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Abstract. Recently, Mclntosh develops a method of constructing all non-isotropic har-
monic tori in a complex projective space in terms of their spectral data. In this paper, we
classify all spectral data whose spectral curves are smooth rational or elliptic curves. We also
construct explicitly corresponding harmonic maps.

1. Introduction. Harmonic maps of a two-sphere in complex Grassmann manifolds

have been extensively studied and classified in [3], [20] and [21]. On the other hand, until re-

cently not much has been known for harmonic maps of two-tori in these manifolds. However,

concerning harmonic two-tori in a compact symmetric space of rank one, it has been known

that any non-conformal harmonic torus can be obtained by integrating certain commuting

Hamiltonian flows (cf. [2]). Also, it was proved by Burstall [1] that any non-superminimal

harmonic torus in a sphere or a complex projective space is covered by a primitive harmonic

map of finite type into a certain generalized flag manifold. Furthermore, Udagawa [19] gen-

eralized BurstalΓs result to those harmonic tori into a complex Grassmann manifold G2(C4)

of 2-dimensional complex linear subspaces in C 4 and, by using a Symes formula, constructed

weakly conformal non-superminimal harmonic maps from the complex line to G2(C4). Em-

ploying these facts, as well as algebro-geometric methods, Mclntosh has recently constructed

a significant correspondence between the following spaces: the space of non-isotropic, lin-

early full harmonic maps into a complex projective n-space, ψ : R2 —> CPn, of finite type,

up to isometries, and that of spectral data, that is, triplets (X, π, C) consisting of a real, com-

plete, connected algebraic curve X (called the spectral curve for ψ), a. rational function π on

X and a line bundle C over X, which satisfy certain conditions (cf. [12] and [13]).

The purpose of this paper is to determine all spectral data (X, π, C) for which the spectral

curve X is a smooth rational or elliptic curve (Theorems 3.1 and 3.5). Corresponding to

them, we construct non-trivial examples of harmonic maps of two-tori into complex projective

spaces. Moreover, we prove a criterion on the periodicity of these harmonic maps (Theorems

3.3 and 3.7).

This paper is organized as follows. In Section 3, we recall the definition of spectral data

introduced by Mclntosh. All spectral data with smooth rational or elliptic spectral curves
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are classified (Theorems 3.1 and 3.5), and corresponding harmonic maps are explicitly con-

structed (Theorems 3.2 and 3.6). Moreover, we prove a necessary and sufficient condition for

a constructed harmonic map to be doubly periodic (Theorems 3.3 and 3.7). We also construct

some examples of harmonic tori by using the method developed in this section. In Sections

4 and 5, the proofs of Theorems 3.1 and 3.5 are given respectively. Section 6 is devoted to

proving Theorems 3.2 and 3.6. Finally, in Section 7, we introduce certain homomorphisms

into generalized Jacobians of spectral curves and prove Theorem 3.7.

The auther thanks Professors K. Kenmotsu, H. Urakawa and S. Nishikawa for their ad-

vice and encouragement.

2. Jacobi's theta functions and Weierstrass' zeta functions. C. G. J. Jacobi in-

troduced four functions θ\, θ2, 03 and 04 of variables p(u) = Qxp(π^Λu) and q =

exp(π V^Tτ), where u is the usual covering coordinate of an elliptic curve X = C/L and

τ stands for its period ratio with familiar standardization that the imaginary part Imτ of τ is

positive. If we take L to be Z 0 τZ for simplicity, then these Jacobi's theta functions are given

as follows:

0100 = 0!(M I τ) = ^

Here the sums are taken over n e Z. Under the addition of half-periods, these functions

transform according to the following table.
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For example, we have the transformation rules

(2.1) θι(u + τ) =-b(u)θι(u),

(2.2) Θι(u + l/2)=θ2(u),

(2.3) 6>i (M + τ/2) = -VΓTα(M)6»4(M),

(2.4) Θ?,(u +

(2.5) Θ4(u
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where a(u) = p(u)~ιq~1/4 and b(u) = p(u)~2q~ι. Special values of these functions are

obtained as follows:

lim q~ι/4 — (0 | V^ϊt) = 2π , lim q~ι/%(0 | </-ff) = 2,
(2.6) t^oc du t^°°

lim 6>3(O I v ^ ϊ ί ) = 1, lim Θ4(O \ V^ϊt) = 1.
r-»oo f—> oo

On the other hand, Weierstrass' zeta function ζw is defined by

(2.7) ζwW = ζw,τW = ~ +
U

Note that these functions have the following properties. θ\ is an odd function. #2, #3 and

Θ4 are even functions. Concerning ζw, there exist complex numbers A = Aτ and B = Bτ

depending only on τ such that

(2.8) ζw(u + l)-ζw(u) = A, ζw(u + τ) - ζw(u) = B, Aτ - B =

Moreover, if τ is pure imaginary, we have θ\(μ) = θ\(u), ζw(u) = ζw(u), A = A and

B = -B.

For further details and formulas regarding these functions, we refer the reader to McKean

and Moll [14, Chapter 3].

3. Main results. Let P1 be the smooth rational curve and λ an affine coordinate on

it. Let p be an anti-holomorphic involution on P 1 defined by λ \-^ 1/λ. Then the fixed point

set of p consists of the equator Sι defined by {λ e Pι \ |λ| = 1}.

First we recall the definition of spectral data introduced by Mclntosh (cf. Section 2.1 in

[13]).

DEFINITION 3.1. A spectral data is a triplet (X, π, C) of isomorphism classes which

satisfies the following conditions:

(1) X is a complete, connected, algebraic curve of arithmetic genus p, with a real

involution px.

(2) 7Γ is a meromorphic function on X of degree N = n + 1 satisfying π o px = 1/π,

with a distinguished zero Po of degree m + 1 (m ^ 1) and a pole PQQ = pχ(Po)- We regard

X as a covering of degree n + 1 of the rational curve Pι via π.

(3) £ is a line bundle over X of degree p + n satisfying

where R is the ramification divisor for π. By identifying C with a divisor line bundle Oχ(D),

we can find a meromorphic function / on X which satisfies the following conditions:

(a) The divisor (/) of / is given by D + px*D - R and ~p*J = f.

(b) Let XR be the preimage of Sι by π. Then / is non-negative on XR.

(4) π has no branch points on Sx and px fixed every point of XR.
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Two triplets are the same if there exists a biholomorphic map between spectral curves which

carries the real structure, the meromorphic function and the isomorphism class of the line

bundle each other.

Our main theorems which refine the correspondence proved by Mclntosh may be stated

as follows. (See Section 6.1 for the detail of this correspondence.)

THEOREM 3.1. Let X be the smooth rational curve. Then (X, π, C) is a spectral data

if and only if the following conditions are satisfied:

(1) (X, px) is real isomorphic to (P 1, p). By the affine coordinate λ,π is expressed as

for some m and n with 1 ύ m ^ n - 1. Here Pj e Xs = {λ e X \0 < \λ\ < 1} and

Qj = I/Pj for any I ^ j ^n — m.

(2) £ i5 α //we bundle of degree n.

THEOREM 3.2. Choosing a complex corrdinate on the source suitably, the harmonic

map Ψ : R2 —> CPn corresponding to the spectral data (X, π, C = Oχ(D)) in Theorem 3.1

is given by

z = x + V^ϊy ^ [Ψ0(z) :Ψι(z):--: Ψn(z)],

where Ψi(z) is a function defined by

(3 2) Ψiiz) = ex ( - ' z - η z) Π ^ T f a - Λ )

//^r^ {̂ o. ^/t} is the inverse image π~ι(l) of I by π and /?+ = X^Z^ Rj is a divisor

given by the intersection of Xs with R, that is, R+ = Xs Γ\ R.

Furthermore we obtain the following

THEOREM 3.3. Ψ is doubly periodic with periods v\, v2 G C if and only if the set

(3.3) V= Π ^r(*<

contains the 2-dimensional lattice M — Zv\ 0 Zι>2, where β\, . . . , βn are complex numbers

defined by βi = η~ι - ^ Q " 1 .

COROLLARY 3.4. Let(X, π, C) be a spectral data in Theorem 3.1 such that the degree

ofπ is 3. Then the corresponding harmonic map Ψ : R2 —> CP2 in Theorem 3.2 is always

doubly periodic with periods υ\, V2, where v\ and V2 are complex numbers in the set

Zv+®Zv-=Zπ(β] lm(β2/β\)Γl ΘZπ(β2 lm(βι/β2)Γl .

PROOF. In this case, the set V in Theorem 3.3 reduces to Zυ+ 0 Z υ _ . Hence Corollary

3.4 follows from Theorem 3.3. D
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Now we turn to the case of a smooth elliptic spectral curve X. Let us denote by Pic^(X)

and J(X) the set of line bundles on X of degree d and the Jacobian of X, respectively. Note

that J{X) can be identified with X — C/(Z 0 Zτ). We then define a biholomorphic map

J : Pic°(X) -> J(X) by J(L) = Σkj=\(pj ~ Qj) (modZφZτ), provided that L e Pic°(X)

is expressed as a divisor line bundle Oχ(Σkj=ι(Pj — Qj)).

THEOREM 3.5. Let Xbe a smooth elliptic curve. Then (X, π, C) is a spectral data if

and only if the following conditions are satisfied:

(1) X is an elliptic curve Xτ = C/(Z 0 Zτ), where τ is a pure imaginary number

yf^ϊt with t > 0. px is an anti-holomorhic involution induced by the usual conjugation of

C. Regarded as a doubly periodic meromorphic function on C, π is expressed as

θx(u- />oΓ+1 UnjZ7~l θ\(u - Pj) θ\{u- Pn-m + W)
π ( u ) " c θ\{u-Qvr^γ\n-=™θx(u-Qj)

for some m and n with 1 ^ m ^ n — 1. Here Pi e Xs = {x e X \0 < Im t <

Imτ/2(modImτZ)} and Qι = Pi (modZ 0 Zτ) for any 0 ^ i ^ n - m; W = (m +

l)Po + Σ?=Γ p/ " (m + VQo ~ ΣHZT β/; ^o # Λ/or i # 0; W belongs toZ®Zτ\ and
C is the unique constant such that π(0) = 1.

(2) Let r : Pic"+ 1 (X) -+ Pic°(X) be a map defined by T h+ T ® Oχ(-/?+), where

/?_)_ = Σy = o ^y is a divisor of degree n + 1 ̂ /v^n Z?j the intersection of Xs with R, that is,

R+ = Xs Π /?. ΓΛβn, £ is an element of the inverse image of(Z 0 VC:T/?)/(Z 0 τZ) by the

composition J o r.

THEOREM 3.6. Choosing a complex coordinate on the source suitably, the harmonic

map Ψ : R2 -> CPn corresponding to the spectral data (Xτ, π, C = Oχ(D)) in Theorem

3.5 is given by

z = x + V^y ^ [Ψo(z) :Ψχ(z): : Ψn(z)],

where Ψi (z) is a function defined by

*ϊ(z) = M, exp(z[Cu,('?/ - Po) - Άί7/] - z[Cu)(»7ί - Qo) - ^»?i])

(3-4) 0,O;/-fl)rrrc=

Here {770, . • , ηn} is the inverse image π~\l) of I by π, /x, is a constant given by μz =

exp(27rV^T(D — R+)\mηi/t), and A is a constant given in the equation (2.8).

Moreover we prove the following

THEOREM 3.7. The harmonic map Ψ : R2 —> CPn in Theorem 3.6 is doubly periodic

with periods υ\,V2 € C if and only if the set V = Πo</<« ^ contains the 2-dimensional

lattice M — Zv\ 0 Zv2, where Vb> » Vn are the sets defined by

I C, otherwise.
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Here βo, β\, .. , βn are complex numbers defined by

βθ = 2π/t, βi = [ζw(ηo - Po) - ζw{rn - Po) - B(ηo - ηι)τ~ι] (1 ^ i ^ n).

COROLLARY 3.8. Lei (X, π, £) be a spectral data in Theorem 3.5 such that the degree

ofπ is 2 and \mβ\ φθ. Then the corresponding harmonic map Ψ : R2 -> C P 1 m Theorem

3.6 w α/wαys doubly periodic with periods v\, ι>2, where v\ and ι>2 are complex numbers in

the set

Zv+®Zv- =Zπ(lmβι)~ι φZj~ι(ίmβ\)~ιt/2.

PROOF. In this case, the set V in Theorem 3.7 reduces to Zv+ ®Zv-. Hence Corollary

3.8 follows from Theorem 3.7. •

We now give some explicit examples of harmonic maps by applying the theorems above.

EXAMPLE 3.9. Let (X = P 1 , π, C) be a spectral data defined as follows. The map

π : P 1 -> P 1 is given by λ H> λn+ι. £ is the divisor line bundle

C=Ox(n0),

and Po = 0, a point as in Condition (2) of Definition 3.1. Then we choose the constant

function / = 1 as a meromorphic function in Condition (3) of Definition 3.1. Setting

ω — exp(2πV—l/(w + 1))? we see that π~ι(l) is given by {1, ω, ω2,... , ωn}. Then the

corresponding harmonic map Ψ : R2 —> CPn is given by

z = x + V^Ty H-> [*b(z) : : ^ ( z ) ] ,

where Ψi = exp(ω~;z — ω^z). Note that ^ is a superconformal map. Moreover, if n = 1, 2,

3 or 5, then ^ is doubly periodic.

EXAMPLE 3.10. Let (X = P 1 , π, C) be a spectral data defined as follows. The map

π : P 1 -> P 1 is now given by

1 -)8 9 /λ-ofN

where a is a real number such that 0 < |α | < 1 and β = \/a. The ramification divisor Rofπ

is given by R = (R{) + (0) + (pχ(R\)) + (oo), where R{ = (a2 + 3 - Vα?4 - 10α2 + 9)/4α.

£ is the divisor line bundle given by

£ = Oχ(/? i+oo),

and Po = 0. Moreover, π~ι(— 1) = {770,771,772} is given by

a - 1 + >/4 - (α - l ) 2 ^ / 1 1 ! α - 1 - Λ/4 - (α - 1)2-V/::T
) = 1 , ^1 = , >72 = —

Then the corresponding harmonic map Ψ : R2 —> C P 2 is given by

where
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Note that Ψ is a harmonic map of isotropy order 1 and is nowhere conformal. Moreover, by

Corollary 3.4, Ψ has two complex periods υ\ and V2, which are in the lattice Zu+ φ Zv-

deίined by

/ i 7 T \ / V T \
v+ = . = H 7Γ , v- = . H π .

\ y 4 ( l ) 2 α 3 / ^ - ( α - l ) 2 <* - 3 J
EXAMPLE 3.11. Let (Xτ = Xyzy, π, £) be a spectral data defined as follows. We

define the map π : Xτ -» P 1 by w ι->- λ = g(u)/g(l/2), where #(w) is a meromorphic

function on X given by

θ\{μ - R3)3

with Ro = 1/2 + V^T/6 and #3 = 1 /2 + 5>/-T/6. In this case, there exists a point #2 € Xs

such that the ramification divisor R is expressed as 2Ro + #2 + Px(2Ro + #2)- We define the
divisor line bundle £ by

Set Po = #0 as a distinguished zero of π as in Condition (2) of Definition 3.1. We choose the

constant function / = 1 as a meromorphic function in Condition (3) of Definition 3.1. In this

case, ζw(V—ϊr) = — sf—^ζw(r) for r e R. From this, together with (2.8), we get A = π.

Since π~ι(l) is {0, 1/2, V^T/2}, the corresponding harmonic map Ψ : R2 -> CP2 is given

by

z = x + V^Ty h+ [^(0, z) : τA(l/2, z) : ψ(J=ϊ/2, z)],

where

^ ( M , Z ) = exp[z{?u;,τ(M — Ro) ~ ~*u\ - z{ζw,τ(u ~ R3) - πu}] — — .
θ\(u - R2)

Note that Ψ is a superconformal map into CP2.

EXAMPLE 3.12. Let (Xτ = XΛ/zy, π, £) be a spectral data defined as follows. We

now define the map π : Xτ -• P 1 by u ι-> λ = p(u - R2)/p(3\f^Λ/4), where R2 = 3>/-T/4

and p is Weierstrass' p function defined by

_j_ y . ί 1 1

The ramification divisor R of π is given by R = Ro + R\ + R2 + R3, where /?o = \/-T/4,

/?! = (2 + v / ΓT)/4 and Λ3 = (2 + 3 v

/ : r T)/4. Define the divisor line bundle C by

Set Po = #0 as a distinguished zero of π as in Condition (2) of Definition 3.1. The constant

function / = 1 can be taken as a meromorphic function in Condition (3) of Definition 3.1.

Since π~ι (1) is {0, V^T/2}, the corresponding harmonic map Ψ : R2 -> CPι is given by

z = x + V^y ^ [tfr(0, z) : ψ(V=ϊ/2, z)],
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y

FiGURE 1.

where

(u, z) =
Θ\{u-R\ -

Note that Ψ is a harmonic map of isotropy order 1 and is nowhere conformal.

Concerning the periodicity of Ψ, the corresponding set V in Theorem 3.7 then consists

of the lattice points in Figure 1.
From Corollary 3.8, we see that Ψ has two periods v+ and v- defined by

υ+ = 2^/(4^(1/4) - π) = 0.4962 . . . , v- = VZΓΓ/2,

that is, Ψ(v- + z) = Ψ(υ+ 4- z) = ^(z) . Moreover, ^ maps the torus Γ = C/(Zv+ Θ Zυ_)

to an annulus in the Riemann sphere CP].

4. Classification of spectral data with the smooth rational spectral curve. This

section is devoted to the proof of Theorem 3.1. First, we shall describe the real structures of

the smooth rational curve P 1 .

We first note that there are two real structures on P 1 (cf. Section 2.1 in [5]). One is

(P 1, p). The other is (P 1, σ), where σ is the anti-holomorphic involution defined by

However, it is not suitable to choose the latter as the involution of the spectral curve X = Pι,

since it has no fixed points on Pι and does not satisfy Condition (4) in Definition 3.1.

Throughout this section, we shall always assume that X — Px and px = p.

PROPOSITION 4.1. Let π be a non-constant holomorphic map from X to Pι satisfying

the following conditions:

(1) π o px = poπ,

(2) px fixes every point of XR ,
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(3) π has no branch points on SK

Then π is either (A) χ or (B) 1/χ, where χ is the meromorphic function defined by

χ(λ) =aoλ
κ

Here k and I are some non-negative integers with Jc + l φ 0; α?o € C* = C \ 0; a\, . . . , α/ are

won zero complex numbers satisfying |α/1 < 1 αrcd |αoθ£i α/1 = 1; and β[ = 1/ά/.

Conversely, any map π expressed as above satisfies Conditions (1), (2) and (3).

We devide the proof of Proposition 4.1 into several lemmas.

LEMMA 4.2. The map π satisfies Condition (1) in Proposition 4.1 if and only if it is

of the following form:

where k is an integer and ao e C*, and a\, . . . , α/, βi, . . . , /3/ αre complex numbers belong-

ing to C* \ Sι which satisfy β[ = 1/ά/ (1 ^ / ^ /) and \aoa\ α/| = 1.

PROOF. The map π intertwines the involutions px on X and p on P 1 , precisely when

(4.1) π(λ)π(l/λ) = l .

From this it follows that if π has a pole (resp. zeto) of order k at /?, then px(p) is the zero

(resp. pole) of π of order k. Since px fixes every point of 5 1, there exist no zeros and poles

on Sι. Thus π must be of the following form

(4.2,

where a\,... , 07, β i , . . . , βι are all complex numbers contained in C* \ S1 and CXQ e C*.

Using (4.1), we also get

(4.3) |αoαi •••«/! = 1.

Conversely, let π be the map defined as in (4.2) with |αoαi •••<*/! = l Then clearly π

satisfies the equation (4.1). El

LEMMA 4.3. Let π be a map as in Lemma 4.2 and suppose that π satisfies Condition

(3) in Proposition 4.1. Then π satisfies Condition (2) in Proposition 4.1 if and only if π is

either (A) χ or (B) 1/χ, where χ is the meromorphic function as in Proposition 4.1.

PROOF. Let π \s denote the restriction of π to SK It is easy to see that π maps Sι

into 5 1 . This together with Condition (3) in Proposition 4.1 implies that Condition (2) in

Proposition 4.1 is equivalent to that \d\, the absolute value of the mapping degree d of π |s, is

equal to |fc| + /, the degree of π. Note that d is given by the integral

1 ' -Urew.
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Then, by a straightforward calculation, we get

d = k + — ^ = / . Σ λ - a ~ λ - — d λ -

where the second term in the right-hand side is equal to

Thus \d\ = \k\ + /, precisely when k and ct\,... ,a\ satisfy

I (A) k ^ 0 and |α/| < 1 (1 ^ / ^ /) or

(B) Jc^O and |α, | > 1 (1 ^ / ^ / ) .

This completes the proof of Lemma 4.3. D

LEMMA 4.4. Let π be a map as in Proposition 4.1. Then the ramification divisor ofπ

does not intersect Sι in X.

PROOF. Let π be a map as in (A). Differentiating π by λ, we get

dλ l_λ-ft
7=1

/

Suppose that the ramification divisor of π intersects Sι, that is, there exists a point λ on Sι

such that

Then, setting λ = exp(V—T^)λ, oί\ = exp(V—T^)α/ and ft- = exp(V~T^)A', we have

(4.4) fc + λVf - *''"/'' - U θ .

Choose θ e R such that λ = 1. Then the left-hand side of (4.4) becomes

which is positive because \cίk\ = \otk\ < l This is a contradiction. Thus the ramification

divisor does not intersect S{.

The proof for the case when π is a map as in (B) proceeds in a similar way. D

By Lemma 4.2, Lemma 4.3 and Lemma 4.4, Proposition 4.1 has been proved.

PROPOSITION 4.5. Let π be a meromorphic function on X = Px and C a line bundle

over X. Then (X, π, C) is a spectral data if and only if it satisfies the following conditions:

(1) π is a meromorphic function as in Proposition 4.1.

(2) The degree ofCisN — l, where N is the degree ofπ.

(3) π has a zero PQ of order ^ 2.
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PROOF. We first prove the "only if" part. Conditions (2) and (4) in Definition 3.1

require that π is a meromorphic function as in Proposition 4.1. By Condition (3) in Definition

3.1, the degree of C must be TV — 1. Condition (3) in Proposition 4.5 assures Condition (2) in

Definition 3.1. Hence the "only if" part is clear.

To prove the "if" part, we only have to show the existence of a divisor D and a meromor-

phic function / satisfying Conditions (3-a) and (3-b) in Definition 3.1. Let D be any divisor

of degree N — 1. First, the existence of a meromorphic function / whose divisor (/) satisfies

is obvious, since X = Px. It has been shown in [Section 3.1, 12] that there exists a meromor-

phic function / such that

Pχf = f

So it suffices to show that fs, the restriction of / to Sι, is non-negative on S{. Let Szp be the

intersection of Sι with the set of zeros and poles of / . Restricting fs to Sι \ Szp, we get a real

function /*. Considering the restriction of (—R + D + Px*D) to Sι, we see that fs has only

zeros and poles whose orders are all even. So the sign of /* remains invariant at each point

of Szp. Changing the sign of / if necessary, we get the desired function. Hence Proposition

4.5 is proved. D

Now let us prove Theorem 3.1.

PROOF OF THEOREM 3.1. To prove this theorem, it suffices to show that for every

spectral data (X, π, C) with Po as in Proposition 4.5, there exists a real automorphism φ on

(X, px) such that the value of λ at φ~ι (Po) is equal to 0 and the pull-back of π by φ is of a

form in Condition (1) of Theorem 3.1. But this is quite straightforward. D

5. Classification of spectral data with smooth elliptic spectral curves. This section

is devoted to the proof of Theorem 3.5. First, we describe all smooth real elliptic curves

which can be spectral curves. Second, meromorphic functions on these spectral curves, which

satisfy Conditions (2) and (4) in Definition 3.1, are determined (Proposition 5.2). Finally, after

preparing a device (Proposition 5.7) useful to select line bundles satisfying Condition (3) in

Definition 3.1, we prove Theorem 3.5.

Let S + (resp. S~) be the northern (resp. southern) hemisphere defined by 5 + = {λ e

Pι I |λ| > 1} (resp. S~ = {λ e Pι \ |λ| < 1}). Let X = Xτ = C/(Z®τZ) be an elliptic curve,

where τ belongs to the upper half plane S) := {Imτ > 0}. Let px be an anti-holomorphic

involution of X and Xp the fixed point set of px.

It should be remarked that a real elliptic curve (X, px) with Xp = 0 is not suitable for

our purpose, since px has no fixed points on X and hence violates Condition (4) in Definition

3.1.

THEOREM 5.1 ([5]). Let (X, ρx) be as above and Xp φ 0. Then (X, px) is iso-

morphic to (C/(Z Θ rZ),σ), where τ belongs to (F0) {yf-ίt\t e R, t > 0} or (Fl)

{1/2 + sf—^t \t e R, t > 0}, and σ is the anti-holomorphic involution on C/(Z θ τZ)
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induced by the usual conjugation ofC. Moreover, ifX is an elliptic curve of type (FO), then

Xp consists of two circles S^ and Sβ defined by

Sι

A = (R® τZ)/(Z ® Zτ) , Sι

B = (R Θ τ(l/2 + Z))/(Z ® Zτ),

and X \XP consists of two tubes XN and Xs defined by

XN = ({x eC\lmτ/2 < Imx < Imτ}θZτ)/(ZθZτ),

Xs = ({x eC\0 < Imi < Imτ/2} 0 Z r ) / ( Z 0 Z τ ) .

O« ί/*e other hand, ifX is an elliptic curve of type (Fl), then Xp consists of a circle S\ defined

by

S\ = (J?0τZ)/(ZθZτ),

and X\XP is connected.

PROPOSITION 5.2. Let Xτ be an elliptic curve and px an anti-holomorphic involution

on Xτ with Xp φ 0. Let π be a non-constant holomorphic map from Xτ to P] satisfying the

following conditions:

(1) π o px = poπ,

(2) px fixes every point of π~ι(Sι),

(3) π has no branch points on SK

Then Xτ is an elliptic curve of type (FO). Moreover, regarded as a doubly periodic meromor-

phic function on C, π is either (A) χ or (B) 1/χ, where χ is a meromorphic function defined

by
-,

5 ^ Γ ^

Here θ\ is JacobVs theta function as in Section 2; n is a positive integer, q, ot\, . . . ,

β\,... , βn+\, and C are constants satisfying the following conditions:

(1) oti e Xs and Σi (ai ~ βi) *s expressed as p + qτ e Z φZτ.

(2) βi = pχ(oίi), that is, α/ + βi is expressed as r/ + 5/τ G R®Zτ.

(3) |C|=exp(τrV^ΪΣ/*/(«/-ft)).
Conversely, any map π expressed as above satisfies Conditions (1), (2) and (3).

The proof of Proposition 5.2 is divided into several lemmas.

LEMMA 5.3. There exist no non-constant holomorphic maps from an elliptic curve

Xτ of type (Fl) to Pι satisfying Condition (2) in Proposition 5.2.

PROOF. Suppose that such a map π exists. Let X* ='x\ Xp, X+ = [x e X* | π(x) e

5+}, and X~ = {x e X* | TΓ(JC) e S~}. Then X+ and X~ are open and X* = X+ U X".

Since X* is connected by Theorem 5.1, X* coincides with either X + or X~. In particular, π

is not surjective, which is a contradiction. D

Owing to Lemma 5.3, we may assume that Xτ is an elliptic curve of type (FO).

LEMMA 5.4. Let Xτ be an elliptic curve of type (FO) and π a non-constant holomor-

phic map from Xτ to Pι. Then π satisfies Condition (1) of Proposition 5.2 if and only if it is



NON-ISOTROPIC HARMONIC TORI IN COMPLEX PROJECTIVE SPACES 615

of the following form:

for some k ^ 2. //ere #i w Jacobϊs theta function as in Proposition 5.2; g, o?/, ft (1 ̂  / 5ί

β re constants satisfying

Σ & i - βύ = P + qτ eZ®Zτ , α,- + ft = Γ / + S / T G Λ Θ Z τ (1 ^ i ^ * ) ;

is a constant such that \C\ = exp(π V^T ^ ; sy (α?/ — ft)).

PROOF. The map π intertwines the involutions px on Xτ and p on P 1 if and only if

(5.1) π(u)π(px(u)) = \.

It follows from this that if π has a pole (resp. zero) of order k at /?, then pχ(p) is the zero

(resp. pole) of π of order k. Since px fixes Xp pointwise, there exist no zeros and poles of π

onX*\

Suppose that π : Xτ -> F 1 satisfies Condition (1) in Proposition 5.2. Then the divisor

of π must be of the form

(5.2) (π) = (αi) + + (α*) - (^i) ( f t ) ,

where α/, ft are points on Xτ \ Xp satisfying ft = pχ(α, ), that is, αz + ft is expressed as

r/ + j/τ € Λ 0 Zτ (1 ^ / ^ ^). Then it follows from Abel's theorem that £ f . α/ - ^ f ft

belongs to Z 0 rZ, and hence there exist integers p and q such that Σi ai ~" Σ/ A' = P + <7 τ

The meromoφhic function π is now determined, up to multiplication by a constant C, and is

expressed as follows:

(5.3) π(u) = C exp(-
01 (w - ) 8 I ) 0I(M - f t )

Using (5.1), we get π(0)τr(0) = 1, that is, \C\ = e x p ( τ r v ^

Conversely, let π be a map defined by (5.3) with \C\ = e x p ( π λ / ^ T ^ / s z (α/ — ft)).

Then, clearly π satisfies the identity (5.1). D

LEMMA 5.5. Let π be a map as in Lemma 5.4. Suppose that π satisfies Condition (3)

in Proposition 5.2. Then π is either (A) χ or (B) 1/χ, where χ is the meromorphic function

in Proposition 5.2, if and only ifπ satisfies Condition (2) in Proposition 5.2.

PROOF. Since X = Xτ is an elliptic curve of type (FO), X* = X \ Xp consists of two

connected components. More precisely, X* = X^ U X 5. Let XNΛ and XN*~ be the subsets

of X defined by XN^ = {x e XN | π(x) e 5±}, respectively. Similarly, define Xs^ = {x e

Xs I π(x) e S±}. Suppose that π satisfies Condition (2) in Proposition 5.2. Then we see that

π(X*) Π Sι = 0. It then follows that X^ = XN>+ U XN~ and Xs = Xs>+ U X5'~. Since

X^ and X 5 are connected, we see that (a) X^ = XN>+, Xs = Xs>~ or (b) X^ = XN~,

Xs = XS'+. In the case (a) (resp. (b)), π must be a function of type (A) (resp. (B)) as in

Proposition 5.2.
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Conversely, if π is either (A) χ or (B) 1/χ, then it is easy to see that π maps S\ and

Sι

B into S1. Let 7ΓΛ denotes the restriction of π to S\ and <1A be the degree of the map

KA '. S\ -* Sι. Similarly, define 7Γ# : SB —• S1 by the restriction of π to Sβ, and denote by

dB its degree. Since |d^| + \dβ\ coincides with the degree of π by the residue theorem, we

see that for any point p e S1, π~ι(p) is contained in Xp = Sι

AU Sι

B. This implies that π

satisfies Condition (2) in Proposition 5.2. D

LEMMA 5.6. Let π be a map as in Proposition 5.2. Then the ramification divisor ofπ

does not intersect Xp — S\ U SB.

PROOF. Let π be a meromorphic function of type (A) as in Proposition 5.2. Note that

the number of zeros of π on Xs is given by the integral

\= ί —?—dτr(κ),
V - 1 Jd r ( )
\= ί

27ΓV-1 Jdxs

which is equal to k = n + 1 from Proposition 5.2. Since π maps Sι

A and Sι

B into S1, for every

point /? G 5 1 we see that π~λ (p) contains at least k distinct points. Recall that the degree of

π is k. It implies that

(5.4) #{πι

Suppose that there exists a point x such that x G R Π (S\ U SB), where R is the ramification

divisor of π. Setting q = π(x), we see that #{π~ι(q)} = k by the identity (5.4).

Let π-1(<7) = {Pi,... , P&} and £/,- a neighbourhood of P/ such that t/, ΠUj = 0 for

/ φ j . Let V(#) be the neighbourhood of q defined by V(q) = f]t π (£//). Denote by e the

degree of π 3tx. It then follows from the assumption e ^ 2 that there exists a neighbourhood

W( t) of x such that π(W(x)) C V(#) and the degree of π \w(x)\{x}> the restriction ofπ to

W(x) \ {x}, is e. Take a point v G π(W(x)) \ {q}. Then, there exist a point F/ G ί/, for each

/ φ 1 and points Z i , . . . , Ze e U\ such that π maps all of these points to v. Also, we see

that # { π - 1 (y)} ^ k — 1+e ίi k+1. This contradicts that the degree ofπ is k. Hence R does

not intersect S\ U Si.

The proof for a meromorphic function of type (B) as in Proposition 5.2 proceeds in a

similar manner. D

By Lemma 5.4, Lemma 5.5 and Lemma 5.6, Proposition 5.2 has been proved.

PROPOSITION 5.7. Let (X = C/(Z®<s/^ϊtZ), pχ)bea real curve of type (FO), which

is identified with its Jacobian J(X). Let E and F be divisors on X satisfying

where = means linear equivalence. Let f be a non-constant meromorphic function such that

(5.6) (/) = £ + Px(E) - (F + px(F)),

where (/) is the divisor off. Then / p , the restriction off to Xp = Sι

AU Sι

B, is a non-

negative or a non-positive real function if and only if

(5.7) J(E - F) e (Z 0 yί-[R)/(Z θ V^T
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where J(E — F) is defined by

Σ(pi ~ Qi) modZ Θ Zyf^Λt,
/

provided E — F is expressed as E — F = X];(P/ — Qi).

PROOF. Let Szp be the intersection of S\ U Sι

B with the set of zeros and poles of fp.

Restricting fp to (S\ U SB) \ Szp, we get a real function /*. Considering the restriction of

(E + pχ(E) — F — pχ(F)) to Sι

A U SB, we see that fp has only zeros and poles with even

order. So the sign of / * remains invariant at each point of Szp, and hence fp is non-negative

or non-positive on each connected component of Sι

A U SB. Consequently, fp is a non-negative

or a non-positive real function on Sι

A U SB if and only if there exist points a e S\ \ Szp and

β e Sι

B \ Szp such that f(β)/f(a) > 0.

Note that the divisors E and F satisgy the equivalence (5.5) precisely when J(E — F)

belongs to L(0) or L(l/2), where L(s) (0 ^ s < 1) is defined by L(s) = ((Z + s) θ

\/—LR)/(Z 0 \/—TίZ). Then the following lemma completes the proof of Proposition 5.7. D

LEMMA 5.8. In the case J(E - F) e L(0), there exist a e S\ and β e SB such that

f(β)/f(u) > 0. In the case J(E - F) e L(l/2), there exist a e Sι

A and β e Sι

B such that

f(β)/f(a) < 0.

PROOF. The divisor E + px(E) - (F + Px(F)) is expressed as J^tx(Pi - Qi) with

Pi φ QJ (I ^ /, j ^ 2k). By Abel's theorem, there exist integers p and q such that

2k

(5.8) P + $τ =

Then the meromoφhic function g having this divisor is determined up to a non-zero constant

and is expressed as follows:

(5.9) g(u) = y exp(-2π V^ϊqu) — — — — — ,
0\{u - Q\)' -Θ\(u - Q2k)

where y is a non-zero complex number and q is the integer given in (5.8).

It is not hand to see by moving the points P i , . . . , P2k, Q\, . , Qik appropriately that

we can construct a 1-parameter family gs of meromoφhic functions on X which satisfies the

following conditions:

(1) If J(E -F)e L(0), then g0 = gmά g{ = \ Y k °Γ =

; - F ) G L ( 1 / 2 ) , then g0 = gand gx = yG[1/ZJ'. Here G [ 0 ) and G^/l) are meromoφhic

functions on Xτ defined by
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(2) gs depends smoothly on the parameter s for 0 5ί s ^ 1. If we denote the divisors

consisting of poles and zeros of gs by Σi ^ϊ an<^ Σ/ Q\ respectively, then they are invariant

under px and Pf φ Qs. for 1 ̂  /, j ^ 2k.

Also, we can construct 1-parameter families of points as e Sι

A and βs e Sι

B satisfying

the following conditions:

(1) For each 0 ^ s ^ 1, as and βs do not belong to {P(,... , P^, Q\,... , Qs

2k}.

(2) αi = ε + 1/2 and βi = ε + 1/2 + τ/2 = ε + 1/2 + J-itβ, where ε is a small

positive constant.

We see that the sign of gs(βs)/9s(oίs) does not depend on the choice of s, and hence

/(A))//(αo) = 9o(βo)/9o(oίo) and g\(β\)/gι(a\) have the same sign.

Assume that J (E — F) e L(0) andfc ^ 2. Let us determine the sign of g\(β\) / g\(ot\) =

Gf\ε + 1/2 + τ/2)/Gf\ε + 1/2). Using the identities (2.1) and (2.3), we see that

Gf\ε + 1/2 + τ/2)/Gf\ε + 1/2)

= exp(-2π*f-ίk(τ/2))

We),

If we fix ε, we get a nowhere vanishing real function φ defined by

W l ^ T ) /

By (2.6), we get the following Taylor expansion:

(5.10) lim q~kφ(t) = (2π)4kε4k -
f->oo

from which we see that for a small positive ε, this is positive. If k = 1, then we can see that

the sign of f(βo)/f(cίo) is positive in a similar fashion. Thus Lemma 5.8 is verified in the

case that J(E - F) e L(0).

In the case J(E - F) e L(l/2), the sign of g\(β\)/g\(a\) = G(

k

l/2\ε + 1/2 +

τ/2)/G(

k

l/2)(ε + 1/2) is similarly determined as follows. Using the identities (2.1), (2.2),
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(2.3), (2.4) and (2.5), we obtain

1/2 + r/2)/G<1/2)

θι(ε) \ 2 ( θχ(ε-τ/2) \ ~ 2 G^,(ε + 1/2 + τ/2)

G(

k

l/2)(ε + 1/2 + r/2)/G<1/2)(ε + 1/2)

θχ{ε+\/2-τ/2)/' Gf,(ε

- r/2) \ ~ 2 G<°_!,(β + 1/2 + τ/2)

θi (e + 1/2 + τ/2)/*(e + 1/2 - τ/2)J G f ,(β + 1/2)

Hε-τ/2) / \θ2(ε)/

b(ε-τ/2) ) \θ2(ε)) \^ϊa(ε + l/2)θ4(ε + \/2)

/θ{(ε)\2

V ^ ( ) ;1/2)7 V^2(ε);
τ/2)

l / 2 - τ / 2 ) α ( £ ) y 2 / 0 i ( e ) \ 2 /04(£)V 2 G ^ , ( e + 1/2 + r/2)

e+1/2)7 )

From (5.10), together with (2.6), we get the following Taylor expansion:

lim q-{k-λ)G(ϊl2\ε + 1/2 + τ/2)/G<l/2)(ε + 1/2) = _

If we take a small positive £, this is negative. Thus Lemma 5.8 also holds in the case

J(E - F) eL(\/2). D

Now we are in a position to prove Theorem 3.5.

PROOF OF THEOREM 3.5. Conditions (2) and (4) in Definition 3.1 are equivalent to

the following assertions:

(1) π is a meromorphic function as in Proposition 5.2.

(2) π has a zero PQ of order m + 1 ̂  2.

It is clear that R = R+ + px*(/?+). Applying Proposition 5.7 to E = Z) and F = /?+, we

see that Condition (3) in Definition 3.1 is equivalent to Condition (2) in Theorem 3.5.

Take any spectral data, that is, a triplet (X, π, C) with PQ, which satisfies the above

assertions and Condition (2) in Theorem 3.5. Consider the following real automorphism φa

on (X, px) defined by u H> U + a, where a is a real number. Them, by using φa and px,

we can construct a real automorphism φ on (X, px) such that (X, 0*π, 0*£) is a triplet in
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Theorem 3.5, where φ*π and φ*C denote the pull-backs by φ of π and £, respectively. Hence

Theorem 3.5 follows. •

6. Construction of harmonic maps into complex projective spaces. By applying

Mclntosh's method of constructing harmonic maps in terms of spectral data, we shall con-

struct harmonic maps corresponding to spectral data having smooth rational or elliptic spec-

tral curves. We also prove Theorems 3.2 and 3.6. From now on, for a Riemann surface X

and a sheaf T on X, we denote by //°(X, J7) and H°(Y, T) the spaces of holomorphic global

sections of T and its restriction to an open subset Y of X, respectively.

6.1. Construction of Harmonic maps corresponding to spectral data. Let (X, π, C) be

a spectral data as in Definition 3.1. By identifying C with a divisor line bundle Oχ(D), we

equip //°(X, C) with a positive definite Hermitian form h as follows.

For given u, v e H°(X, £), we define a rational function h(u, v) on P 1 by

(6.1) A(II, v)(p) = J2 f
xeπ-](p)

where p is a point on P 1 . Then it is known that h(u, v) is a constant function and the following

holds.

THEOREM 6.1 ([13]). The Hermitian form h is positive definite on H°(X, C).

Let 7Γ — 1 (1) = {770,... , ηn}> the inverse image of 1 by π, and 0/ (0 ^ / ^ n) a local

trivialization for C over a neighbourhood of ηι. Using these local trivializations, the Hermitian

form h in (6.1) has also the following expression. For u € H°(X, £), let UQ, . . . , un be the
complex numbers defined by U(JH) — M/^/ (^ ) . For υ e H°(X, £), we define the complex

numbers ι>o,... , vn in a similar way. Then (6.1) becomes

n

(6.2) h(u, υ) = y^ajUiWi ,
ι=0

where ao,... , an are positive real numbers depending only on the choice of θo,... ,θn.

Next we construct a line bundle L(z) with a complex parameter z. Let U{PQ) be a

neighbourhood of PQ and U(POQ) a neighbourhood of P ^ defined by U(POQ) = pχ(U(Po)).

Let £ be a meromorphic function on U(Po) U U(Poo) satisfying π = £ m + 1 and ζ o px = l/ζ.

We fix an open cover XΛ U X/ of X, where XΛ = X \ {Po, Poo) and X/ = ί/(Po) U

U(Poo). Let L(z) be the unique line bundle with local trivializations ΘZ

A and θf over X& and

X/ respectively, such that

(6.3) θf = e x p ( z r ] - zζ)θ\ on XΛ Π X 7 .

Let Co be an ideal sheaf of C defined by Co = C{—mPo — £o)» where EQ is the restriction

of the zero divisor of π to XΛ, that is, £Ό = Λ + ^2 + + Pn-m Then it is known

that H°(X, Co 0 L(z)) is a 1-dimensional complex vector space. For each z e C, fix a non-

zero global section τ of Co <8> L(z). Then τ 0 θ^~ι belongs to H°(XA, C) and we can find
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holomorphic functions ψ^,... ,ψ% overP1 \ {0, oo} such that

(6.4) τA <g> Θz~x = {ψ^ o τr)σo + 4- (ψz

n o τr)σA2,

where {<τo,... , σπ} is an orthonormal basis of H°(X, C) with respect to the Hermitian form

A.

Now we are going to construct a harmonic map corresponding to the spectral data

(X, 7Γ, £). Let ψ :R2 ^ CPn be a map defined by

Then it is known that ψ is a harmonic map corresponding to the spectral data (X, π, C). This

construction is due to Mclntosh, which is described in detail in [12] and [13]. However, it

seems difficult to compute ψ^,... ,ψ^'m general.

We shall now present a method which determines the values of ^Q(A), . . . , ψz(λ) at

λ = 1. We define a complex (n + 1) x (n + 1) matrix M — (M/y ) by

(6.5) Mijθi(ηi)=σj(ηi).

Let tz be complex numbers defined by

(6.6) τ®θz

A-
ι(ηj) = ήθj(ηj).

Substituting (6.5) and (6.6) to (6.4), we obtain

(6.7) %, . . . , # = M ' ( ^ d ) , ... , Ψz

n(D)

LEMMA 6.2. The determinant ofM does not vanish.

PROOF. Since {σo,... ,σn} is an orthonormal basis with respect to A, we have

A(σ/, σj) — δij. From this and the identity (6.2), it is easy to see that the following identity

holds:

Mdiag(α0, , ̂ ) M * = In+\ ,

where diag(αo, ^n) denotes the diagonal matrix with diagonal components αo, , #n>

and /„+! is the unit matrix of degree n + 1. In particular, we see that the determinant of M

does not vanish. D

Hence the inverse matrix M~x of M exists, and ^ Q ( I ) , . . . , ψ^(l) are determined as

(6.8) r { %

Moreover, it is known that the components of the matrix M and t^,... ,t% can be expressed

by using theta functions and Baker-Akhizer functions (cf. [11]).

Constructing a special orthonormal basis, the above formula becomes much simpler. For

0 ^ / 5Ξ n, take a non-zero element σ; e H°(X, £(—ηo — — ̂  _i — ηι+\ — — ηn)).

Rescaling σ, , we obtain an orthonormal basis {σ/} of C, that is, A(σ/, σj) = δij. Then the

matrix M is diagonal and Ma is given by
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Therefore the right hand side of the equation (6.8) becomes

(6.9)
- 1 τ®θA(z) - 1

u=η0

τ®θA(z) - 1

u=ηn

z, z, u) be a function on X such that ψ(z, z, u)θA(z) is an element of HQ(X, £o®L(z)).

Setting τ = ψ(z, z, u)θA(z) and substituting τ into (6.9), we get

/ Z / 1 X ψ(z,z,u)
(6.10) for 0 < i < n .

Before closing this subsection, we prove the following lemma for later use.

LEMMA 6.3. Given a function φ(z, z, u) on X with the parameter z, let U and V be

neighbourhoods of the set of the points {Po, Poo} which satisfy the following conditions:

(1) {Po,Poo}cU CV cXi.

(2) φ(z,z,u)isa holomorphic section ofOχ(M) on X \ U for any z G C, where M is

a divisor on X \ V.

(3) φ(z, z, u) exp(—zζ~ι +zζ) is a holomorphic section of Oχ(N) on V for any z G C,

where N is a divisor on U.

Then φ(z, z, u)θA(z) belong to H°(X, T <g> L{z))forany z e C, where T = Oχ{M + N).

PROOF. From the condition (2), φ(z, z, u)®θA(z) clearly belongs to H°(X\U, Oχ(M)

0L(z)) = H°(X \ U, T (8) L(z)). It suffices to show that φ(z, z, u) (8) θA{z) belongs to

H°(V,Oχ(N)®L(z)) = H°(V,T®L(z)). By using (6.3), we see that 0(z, z, M)06> A (Z) =

φ(z, z, u)exp(-zζ~ι + zζ) ® θi(z) on V(c Xi). On the other hand, from the condi-

tion (3) it follows that φ(z, z, u)exp(—zζ~ι + zζ) is an element of H°(V, T) and hence

φ(z, z, u) ® θA(z) belongs to H°(V, T ® L(z)). Thus φ(z, z, u)θA(z) is a global holomor-

phic section of T 0 L(z) on X. D

6.2. Proof of Theorem 3.2. Using the results in Section 6.1, let us now construct har-

monic maps corresponding to spectral data whose spectral curves are smooth rational curves,

and prove Theorem 3.2.

Let (X, π, C) be a spectral data as in Theorem 3.1. We may assume that 7Γ, R and C are

of the following form:

Y]nm(λ — P )
τr(λ) = α 0 λ m + 1 - ^ - -±- P0 = 0, R = D + pχ(D), C = OX(D),

11 (λ Q)
where OLQ is a constant as in Theorem 3.1 and D is a divisor defined by D — m Po + ΣΊZ™ Ri.

First we prove the following

LEMMA 6.4. Let (X, π, C) be a spectral data as above. Define a function ψ(z, z, λ)

on X with parameter z by

(6.11)
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Here K = (dζ/dλ) \χ=P0 is the value of the differential of the meromorphic function ζ as in

(6.3) at λ = Po. Then ψ(z, z, u)θA(z) is an element ofH°(X, Co ® L(z)) for any z € C.

PROOF. Denote by D \POUQO the restriction of the divisor D = mPo 4- Y^I™ Ri to
PQ U QQ. Then, applying Lemma 6.3 to M = D - D \POUQO - Eo, N = D \POUQO - mPo,

and φ = ψ, we get the assertion. •

Next we construct a special orthonormal basis of global sections of C = Oχ(mPo +

Σ?=Γ Φ ) following the method explained above. Here we choose / = 1 as a meromorphic

function on X in Condition (3) of Definition 3.1. For 0 ^ i ^ n, let us denote by σ; the

following element

Then we see that σ, € H°(X, C(-ηo ηι-\ - ηi+\ ηn)) and /ι(σ/, σ, ) = 1 for

0 ύ i ^n. Thus we get an orthonormal basis {07 }o</<π of H°(X, £), that is,7z(σ;, σy ) = δ/y .

Owing to (6.10), the corresponding harmonic map: R2 —> CPn is given by

z = x + T ^ j ^ [^(1) : ^f (1) : : ψz

n{\)],

where each ψf (1) is a function defined by

Define a map F : /?2 -> R2 by z = x + V—Ty H> /cz. Then the composition ψ o F gives rise

to the harmonic map given in (3.2). This completes the proof of Theorem 3.2.

6.3. Proof of Theorem 3.6. By an argument similar to that in Section 6.2, we now

construct harmonic maps corresponding to spectral data whose spectral curves are smooth

elliptic curves, and prove Theorem 3.6.

LEMMA 6.5. Let (X = X^rXr π,C = O χ ( E f ΐ f + 1 Et - ΣL\ Fi)) b e a spectral
data as in Theorem 3.5. Define a function ψ(z, z, u) on X with parameter z by

ψ(z, z, u) =exp ( -[ζw(u - Po) - Au] - (-)[ζw(u - Qo) - Au))
(6.13) \^ KκJ )

Πy = i ^ i(" ~ Fj) ' θ\{u - P Q Γ YYjZ™ θλ(μ - Pj) θχ{u - G - H)

Here ζw is Weierstrass' zeta function as in (2.7),

&+/2+1 k n—m

G= Σ Ei-J2Fi~ mPo - Σ Pί ' H =
ι = l i = l i = l

A is the constant as in (2.8), and K = (dζ/du) \u=pQ is the value of the differential of the

meromorphic function ζ in (6.3) at u = Po Thenψ(z, z, U)ΘA(Z) is an element of H® (X,

L(z)) for any z G C
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PROOF. The proof of this lemma is similar to that of Lemma 6.4. D

Next we construct, following the method used in Section 6.1, a special orthonormal basis

of global sections of C = Oχ(Σ!i=\+l E{ - £ f = 1 F{). Here we choose

n)±V-l0du-Ej)ΠS+1 Θdu-Έ])

nU* (u - F^ π = o θι (u -RJ)' n U θι (n - Tj) γ\n

j=0 ox α « - *j>
as a meromoφhic function on X in Condition (3) of Definition 3.1. Let μ£ be the constant in

Theorem 3.6 and set fr = Σ?=Γ + 1 Ei ~ Σ*=i Fi ~ (W + + ηι-\ + ty+i + + ??„).

Denoting by σ, the element

^ o ^ Π y i y Π y o

I X ΐ i 01(7// - ηj) 0 i to - m) - TΓj=i+i j )T J

we see that σ/ € H°(X, C(—ηo ηi-\— ηi+\ ηn)) and/z(σ;, σ/) = 1 forO ^ / ^ n.

Thus we get an orthonormal basis {oτ/}0</<n of H°(X, £), that is, /ι(σ/, σy) = δ/y. These are

well-defined by the following lemma.

LEMMA 6.6. The above constants ήι are not equal to ηι (modZ 0 Zτ).

PROOF. If ήi = ηι modZ 0 Z τ , then /z(σ/, σ/) = 0, which is a contradiction because h

is positive definite. D

On account of (6.10), the corresponding harmonic map: R2 -> CPn is given by

z = x + V^ϊy » [^(fl) : Vf (1) :

where each ψf (1) is a function defined by

ylT 01 07/ ~ Py ) 01 (y?ι ~ G - H(z, ϊ))

Define a map F : R2 -> /?2 by z = Λ: + V^Ty \-+ KZ. Then the composition f o F gives rise

to the harmonic map given in (3.4). This completes the proof of Theorem 3.6.

7. Periodicity conditions of harmonic maps in terms of generalized Jacobians.

Mclntosh studied periodicity conditions of the corresponding harmonic maps by introducing

certain homomorphisms into generalized Jacobians. In this section, when X is a smooth el-

liptic curve, we reformulate Mclntosh's periodicity conditions by introducing certain families

of lines on the complex plane C, and prove Theorem 3.7.

Let (X, π, C) be a spectral data as in Definition 3.1. Let L(z) be the line bundle as

in Section 6 and ΘA(Z) the local trivialization of L(z) over XA as in (6.3). Let J(X0) be a

generalized Jacobian defined by

J(Xo)= (J
LeJ(X)
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We define a map L : R2 -> J(X0) by z = x + V ^ j H> (L(Z), /M(Z), . . . , Aπ(z)), where

A/ (z) is an element of Hom(L(z) |^ , L(z) 1 )̂ \ {0}(= C*) defined by the condition that A/ (z)

maps #A(Z) |̂ . to ΘA(Z) \ηo. Then Mclntosh proved the following

THEOREM 7.1 ([13]). The harmonic map ψ : R2 -> CP" corresponding to the

above spectral data is doubly periodic if and only if L \ R2 ^ J(Xo) is doubly periodic.

In the case of the smooth rational curve X, the maps Φ in the proof of Theorem 3.3 and

L are essentially the same.

Let us determine the map L when (X, π, £) is a spectral data with a smooth elliptic curve

as its spectral curve. First, we compute the map L : R2 ->• 7(X) defined by z = x +V—"ly H^

L(z). Let Tz be a divisor defined by

(7.1) Tz = (D) - m(P0) - (S) - Eo ,

where S is a point on X defined by S = G + H and £Ό is the divisor given in Section 6.1.

Then ψ(z, z, u) (8) θA(z) belongs to H°(X, Oχ(Tz) ® L(z)) (= //°(X, £o(-S) ® L(z))) by

Lemma 6.5. Moreover, we see that ψ(z, z, u) (8) #A(Z) is a non-vanishing global holomorphic

section of Oχ(Tz) 0 L(z). In particular, the line bundle L(z) ® Oχ(Γ z) is tribial, that is,

L(z) 0 Oχ(Tz) = Oχ, and hence L(z) = O χ ( - Γ z ) . Using (7.1) and identifying Jacobian

J(X) with X = C/(Z θ V^T^Z), we see that L : R2 -> 7(X) is given by

z = JC + V^Ty H> - D + mPo + 5 + Eo = H(z, z) = z/κ - (z/κ) modZ φZ^f- ί t ,

where /c is the complex number in Lemma 6.5.

Second, we determine ΘA(Z). Let Θ be a meromorphic function on C2 defined by

( , )
Π5=i θ\(μ ~ Fj) θdu- P0)

m U%7 θdu - Pj) .θx{u-G-w)

Using ψ(z, z, u) ® 0Λ(Z) e //°(X, L(z) ® Oχ(Tz)) = H°(X, Oχ) = C, we see that

6>Λ(z) = Cexp (~[ζw(u - Po) - Au] + {^)[ζw(u - Qo) - Au]J Θ(H(z, z), u),

where C is a non-zero constant.

Now we give an explicit description of L. Let v : Sj = {e^~*θ |0 ^ ^ < 2π} ->•

7(X) be a map defined by e ^ ^ h^ ^Λtθ/2π modZ 0 zV^Tί. Let / 5 -• 5) be the

pull-back of 7(X0) by υ. For 0 ^ i ^ n, we define Bt : ^ v / Γ T ^ e SJ h-> B^e^10) e

H o m ( υ ( e ^ ) |^., ι;(βλ/~1^) |^ 0 ), sections of /$-•.$], by the condition that each #/ (^^/~T6/)

maps the element exp(v^?7/0)(9(\/^ϊf0/(2π), ^ ) of O χ ( - Γ z ) 1̂ . to the element

exp(v / z : T^)6>(v / r T^/(2π) , 770) of O χ ( - Γ z ) |^0. Since the image of/?2 by L is contained

in Z φ Rx modZ φ Z τ ( c /(X)), we can regard L : R2 -+ J(X0) as a map /?2 -> 75. Using

this identification, the map L : /?2 —> Js is given by

(exp(2τr//(z,z)/O 6 5), h\(z, z), A2(z, z),. . . ,
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where/i/(z, z) is an element of Hom(ι;(exp(27r//(z, z)/t))\ηi, v(exp(2πH(z, z)/t))\ηo) being

defined by Λ /(z, z) = exp(fc/(z, z))£/(exp(2τr//(z, z)/0) with

fe/(z, z) = — ζw(ηo - ft) - ζw(m - ft) — ( η o - m)

κ\_ τ J

- Go) ~ ?u;(*?i ~ βθ) ~ — 0?0 ~ *?i

LEMMA 7.2. For 1 ^ / ^ n, £flc/z bi(z, z) is pure imaginary.

PROOF. We may assume that 0 ύ Im Po, Im Qo, Im *7o, , Im ̂  < Im τ. On this

assumption, βo = ^o + τ. Using ^ ( M ) = fu (w) and 5 = — B, we then get

^ - ft) - Bτ~ι(ηo ~ m)

(7-2) = [^(770-ft) ~ ζwiηΓ

= [ζwiηo - Go + τ) - ζw(ηi - Qo + T)] - ^ r " 1 ^ - ^ ) .

In the case that η0 e Sι

A and ηι e S]

B, it follows from ζw(u + τ) = ζw(u) + B that the right

hand side of (7.2) is equal to

ίζw(ηo - Qo + τ) - fu;(^/ - τ - β 0 + τ)] - Bτ~ι(η0 - m + τ)

= [ζw(ηo~ Qθ)—ζw(;ηi ~ Go)] ~ Bτ-\ηQ - ηt),

which implies that fef is pure imaginary. Similarly, we can also see that b[ is pure imaginary

in other cases. D

Thus we can consider L : R2 -> Js to be a map L Γ : fl2 -> Γ n + 1 = 51) x Sι x x Sι

defined by

z = x + V ^ y h^ (exp(2π//(z, z)/0, exp(Z?i(z, z ) ) , . . . , exp(*π(z, z))).

Evidently, L is doubly periodic if and only if Lj is doubly periodic. Then we have the

following

PROPOSITION 7.3. The harmonic map ψ : R2 -> C P n , defined by (6.14), corr^-

sponding to a spectral data (X, π, C) is doubly periodic with periods v\,V2 G C //"αm/ <?«/y //"

the set V = Πo</</i ^' contains t n e 2-dimensional lattice M = Zv\ (&Zv2, where Vo, ... , V̂

αr^ the sets defined by

I C, otherwise.

Here βo, β\,. . , βn are complex constants defined by

β0 =-2π/{κt) , ft - [ f ^ o - Po) - ζw(m ~ ft) - (̂̂ ?o - ^)r- ι ]//c (1 ^ / ^ Λ ) .

PROOF. Recall that ψ has two periods υ\, f2 if and only if L^ has two periods v\,V2

by Theorem 7.1. If Lj has two periods υ\, V2,"then the set Zυi 0 Zt>2 is contained in V,

since V is the set of all points on which the value OΪ'LT is equal to the initial value Lγφ) =

( 1 , . . . , 1) e Tn+X.
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Conversely, if V contains a 2-dimensional lattice M — Zv\ Θ Zt>2, then clearly v\ and

V2 are periods of Lj, since Lγ is a homomorphism from the additive group R2 to Γ w + 1 .

Hence Condition (7.3) is a necessary and sufficient condition for Lj to be doubly periodic

with periods v\, V2- Π

Now let us prove Theorem 3.7.

PROOF OF THEOREM 3.7. From the argument in the proof of Theorem 3.6, we see

that the map given in Theorem 3.7 is a composition ψ o F, where ψ is the map in Proposition

7.3 and F is a map defined by R2 -> R2, z = x -f- V—ϊy t-> KZ. Thus Theorem 3.7 follows

immediately from Proposition 7.3. D

The proof of Theorem 3.3 in similar to that of Theorem 3.7.

REFERENCES

[ 1 ] F. E. BURSTALL, Harmonic tori in spheres and complex projective spaces, J. Reine Angew. Math. 469 (1995),

149-177.

[ 2 ] F. E. BURSTALL, D. FERUS, F. PEDIT AND U. PINKALL, Harmonic tori in symmetric spaces and commuting

Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173-212.

[ 3 ] F. E. BURSTALL AND J. C. WOOD, The construction of harmonic maps into complex Grassmannians, J.

Differential Geom. 23 (1986), 255-297.

[ 4 ] F. E. BURSTALL AND F. PEDIT, Harmonic maps via Adler-Kostant-Symes theory, Harmonic maps and In-

tegrable Systems edited by A. P. Fordy and J. C. Wood, 221-272, Aspects of Mathematics 23, Vieweg,

Germany, 1994.

[ 5 ] C. CILIBERTO AND C. PEDRINI, Real abelian varieties and real algebraic curves, Lectures in Real Geometry

edited by Fabrizio Broglia, 167-256, Walter de Gruyter, Berlin-New York, 1996.

[ 6 ] D. FERUS, F. PEDIT, U. PINKALL AND I. STERLING, Minimal tori in S4, J. Reine Angew. Math. 429 (1992),

1-47.

[ 7 ] M. A. GUEST AND Y. OHNITA, Actions of loop groups, deformations of harmonic maps, and their ap-

plications, Selected Papers on Harmonic Analysis, Groups, and Invariants edited by K. Nomizu, 33-50,

American Mathematical Society Translations, Series 2, 183, Amer. Math. Soc, Providence, RI, 1998.

[ 8 ] N. J. HITCHIN, Harmonic Maps from a 2-torus to the 3-sphere, J. Differential Geom. 31 (1990), 627-710.

[ 9 ] G. R. JENSEN AND R. LIAO, Families of flat minimal tori in CPn, J. Differential Geom. 42 (1995), 113-132.

[10] K. KENMOTSU, On minimal immersions of R2 into Pn(C), J. Math. Soc. Japan 37 (1985), 665-682.

[11] I. M. KRICHEVER, Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surv. 32

(1977), 185-213.

[12] I. MclNTOSH, A construction of all non-isotropic harmonic tori in complex projective space, Internat. J. Math.

6(1995), 831-879.

[13] I. MclNTOSH, Two remarks on the construction of harmonic tori in CPn, Internat. J. Math. 7 (1996), 515-520.

[14] R. H. M C K E A N AND V. MOLL, Elliptic curves, Cambridge University Press, Cambridge, 1997.

[15] R. MlYAOKA, The family of isometric superconformal harmonic maps and the affine Toda equations, J. Reine

Angew. Math. 481 (1996), 1-25.

[16] M. NAMBA, Branched Coverings and Algebraic Functions, Research Notes in Math. 161, Pitman-Longman,

New York, 1987.

[17] E. PREVIATO, Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrodinger equation, Duke

Math. J. 52 (1985), 329-377.

[ 18] J-P. SERRE, Algebraic Groups and Class of Fields, Graduate Texts in Math. 117, Springer-Verlag, New York-

Berlin, 1988.

[19] S. UDAGAWA, Harmonic maps from a two-torus into a complex Grassmann manifold, Internat. J. Math. 6

(1995), 447-459.



628 T. TANIGUCHI

[20] J. G. WOLFS ON, Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J.
Differential Geom. 27 (1988), 161-178.

[21] J. C. WOOD, The explicit construction and parametrization of all harmonic maps from the two-sphere to a
complex Grassmannians, J. Reine Angew. Math. 386 (1988), 1-31.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI980-8578

JAPAN

E-mail address: tetsu@math.tohoku.ac.jp




