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ON THE FATOU SET OF AN ENTIRE FUNCTION WITH GAPS

YUEFEI WANG
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Abstract. It is shown that every component of the Fatou set of an entire function with
certain gaps is bounded.

1. Introduction. Let / be a nonlinear entire function of the complex variable z. Its
natural iterates/"are defined by/°(z) = z, f\z) = f(z), fn+{ = f(fn(z)),n = 1,2,.. . .
The Fatou set T(f) of the function / is the largest open set of the complex plane where the
family [fn] forms a normal family. The complement of T(f) is called the Julia set and is
denoted by J(f). Then T(f) is open and completely invariant under / , and J(f) is closed,
perfect and also completely invariant. For more details of the concepts and properties in the
iteration theory, we refer to Beardon's [7], Carleson and Gamelin's [10], McMullen's [19]
books as well as Milnor's [18] lecture notes for rational functions and the survey articles of
Baker [6] and Eremenko and Lyubich [11] for rational and entire functions and Bergweiler
[8] for transcendental meromorphic functions.

If / is a polynomial of degree at least two, then T(f) contains the component D =
{z; fn(z) —* oo}, which is unbounded and completely invariant. If / is transcendental en-
tire, it is obvious from Picard's theorem together with the invariance of J{f) that J(f) is
unbounded, so that T(f) no longer contains a neighbourhood of oo.

Baker [5] raised the question of whether every component of F(f) must be bounded
if / is of sufficiently small growth. The appropriate growth condition would be of order
< 1/2, since Baker [5] showed that for any sufficiently large positive a, the function /o(z) =
z"1/2 sinz1/2 + z + a is of order p = 1/2 and has an unbounded component D of T(f)
containing a segment [XQ, OO) of the positive real axis. Moreover, Baker proved that the
growth of a transcendental entire function / must exceed order 1/2, minimal type, if T(f)
has an unbounded invariant component.

Baker [5], Stallard [23], Anderson and Hinkkanen [3] obtained a few results in the posi-
tive direction to this problem and proved that T(f) has no unbounded components if / is of
order less than 1/2, and satisfies certain different growth conditions. The key point in their
proofs is that for any entire function / of order less than 1/2 with those growth conditions,
the iterates fk have a certain property of self-sustaining spread on any compact subset of the
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components of the Fatou set of / . The case that T(f) contains a simply connected wandering

component remains open.

In the present paper, we shall consider the iteration of entire functions with gaps, of finite

or infinite order of growth, and show that the Fatou sets of such functions have no unbounded

components.

The author would like to thank the referee for helpful comments and suggestions.

2. Statement of main results. We shall use the standard notation for the maximum

modulus M(r, / ) , minimum modulus L(r, / ) , order p and lower order μ of a function / ,

namely,

Af(r,/) = m a x { | / ( z ) | ; | z | = r } ,

log log M(r,f)
p = lim sup

r^oo lθgr
and

. log log M(r,f)
μ = hm inf .

r-+oo logr
Suppose that

/!=0

is an entire function with gaps, i.e., such that many of the an are zero, in a certain sense. Then

the function has the form
σo

(2.1) f(z) = Σakz
nk .

k=o

We say that f(z) has Fabry gaps if

(2.2) j -• oo

as k —• oo, and f(z) has Fejer gaps if
σo i

(2.3) Y— <oo.

Since early this century, a vast number of papers has appeared, concerning the Picard,

Borel and asymptotic values, Julia lines, maximum and minimum modulus, and value distri-

bution of entire functions with different gap conditions. For example, Fejer [12] proved in

1908 that an entire function with gaps (2.3) takes every finite complex value and then Bier-

nacki [9] proved that the function has no Picard values, i.e., f(z) takes every finite complex

value infinitely often; Pόlya [21] obtained that for an entire function of infinite order with

Fabry gaps (2.2), every line is a Julia line of f(z), i.e., f(z) assumes in every angle every

value infinitely often, with at most one exception, and Anderson and Clunie [2] then extended

it to functions of finite positive order; Erdos and Macintyre, Kόvari obtained many results
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about the Borel and asymptotic values of entire functions with different gaps (see, for in-

stance, [15], [16], [17]); Fuchs [13] proved a conjecture of Pόlya which implies that an entire

function of finite order with Febry gaps has no finite asymptotic and Nevanlinna values, and

Sons [22], Hayman [14] solved, among other things, the case of entire function of finite lower

order with Febry gaps; Anderson and Binmore [1] first, for the case of finite lower order, and

Murai [20] then, for the general case, proved that an entire function with Fejer gaps has no

finite Nevanlinna deficient values, etc.

We shall discuss the iteration of entire functins with Febry or other gaps and prove that

every component of the Fatou set is bounded, by using the properties of the entire functions

with such gaps. Our main results are the following theorems.

THEOREM 1. Let

k=0

be an entire function with 0 < μ < p < oo. If f(z) has Fabry gaps, then every component of

is bounded.

For each entire function and any given number T > 1, it follows from the Hadamard

three-circles theorem that

( 2 .4,

We shall obtain the same conclusion for functions of arbitrary order of growth, including

infinite order, provided that a stronger Fejer gap condition and the strict inequality (2.4) hold.

THEOREM 2. Let

k=0
be an entire function, satisfying

(2.5) hminf- — — — > T
r^oo lθgM(r, /)

for some number T > 1. If

(2.6) ^>Hog£(loglog/:)α

as k —> oo, for some a > 2, then every component of T(f) is bounded.

3. Lemmas and proof of theorems. To prove our theorems, we need the following

results. The first result was obtained by Baker in [5], using Schottky's theorem.

LEMMA 1. If in a domain D, the analytic functions g of the family G omit the values

0, 1, and ifE is a compact subset ofD on which the functions all satisfy \g(z)\ > 1, then there

exist constants /?, C depending only on E and D, such that for any z, z! in E and any g in G

we have

\g{z)\ < B\g{z)\c.
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Before stating next two lemmas, we recall briefly the definitions of logarithmic densities

for a measurable set E on the positive real axis. Let E(a,b) denote the part of E in the

interval (a, b). Then the upper logarithmic density and lower logarithmic density are defined

respectively by

(3.1) log dens E = lim sup :

l r dt

gr JE(l,r) t
(3.2) log dens E = liminf

r^oo log
If the upper and lower logarithmic density are equal, their common value is called the loga-

rithmic density of E.

We shall use the following theorem of Fuchs [13] for the entire functions with Fabry

gaps.

LEMMA 2. Let f(z) be an entire function of finite order with Fabry gaps (2.2). Then

for given ε > 0, we have

(3.3) logL(r,/) > (1 - ε) log M(r,f)

holds for all r outside a set of logarithmic density 0.

Hayman [14] obtained the same conclusion for functions of arbitrary growth, including

infinite order, with the stronger gap condition (2.6).

LEMMA 3. Let f(z) be an entire function with gaps (2.6). Then for given ε > 0, (3.3)

holds for all r outside a set of logarithmic density 0.

We now prove an useful criterion for T(f) with no unbounded components.

THEOREM 3. Let f be an entire function. Suppose that there exist t > 0 and m > 1

such that

(3.4) L(r, f) > M(r, / ) '

for all r outside a set E of upper logarithmic density less than 1 — \/m. If for some positive

number R\, and Rn+\ = M(Rn, f) (n = 1, 2, . . . ) , there exists a number T > 1 such that

(3.5) MiR^fY >M(Rn,f)
mT,

for all sufficiently large n, then the Eaton set ^F(f) has no unbounded components.

PROOF. We suppose on the contrary that J-(f) has an unbounded component D. With-

out loss of generality we may assume that 0, 1 belong to J{f). Hence each function fk omits

the value 0, 1 in D.

It follows from (3.5) that there exists iVo € N such that

(3.6) M(Rτ

n,f)< >M(Rn,f)
mT

for all n > NQ.
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On the other hand, it follows from (3.4) that for any given sufficiently large R, say

R > /?o,

(3.7) L(r, f) > M(r, / ) '

holds for some r in the range R < r < Rm. Indeed, suppose there exists a sequence Rj -> oo

as j -• oo, such that

L(r, f) < M(r, / ) '

in the interval Rj < r < RJ for all j = 1, 2, Then we have

1
log dens E > lim sup

~ i

r dt

j)mJE(URjr) t

i fR7dt 1 l
> lim sup / — = 1 ,

y^oo mlogRj JRj t m
which is a contradiction.

Hence we can choose N\ (> No) such that for each n > N\, there exists pn satisfying

(3.8) RnT < Pn < (Rn)mT

with

(3.9) L(pn,f)>M(Rn

τ,fY.

Hence (3.6) and (3.9) give

(3.10) L(pn, f) > (Rn+ι)mT .

In the following discussion, we use an argument of Beker in [5] (see also [23]). Since

D is unbounded and connected, there must exist N2 > N\ such that D meets the circles

Yn = {z; \z\ = Rn), (YnY = {z; \z\ = (Rn)
mT) and ()/„)" = {z; \z\ = pn) for all n > N2.

We choose a value N e N such that N > N2, and note that D must contain a path Γ

joining a point WM e γw to a point (WN+I)' e (y^v+i)' I t ι s clear that Γ must contain a point

i)" G (yyy+i)^. Now, by (3.8) and (3.10), f(D) must be an unbounded component of

containing the path f(Γ). Note that M(RN, f) = RN+\ and so \f(wN)\ < RN+\.

Also, L{pN+uf) > {RN+2)mT and so | / ((u^+i)") l > ( ^ + 2 ) m Γ . Hence / ( Γ ) must

contain an arc joining a point u>/v+i G yyv+i to a point (u /v+2)7 G (/yv+2)^

We repeat the process inductively to find that fk(D) is an unbounded component of

containing an arc of fk(Γ) which joins a point wyγ+& e YN+k to a point

Thus, on Γ, the function / * takes a value of modulus at least RN+I< Since RN+IC -> CXD

as A: -> 00 and /) is a component of ̂ F(f), we conclude that /* —>• 00 as ̂  —> 00, locally

uniformly in D. It follows that there exists K e N such that, for all k > K and all z e F, we

have|/(z) | > 1.

Hence the family [fk)k>κ satisfies the conditions of Lemma 1 o n Γ and so there exist

constants B and C such that

(3.11) \fk(z)\ <B\fk(z)\c
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for all z, τ! in Γ, k > K.

We know that, for any k > AT, we can choose zk, (zkϊ £ ^ such that fk(zk) = w>N+k

and fk((zkY) = (u>#+*+i)' e (y^+ik+i)'- So it follows from (3.11) that

M(RN+k, f) = RN+k+ι < (RN+k+i)
mT < B(RN+kf

for each k > K. This contradicts the fact that / is a transcendental function, since RN+IC —>

oo as k -> oo. The proof of Theorem 3 is complete.

PROOF OF THEOREM 1. We only need to show that / satisfies the conditions in The-

orem 3.

(i) Let t = 1 — ε and m > 1. Then from Lemma 2 we have

L(r, f) > M(r, / ) '

for all r outside a set E of upper logarithmic density less than 1 — \/m.

(ii) On the other hand, for any given R\ > 1, we let T > p/μ and Rn+\ = M(Rn, / ) ,

n = 1,2, ... . Then (3.5) holds. Otherwise, there exists a sub-sequence {Rnj}j>\ of {/?«},

Rnj -> oo as y —• oo, such that

M{Rτ

nrf)< <M(Rn.,f)
mT

for y > 1. Hence

log* + loglogM(<., /) log πiT + log log M(Rnj, f)

logRnj ~ \ogRnj

By letting j —> oo, we then have

Tμ<p,

which contradicts the assumption.

Therefore it follows from Theorem 3 that T(f) has no unbounded components and the

proof is complete.

PROOF OF THEOREM 2. The proof of Theorem 2 is similar,

(i) Let t = 1 — ε and m > 1. Then from Lemma 3 we have

L(r, f) > M(r, f)>

for all r outside a set E of upper logarithmic density less than 1 — 1/ra.

(ii) It follows from (2.5) that there exist Ro and T\ > T such that

logM(rΓ, f)>Tι logM(r,f)

for all r > RQ. Hence we have

l o g M ( r r , / ) > TV logM(r,/)

for r > Ro and i = 1,2, Since T\ > T, we can choose a /o such that
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For a given R\, we define Rn+\ = M(Rn, f),n = 1,2, Then by letting T2 = Tι°, we

have

M(R^\fY > M(Rn,f)
mT2

for all sufficiently large n.

Therefore Theorem 2 follows from Theorem 3 and the proof is complete.

CONCLUDING REMARK. It remains open whether or not Theorems 1 and 2 are sharp,

although the proofs given do not seem to extend to more general cases. We propose the

following problem with the Fejer gap condition for further study.

PROBLEM. Let f(z) be an entire function with Fejer gaps, i.e.,
OO i

Σ~< °°
k=\ Hk

Is every component of F(f) bounded?
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