (3) of Lemma 2.5 that $W$ is a cross-section of the morphism $\pi$. Let $C$ be a general fiber of $\pi$. Then $C$ meets $W$ in one point transversally, and the automorphism $\beta$ induces an automorphism of $C$ of infinite order. The intersection point of $C$ with $W$ is a fixed point under this automorphism. By Lemma 2.4, $C$ is then isomorphic to $\boldsymbol{A}^{1}$. Hence $\pi$ is an $\boldsymbol{A}^{1}$-fibration.

Write the generic fiber $X_{K}:=\operatorname{Spec} A \otimes_{B} K$ as Spec $K[t]$ with some parameter $t$. Then $\beta$ acts on $X_{K}$ by $\beta(t)=\xi t$ with $\xi \in K^{*}$. We shall show that $t=\eta u$ with $\eta \in K^{*}$. Write $u$ as

$$
u=\eta_{0} t^{m}+\eta_{1} t^{m-1}+\cdots+\eta_{m} \quad \text { with } \quad \eta_{i} \in K
$$

where $\eta_{0} \neq 0$. Since $\beta(u)=a u$ and $\beta\left(\eta_{i}\right)=\eta_{i}$, we can readily show that $u=\eta_{0} t^{m}$. Choose a general fiber $C$ of $\pi$ so that the function $\eta_{0}$ is regular and nonzero at the intersection point $P=C \cap W$. The argument in the proof of Lemma 2.5, about lifting a local system of parameters $\left\{\bar{v}_{1}, \ldots, \bar{v}_{n-1}\right\}$ of $W$ at the point $P$ to a system of elements $\left\{v_{1}, \ldots, v_{n-1}\right\}$ of $B$, shows that

$$
\underline{m}_{X, P}=\left(u, v_{1}, \ldots, v_{n-1}\right) \quad \text { and } \quad \underline{m}_{W, P}=\left(v_{1}, \ldots, v_{n-1}\right),
$$

where $\underline{m}_{X, P}$ and $\underline{m}_{W, P}$ are the maximal ideals of the local rings $\mathcal{O}_{X, P}$ and $\mathcal{O}_{W, P}$, respectively. Since $u \notin \underline{m}_{X, P}^{2}$, it follows that $m=1$. Hence we conclude that $X_{K}=\operatorname{Spec} K[u] \quad$ Q.E.D.

Note that $\beta(b)=b$ for every element $b \in B$. For $c \in k^{*}$, set

$$
M_{c}=\{w \in A \mid \beta(w)=c w\}
$$

and let

$$
\Phi=\left\{c \in k^{*} \mid M_{c} \neq(0)\right\} .
$$

Lemma 2.7. The following assertions hold:
(1) $\Phi=\left\{a^{l} \mid l \geq 0\right\}$.
(2) $M_{a^{l}}=B u^{l}$ for every $l \geq 0$.
(3) $A=\bigoplus_{l \geq 0} M_{a^{l}} \cong B[u]$.

Proof. By Lemma 2.6, $A \otimes_{B} K=K[u]$. Suppose $w \in M_{c}$. Then $w=\xi u^{l}$ for some $\xi \in K$ and $l \geq 0$. Hence $c=a^{l}$ for some $l \geq 0$. This implies that

$$
\Phi=\left\{a^{l} \mid l \geq 0\right\} .
$$

Write $\xi=z_{2} / z_{1}$ with $z_{1}, z_{2} \in B$. Then we have

$$
\begin{equation*}
z_{1} w=z_{2} u^{l} \tag{*}
\end{equation*}
$$

Note that $u$ is an irreducible element of $A$. Suppose $u$ is a factor of $z_{1}$ and write $z_{1}=u z_{1}^{\prime}$. Then $\beta\left(z_{1}^{\prime}\right)=a^{-1} z_{1}^{\prime}$. So, $a^{-1} \in \Phi$, i.e., $a^{-1}=a^{m}$ with $m \geq 0$. Hence $a^{m+1}=1$, a contradiction. So, $u^{l}$ divides $w$ in the equality ( $*$ ). Hence $\xi \in A \cap K=B$. Namely, $w \in B u^{l}$. It then follows that $M_{c}=B u^{l}$, where $c=a^{l}$.

Now we shall show that $A=\bigoplus_{l \geq 0} M_{a^{\prime}}$. Let $w$ be anew any nonzero element of $A$. Since $\beta$ is diagonalizable, we have

$$
w=c_{1} w_{1}+\cdots+c_{r} w_{r}
$$

with $\beta\left(w_{i}\right)=a_{i} w_{i}$ and $a_{i} \in \Phi$. So, $w \in \bigoplus_{l \geq 0} M_{a^{l}}$. Hence $A \subseteq \bigoplus_{l \geq 0} M_{a^{l}}$. The converse inclusion $\bigoplus_{l \geq 0} M_{a^{\prime}} \subseteq A$ is clear.
Q.E.D.

Summarizing the above lemmas, we have shown the following result:
Theorem 2.8. Let $X=\operatorname{Spec} A$ be a nonsingular affine variety of dimension $n$ with Pic $X=(0)$ and $A^{*}=k^{*}$. Let $W$ be an irreducible hypersurface of $X$ and $\beta$ a nontrivial automorphism of $X$ of infinite order. Assume that
(i) $\beta$ leaves $W$ pointwise fixed, and
(ii) $\beta$ is diagonalizable.

Then $X \cong W \times \boldsymbol{A}^{1}$. Hence $W$ is a coordinate hyperplane after a suitable change of coordinates of $X$ if $W$ is isomorphic to $\boldsymbol{A}^{n-1}$, and $X$ is accordingly isomorphic to $\boldsymbol{A}^{n}$.

Hence Theorem 2.8 implies the next result:
Corollary 2.9. Let $X=\boldsymbol{A}^{3}$ be the affine space of dimension 3. Let $W$ be an irreducible hypersurface of $X$ and $\beta$ a nontrivial automorphism of $X$ of infinite order. Assume that
(i) $\beta$ leaves $W$ pointwise fixed, and
(ii) $\beta$ is diagonalizable.

Then $X \cong W \times A^{1}$ and $W$ is a coordinate hyperplane after a suitable change of coordinates.
Proof. If $X$ is the affine space of dimension 3, the cancellation theorem (cf. [12]) implies that $W$ is isomorphic to the affine plane $\boldsymbol{A}^{2}$. Hence $W$ becomes a coordinate plane after a suitable choice of the coordinates.
Q.E.D.

Remark. Theorem 2.8 shows that an automorphism $\beta$ on $X$ extends to a $G_{m}$-action on $X$ which has $W$ as the fixed-point locus. In fact, the property of $\beta$ being diagonalizable is immediate if $\beta$ extends to a $G_{m}$-action. We do not know, in general, under which conditions $\beta$ extends to a $G_{m}$-action.

As stated in the introduction, we obtain an algebraic characterization of the affine space of dimension 3.

Theorem 2.10. Let $X=\operatorname{Spec} A$ be a nonsingular affine threefold. Then $X$ is the affine space of dimension 3 if and only if the following conditions are satisfied:
(1) $\operatorname{Pic}(X)=(0)$ and $A^{*}=k^{*}$.
(2) There exist an irreducible hyperplane $W$ and a nontrivial automorphism $\beta$ of $X$ of infinite order such that
(a) $\beta$ leaves $W$ pointwise fixed,
(b) $\beta$ is diagonalizable,
(c) $W$ has Kodaira dimension $-\infty$.

Proof. Suppose $X$ is the affine space of dimension 3 with the coordinates $x, y, z$. Then we can take a linear hyperplane $x=0$ as $W$ and an automorphism $\beta$ defined by $\beta(x)=$ $a x, \beta(y)=y$ and $\beta(z)=z$ with some $a \in k^{*}$ which is not a root of unity. We shall show the converse. By Theorem 2.8, $X \cong W \times A^{1}$. Write $W=\operatorname{Spec} B$. Then $\operatorname{Pic}(W)=(0)$ and $B^{*}=k^{*}$. If $W$ has Kodaira dimension $-\infty$, then $W \cong A^{2}$ (cf. [12]). Hence $X \cong A^{3}$.
Q.E.D.

We note that there is an algebraic characterization of the affine space of dimension 3 obtained by the second author [13]. The hypersurface $W$ has Kodaira dimension $-\infty$, for example, provided there is a $G_{a}$-action commuting with the given automorphism $\beta$.
3. An algebro-topological characterization of the affine plane. In the present and next sections, $W$ is an irreducible subvariety in a non-singular affine variety $X$ of codimension two such that $W$ is the fixed-point locus under a given effective $G_{m}$-action on $X$. A closed orbit $O$ is called a multiple orbit if the isotropy group is a nontrivial finite group. We consider first the case where $X$ is a surface and $W$ is a point $P$. Considering the tangential representation of $G_{m}$ at the point $P$, let $a$ and $b$ be the weights. Then $a b \neq 0$ because the fixed-point locus consists only of $P$. We have the unmixed case $a b>0$ and the mixed case $a b<0$. We obtain the following algebro-topological characterization of the affine plane.

Theorem 3.1. Let $X$ be a nonsingular affine surface with an effective $G_{m}$-action. Assume that the fixed-point locus consists of a single point $P$. If one of the following conditions is satisfied, $X$ is then isomorphic to the affine plane.
(1) The $G_{m}$-action is unmixed.
(2) The $G_{m}$-action is mixed and $X$ is a homology plane.
(3) The $G_{m}$-action is mixed, the algebraic quotient $T:=X / / G_{m}$ is a curve isomorphic to the affine line and any closed orbit is not a multiple orbit.

Proof. (1) If the $G_{m}$-action is unmixed, the result is immediate by [2]. An elementary proof is given as follows. We may assume that $a>0$ and $b>0$. Let $A$ be the coordinate ring of $X$. Then $A$ is a graded $k$-algebra

$$
A=\bigoplus_{i \geq 0} A_{i}
$$

Let $A^{+}=\bigoplus_{i>0} A_{i}$. The fixed-point locus is defined by the ideal $A^{+}$. Hence $A_{0}=A / A^{+}=$ $k$, where $k$ is the ground field. By the hypothesis, $A^{+} /\left(A^{+}\right)^{2}=k \bar{x}+k \bar{y}$ with $G_{m}$-action given by

$$
t \cdot \bar{x}=t^{a} \bar{x}, \quad t \cdot \bar{y}=t^{b} \bar{y}
$$

By the complete reducibility of the $G_{m}$-action, we find elements $x \in A_{a}$ and $y \in A_{b}$ such that $t \cdot x=t^{a} x$ and $t \cdot y=t^{b} y$.

We shall show that $A$ is generated over $k$ by these elements $x$ and $y$. The proof proceeds by induction on the weight of each element of $A$. Let $z$ be an element of $A$. We may assume that $z$ is homogeneous because $z$ is a sum of homogeneous elements. Then the residue class $\bar{z}$ of $z$ by $\left(A^{+}\right)^{2}$ is a linear combination

$$
\bar{z}=c \bar{x}+d \bar{y} \quad \text { with } \quad c, d \in k .
$$

Hence $z-(c x+d y) \in\left(A^{+}\right)^{2}$. So, we may write

$$
z-(c x+d y)=\sum_{i} z_{i} z_{i}^{\prime}
$$

where $z_{i}, z_{i}^{\prime} \in A^{+}$are homogeneous elements with $\operatorname{deg}\left(z_{i}\right)<\operatorname{deg}(z)$ and $\operatorname{deg}\left(z_{i}^{\prime}\right)<\operatorname{deg}(z)$. Here the degree of each element is the one in the graded ring $A$. Hence it is the weight of a semi-invariant element. By the induction hypothesis, we may assume that $z_{i}, z_{i}^{\prime} \in k[x, y]$. Then $z \in k[x, y]$. Thus $A=k[x, y]$ and $X$ is isomorphic to the affine plane $\boldsymbol{A}^{2}$.
(2) Note that $X$ is then a homology plane with $\boldsymbol{A}_{*}^{1}$-fibration. Since the $G_{m}$-action is mixed, by [2], there exist two curves $C_{1}$ and $C_{2}$ isomorphic to $\boldsymbol{A}^{1}$ and meeting each other transversally in the point $P$. By a general result on the number of the lines contained in a homology plane [15, Theorem 13], we conclude that $X$ is isomorphic to the affine plane $\boldsymbol{A}^{2}$.
(3) Since the $G_{m}$-action is mixed, as in the case (2) above, there are two affine lines $C_{1}, C_{2}$ meeting transversally in $P$. Let $\pi: X \rightarrow T$ be the quotient morphism, and let $a_{1}, a_{2}$ be the multiplicities of $C_{1}, C_{2}$ in the fiber $\pi^{-1}(Q)$, where $Q=\pi(P)$. We claim that $d:=\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. Suppose otherwise that $d>1$. Choose a parameter $t$ of $T$ so that $Q$ is defined by $t=0$. Let $T^{\prime} \rightarrow T$ be the branched covering of degree $d$ which totally ramifies at the point $Q$ and the point at infinity. Then $T^{\prime}$ is the affine line. Let $X^{\prime}$ be the normalization of the fiber product $T^{\prime} \times_{T} X$. Then $X^{\prime} \rightarrow X$ is étale, the projection $\pi_{T^{\prime}}: X^{\prime} \rightarrow T^{\prime}$ is an $\boldsymbol{A}_{*}^{1}$-fibration, and the fiber $\pi_{T^{\prime}}^{-1}\left(Q^{\prime}\right)$ is a disjoint sum of $d$ copies of $a_{1}^{\prime} C_{1}^{\prime}+a_{2}^{\prime} C_{2}^{\prime}$, where $C_{1}^{\prime}$ and $C_{2}^{\prime}$ are affine lines meeting transversally in one point and $a_{i}^{\prime}=a_{i} / d$ for $i=1,2$. This is, however, impossible by [14, Lemma 4]. So, $d=1$.

We shall next show that $\pi_{1}(X)=(1)$. For this purpose, set $X_{1}=X-C_{2}$ and $X_{2}=$ $X-C_{1}$. Let $p_{i}:=\left.\pi\right|_{X_{i}}: X_{i} \rightarrow T$ and $C_{i}^{*}=C_{i}-\{P\}$ for $i=1,2$. By the hypothesis that any closed orbit is not a multiple orbit, $p_{i}: X_{i} \rightarrow T$ is then an $A_{*}^{1}$-fibration with only one singular fiber which is $a_{i} C_{i}^{*}$. Consider $p_{1}: X_{1} \rightarrow T$, and let $T_{1} \rightarrow T$ be the branched covering of degree $a_{1}$ which totally ramifies at the point $Q$ and the point at infinity. Let $X_{1}^{\prime}$ be the normalization of $T_{1} \times_{T} X_{1}$. Then $\left(p_{1}\right)_{T_{1}}: X_{1}^{\prime} \rightarrow T_{1}$ is an $\boldsymbol{A}_{*}^{1}$-bundle over $T_{1}$. Indeed, the natural morphism $X_{1}^{\prime} \rightarrow X_{1}$ is a finite étale covering and the inverse image of the multiple
fiber $a_{1} C_{1}^{*}$ is a reduced fiber of the $A_{*}^{1}$-fibration $X_{1}^{\prime} \rightarrow T_{1}$, which consists of several connected components isomorphic to $\boldsymbol{A}_{*}{ }^{\text {. }}$. By [14, Lemma 4], it consists of only one connected reduced fiber isomorphic to $\boldsymbol{A}_{*}^{1}$. So, $X_{1}^{\prime} \rightarrow T_{1}$ is an $\boldsymbol{A}_{*}^{1}$-bundle over $T_{1}$. Since any $\boldsymbol{A}_{*}^{1}$-bundle over the affine line $T_{1}$ is trivial, we have $\pi_{1}\left(X_{1}^{\prime}\right) \cong \pi_{1}\left(\boldsymbol{A}_{*}^{1}\right) \cong \boldsymbol{Z}$. Since $X_{1}^{\prime} \rightarrow X_{1}$ is a cyclic étale covering of degree $a_{1}$, we obtain an exact sequence:

$$
\pi_{1}\left(C_{1}^{*}\right) \rightarrow \pi_{1}\left(X_{1}\right) \rightarrow \mathbf{Z} / m_{1} \boldsymbol{Z} \rightarrow 0,
$$

where $m_{1} \mid a_{1}$. (We may apply also a result of Nori [19] to $\left(p_{1}\right)_{T_{1}}: X_{1}^{\prime} \rightarrow T_{1}$ to obtain the above exact sequence.) This yields an exact sequence

$$
\pi_{1}\left(C_{1}\right) \rightarrow \pi_{1}(X) \rightarrow \mathbf{Z} / m \mathbf{Z} \rightarrow 0
$$

with $m \mid a_{1}$ because the natural homomorphism $\pi_{1}\left(X_{1}\right) \rightarrow \pi_{1}(X)$ is a surjection. Similarly, we have an exact sequence

$$
\pi_{1}\left(C_{2}\right) \rightarrow \pi_{1}(X) \rightarrow \boldsymbol{Z} / n \boldsymbol{Z} \rightarrow 0
$$

where $n \mid a_{2}$. Since $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$, we end up with a surjection

$$
\pi_{1}\left(C_{1} \cup C_{2}\right) \rightarrow \pi_{1}(X) \rightarrow 0
$$

Since $C_{1} \cup C_{2}$ is simply connected, we have $\pi_{1}(X)=(1)$. On the other hand, it is easy to see that the Euler number $e(X)=1$. Hence $X$ is a contractible surface. Since $X$ contains two affine lines, $X$ is isomorphic to the affine plane (cf. [15, Theorem 13]).
Q.E.D.

REMARK. In the unmixed case, we have only to assume that $X$ is a reduced algebraic $k$-scheme with a $G_{m}$-action and that $P$ is the unique fixed point at which $X$ is nonsingular. In fact, let $Q$ be an arbitrary point of $X$. Then the closure of the $G_{m}$-orbit $\overline{G_{m} \cdot Q}$ passes through the point $P$. Hence the orbit $G_{m} \cdot Q$ contains a nonsingular point, whence $Q$ is nonsingular on $X$.
4. The affine 3 -space as an acyclic threefold. We extend the unmixed case of Theorem 3.1 to the higher-dimensional case.

Lemma 4.1. Let $X$ be a reduced affine algebraic $k$-scheme and let $W$ be an irreducible closed subscheme of $X$ of codimension two. Suppose the algebraic torus $G_{m}$ acts on $X$ in such $a$ way that $W$ is the fixed-point locus. Furthermore, assume that $W$ is nonsingular and $X$ is nonsingular near $W$. We assume that every orbit of a point not in $W$ is non-closed. Then $X$ is an $A^{2}$-bundle over $W$.

Proof. Note that the hypothesis implies the smoothness of $X$. Let $A$ be the coordinate ring of $X$. Then we may assume that $A$ is a graded ring

$$
A=\bigoplus_{i \geq 0} A_{i}
$$

Then $A_{0}$ is the coordinate ring of $W$. Let $P$ be a point of $W$ and $\underline{p}$ the prime ideal of $A_{0}$ corresponding to $P$. Then $A_{P}:=A \otimes_{A_{0}} A_{0} / \underline{p}$ is the coordinate ring of the fiber $\pi^{-1}(P)$, where $\pi: X \rightarrow W$ is the morphism associated with the inclusion $A_{0} \hookrightarrow A$. By Theorem
3.1 and the subsequent remark, $\pi^{-1}(P)$ is nonsingular and is isomorphic to $\boldsymbol{A}^{2}$. Now $X$ is nonsingular and is an $\boldsymbol{A}^{2}$-bundle over $W$ by [2].
Q.E.D.

The arguments using the acyclicity and a $G_{m}$-action lead us to an algebro-topological characterization of the affine 3 -space among the acyclic threefolds.

THEOREM 4.2. Let $X$ be a nonsingular affine threefold defined over the complex field $\boldsymbol{C}$. Then $X$ is isomorphic to the affine 3 -space $\boldsymbol{A}^{3}$ if and only if the following conditions are satisfied:
(1) $X$ is acyclic and endowed with an effective $G_{m}$-action.
(2) There exists a nonsingular irreducible subvariety $W$ of codimension two which is the fixed-point locus under the given $G_{m}$-action.
(3) $X$ has the logarithmic Kodaira dimension $\bar{\kappa}(X)=-\infty$.

The subvariety $W$ then becomes a coordinate line.
Proof. The "only if" part is clear. We have only to consider a $G_{m}$-action on $A^{3}=$ $\operatorname{Spec} k[x, y, z]$ given by

$$
t \cdot(x, y, z)=(t x, t y, z) \quad \text { or } \quad t \cdot(x, y, z)=\left(t^{-1} x, t y, z\right)
$$

where $t \in G_{m}$. So, we prove the "if" part. Our proof consists of several steps.
STEP (I). W is an affine line and any closed orbit has the trivial isotropy group unless it is a fixed point.

Indeed, let $p$ be a prime number and $H_{n}$ the subgroup of $G_{m}$ consisting of $p^{n}$-th roots of the unity. Let $W_{n}$ be the fixed-point locus of $X$ under the induced $H_{n}$-action. Then $W_{n}$ is a closed subset and $W=\bigcap_{n \geq 1} W_{n}$. Hence $W=W_{n}$ for some $n>0$. By the Smith theory applied to the $H_{n}$-action on $X$ with $p$ varying, it follows from the acyclicity of $X$ that $W_{n}$ is connected and acyclic. Since $W$ is a curve, $W$ is then an affine line. Suppose that there exists a closed orbit $O=G_{m} \cdot P$ with a nontrivial finite isotropy group $G$. Let $p$ be a prime number dividing the order of $G$. Again, by the Smith theory, the acyclicity of $X$ implies that the fixed-point locus under the $H_{1}$-action on $X$ is connected. Hence we may assume that there exists an irreducible subvariety, say $V$, of codimension one such that $V$ contains $W$ and the orbit $O$ and that $V$ is left pointwise fixed by $H_{1}$. Let $P$ be a point of $W$ and let $t \cdot(u, v, w)=\left(t^{a} u, t^{b} v, w\right)$ be the induced $G_{m}$-action on the tangent space $T_{X, P}$ (cf. the step (II) below). Since $W$ is contained in $V$, it follows that $p$ divides both $a$ and $b$. Then $G_{m}$ acts non-effectively on an open neighborhood of $P$, hence everywhere on $X$. This is a contradiction on the effectiveness of the $G_{m}$-action. So, we conclude that there are no multiple orbits.

Step (II). Let $P$ be a point of $W$ and let $a, b$ be the weights of the induced representation of $G_{m}$ on the tangent space $T_{X, P}$. Namely, after diagonalizing the representation, it is given as

$$
t \cdot(u, v, w)=\left(t^{a} u, t^{b} v, w\right) .
$$

Then the weights $a, b$ are independent of the choice of $P$, and $\operatorname{gcd}(a, b)=1$. Furthermore, if $a b>0$, then $X$ is isomorphic to the affine 3-space $\boldsymbol{A}^{3}$.

Indeed, by Luna [10, Lemme, p. 96], there exists a $G_{m}$-equivariant morphism $\varphi: X \rightarrow$ $T_{X, P}$ such that $\varphi$ is étale in $P$ and $\varphi(P)=0$. Then we may assume that the affine line $W$ is mapped isomorphically to the $w$-axis according to the above notation. Then the tangential actions of $G_{m}$ at the points on $W$ near $P$ are the same as the one at the point $P$. So, the weights $a, b$ are constant in a neighborhood of the point $P$ on $W$. Since $W$ is connected, they are constant on $W$. Suppose $\operatorname{gcd}(a, b)=d>1$. This implies that there exists an orbit whose isotropy group is a finite nontrivial group. But this is not the case by Step (I). If $a b>0$, then $X$ is an $\boldsymbol{A}^{2}$-bundle by [2]. Since $W$ is isomorphic to $\boldsymbol{A}^{1}$, the $\boldsymbol{A}^{2}$-bundle is trivial, and $X$ is isomorphic to $A^{1} \times A^{2} \cong A^{3}$.

Hereafter we assume that $a b<0$ and call the $G_{m}$-action mixed.
STEP (III). Let $Y$ be the quotient variety $X / / G_{m}$ and $\pi: X \rightarrow Y$ the quotient morphism. Then we have:
(1) $Y$ is a nonsingular, acyclic surface,
(2) $\left.\pi\right|_{W}: W \rightarrow \pi(W)$ is an isomorphism and $\pi(W)$ is a closed subvariety of $Y$,
(3) $Y$ is an affine plane and $\pi(W)$ is a coordinate line.

With the notations in Step (II), we may and shall assume that $a>0$ and $b<0$. Then the completion of the local ring $\mathcal{O}_{Y, \pi(P)}$ is isomorphic to $\boldsymbol{C}\left[\left[u^{-b} v^{a}, w\right]\right]$. It then follows that $\pi$ embeds $W$ in $Y$ as a nonsingular closed subvariety and that $Y$ is nonsingular near $\pi(W)$. This proves the assertion (2). The smoothness of $Y$ follows from Luna's étale slice theorem [10] if one notes that every closed orbit has a trivial isotropy group unless it is a fixed point. The acyclicity of $Y$ follows from [9]. This proves the assertion (1). For the proof of the assertion (3), we apply Kawamata's addition theorem [8] for $\pi: X \rightarrow Y$

$$
\bar{\kappa}(X) \geq \bar{\kappa}(F)+\bar{\kappa}(Y),
$$

where $F$ is a general closed orbit. Since $F$ is isomorphic to $G_{m}$, we have $\bar{\kappa}(F)=0$. Since $\bar{\kappa}(X)=-\infty$ by the hypothesis, it follows that $\bar{\kappa}(Y)=-\infty$. Then $Y$ is an affine plane [15]. By a theorem of Abhyankar-Moh-Suzuki (cf. [11]), $\pi(W)$ is a coordinate line in $Y$. We write $Y=\operatorname{Spec} \boldsymbol{C}[\xi, \eta]$ with $\pi(W)$ defined by $\eta=0$.

Step (IV). Let $\rho: X \rightarrow \pi(W)$ be the composite of $\pi$ and the projection $(\xi, \eta) \mapsto \xi$ from $Y$ to $\pi(W)$. Let $Q$ be a point of $\pi(W), Z=\rho^{-1}(Q)$ the fiber over $Q$, and let $P$ be the intersection point of $Z$ and $W$. Then the following assertions hold:
(1) $Z$ is a nonsingular affine surface with a $G_{m}$-action.
(2) The point $P$ is the unique fixed point on $Z$ and the induced $G_{m}$-action on the tangent space $T_{Z, P}$ has weights $a, b$.
(3) $Z$ has no multiple orbits.

Let $L$ be the line $\xi=\xi(Q)$ on $Y$. Consider $\left.\pi\right|_{Z}: Z \rightarrow L$. Since $\pi$ is a smooth morphism outside $\pi(W) \subset Y, Z$ is nonsingular outside $\pi^{-1}(Q)$. With the notations in (II) and (III), we may assume that $\xi=w$ near the point $Q$ and that $Z$ is a hypersurface $u^{-b} v^{a}=\eta$
in the $(u, v, \eta)$-space near the point $P$. Then it follows that $P$ is a nonsingular point of $Z$. Note that $\pi^{-1}(Q)$ is a union of two affine lines meeting at the point $P$ and that two affine lines with the point $P$ removed off are the $G_{m}$-orbits. Hence it follows that $Z$ is nonsingular along $\pi^{-1}(Q)$. This proves the assertion (1). The assertion (2) is now clear. The assertion (3) follows from the corresponding property of $X$.

Step (V). By the step (IV) and Theorem 3.1, we know that each fiber of $\rho: X \rightarrow$ $\pi(W)$ is the affine plane. By Sathaye [21], it is then an $\boldsymbol{A}^{2}$-bundle. Since any $\boldsymbol{A}^{2}$-bundle over the affine line is trivial, we conclude that $X$ is isomorphic to the affine 3 -space.

This completes the proof of Theorem 4.2.

## References

[ 1] H. AOKI, Étale endomorphisms of smooth affine surfaces, J. Algebra, to appear.
[2] A. Bialynicki-Birula, Some theorems on the actions of algebraic groups, Ann. of Math. 98 (1973), 480497.
[ 3 ] J. Fogarty, Fixed point schemes, Amer. J. Math. 95 (1973), 35-51.
[4] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 503-566.
[ 5 ] R. V. Gurjar and M. Miyanishi, On contractible curves in the complex affine plane, Tôhoku Math. J. 48 (1996), 459-469.
[6] S. IItaka, Algebraic Geometry, Grad. Texts in Math. 76, Springer, New York-Berlin, 1982.
[7] Y. Kawamata, On the classification of non-complete algebraic surfaces, Proc. Copenhagen summer meeting in algebraic geometry, 215-232, Lecture Notes in Math. 732, Springer, Berlin, 1979.
[8] Y. Kawamata, Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one, Int. Symp. on Algebraic Geometry, Kyoto, 207-217, Kinokuniya, Tokyo, 1977.
[9] H. Kraft, T. Petrie and R. Randall, Quotient varieties, Adv. in Math. 74 (1989), 145-162.
[10] D. LunA, Slices étales, Bull. Soc. Math. France Mémoire 33 (1973), 81-105.
[11] M. Miyanishi, Curves on rational and unirational surfaces, Tata Inst. Fund. Res. Lectures on Math. and Phys. 60, the Narosa Publishing House, New Delhi, 1978.
[12] M. MiYanishi, Non-complete algebraic surfaces, Lecture Notes in Math. 857, Springer, New York-Berlin, 1981.
[13] M. Miyanishi, An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), 1469-1486.
[14] M. MiYaniShi, Etale endomorphisms of algebraic varieties, Osaka J. Math. 22 (1985), 345-364.
[15] M. MiYaniShi, Recent topics on open algebraic surfaces, Amer. Math. Soc. Transl. Ser. 2, 172 (1996), 61-76.
[16] M. Miyanishi and T. Sugie, Generically rational polynomials, Osaka J. Math. 17 (1980), 339-362.
[17] M. Nagata, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965.
[18] M. NAGATA, Local rings, John Wiley, New York-London, 1962.
[19] M. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), 305-344.
[20] H. Saito, Fonctions entières qui se reduisent à certains polynômes, I, Osaka J. Math. 9 (1972), 293-332.
[21] A. Sathaye, Polynomial ring in two variables over a D.V.R.: A criterion, Invent. Math. 74 (1983), 159-168.

Department of Mathematics
Himeji Institute of Technology

## 2147 SHOSHA

Himeji 671-2201
JAPAN
E-mail address: kayo@sci.himeji-tech.ac.jp

## Department of Mathematics <br> Graduate School of Science <br> Osaka University <br> 1-1 Machikaneyama-cho <br> TOYONAKA 560-0043 <br> Japan

E-mail address: miyanisi@math.sci.osaka-u.ac.jp


[^0]:    1991 Mathematics Subject Classification. Primary 14L30; Secondary 14F45.

