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Abstract. By using moving frames and directred digraphs, we study invariant (1,2)-

symplectic structures on complex flag manifolds. Let F be a flag manifold with height k — 1.

We show that there is a fc-dimensional family of invariant (1,2)-symplectic metrics of any

parabolic structure on F. We also prove any invariant almost complex structure J on F with

height 4 admits an invariant (l,2)-symplectic metric if and only if J is parabolic or integrable.

1. Introduction. Eells and Sampson proved in [9] that any holomorphic map be-

tween Kahler manifolds is harmonic and this was later generalized by Lichnerowicz as fol-

lows ([10]): Let φ : (Λf, g, J) -* (N, h, JN) be a holomorphic map from a cosymplectic

manifold to a (1,2) symplectic one. Then φ is harmonic. Note that a (l,2)-symplectic mani-

fold is automatically cosymplectic. From this point of view, it is important for us to study the

(l,2)-symplectic structures on almost Hermitian manifolds.

In this paper, we discuss the existence and explicit construction of (l,2)-symplectic struc-

tures on complex flag manifolds. By a result of Borel and Hirzebruch, there are 2(2) invariant

almost complex structures on the complex flag manifold F = U(N)/U(n\) x x U(rik)

([3]). Here the number A: — 1 is called the height of F ([6]). Inspired by the existence of

/2-holomorphic maps from topological spheres to flag manifolds ([5]), we first concern our-

selves with the parabolic structures on F. Notice that when k = 3, Eells and Salamon showed

that any parabolic structure on F admits a (l,2)-symplectic metric ([8]). Also a result of Borel

asserts that there is a (k — 1)-dimensional family of invariant Kahler metrics for each invariant

complex structure on F ([1,2]). In this paper, we show not only the existence but also an

explicit construction of /c-dimensional family of invariant (l,2)-symplectic metrics for each

parabolic structure on F with height k — 1.

Since a Kahler metric is automatically (l,2)-symplectic, a basic fact is that when k = 3,

each invariant almost complex structure on F admits a (l,2)-symplectic metric. The second

objective of this article is to show that there are two classes of almost complex structures (they

have been described by using directed digraphs), and these structures do not admit an arbitrary

invariant (l,2)-symplectic metric. In particular, we prove that when k = 4, an invariant almost

complex structure J on F admits a (l,2)-symplectic metric if and only if J is integrable or

parabolic. However, for k = 5, the corresponding result is false. In fact in Section 4 we

explicitly construct a 5-dimensional family of (l,2)-symplectic metrics for an invariant almost
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complex structure which is neither integrable nor parabolic. Finally, by applying these results,

we obtain some new harmonic maps into flag manifolds.

2. Invariant almost Hermitian structures on F(N). Without loss of generality, we

may consider full complex flag manifolds

We denote by ω the Maurer-Cartan form of U(N), that is,

(2.1) ω={ωφ

and at the Lie algebra level, we write

u*(N)c =

(2.2) 0(span{ω-} Θ span{α>-}) 0 0(span{ω-} ® span{ω-})

J Uφj

where

(2.3) Dij = span{Reω/y-, Imωjj].

Each real vector space Dij has two invariant almost complex structures, with its (1, O)-type

and (0, l)-type forms generated by ω - and ωj , respectively. Borel and Hirzebruch ([3])

showed that there are 2^J U(N)-invariant almost complex structure J on F(N) determined

by the choice of one of these two structures in each Dij. We see that such a choice defines

a tournament J(J) with players T = {1,2,... ,Λf}. Indeed, the space of (1, 0)-cotangent

vectors at the identity coset, can be identified with

(2.4) mi,0

where

(2.5) J(J) = [i -• j ; iJ = l,...,N wi th / φ j}.

Now we may define all invariant metrics on F(N) (see [4]) by

(2.6) ds2

A

where

(2.7) A = (λij)

is a real symmetric matrix such that

> 0 xiiφj,
(2.8) λij , .

1 = 0 if i = j .
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For an alternative description, see for example [11]. Note that (2.6)-(2.8) define an Hermitian

metric on F(N) for each invariant almost complex structure J, since

ds2

Λ(JX, JY) = J2λijωij(JX)ωΊj(JY)

(2.9)
= Yjλijεij^Λωi]{X)εij{-^\)ωΊj{Y) = ds2

Λ(X, Y)Yjλijεij

for any vector fields X and Y, where

(2.10) ε, ; =
0 i =

It is clear that ε := (ε, y) is anti-symmetric.

Let ΣN be the permutation group of N elements with identity e. For each τ € ][]#, the
Kahler form Ω, with respect to the [/(W)-invariant almost Hermitian structure corresponding

to a tournament J{J) (see (2.5)) and an invariant Hermitian metric ds\ (see (2.6)), is defined

by

Ω(X,Y) :=ds2

Λ{X,JY)

(2.11)

= ~ λ/~T ( Σ
) Λ

where ^ ί ; is defined by (2.10). The Kahler form Ω is given by:

(2.12) Ω = - 2 V Γ ϊ ^ / X τ ( / ) r θ )ω τ ( θ 7( 7y Λ

for arbitrary τ G ΣN, and

(2.13) μ/; :=εijλij

satisfies that

(2.14) βij+βji =0.
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By differentiating (2.12) and using the Maurer-Cartan equations for U(N), one deduces the

following:

ωτ(i)W) Λ ωτ(k)7(Γ) Λ

i<j kφij

Hence we get

Λ ωτ(k)7ΰ) Λ

4 ( Σ + Σ + Σ ίtr(f)r(/) ta(<»t(i)ϊ(i) Λ ί)t(έ)ΐyj Λ
(2.16) \k<i<j i<k<j i<j<k/

= Σ Cτ(i)τ(j)τ(k)Ψτ(i)τ(j)τ(k)
i<j<k

where

(2-17) Cijk = βij - μik + βjk

and

(2.18) Ψijk = Jmicύij A ω-ik A ωjlc).

We denote by Cp-q the space of complex forms with degree (/?, q) on F(N). Then, for

any i, j , k, we have either

(2.19) Ψijk eC°<3ΘC3>°

or

(2-.20) ΨiJk eCh2ΘC2Λ .

DEFINITION 2.1. An almost Hermitian structure {ds2

A, J) is (1, 2)-symplectic (resp.

Kahler) if and only if

(dΩ)U2 = 0 (resp. dΩ =0)

REMARK. For the root pattern criteria of the (1, 2)-symplectic (quasi-Kahler in an al-

ternative terminology due to Wolf and Gray) see [13, page 154, Theorem 9.15].

3. Parabolic invariant almost complex structures. An invariant almost complex

structure J on F(N) is called parabolic if there exists a permutation τ such that J{J) is

given by

(3.1) τ ( ι ) - > τ(j)θi - j elN or j-ie2N-l.

REMARK 3.1. For an equivalent description, see for example [5]. The main goal of

this section is to show that for each parabolic almost complex structure on F(N), there exists
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an TV -dimensional family of almost Hermitian (1, 2)-symplectic metrics and to write out their

explicit formulas. More precisely, we have the following.

THEOREM 3.2. Suppose that J is a parabolic invariant almost complex structure on

F(N) with the corresponding tournament given by (3.1). Then an invariant metric ds\ is

(1, 2)-symplectic with respect to J if and only if A satisfies that

di + tfi+2 H r- Clk-2 ,

(3.2) λτ(i)τ(k) —

if k-ie2N,

+ cik+2 -\

+ ak+2 H

+ ak+2 H

• + flyv-1 + 01 + ^3 + ' * ' + ai-2
if /, N e2N- 1 and it G 2 N ,

• + <2JV + #2 + ^4 + ' ' + 0/-2 »

if N,ke2N-l and 1 G 2 N ,

• + aw-2 + #w—1 + β i + 03 + * *
if N, k G 2N and / e 2ΛT - 1,

• + βyv-3 + 0yv + 02 + 04 + * * ' "
if /, TV G 2TV and A: G 2N - 1 ,

where ao = ajy,a-\ = α/v-l

PROOF. For any i < j < k, from (2.4) and (2.8) it follows that

(3.3) ' ^ 2 1

if and only if one of the following is true for any i < j < k:

(i) j -i e2N,k- j e2N- 1,

(ii) k-j e2NJ -i e2N-l,

(in) j -i,k- j e2N.

The corresponding Cτ(/)τ(7)τ(^) vanishes if and only if, from (2.17):

(I) K{j)τ(k) =
(Π) λ τ ( i ) T ( y ) =

(III) λτ(i)τ(k)

respectively. It follows that ds1^ is a (1, 2)-symplectic metric with respect to J if and only if

(I)—(III) hold, where i < j < k satisfy (i)-(iii), respectively.

Put

(3.4)

λτ(2)τ(yV) ,

Assume now that ds\ is a (1, 2)-symplectic metric with respect to J'. Then:

if 7 = 1
if j = /
if 7 = /
if 7 = /
if / = /

,2,

V G

V G

• , N
1 G2Λ^

1 e2N
2N,
2N- 1

- 2 ,

- 1,
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a) If k - i e 2N, then we have from (III)

λτ(i)τ(k) = λ τ (/) τ (, + 2) + λ τ ( , +2)τ(ik)

= λ τ ( , ) τ(, +2) + λ τ(/+2)τ(i+4) + ̂ τ(

= λ T (, )T(, + 2 ) + λ τ ( , +2)τ(i+4) H 1" λτ(jk_2)τ(ifc)

+ 2 H

b) If i, N e2N-l,ke2N, then

1 ( I ) 1 1 1

λτ(i)τ(*) = λτ(l)τ(i) + λτ(l)τ(k)

(3.6) = λτ(l)τ(i) + λT(i)T(tf
(3.4)

i 3 H h αί-2 + α^-i + β* + α^+2 H h «Λ^-3
(4.5)

c) 1fN,k€2N-l and / G 2iV, then

(3.7) = λτ(2)τ(i) + λr(2)τ(iV)

= «2 + «4 H h CLi-2 + ax + cik + ak+2 H
(3.6)

d) When N,k e2N and i e2N- 1, we have:

1 ( I Π )

(3.8) =

= a\ + «3 H h α, _2 + α^v-i + a>k + ̂ + 2 H
(3.6)

k e 2N- l,then

( I Π ) i . i

= λτ(2)τ(i) + λτ(2)τ(/:)

= Cl2+a4-\ h Qi-2 + «Λ̂  + dk + α*+2 H
(3.6)

Hence (3.2) holds.

Conversely, assume that A = (λφ satisfies (3.2). Then
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i) If j - i e 2Nandk- j e2N- 1, then

λτ(i)τ(k)

= αi + fl +2 H h Clj-2

H V αu-i + αi + 03 H h fl/-2

277

(/ e2N-l,N e2N)

H h fl/-2

(/ e2N,N e2N- 1)

fljfc + αjt+2 H h ##-3 + fl^ + «2 + «4 H h ^'-2

(1, N e2N)

+ αjfc+2 H 1- α^v-i + 01 + 03 H 1- fl/-2

+
Uk + flλ +2 + + 0N-3 + aN + 02 + 04 4" 4" fl/-2

= K(j)τ(k)

ii) If j - i e 2N - 1 and k - j e 27V, then

" λτ(j)τ(k)

+ fljt+2 + ' + 0Λ -̂2 + 0iV-l 4- 01 + 03 4" 4- fl -2

(ί,N e2N- 1)

: + 0λ:+2 H h 0iV-2 4" 0^-1 4- «1 + «3 H H 0/-2

(i e2N-l,N e2N)

. H h 0W + 02 + 04 H h 0/-2

(i e2N,N e2N- 1)

; + •••+ flΛ^-3 4" CiN 4" «2 + 04 + * * ' 4" fli-2

(/, N e2N)

• 0 /

dj + fly + 2 H h 0Λ -̂1 + 01 + 03 H 1" 0/-2

αj H h fliV-2 + 0Λ -̂1 + 01 + 03 H 1" 0/-

H h fl^ + 02 + 04 H h 0/-2

H h 0iV-3 + 0# + «2 + 04 H h 0/-2

iii) If y - / and k- j e 2N, then

λτ(i)τ(j) + K{j)τ{k) = (fli + 0/+2 H h 0;-2) + (fly + 0J+2 H h fl*-2>

= αi + fl, +2 H 1" 0^-2 = λ τ(, )T(*) .

Hence J,y^ is an almost Hermitian (1, 2)-symplectic metric with respect to J.
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4. Almost complex structures without invariant (1, 2)-symplectic metrics. Since

the Kahler condition implies the (1, 2)-symplectic one, any invariant almost complex struc-

ture has a (1, 2)-symplectic metric for F(3). A natural question is then the following: "Is

there a (1, 2)-symplectic metric for any £/(W)-invariant almost complex structure on F(N)T

Concerning this question, we have:

THEOREM 4.1. Suppose J is a U (N)-invariant almost complex structure whose as-

sociated digraph contains configurations of Figure 1. type. Then J does not admit any left-

invariant (1, 2)-symplectic metric.

PROOF. If the tournament J(J) contains (i), then we can mark this 4-subtournament

as in the Figure 2 for some permutation τ e Σn. Suppose that ds\ is (1, 2)-simplectic with

respect to J. Since

7(2)τ(3)' ωτ(2)7(4)' ^ τ (3)7(4)

are (1, 0)-forms, we have

(4.1)

From (2.10), (4.1) is equivalent to

(4.2)

Cτ(l)τ(2)τ(3) = 0 '

Cτ(l)T(3)τ(4) = 0 ,

CT(2)τ(3)r(4) = 0 .

-λ τ(2)τ(3) = 0>

—λτ(l)τ(3) + λ.τ(i)Γ(4) + λτ(3)Γ(4) = 0 ,

—λT(2)τ(3) — λτ(2)τ(4) + λτ(3)τ(4) = 0 .

(i) (ϋ)

FIGURE 1.

r(3) τ(2)

FIGURE 2.
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Hence we have

λr(2)τ(3) =

= λ.τ(i)τ(2) + λτ(i)Γ(4) + λτ(3)τ(4)

= λ.τ(i)τ(2) + λτ(i)τ(4) + λτ(2)τ(3) + λτ(2)τ(4) ,

which implies that

λτ(l)τ(2) + λτ(i)τ(4) + λτ(2)τ(3) = 0 .

Therefore, by using (2.8), we derive a contradiction. In a similar manner we can prove the

theorem for the type (ii). Q.E.D.

If we use Figure 3 (which is taken from [12]), we see all the isomorphism classes of a

4-tournament (see [12, page 87] for more details). Clearly, (i) is canonical, (ii) and (iii) are

listed in Theorem 4.1, and (iv) is parabolic. Combining Theorems 3.2 and 4.1 with BoreΓs

result ([1,2]), we have

THEOREM 4.2. An almost complex structure on F(4) is integrable (resp. parabolic)

if and only if it admits a symplectic (resp. non-symplectic (1, 2)-symplectic) invariant metric.

Also, combining Theorem 3.2 with BoreΓs result ([1, 2]), we have

PROPOSITION 4.3. Tournaments arising from integrable or parabolic almost complex

structure contain no configurations of type (i) and (ii) in Theorem 4.1.

From Figure 3 the converse of Proposition 4.3 is true if N = 4. Nevertheless, the

following result shows that the converse is false in general.

PROPOSITION 4.4. There is an almost complex structure J in F(5) such that:

(a) J is neither integrable nor parabolic;

(b) J(J) contains no configuration as in Theorem 4.1;

(c) J has a 5-dimensional family of (1, 2)-symplectic metrics.

PROOF. Consider the almost complex structure J on F(5) such that J(J) is defined

by the tournament in Figure 4. Then it is easy to see that the score vector (i.e., the number

of games that each player won) of J(J) is (1, 1, 2, 3, 3). On the other hand, integrable (resp.

parabolic) almost complex structures have score vector (0, 1, 2, 3,4) (resp. (2, 2, 2, 2, 2)).

Furthermore, isomorphic tournaments have the same score vector. So J is neither integrable

nor parabolic.

(i)

FIGURE 3.
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FIGURE 4.

There are five 4-subtournaments in J(J). The number of 3-cycles in them is 0 or 2.

However, the diagrams in Theorem 4.1 have only one 3-cycle. So we have (b) of Proposition

4.4. Owing to the definition of J and (2.16), we have

- [ (dΩ)2Λ] =

Together with (2.10), (2.13) and (2.17), we see that ds2

Λ is (1, 2)-symplectic if and only

if (λ, y ) = A satisfies:

It has the following solution:

/ 0

λi
λ2 + λ4 + λ5

λ2 + λ5 λ\ -\

λ-35 = λ.34

λl

0

λ i

> + λ4 H-

λ 3

o
λ4

λ4 + λ5

λ2 + λ5
λi + λ4 + λ5

λ4

o
λ5

λ2 \

λl
λ4

λ5

0

which implies (c).

5. Harmonic maps into flag manifolds. In this section, we construct new examples

of harmonic maps into flag manifolds by using the following

LEMMA 5.1 ([10]). Let φ : (M, g) -> (N, h) be a ±-holomorphic map between al-

most Hermitian manifolds where M is cosymplectίc and N is (1, 2)-symplectic. Then φ is

harmonic.

THEOREM 5.2. Let φ : S2 -> Gr(CN) be a harmonic map. Then there exists a flag

manifold F = F{n\,... ,nk', N) and a harmonic map Ψ : S2 —• (F, ds2^) such that either φ

or φL is given byπeoΨ, where A = (λ/y) is given in (3.2) {take τ ^identity), k < 2r + 1 is

odd and φ1- is the orthogonal complement ofφ with respect to the standard Hermitian metric.
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PROOF. From Proposition (2.15), (2.16), Theorem (3.9) and Corollary (3.3) in [5],

there exist k(e 2N - I) <2r+ 1, F = F(n\,... ,rik\N) and a holomorphic map Ψ : S2 -»

(F, J2) such that either φ or φ1- is given by π e o ^ , where Ji the canonical parabolic almost

complex structure and πe : F —> Gr(CN) is a homogeneous Riemannian fibration with

respect to the identity permutation e. Now our conclusion can be obtained as an immediate

consequence of Theorem 3.2 and Lemma 5.1.

REMARK 5.3. It is clear that we can extend Theorem 5.2 to any nilconformal har-

monic map of order k from a connected Riemann surface (see [5] for details).

Now we are in a position to construct new harmonic maps between flag manifolds. De-

fine a homogeneous fibration

π : F(n\,... ,nk,N) -• F(n\ +nk,n2,... ,/i*_i,W)

by

7r(£i,. . . , Ek) = (Eι Θ Ek, E2,... , Ek-\).

Then π is holomoφhic with respect to the parabolic the structure Ji ([5]). Combining this

with Theorem 3.2 and Lemma 5.1, one gets the following

PROPOSITION 5.4. Letk e 2N. Then π is harmonic with respect to all (I, 2)-symplectic

metrics of J2 given in (3.2).

REMARK 5.5. It is easy to see that the argument about (1, 2)-symplectic structures

for any F(n\,... , nk\ N) = U(N)/U(n\) x x U(nk) is similar to that for F(k). For

example, for F(l , 1, 2; 4) the family of invariant metrics on it can be described as follows:

ds\ =

Now we consider an invariant almost complex structure on F(l, 1, 2; 4). We define ε, (i =

1,2, 3) by

1 if ωX2 is a (1,0) — form,
1 —1 if ωX2 is a (0,1) — form,

λ\ and ωλ-ά are (1, 0) — forms,
£2 "~ '1 - 1 if 3 and ωX4 are (0, 1) — forms,

1 if ωΎ\ and ω2Λ are (1,0) — forms,
£3 = {

— 1 if ω23 and ω24 are (0, 1) — forms.

Then each choice ε = (ε\, ε2, £3) determines an invariant almost complex structure so that

the associated Kahler form is given by

Ω = -2\f^Λ[μ\(ωX2 A ω~n) + μ2(ωχι A ωχ3 + ωχ~A A ωχ4) •+• ^3(^23 Λ ω^ + ω24 A ω2

where

βj = εJλJ -
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Hence it is easy to show that

(5.1) - d Ω = (μi — μ2 + μ3) ImKω^ A ω^ + ωχ~A Λ ω^) Λ ωj 2 ] ,

which is very similar to (2.16), where τ is the identity permutation and N = 3.
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