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TIMELIKE SURFACES WITH CONSTANT MEAN CURVATURE
IN LORENTZ THREE-SPACE
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Abstract. A cyclic surface in the Lorentz-Minkowski three-space is one that is foliated
by circles. We classify all maximal cyclic timelike surfaces in this space, obtaining different
families of non-rotational maximal surfaces. When the mean curvature is a non-zero constant,
we prove that if the surface is foliated by circles in parallel planes, then it must be rotational.
In particular, we obtain all timelike surfaces of revolution with constant mean curvature.

1. Introduction and statement of results. In Euclidean 3-space, a cyclic surface M
is one that is foliated by pieces of circles, that is, M is defined by a one-parameter family
of pieces of circles (cf. [2, 3]). It has been known that cyclic surfaces of constant mean
curvature are completely determined. In fact, if the mean curvature vanishes on M, that is, in
the minimal case, Enneper proved that the planes of the foliation must be parallel. Moreover,
it is known that M is either rotational and hence is the catenoid ([13]) or one of the surfaces
discovered by Enneper and Riemann in the last century ([2, 3, 16]). If the mean curvature is
non-zero, Nitsche showed that M is a surface of revolution ([15]). It should be remarked that
surfaces of revolution with non-zero constant mean curvature were classified by Delaunay
in 1841 ([1]). A historical note on cyclic surfaces in Euclidean 3-space with constant mean
curvature can be found in Nitsche's book ([14]).

In the Lorentz-Minkowski three-dimensional space L? we may define the concept of a
cyclic surface in the same manner as in the case of Euclidean ambient. Then cyclic spacelike
maximal surfaces have been classified in [6] and [8]. In fact, besides the rotational surfaces
that were determined in [5], there exist examples of non-rotational cyclic surfaces. One family
of these plays the same role as that by Riemann's surfaces in Euclidean space. When the mean
curvature is a non-zero constant, the situation is very different from the maximal case and is
studied by the present author in [7]. It is proved that if the planes of the foliation are spacelike,
then they must be parallel. Moreover, in this case, M is rotational. It should also be remarked
that spacelike surfaces of revolution with constant mean curvature were classified in [4], while
the (spacelike or timelike) cyclic surfaces in L? with constant Gauss curvature were studied in
[10]. A report on cyclic hypersurfaces in different spaces, including L3, can be found in [9].

In the present paper we shall study the cyclic timelike surfaces of constant mean cur-
vature in L?. Our study goes as follows. In Section 2, we first introduce basic notation and
recall local theory of surfaces in L?. Furthermore, we define the concept of a circle in L?. In
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Section 3, we classify constant mean curvature timelike surfaces of revolution, while maximal

timelike surfaces of revolution were determined in [17]. In Sections 4 and 5, we prove the

main results that can be summarized as follows:

Let M be a cyclic maximal timelike surface in L3. Then M is either rotational or one of

the surfaces described in Theorem 1 in Section 4.

Let M be a cyclic timelike surface in L? with non-zero constant mean curvature. If the

planes of the foliation are parallel, then M is a surface of revolution.

2. Notation and preliminaries. Let L3 be the three-dimensional Lorentz-Minkowski

space, that is, the three-dimensional real vector space R3 with the metric

where (x\, X2,x?>) denotes the canonical coordinates in/?3. Let M be a surface. An immersion

X : M —> L3 of M into L3 is timelike if the induced metric on M is a Lorentzian metric on

each tangent plane. This is equivalent to that the unit normal vector v is spacelike at each

point of M. The Gauss map v of X then assigns to each point of M a point of the timelike

Lorentz sphere x2 + x\ — x2 — 1 defined as follows. If X — X(u, v) is a parametrization of

Λf, then the unit normal vector field v on M is given by

Xu A Xv

V = \XUΛXV\*

where Xu = dX/du, Xv = dX/dv and Λ stands for the Lorentzian cross product of L3.

The metric (,) on each tangent plane of M is determined by the first fundamental form

/ = (dX, dX) = Edu2 + IFdudv + Gdv2 ,

with differentiable coefficients

E = (XU,XU), F = (Xu, Xv), G = (Xv, Xυ).

Since X is timelike, we have

det/ = EG - F2 < 0 .

The shape operator of the immersion is represented by the second fundamental form

// = -{dv, dX) = edu2 + Ifdudυ + gdv2 ,

with differentiable coefficients

e=(v,Xuu), F = {v,Xuv), G = {v,Xvv).

With this notation, the mean curvature H is expressed in the local coordinate X by

( 1 ) H = 2 EG-F2 •

Denote by [,, ] the determinant in L3, that is,

[v\, V2, w] = (v\ A t>2, w) for v\, ι>2, w G L3 ,
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and put

W = ( - d e t / ) 1 / 2 = Λ/F2 - EG.

Note that M being timelike means that W is a positive real number. With this notation, (1)

reads as

(2) -2HW3 = P := E[Xu,Xυ,Xυυ]-2F[Xu,Xυ,Xuυ] + G[Xu,Xυ,Xuu].

To end this section, we define the concept of a circle in the Lorentz-Minkowski space.

Motivated by the Euclidean case, a circle in L3 is defined to be the orbit of a point p away

from a straight-line / under the action of the group of rotations in L 3 that leaves / pointwise

fixed. The group of rotations in L? is well-known. In fact, consider an orthonormal basis

(<?i, β2, ez) of I? such that (e^, e?>) = —1. Depending on the causal character of the axis /of

revolution, we have:

1. The axis / is timelike. If e^ spans /, then the group of rotations around / that fixes /

pointwise is given by {/?#; θ e /?}, where

cos# sin# 0

Rθ = I - s i n # cos θ 0

0 0 1

The circles of L? corresponding to this case are written as

(3) a(s) = c + r((cos s)e\ + (sins)β2),

where r φ 0 and eel.

2. The axis / is spacelike. Suppose that / is generated by e\. In this case, the group of

rotations determined by / is given by

( 1 0 0

0 coshtf sinh<9

0 sinh# cosh#

The circles obtained are devided into two types:

(4) a(s) = c + r ((cosh 5)^2 + (sinhs)^) type I,

and

(5) a(s) = c + r((sinhs)ί?2 + (coshs)^) type II,

where r φ 0 and eel.

3. The axis / is null. If / is defined by the vector 2̂ + ̂ 3, then the rotations defined by

/ are given by

1 θ -θ

Rθ=\ -θ 1 - θ2/2 θ2/2

-θ -θ2/2 \+θ2/2
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The circles are described as

rs2

(6) a(s) = c + se\ + — (e2 + e3),

with r Φ 0.

In the particular case that (e\, e2, £3) is the canonical frame in L3, the circles defined

in these three cases are Euclidean circles, hyperbolas or parabolas, respectively. Finally, a

surface M c L? is said to be rotational (also a surface of revolution) if M is invariant by a

group of rotations of L?.

3. Timelike surfaces of revolution with constant mean curvature. In this section,

we shall determine the timelike surfaces of revolution with constant mean curvature. When the

axis of revolution is non-degenerate, these surfaces of revolution will be described in terms of

elliptic functions, while if the axis is null, the corresponding parametrizations of the surfaces

will be obtained explicitly. After a Lorentz motion, we assume that the axis of revolution is

the *3-axis, the jq-axis or the [x2 = X3, x\ = 0}-line depending on if the axis is a timelike,

spacelike or null line, respectively. We discuss separately each of these three cases:

1. Surfaces of revolution with timelike axis. We take the u-parameter of the foliation

as the parameter along the X3-axis. So we can parametrize M in the form

(7) X(u, υ) = (r(u) cos υ, r(u) sin υ, u),

where r > 0 is a smooth function. A computation in (2) yields W = rVl — ra and P =

r2(— 1 + ra — rr"). Thus the timelike character of M is equivalent to ra < 1. From (2), it

follows that r satisfies the equation

Integrating this equation, we get

(9) = Hr + - , aeR.

SΓ^r12 r
An numerical solution of this equation is given in Figure 1. Therefore, the function r = r(u)

in (7) is defined by the following elliptic integral

/V-r2 + (α + Hrψ j

{ + H 2 γ dr^u + b, a,beR.

In the case that r' = 0, Equation (8) gives r = 1/(2//). In this situation, the surface obtained

is the right circular cylinder x2 + x2 = l/(4//2).

In the maximal case, H = 0, Equation (9) is transformed into
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FIGURE 1. A timelike rotational surface with the jC3-line as axis of revolution. The mean

curvature is H = 1/2, r(0) = 1, r'(0) = 0.2 and 0 < u < 10.

whose solutions are given by

r(u) = a sin a,b eR.

In this case, the parametrization of M is given by (see [17])

= ( . sin cos ι>, a sin smυ, u

To end the case that the axis is timelike, we characterize the right circular cylinder ob-

tained when r' = 0.

PROPOSITION 1. The cylinder x\+x\ = C2 is the only timelike surface of revolution

with timelike axis and constant mean curvature in L?, which is also a constant mean curvature

rotational surface with respect to the Euclidean metric.

PROOF. After a homothety and a Lorentz motion of L3, we assume that the axis is

the jC3-line and its parametrization is given by (7). Note that the parametrization (7) implies

that M is a rotational surface with respect to the X3-axis from the Euclidean viewpoint. A

computation gives that the mean curvature h of M induced by the Euclidean metric oϊR* is

given by

2λr(l + r / 2 ) 3 / 2 = 1 + ra - rr" .(10)

To get a contradiction, assume that r'

Equation (10) to obtain

1

0 at some point. Around this point, we integrate

b
-, beR.
r
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By combining this equation with (9), we have

. 2

+ — T Γ T = 2 .
(a + Hr2)2 {b + hr2)2

This implies that r is constant, in contradiction with rf φ 0. Thus, r1 — 0 and the result

follows. •

2. Surfaces of revolution with spacelike axis. A Lorentz motion allows us to assume

that the axis of revolution is the jcj-axis. A surface of revolution with the ci-line as axis is

written in the following two forms (see (4) and (5)):

a. Surfaces of type I. In this case, the surface is parametrized by

(11) X(u, v) = (u, r(u) cosh υ, r{u) sinh v),

where r > 0 is a differentiate function. Then, we have W — r\l\ + r'2 and P = r2(— 1 —

r'2 + rr"). By (2), we get the next equation for r:

2rH -
(l+Γ/2)3/2

As a first step, we integrate this equation to get

(12) 1 = Hr + - aeR.
Vl + r'2 r

which allows us to express the function r — r(u) in (11) by the following elliptic integral:

r r2-(a + Hr2)2

v J dr = u + b, a,beR.(a + Hr2)2

Figure 2 shows a numerical solution of this equation for H — 1/2. For instance, when rf — 0

in some interval, then r = 1/2// and hence the surface obtained is the hyperbolic cylinder

x2 — χ2 = l/(4//2) whose parametrization is given by (see Figure 3)

X(u, v) = l u , cosh υ, sinh υ J .
\ 2// 2// /

If we consider the maximal case, then (12) leads to

.2 _J1

which has as solutions the functions

In this case, the parametrization obtained is (see [17]):

r(u) = a cosh ( ) , a,b e R.

V a J
nation obtained is (see [17]):

X(u, v) = I u, cosh ( ) cosh υ, cosh ( ) sinh v ) .

\ V « / \ <* / 1

b. Surfaces of type II. In this case, the parametrization of M is given by

(13) X(u, v) = (M, r(u) sinh v, r(u) cosh v),
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FIGURE 2. A timelike rotational surface of type I FIGURE 3. The surface JC| - *\ ~ l a timelike
with the jq-line as axis of revolution. The mean cur- rotational surface with respect to the q-line and with
vature is H = 1/2, r(0) = 1, r'(0) = 1 and 0 < u < 5. H = 1/2.

where r is a differentiable function. A computation of the first and the second fundamental

forms gives W = r V - 1 4- ra and P = r 2 ( l - r'1 + rr"). Since M is timelike, this implies

that ra > 1. Equation (2) gives

1 rr"
r ( r ' 2 - l ) V 2 (r*-1)3/2 "

Again, integrating this equation yields

Thus, the function r = r(u) in (13) is defined by

— d r = u+b, a,beR.
(a + / / r 2 ) 2

See Figure 4 for a numerical solution of this equation. The maximal case reduces the equation

to solve

JΊ-
r'2 =

r2+r2

whose solutions are given by

r{u) —a sinh
u + b

a,b eR.

The parametrization of the corresponding timelike maximal surface is (see [17]):

X(u, v) = I M, sinh I ) sinh υ, sinh ( ) cosh v
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FIGURE 4. A timelike rotational surface of type II with the q-line as axis of revolution. The

mean curvature is H = 1/2, r(0) = 1, r'(0) = 2 and 0 < u < 10.

3. Surfaces of revolution with null axis. We consider the null line / of L 3 defined by

Xχ = 0, X2 — X3 = 0. A surface M which is rotational with respect to / is given by (see (6))

/ v2 v2\
X(u, v) = I υ, g(u) + u + r(u) — , g(u) — u + r(u)— 1 ,

where g and r > 0 are differentiable functions. The computation of W2 and P gives W2 =

2(2r2 - r')v2 - Agr and P = (4rrf - r")v2 - 2g" - %rgf. Now Equation (2) is a polynomial

identity in v. The leading term is vβ and from this equation we get rr = 2r2. Solutions of this

equation are given by

r(u) = , aeR.
-2u +a

Thus W2 = —4g'. Since M is timelike, g' < 0 and (2) has the following expression:

whose solutions are given by

arctan
b-a2H

(2M -

where a,b,c e R. Figure 5 shows an example for H = 1/2.

In the maximal case, we have
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FIGURE 5. A timelike rotational surface with null line as axis of revolution. The mean cur-
vature is H = 1/2. In this case, r(u) = - l / (2w), g{u) = 2u/{\ + 4w2) - arctan(2w)
(a=c = 0,b= 1/2).

and hence solutions are

2 2 4c 3
g(u) = b + ca u — 2acu + — u .

Notice that in this case, W2 — —4c(2u — a)2 > 0 and thus, this forces that c < 0.

4. Maximal timelike surfaces. In this section, we classify all maximal cyclic time-
like surfaces of L?. The first assertion on this kind of surfaces is that the planes containing
the circles of the foliation must be parallel. This fact is not a characteristic proper to the time-
like surfaces. The same result holds also for spacelike surfaces. In fact, the proof uses only
the property that the metric on the surface is non-degenerate (see [6]: essentially, it follows
Enneper's ideas in [2], [3]).

PROPOSITION 2. Let M be a cyclic maximal timelike surface in L?. Then the planes
of the foliation are parallel.

Now we are in a position to find all maximal cyclic timelike surfaces in L?. The following
theorem is based on the calculation by Riemann (see [16] and [14]).

THEOREM 1. Let M be a maximal timelike surface in L? foliated by pieces of circles
in parallel planes. Then either one of the following occurs

1. M is a surface of revolution.
2. M is determined by
(a) the parametrization (20), if the foliation planes are spacelike, or
(b) the parametrizations (31) and (32), if the foliation planes are timelike, or
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(c) the parametrization (33), if the foliation planes are null, where f, g and r are de-

scribed in the case 3 in the proof

PROOF. Since M is maximal, from (2) we have P = 0. We distinguish the cases by

the causal character of the foliation planes as follows.

1. The planes of the foliation are spacelike. The parametrization of M is given by

(14) X(u, v) = (f(u) + r(u) cos v, g(u) + r(u) sin v, u),

where r > 0, and / and g are differentiable functions on u. A computation of P in (2) leads

to

0 = r2{2r'f - rf") cos υ + r2{2rrgf - rg") sin υ

which gives

(16) 2rff -rf" = 0,

(17) 2r'g'-rg" = 0,

(18) - 1 + fa + #/2 + r/ 2 - r r " = 0.

These differential equations can be solved in an analogous manner to that in the Euclidean

case (see [14, p. 87]). A simple integration of (16) and (17) gives / ; = λr 2 and gf = μr1 for

some positive constants λ, μ e R. Substituting these into (18), then yields

(19) r2(r2)" - [(r2)f]2 - 2(λ2 + μ?)r6 + 2r 2 = 0.

Set now x = (r2)' and y = y(x) = r2 as new independent and dependent variables. Then

from (19) we get

x y y ' _ y 2 _ 2 ( λ 2 + μ 2 ) χ 3 + 2 χ = 0,

whose solution is given by y(x) = ±y/x(4 + 4(λ2 + μ2)x2 + Sδx), where 8 e R. Thus

r' = ±yj(λ2 + μ 2)r 4 + 28r2

Take r as variable in the parametrization (14) of M. Then we get

where

Therefore M is given by

(20)

f(t) =

A

X(t, v)

x(t,

y(t,

z(t,

••λ

—

—

v)

V)

v)

f t2

γ ( λ 2 +
(x(t, V),

= ao +

= bo -\-

= cn +

, 9(t)

μ2)t4 +

y(t, υ),

J A

-41*.
J Δ

2δt2 + 1.

z(t, v)), where

It 4-1 cos v ,

μ 1 —dt + t sinυ ,
J A

fPr.
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A

FIGURE 6. A maximal timelike non-rotational surface foliated by circles in spacelike planes.

This surface corresponds with Example 1.

where ao,bo, CQ are some constants. The surfaces of revolution studied in Section 3 are ob-

tained now by putting λ = μ = 0.

EXAMPLE 1. Put a0 = b0 = c0 = λ = 0, μ = -8 = 1. Then A = ±(t2 - 1). In this

case, r(μ) = tanh(w + a), f(u) = 0 and g(u) =b + u- tanh(w 4- a). See Figure 6.

2. The planes of the foliation are timelike. Following (4) and (5), the surface M can

be parametrized in two ways:

(21) X(u, v) = (M, f{u) + r(u) cosh υ, g(u) + r(u) sinh υ) type I,

(22) X(u, v) = (M, f(u) + r{u) sinh υ, p(n) + r(u) cosh υ) type II,

where r > 0, / and # are smooth functions.

For surfaces of type I, computing P in (2) yields

0 = r2{-2r'f + rf") cosh υ + r 2 ( 2 r ' ^ - rg") sinh v

which gives

(24) 2r7'-r/" =

(25) 2r'gf-rgr =

(26) - l - / / 2 + 9 / 2 -r ' 2 +
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Similarly, for surfaces of type II, we have

0 = r2{-2g'r' + rg") cosh υ + r2(2rf f - rf") sinh v

and

(28) 2r'g'-rg" = 0,

(29) 2r///-r/// = 0,

(30) l + fa-g'2-r/2 + rrff = 0.

The procedure to solve these systems is analogous to that in solving (16) through (18). Notice

that the first two equations (24) and (25) (resp. (28) and (29)) in these systems are identical

with (16) and (17). The third equation (26) (resp. (30)) gives respectively

r2(r2)" - [(r 2 ) '] 2 + 2(-λ 2 + μ2)rβ -2r2=0 type I,

r

2(r2)" - [(r 2 ) '] 2 + 2(λ2 - μ2)r6 + 2r2 = 0 type II.

We can integrate both equations with respect to the variables x and y = y(x) as in the previous

case, and obtain

r = ±yj{λ2 - /x2)r4 + 2<5r2 - 1, δ e R type I,

r' = ±y](-λ2 + μ 2 ) r 4 - 2<5r2 + 1, δ e R type II.

Put

A = yJ(X2 - μ2)t4 + 2δt2 - 1 .

Then the surface can be parametrized as

(* t2

l —
J A

(31) y(t, v) = bo + λ / —dt-\-tcoshv,

(ι t2

z(t, v) = Co + μ j —dt + t sinh v ,

or

/

* dt
— ,
A

Γr t2

(32) y(t,v) = bo + λ -dt +

/ —

J A
z(ί, f) = co + μ / — df + ί cosh u ,

J A
depending on if the surface is type I or type II, respectively. When λ = μ = 0, the maximal

surface is rotational (see Section 3).



TIMELIKE SURFACES WITH CONSTANT MEAN CURVATURE 527

EXAMPLE 2. Type I. Put a0 = b0 = c 0 = 0, λ = μ = 28 = 1. Then we get

r(u) = cosh(a + a), /(«) = g(u) = " + ^ + £.

In this case, we have

W2 = cosh6 w(— cosh v + sinh u)2 + cosh2 u{\ + (cosh2 w + cosh υ sinh w)2

— (cosh2 u + sinh u sinh u) 2}.

EXAMPLE 3. Type II. Put αo = £o = ^o = λ = 0, μ = -δ = 1. Then we get

r(u) = tan(w + a), /(«) = cte, g(u) = —(u + a) + tan(w + α) + Z?.

This surface is timelike for any value of the parameters. See Figure 8.

EXAMPLE 4. Type II. Put αo = &o = ^o = 0, λ = μ = -2<5 = 1. Then we get

r(u) = sinh(w + a), f(μ) = g(u) = h γ .

In this case, we have

W = sinh w(cosh f — sinh υ) — sinh u{\ — (sinh w -f cosh v cosh w)

+ (sinh2 u + cosh w sinh υ) 2}.

3. The planes of the foliation are null. A parametrization of M is given by

(33) X(u,v)=lf(u) + v,g(u)+r(u)j,g(u)-u+r(u)j\ ,

where /, g and r > 0 are differentiable functions. The calculation of P gives

(34) 0 = (4rr ; - r")v2 + (4r r /' + 2r/")υ - 2r/ / 2 - %rg' - 2g" .

Therefore

(35) r" = 4rrf,

(36) 2r'f' + rf" = 0,

(37) r/̂

Equation (35) implies r r = 2r 2 + a with a e R. Equation (36) is equivalent to

r2f' = b, beR.

When b = 0, the surface is rotational and it has been studied in Section 3. Thus, let us assume

b φ 0. Then (37) reads as

(38) tr

According to the sign of the constant a, we have the following:
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FIGURE 7. A maximal timelike non-rotational sur- FIGURE 8. A maximal timelike non-rotational sur-
face foliated by circles in timelike planes. This surface f a c e foliated by circles in timelike planes. This surface
corresponds with Example 2. corresponds with Example 3.

FIGURE 9. A maximal timelike non-rotational surface foliated by circles in timelike planes.
This surface corresponds with Example 4.

1. a = 0. Then r{u) = l/(-2w + c), c e R. Equation (36) has a solution

f(u) =d + bc2u - 2bcu2 + -bu3 , d e R.

Integrating twice Equation (38), we have

g(u) = q + c2pu - C-(b2c2 + Ap)u2 - 2b2cu4 + ^b2u5 ,
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where p,q e R.

2. a > 0. Then we have

c)),

f(u) =d - α~3/2cosec(\/2α(w + c)){V2bcos(y/ϊa(u + c))

g(u) =q

2y/ab(u + c) ύ

+

c))},

cos(Vϊa(u + c))

+ Vϊa2p cos(Vϊa(u + c)) + Vΐ(b2 - pa2) cos(3\ίΐa(μ + c))

+ (8α5/2/? - 24ja~b2)(u + c) sinCv^Cw + c))},

where c, d, p,q e R.

3. a < 0. Then we have

= J - ^ tanhίV^^flί-M + c)),

~3/2

g(u) =q

=d + a

-f- 2j-ab(u -h c) sinh(\/-2^(« + c))),

c))

cosech(V-2α(w + c))

^ ^ c))

- 2sί2a2p

c))

+ c))}

c)) tanh(V-2α(w + c))—2<j2b2 log(sinh(V-2α(M

where c, d, p,q e R.

E X A M P L E 5. Take a = c = d = p = q = 0 and b = 1. Then

r(n) = - — , / ( M ) = -w 3 , ( (iι) = -u5 .
2M 3 5

In this case, we have W2 = — 8w(2w3 + v). Figure 10 shows this surface.

D

REMARK 1. We compare Theorem 1 with the case of the Euclidean ambient. Besides

the rotational maximal surfaces (the catenoid), there exists a one-parameter family of non-

rotational minimal surfaces discovered by Enneper and Riemann ([2, 3, 16]). In our case,

we have obtained the surfaces of revolution and families of non-rotational maximal timelike

surfaces. Moreover, the integration of Equations (16)—(17), (24)-(25) and (28)-(29) implies

that the curve formed by the centers of the circles is contained in a plane. The same is true for

surfaces of Riemann type in /?3.
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FIGURE 10. A maximal timelike non-rotational surface foliated by circles in null planes.

REMARK 2. The study of maximal spacelike surfaces in L? done in [6] employs the
Weierstrass representation of the spacelike maximal surfaces ([5] and [12]). It should be
remarked that for maximal timelike surfaces in L3 there exists an analogous Weierstrass
representation ([12] and [11]). However, our study on cyclic maximal timelike surfaces
holds also for the spacelike case: the equation P — 0 in (2) is identical for both cases
and the difference lies in the sign of det/ = EG — F2. For instance, in Example 5, the
surface M obtained is timelike (resp. spacelike) if the (M, v)-parameters lie in the region
{u < 0, - 2 M 3 < v} U {u > 0, v < -2w3} (resp. {u < 0, v < - 2 M 3 } U {M > 0, - 2 M 3 < v}).

5. Surfaces with non-zero constant mean curvature. In the case that the mean cur-
vature is a non-zero constant, the content of Proposition 2 is different. More precisely, there
exist timelike surfaces in L3 with constant mean curvature which are foliated by circles in
non-parallel planes. However, in this case, the surface is included in a surface of revolution.
This phenomena also occurs in Euclidean 3-space, since the intersection between any smooth
1-parameter family of (not necessarily parallel) planes with an Euclidean sphere produces
circles. The following fact was proved in [9].

PROPOSITION 3. Let M be a timelike surface in I? with non-zero constant mean cur-
vature which is foliated by pieces of circles. Then either the circles must be parallel or M is a
subset of a Lorentz sphere.

On the other hand, in contrast with the maximal case (see Theorem 1), we have the
following result:

THEOREM 2. Let M be a timelike surface in L? with non-zero constant mean curvature
which is foliated by pieces of circles in parallel planes. Then M is a surface of revolution.
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PROOF. Without loss of generality, after a homothety of L3, we may assume that the

mean curvature of M is H = 1/2. Taking the square of (2), we have

(39) 4H2Wβ = W6 = P2.

Again, we discuss separately the following cases.

1. The planes of the foliation are spacelike. After a motion of L3, a parametrization

of M is given by (14). Equation (39) is a polynomial in ύnnv and cosnv. The value of P is

given in (15) and a computation of W2 yields

r2

W2 = — (-ff2 + gf2)cos2v-(r2f/gf)sin2v

(
\-r'2 -

(
From the coefficients of cos 6v and sin 6v in (39) we get respectively

By using these equations, we obtain f = g' = 0. Therefore the functions / and g are

constant, proving that M is rotational.

2. The planes of the foliation are timelike. We consider the two possible parametriza-

tions of M given in (21) and (22). First, we consider surfaces of type I. Then we get

2

W2 = — (ff2 + g'2)cosh2υ - (r2 f gf) sinh2u

1 + r'2 + I .

For surfaces of type II, we have
r2

W2 =—{f'2 + g'2)cosh2v - (r2ffg) sinh2υ

( _ fK _L Jl \
-l+rf2 + ——-^-J .

Again, we use (39), where the values of P is calculated in (23) and (27). Equation (39) is now

a hyperbolic trigonometric expression in sinhnυ and coshwυ. By a long computation of the

coefficient of cosh 6v in both cases, we get

In conclusion, ff = g' = 0, i.e., M is a surface of revolution.

3. The planes of the foliation are null. After a motion in L3, a parametrization is

given by (33). The surface M is rotational provided the function / is constant. In our case,

the calculation of W2 yields

W2 = 2(2r2 - r)v2 + Arf'v - Ag .
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Then (39) is a polynomical equation in v. By using (34), from the leading coefficient, we

get r' = 2r2. With this data, the coefficients v5 and v4 become trivial. In conclusion, the

coefficient of v3 in (39) yields 64r 3 / ' 3 = 0. Therefore, / ' = 0 and this implies that M is a

surface of revolution. D
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