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Abstract. We give an improved proof for the result established recently by the present
author that the scattering operators are well-defined in the whole energy space for a class of
nonlinear Klein-Gordon and Schrδdinger equations in any spatial dimension. Using some
Sobolev-type inequatilies, we can simplify and somewhat enhance the Morawetz-type esti-
mates and thereby weaken the required repulsivity conditions.

1. Introduction. In this note, we study the scattering theory in the energy space for

nonlinear Klein-Gordon equations (NLKG):

(1.1)

and for nonlinear Schrδdinger equations (NLS):

(1.2) iύ - Au + f(u) = 0,

where u = u(ΐ, x) : R x+n -> C, ά = du/dt, D = d} - Δ, n e N and / : C -> C. Our main

objective is to prove that the wave operators and the scattering operators for (1.1) and for (1.2)

are well-defined and bijective in the whole energy space E (for NLKG, E = Hι 0 L 2 and for

NLS, E = Hι). Such results were obtained in [5, 6, 7, 8, 9] for n > 3 by using the following

weak decay estimate called the Morawetz estimate:

(1.3)

where u is any finite-energy solution, E{u) denotes its energy and G : C —• R is a certain

function derived from / (see (1.11)).

However, since the derivation of (1.3) can not work for n < 2 (actually (1.3) is false in

the one-dimensional case), the scattering in the lower dimensional case had been completely

open until the author derived some variants of (1.3) in [13] for any spatial dimension. In the

simplest case (two-dimensional NLS), the estimates can be written as

if(1.4) if T^rj—dxdt < CE(u),

although the estimates in the other cases were more complicated, especially for the one-

dimensional NLKG.
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On the other hand, using some Hardy-Sobolev type inequalities, the author also derived

a similar Morawetz-type estimate independent of the nonlinearity / for NLKG in the case

where n > 3 [10]:

(1.5) II -^—dxdt<CE(u),

where 2* := 2n/(n — 2) is the Sobolev critical exponent, and also similar estimates for Hartree

equations with n > 3 [12].

Although (1.5) does not make sense if n < 2, we can still derive some Morawetz-type

estimates (Lemma 2.6) independent of the nonlinearity by using some Sobolev type inequal-

ities. These estimates are simpler and even stronger than those derived in [13], especially for

the one-dimensional NLKG. In this note we will derive those estimates and thereby improve

the scattering results in [9, 13] relative to the repulsivity conditions on the nonlinearity.

Now we describe the hypotheses on the nonlinearity / , that is, what the repulsivity

conditions are and how we can weaken them. First of all, to let the energy conservation

law hold, we need to assume that there exists F : C -* R such that

(1.6)

and in the NLS case, to have the charge (L2) conservation law, we need

(1.7) f(u) = f(\u\)^-.
\u\

We also need certain assumptions on the smoothness and the growth order of / :

(1.8) /(0) = 0, \f(u) - f(υ)\ < C\u - v\(\u\Pι + | υ | " + \u\?2 + \v\P2),

for some 4/n < p\ < pi < 2* — 2 (2* = oo if n < 3) and C > 0. Finally, to describe the

repulsivity condition, we define

(1.9)

Then the repulsivity condition we need is

(1.10)

which simply means that V(u) is non-decreasing with respect to \u\. The function G in (1.3)

and (1.4) is given by

(1.11) G(z) := MdzV(z)\z\2z = 9t(z/(z)) - F(z).

In preceding works, some stronger assumptions on V were needed, because (1.3) was essential

to derive any decay estimate for u. The most general assumption in the literature seems to be

the following (see [9, (4.22)])

(1.12) a ^ V ω ^ C m i n d z r 1 , ! ^ ) ,

for some p > 0 and C > 0, which requires that V is not flat at u — 0 but diverges at u = oo.

For n > 3, it is not so difficult to obtain the scattering result under the weaker condition (1.10)
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if we use (1.5) instead of (1.3) in the arguments of [9] or [13]. In fact, the author proved the

scattering result under (1.10) for NLKG in the Sobolev critical case p\ = p2 = 2* — 2 [11],

and it can be extended to the case 4/n < p\ < pi — 2* — 2, though in the critical case, we

need some minor restrictions on the solution class and the nonlinearity (compare the result in

[11] and Theorem 1.1 below).

In order to deal with NLKG and NLS in a unified way, we use the following notation:

- 1
/i io\ i v", -v * •• " u), for N L K G ,

U *~ 1 u , for NLS .

Then, we have the following conserved energy:

(1.14) E(u;t):= [ |VM| 2 + \u\2 + F(u)dx = E(u; 0),

if iι(0) e Hx.

Now we can state the main result of this note as follows.

THEOREM 1.1. Let n G N and f : C -> C. Assume (1.6), (1.8) and (IΛO). In the

NLS case, assume (1..7) further. Then, the wave operators for NLKG and NLS are well-

defined homeomorphisms on the energy space. More precisely, for any solution u with finite

energy E(u) < oo α/NLKG or NLS, there exists a unique solution vfor the free equation

(1.15) Du + υ = 0, for NLKG,

(1.16) iv-Av = 0, for NLS

satisfying

(1.17) \\u(t)-Ό(t)\\HιiRn) - > 0 , as t -> 00,

and the correspondence υ(0) \-> 11 (0) defines a homeomorphism from Hι into itself (obviously

we have the same result for t -> —00).

Moreover, we have the following global space-time norm estimate for any finite energy

solution u:

\W\LPiR;BV2{RH)) < C(E(u)), for NLKG with n<2,

(1.18) I M I L P ( * ; ^ ) ) + I|M W ; ^ 2 V ) " C(E(U))' for N L K G with n^ 3 '
) ' for NLS,

where p \=2 + 4/n,ζ =2 + 4/(n — 1), Bσ

p2 denotes the inhomogeneous Besov space (see,

e.g., [2]) and C( ) is a certain positive valued function dependent only on n, p\, p2 and the

constant in (I.S).

REMARK 1.2. The function V might be regarded as the 'nonlinear potential' associ-

ated with / , in view of the form of the energy

(1.19) E(u)= f |VW|2 + | ΪI | 2 + V(u)\u\2dx,
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compared with the linear case:

(1.20) E(u)= f \Vu\2 + \u\2 + V(x)\u\2dx,
JRn

where V(x) is a linear potential. By [1], there exist standing wave solutions for NLKG and

NLS if / satisfies (1.7) and V(z) < V(0) for some z e C, so that the wave operators are not

surjective. However, to the best of the author's knowledge, it is open whether the scattering

operator exists in the whole energy space when (1.10) does not hold but V(z) > V(0) for any

zeC.

The content of this note is organized as follows. In Section 2, we derive certain Morawetz-

type estimates independent of the nonlinearity and valid in any spatial dimension, after prov-

ing some Sobolev type inequalities. In Sections 3 and 4, we derive a global space-time esti-

mate of the solutions, which is the main step in the proof of Theorem 1.1. In Section 3, we

consider the NLS case for any dimension and the NLKG case for one or two dimensions. In

Section 4, we will consider the NLKG case for n > 3, which is more complicated by the

inhomogeneity of KG and the existence of the Sobolev critical exponent. Section 5 is devoted

to proving the main theorem from the estimate derived in Section 3 and 4, though this step is

essentially known. Throughout this note, we will use the notation C( , , . . . ) to denote any

positive continuous function whose explicit form we refrain from writing for simplicity.

2. Morawetz-type estimates. Under the monotonicity condition of the nonlinear po-

tential (1.10), we will derive certain Morawetz-type estimates (Lemma 2.6) which are inde-

pendent of the nonlinearity and valid in any spatial dimension. The idea is similar to that in

[10]. To dominate \u\, we use certain quadratic terms involving the derivative of u in certain

integral identities of approximate conservation laws for the equations. However, for n < 3,

the derivative of u alone can not dominate \u\ itself through the Sobolev inequality. So we

will use a certain Gagliardo-Nirenberg type inequality and L2 boundedness of the solutions.

First we derive the inequality needed to prove the Morawetz-type estimates.

LEMMA 2.1. Let n e N, p > 2 and q := n(p - 2)/2. Let χ(x) and λ(x) be real-

valued functions. Then for any complex-valued u(x) e Hι(Rn), we have

(2.1) f χ2\u\Pdx<C\\u\\p~2 f
JRn JRn

where C is a positive constant dependent only on n and p.

PROOF. (I) First we prove the inequality in the case where n < 2. Let s := (2+g)/2.

Then, by Holder's inequality, we have

(2.2) f X2\u\pdx < l f 2 5

where we used the assumption n < 2 to have p > 2s. Then, by the Sobolev inequality, we
have

(2.3) \\x\u\s\\Lnnn-i) <
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The right hand side can be rewritten by

(2.4) V(χ| M | 5 ) = Ms(χ\u\s-2uVu + iλu) + \u\sVχ .

Thus we obtain

llχl«lΊl/.-/c-i) ^CHlMr

< C\\u\\%2(\\χ(Vu + iλu)\\L2 + \\uVχ\\L2).

From this estimate and (2.2), we obtain the desired result.

(II) Next we prove the inequality in the case where n > 2. By the Sobolev inequality,

we have for n > 2,

(2.6) WxMp/2\\L2 <

The right hand side can be rewritten by

(2.7) V(χ | M | p / 2 ) = ^χίR(\u\

Then, by Holder's inequality, we have

(2.8) .,_,

< C\\u\\p

L{2 l(\\χ(Wu+iλu)\\L2 + \\uVχ\\L2),

From this estimate and (2.6), we obtain the desired result. D

REMARK 2.2. In the above lemma, 2 < q < 2* is equivalent to 2 + 4/n < p < 2*.

Any Morawetz-type estimate is based on some integral identity derived by variation of

the lagrangian. We mention a general formula for such identities. First we fix some notation.

DEFINITION 2.3.

- 3 r , V x ) , forNLKG,
(2.9) (β. * ) : = » ( * » . 8 = ( % , * , ) , 2 > 1 ( / / 2 V ) j forNLS)

(2.10) | H + |VM| + N + F(«), forNLKG,

I {ίά,u) + |VM| 2 + F ( M ) , forNLS,

[ D M + M, for NLKG,
(2.11) «*<«):= { . . Δ | | forNLS βq(«) :=

where F{u) is as in (1.6).

i(u) is the lagrangian density assosiated to the equation eq(w) = 0. The differential

operator V appears from the variation of I:

8vί(u) := hm
(2.12) £-*° ε

= (eq(M), υ) + d {Vu, v).

Using this identity, we obtain the following formula.
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LEMMA 2.4. Assume (1.6). In the NLS case, assume (1.7) further. Let u,h,q :

Rι+n -> /? sufficiently smooth. Then we have for a = 0 , . . . ,«,

(
N

+ (X>κ, (dh)Vau) - -γVadaq

+ (2q-Vah)ί(u) + G(u)q,

where G(u) is defined as in (1.11).

PROOF. Let T(λ) be a one-parameter group of transformations acting on functions de-

fined on R1+/ί. Denote by T' the infinitesimal transformation of T. For any parallel translation

group Γ(λ), we have i(T{λ)u) = T(λ)£(u), so that we obtain from (2.12),
(2.14) (eq(w), T'u) = Tfί(u) - d - (Vu, T'u).

Let T(λ)u := eiλu and assume (1.7). Then we have T'u = iu, and ί(T(λ)u) = i(u) so that

from (2.12) we have

(2.15) (eq(n), iu) = -d (Du, iu).

Let T(λ)u := eλu. Then we have T'u = u and, if V(u) did not depend on w, we would have

l(T(λ)u) = T(2λ)l(μ). So we have

\u\2

(2.16) δuί(u) = U(u) + δu(V(u)y-j- = 2i(u) + G(u).

Then, it follows from (2.12) that

(2.17) (eq(ιι), u) = 2t(u) + G(u) - d (Vu, u).

From (2.14), (2.15) and (2.17), we have

(eq(«), hVau + qu) = Va(hί(u)) - (Vah)i(u) - hd (Vu, Vau)

+ q(2i(u) + G{u)) - qd (Vu, u)

(2.18) = -a (Vu, hVau + qu) + (Vu, udq)

+ Va(hi(u)) + (Vu, (dh)Vau)

+ (2q-Vah)l(u) + G(u)q,

where the second term in the right hand side can be rewritten as

(2.19) (Vu,udq)=V \^γH) - ^-V dq .

Hence we obtain the desired result. D

To have some positivity of the right hand side of (2.13), we choose h = (ho,... , hn) and

q such that (dβha)a,β=o,... ,n is everywhere nonnegative definite and ?ίϊ(2q —V-h) = 0. Now

we choose h := (ί, x)/\(t, x)\ and q := ΐίiV A/2. Then we obtain the following identities.
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Let M :=hT>u+qu. For NLKG, we obtain the identity (cf. [10, Lemma 4.2]):

(eq(w), M) = -d • (Vu, M)+V- ίhl{u) + ^γ

( 2 20)

t2-\x\2

For NLS, we have the identity (cf. [13, (5.19) (5.20)]):

(eq(ιι), M) = -3 (Vu, M) + V ί ht(u) + ^γ

\χ\2

2 2 1 ) | l^v^ + ixu/Ά + \χ\\v^l k Vκl l^l Δ

C)| 2|(ί,Λ:)|3

v

We also have

O22) |»| <C. W S j ^ .

Using Lemma 2.1, now we can derive Morawetz-type estimates from the above identities

(2.20) and (2.21).

REMARK 2.5. To derive the original Morawetz estimate (1.3), let A := (0, JC)/|JC| and

q := ΐ(\V A/2 (cf. [16, (2.27)]). Obviously, M is then too singular at x = 0 for n < 2.

By replacing A with (0, x)/y/l + \x\2, we can avoid the singularity (cf. [9, Lemma 4.3]).

However, we can not estimate the term — \u\2Aq for n < 2, which is nonnegative for n > 3.

Remark that there is no nontrivial q satisfying q > 0 and — Aq > 0 if n < 2.

In the following, we integrate (2.20) over the inside of a hyperboloid. So it is useful

to see what we obtain from the divergence theorem on the truncating space-like surface. If

X : Rn -> R, then we formally calculate

IL -3 {Vu, M)+V'[ hί(u) + —3q dxdt
JJt>χ{x) \ 2 /

(2.23)

(1, Vx) \ -(3M, M) + hί(u) + ^ - c= ί (
Jt=χ{x)
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Let υ(x) := u(χ(x),x) and A = (Ao, A
0) e R x Rn. Then we have Vw = Vυ - Vχ«.

Thereby we can rewrite for t = χ (x),

(2.24) M = - ( 1 , Vx) Aw + A0 Vυ + #υ ,

2ί(κ) = (|Vχ | 2 - l) | ί i | 2 + |Vu|2 - 2(Vχ . Vυ, ii> + |u | 2

Then we have

(2.23) = f Γ U ' A / "{(1 - | V χ | W
Λ=X(JC) L ι

(2.25)

- ((1 ~ |Vχ|2)ιi + Vχ . Vυ,Λ° Vυ + gυ) + — ( 1 , Vχ) 3$ djt.

Letx € C1( /?1 + / \10. Then, taking M = ώ in (2.25), we have for v(t, x) := κ(χ(f, * ) ,*)

(2.26) ί ( l - |Vχ| 2 ) | i) | 2 + |Vυ|2 + \υ\2 + F(v)dx = E(μ),

and in particular, if |χ | 2 + | Vx | 2 = 1, then we have

(2.27) E(v) = E(u).

LEMMA 2.6. Assume (1.6), (1.8) and (1.10). Let p > 2 + 4//i and assume p < 2* =

2n/(n — 2) ifn > 3. Then, for any finite energy solution ufor NLKG we have

(2.28) ί ί — dxdt < CE(u)p/2,
JJ|jc|<|ί| \t\

where C is a positive constant depending only on n and p. Assume (1.7) in addition. Then, for

any finite energy solution ufor NLS we have

e*> ft ϊ^^<-
where C is a positive constant dependent only on n and p.

P R O O F . Denote

(2.30) r : = |JC|, λ : = |( f , j t) | = y/t2 + r2 , τ :=

By (1.8), we have the local well-posedness for NLKG and NLS, and by the standard approxi-

mation argument, it suffices to prove the estimates, assuming that u is sufficiently smooth.

First we consider the NLKG case. We integrate (2.20) over the region {(t,x)\τ =

\/t2 — r2 > 1}. Let υ(τ, x) := u{y/\x\2 + τ2,x). Then we have Vxυ = Vw + xά/t and

\tτ\
2 + |Vί|2 = 1. Using the divergence theorem, (2.25) and (2.22), we obtain

ff
JJτ

f[
τ>\ ^ JJτ>\
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where the first term in the right hand side is bounded by the L2 norm, and the last term is

bounded by the energy identity (2.27). Thus we obtain

(2.32) ff ^U+

3

XUl2

dxdt<CE(u).
JJτ>1 ^

Since dxdt = τ/tdxdτ, it follows from (2.32) that

(2.33) / / , Γ AVv\2dxdτ < CE(μ).

JJτ>\ r2 + τ2

Now let x := (r 2 + τ 2 ) " 1 / 2 . Then we have |Vχ| < C/(r2 + τ 2 ) . By Lemma 2.1 and the

Sobolev embedding, we obtain

( 2 3 4 )

By the energy identity (2.27), we have | | υ | | ^ , < CE(u), and hence

(2.35) ff Ί

 T Λv\pdxdτ < CE(u)p/2.
JJτ>\ r2 + τ2

Returning to the original coordinates (ί, JC), we obtain

(2.36) [f ^-dxdt < CE(uγl2.

By the Sobolev embedding and the energy identity (2.26), we have

// \u\pdxdt=J I \u(r + s,x)\pdxds
JJr<t<r+\ JO JRn

(2.37)

<C I \\u(\x\+S,x)\\P

Hi(Rn)ds<CE(u)P^2.

So it remains only to prove

(2.38) ff —dxdt < CE(u)p/2.
JJr<\t\<\ 1*1

In the case p = 2* for n > 3, this follows from [10, Proposition 4.4]. So we may assume

p < 2*. By Hardy's inequality, we have
(2.39) I k - ^

Interpolating with the Sobolev embedding, we then have

(2.40) \\r-εu\\LP <C\\u\\Hι

for some ε > 0 depending on p < 2*. Thus we obtain

if wdxdt<[[
JJr<\,\<ι \t\ ~ }J\t\<\
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Now we turn to the NLS case. We integrate (2.21) over the region {(t, x) \ \t\ > 1} to

obtain

(2.42) [[
JJ\t\>\

Now let x := | ί |λ" 3/ 2 . Then we have |Vχ| < C|/|/λ"5/2 < C | ί Γ 3 / 2 . It follows from

Lemma 2.1 that

f ί(2.43) f ^ < T
AJ n JRn

Thus we obtain

if t^
JJ\t\>\ ^

(2.44)
\t\>\

If p < 2*, in the same way as in the NLKG case, we have

(2.45) If ^-dxdt < C J ' -β-\\r-°u\\lPdt < CE(u)>>'\

where ε > 0 is as in (2.40). Now we have only to prove in the case where n > 3

(2.46) if '^-dxdt<CE{u)r'2.
JJ\t\<\ λ 3

However, in this case we can prove the following estimate in the same way as in [12]:

(2.47) ff *¥^f-dxdt < C(v)E(uf'2

JJR\+n λ 2 + V

for any v > 0. D

3. Global space-time estimate (Case I). In this section, we derive some global space-

time estimates of the solutions, which is the main step in the proof of Theorem 1.1, for NLS

with any n and for NLKG with n < 2. The remaining case is treated in the next section. The

arguments are essentially the same as in [13], but in order to control the general nonlinearities

we should choose the space-time norms more carefully. In this section, we will repeatedly re-

fer to [13], so for brevity, we denote by ( , •)* those equations in [13] and similarly by Lemma

•.•* the lemmas therein.

(£; /) := L°°(/; Hι(Rn)), (#; /) := L°°(I; B1^2'0 (Rn)),

(X; /) := mi x Rn), ( r ; /) := lβ\l x Rn),

(K; I) := L^(/; B°*2(Rn)), (K; I) := L^(/; Bσ-κ

2(Rn)),

(Y; I) := LHI; L^(Rn)), (7; /) :=

where p = 2 + 4/n, l/p + 1/p = 1, p2/q = p\/qf = l/p - l/p = 2/(/i + 2) and

ί 1/2, in the NLKG case,
( 3 ' 2 ) ^ = { 1 , in the NLS case.
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σ > 0 should be taken so small that we have

(3.3) 0 < ?-σκ + (1 - - ) (l - J - σ) .
q \ qj \ 2 /

From A/n < p\ < p2, we have p < q' < q. I is an interval in R, which we will occasionally

omit.

Now, our goal estimate is ||κ||(£;fl) < C(E(u)). First we derive several basic estimates

as in [13, Sect. 3]. Since p < qr < #, we have by the Holder and the Sobolev inqualities,

(3.4) WuW^SCWuWl^WuW^^

where 0 < a < 1 is defined by (1 — a)/p + a/q = \/q'. By the Sobolev embedding, we also

have

(3.5) ll«ll(*)<C| |ιι | | (£), \\ψj*u\\{B)<C2-σi\\u\\{E),

where {<Pj}°°.0 is the Paley-Littlewood partition of 8(x) as in (2.5)*. By (3.3), we have by the

interpolation inequalities and the Sobolev embedding,

(3.6) I φ ; ^

(3.7)

where 0 < β < 1 is defined by β{σkp/q + 2(1 - p/q)/(n + 2)} = n/p - n/q. By the

assumption (1.8), [9, Lemma 3.1] and Holder's inequality, we have

(3.8) ll/(κ)ll(jo < ClliilluoαiiίHg) + INlf^),

and

(3.9) | |/(iι) - / ( υ ) | | ( f ) < C\\u - υ l l ^ d l i i H ^ + \\v\\p

{

2

X) + Nll f^ + \\υ\\%t)).

In this section, we use the Strichartz estimates for the following norms: Let T > 0 and

/ = (0, T). Then we have

(3.10) II«II(E;/) + ll«ll(jr;/) < CHiiίO)!^i + C | | eq L ( t t ) | | ( j f ; / ) .

The next lemma is a substitute for Lemma 3.1*, which is sufficient for the rest of the

arguments in [13].

LEMMA 3.1. Assume (1.8). Let u be a solution o/NLKG or NLS on an interval

I = (5, T) satisfying | |i#||(£ ;/) < E < oo and | |w||(χ ;/) = η < σo. In the NLKG case,

assume n < 3. Then there exists 0 < ηo = ηo(E) such that ifη< ηo(E), we have

(3.11) l|K||(K;/) + l|M|l(r;/)
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PROOF. Let υ be the free solution with the same initial data as u at t = S. By (3.10),

(3.8) and (3.4), we have

u-v\\iK n<C\\f(u)\\(R;n

£)(3.12) <C||κ|| (*)(| |κ| |£

So, taking ηo(E) sufficiently small, we obtain an estimate ||M||(£-,/) < C(E). Then the desired

estimate follows from (3.10) and (3.4). D

Now, assume (1.6), (1.8) and (1.10). Assume (1.7) further in the NLS case. Then we can

prove Lemma 4.1*, if we replace (4.5)* with the following estimate:

(3.13) η = | | « | | ( X ; / )

which follows from (3.7), Holder's inequality and the Sobolev embedding. By Lemma 2.6,

we can prove Lemma 5.3* with p = 1 + 4/n. Lemma 6.2* is obviously valid. Thus we can

prove Lemma 6.1*, without the log-weight. Then Lemma 7.1* follows, but here we should

add the estimate

(3.14) I l ω - ^ H ^ ^ D ) < v2

to (7.1)* in the NLKG case, where ω = y/l — Δ. However, it is obvious that this estimate

can be derived with very little modification, if we use the modified Lemma 3.1. Then we may

replace the assumption (8.1)* with

<v2 < I
J\x

(3.15) \M\2(χ-(s T)) + \\UW2(K-(S T)) <v2 < I eN(u; S)dx ,
J\x-c\<R

where e^{u) := | V Ϊ I | 2 + \u\2 + F(u) denotes the energy density. Here we need a small

modification, since in [13] we used p > 2 in the estimates for (8.19)* and (8.20)* (remark that

p — 1 = p\ = p2 in [13]). In the NLKG case, we can use the assumption \\ω~ιiι\\(K;i) < v

to have \\ω~ιw\\(κ ,i) < Cv. Then we obtain

(3.16) E(w; T) < E(w; S) + C(E)(vPi+2 + vP2+2),

instead of (8.19)*. So it suffices that p\, p2 > 0. In the NLS case, we have (3.16), which

indeed follows from the arguments in [13]. Thus we have Lemma 8.1* if (8.1)* is replaced

with (3.15). B^2 in (8.16)* and (8.17)* should be replaced with B^n^)/2.

Now we have only to check the arguments in the proof of Lemma 9.1*, where we need a

substantial modification. We need the following additional lemma.

LEMMA 3.2. Assume (1.8). Let n < 3 in the NLKG case. Then there exist certain

positive continuous functions Cj for j = 0, 1 satisfying Ci(0, E) = 0 and the following

properties: Let u be a solution to NLKG or NLS on an interval I with ||w||(£;/) < E < oo

and ||w||(y;/) < η < oo. Ifη < Co(E), we have

(3.17) \\u\kχ;!)
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PROOF. Let I = (S, T). Let v be the solution of eqL(υ) = 0 with v(S) = u(S). Then,

by (3.10), (3.8), (3.4) and (3.7) we have

\\u\\(K;I)<CE + C\\f(u)\\{R)

(3.18) < CE + C | N | ( κ ) | N | f ^ + C\\u\\iκ)\\u\\*f)

< CE + C(E)(\\u\\a

(K)\\u\\b

(Y) + \\u\\c

{K)\\u\\fγ)),

where a = 1 + p2(l — β)p/q > 1, b = /?2β > 0, c = 1 +/?i(l — α) + /?iα(l — β)p/q > 1

and J = piαβ > 0. So, if we take Co(E) sufficiently small, we have ||W||(A:;/) < C(E).

Then, from (3.4) and (3.7), we obtain the desired result. D

Now we will prove a lemma which corresponds to Lemma 9.1*.

LEMMA 3.3. Assume{\.%). Let u and w be a global solution to NLKG or NLS. In the

NLKG case, assume n < 3. Let v be the solution to eq/,(υ) = 0 with υ(0) = M(0) — u (O).

Assume \\u\\(E;R), \\W\\(E;R) < E < OO. Then, for any L < oo, there exists K — κ(E, L) > 0

such that ifΊM|(χ;(o,oo)) < L and \\v\\(X;φ,oo)) < K, we have ||w||(χ;(o,oo)) < C(E,L).

PROOF. We denote by Dj(η, E) certain positive continuous functions which are in-

creasing with respect to η and satisfy Dj(0, E) = 0 for any E > 0. Let η e (0, ηo),

0 = 7b < T\ < < TN < 7w+l = oo, Nι/qη < L and

(3.19) IMI(χ ; /;)<i7,

where Ij := (7), 7)+i). By Lemma 3.1 and (3.5)*, we have

(3.20) WkY ij) < A)(?7, E), IM|(y;/.) < D0(κ, E).

Let u = w + v + g. Then we have #(0) = 0 and the integral equation

(3.21) g(t) = gj(t) + f U(t - s)(f(w) - f{u))ds ,
JTJ

where U is as in (2.8)*, and gj is the solution of eqι(gj) = 0 with gj(Tj) = g(Tj). By

(3.7)* and (3.9), we have for any / = (7), T),

(3.22) ||0||(i';/) < IIί̂ y IIc>";̂ )H-C72CIÎ ÎI(̂ ;̂ )H-1|̂ II< ;̂z>~*~"̂ ÎÎ AΓ^ Z)~*~II"Mc^r;z))"^"^^!^^;^)'

where C2 is a positive constant depending only on n, p\, p2 and the constant in (1.8). Let
pj := \\9j ll(K;(7>,oo)). Then, from (9.6)*, (3.7)* and (3.9), we have

Now let B := 2NDQ{K, E). We will prove that | |0 | |(r ;/ y) < B if K is sufficiently small.

There exists 0 < η\(E) < min(?7o(£)> Co(E)) such that if η < η\, we have

(3.24) C2(2Cχ(rι,E)n +2Cχ(η,E)H) < 1/2,

where C\ is given in Lemma 3.2. Then, there exists 0 < η2(E) < η\(E) such that if η < η2,

then we have

(3.25) Do(η,E)<ηι(E)/4.
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Moreover, there exists κ\ (£, L) > 0 such that if η > 772/2 and K < κ\, then we have

(3.26) D0(κ,E) <2~N

m/4,

so that B < 771/4. Now we fix η := η2(E) and K = κ\ (E, L). Then we prove that

(3.27) Pj < (2j - l)D0(κ, E)

by induction on j . For j = 0, it is trivial. Assume (3.27) for j - 1, and suppose that there

exists some T e Ij such that \\g\\(γ (Tj,τ))) = (2J - l)Do(κ, E). Then, by (3.20), (3.26),

(3.25), Lemma 3.2, (3.24) and (3.22), we have

(3.28) ll#ll(r;/) < 2\\gj\\{γ I) + Nl(r ; /) < & - l)D0(κ,E),

where / = (7), Γ), which is a contradiction. Thus we obtain \\g\\(γ (Tj,T))) < & —

l)D0(κ,E) for any T e Ij. In particular, we have \\g\\(γ;ij) < (2j - l)Do(κ, E), so

that from (3.23) we have (3.27) for this j . Thus the induction is completed and we obtain

l|w||(y;/;) < A)(?72> E) + Do(κ\, E) + B < η\ < Co- Then, from Lemma 3.2, we obtain

NI(X;(o,oo)) < NCι(C0(E), E)) < C(£, L). D

Now we can prove the global estimate ||w||(χ;/?) < C(E(u)) in the same way as in

Proposition 10.1*. Then, partitioning the time axis into intervals and applying Lemma 3.1 on

each interval, we obtain the desired

(3.29) \\u\\(K;R)<C(E(u)).

4. Global space-time estimates (Case II). In this section, we derive the global space-

time estimates for NLKG with n > 3, which was not considered in the previous section.

Again, we denote by ( , •)* those equations in [13] and similarly by Lemma •.* the lemmas

therein. In this section we need more norms than in the previous section. We will assume

(1.8) with

4 4(n + l) 4 4
( 4 1 } H < P I < ( H + 2 ) ( B - 1 ) < ^ T < / > 2 < ^ 2

where we need the upper bound of p\ and the lower bound of p2 only for some technical

reasons. We will use the following norms in this section:

(£; /) := L°°(7; H{(Rn)), (B; I) := L°°(/; Bl^nJ>2~σ(Rn)),

(*';/) :=//(/ x/T),

(V I) :=L~P(I xRn),

(W I) :=Lhl x Rn),

where p = 2 + 4//I, ζ = 2 + 4/(/i - 1), l/p + l/p = l/ζ + l/ζ = 1, p\/q' = l/p - l/p =

2/(n + 2), p 2 /μ = 1/f - l/ζ = 2/(/ι + 1), (/?i + l)/v = l/p, σκ = 1/2 and σ > 0 should

(M; /) :=

(ΛΓ; /) :=

(S; /) := ,

(V;I):=

(W; I) :=

L^(/; Bσ

p

κ

2(Rn))

LV(I xR"),

LUl XR"),
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be taken such that

(4.3) 0 < ζ-σκ + (1 - ϋ) (l - Ά- - σ) .
μ \ μ)\ 2 J

Remark that we have p<v<q'<ζ<μ< 2(n + l)/(n — 2) from (4.1).

Now our goal estimate is ||w|| (#;/?) 4- ||w||(S;/?) < C(E(u)), which will be derived from

IMI(M Λ) < C(E(u)). The outline of the proof is the same as in the first case, but we have to

use a little more complicated version of the Strichartz estimate:

\\u\\(E;i)n(K;i)n(S;i) < C||n(0)||^i + C||

where the second estimate follows from the first one. We will use the following nonlinear

estimates (see [9, Lemma 3.1]):

(4.5) ll/^II^^^Cίiμil^iμilf^ + iμi^^iμilf^),

\p2
(4.6) 11/00 - f(v)\\(yn{W) < C(\\u - υll^llMllf^ + ||u - vhw)\\u\\p

(

2

M)).

We have the following inteφolation inequalities:

(4.7) I ^ ^

(4.8) l

(4.9) I

(4.10) l

whereO < a, β, γ, δ < 1 should be taken such that (l-a)/p+a/μ - l/ζ, (l-β)/p+β/μ —
l/v, (1 - γ)/p + γ/μ = \/q' and

(4.11) o < δ ^ σ κ (
μ \ μ

Then the next lemma is a substitute for Lemma 3.1».

LEMMA 4.1. Letn > 3 and assume (1.8). Let ubea solution of^NLKGon an interval

I — (S,T) satisfying \\u\\(E-J) < E < OO and ||«||(Λί;/) = V < oo. Then there exists

0 < η$ = ηs(E) such that ifη < ηs(E), we have

(4.12) M(K;l) + II«II(S;/) + II«II(X';/) ^ C ( £ >

PROOF. Let υ be the free solution with the same initial data as u at t — S. By (4.4),

(4.5) and (4.9), we have

II" - v\\(S;l)n(K;I) <

(4.13) < C||«||(S)n(if)(||H||^) +

So, taking ηs(E) sufficiently small, we obtain an estimate ||w||(5 ;/)n(AΓ;/) ^ C(E). Then the

desired estimate follows from (4.4) and (4.9). D
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The next lemma is a substitute for Lemma 4.1*.

LEMMA 4.2. Letn > 3 and assume (1.8). Let u be a solution o/NLKG on an interval I

satisfying ||w||(£;/) < E < ooand ||W||(M;/) = η € (0, ηs(E)),where η$ is as given in Lemma

4.1. Then, there exist a subinterval J C /, R > 0 and c e Rn satisfying \J\ > C(E, η),

R < C(E, η) and

(4.14) [ \u(t)\sdx>C(E,η,s)
J\x-c\<R

for any t e J and any s > 1.

PROOF. This lemma can be proved almost in the same way as Lemma 4.1*. Instead of

(4.2)*, it follows from Lemma 4.1 and (4.10) that

(4.15) η = \\u\\w) < C\\u\\[^\\u\\l-S/fl < C{E)\\u\\\^'^ ,

and, by the Sobolev embedding, that

(4.16) η = |

which is a substitute for (4.5)* to have |/ | > C(E, η). Then, the rest of the proof is just the

same as for Lemma 4.1*. D

Now assume (1.6), (1.8) and (1.10). By Lemma 2.6, we can prove Lemma 5.3* with

p = 1 + 4/n. By Lemmas 4.2 and 2.6, Lemma 6.1* can be proved without the log-weight, if

we replace the (X)-norm with the (M)-norm. Then, in the same way as in [13], we can prove

the following substitute for Lemma 7.1*:

LEMMA 4.3. Letn > 3 and assume (1.6), (1.8) and (1.10). Let u be a global solution

tf/NLKG with E(u) = E < oo. Let v, ε > 0 and M < oo. Then there exists v\ = v\ (E) > 0,

Λf = N(E, v, M,ε) < oo with the following properties: If v < v\ and ||W||(M;/) > N on

some interval I, then there exist (S, T) C /, c e Rn and R e (1, oo) such that \T - S\ > MR

and that for t = S or t = T we have

/ *N(U; t)dx ,
\x—c\<R

( 4 1 7 )

< V2 < /

J\x

(x-c) L2

where ejy denotes the energy density.

Thus we may replace the assumption (8.1)* with (4.17). Then, we can prove the corre-

sponding modified version of Lemma 8.1*, where we use the modification to avoid the explicit

use of p > 2 in [13], as in the previous section. Now we have only to prove the following

substitute of Lemma 9.1* in the same way as in the previous section.

LEMMA 4.4. Let n > 3 and assume (1.8). Let u, w be global solutions <?/NLKG,

and v be a global solution of the free equation satisfying w(0) = υ(0) + tu(O) and \\u\\ (E ,R)>

\\w\\(E;R) S E < oo. Then, for any L < oo, there exists K = κ(E, L) > 0 such that if

IMI(Λf;(0,oo)) < L and IMI(M;(0,<χ>)) < K, we have | |M||(M ;(0,OO)) < C(E, L).
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To prove this lemma, we need the following estimate, which corresponds to Lemma 3.2

in the previous section.

LEMMA 4.5. Assume (1.8) and n > 3. Then, there exist certain positive continuous

functions Cj for j = 0, 1 satisfying Ci(0, E) = 0 and the following properties. Let u be a

solution to NLKG on an interval I with ||w||(£;/) < E < oo and \\u\\(W;i) < η < oo. If

V — Cθ(E)i then we have

(4.18) l|M||(A#;/) + l|M||(V;/) < C i ( ϊ 7 , £ ) .

PROOF. Let / = (S, T). Let v be the solution of eq^ίf) = 0 with the same initial data

as u at t = S. Then, by (4.4), (4.5), (4.9) and (4.10), we have

IMI(S;/)n(*;/) < CE + C\\f(u)\\Cs.imR.n

(4.19) S C E + C I I I I I I ^ I I M I I ^ + C I I I I ^

< CE + C ί E X H u l l ^ l l i i l l ^ +

whereβ = l+/?2δ?/μ > hb = p2(l-δ)ζ/μ > 0, c = 1+p\(l-γ) +p\γ8ζ/μ > 1 and

d = p\γ(l — δ)ζ/μ > 0. So, if we take Co(E) sufficiently small, we have \\u\\(S;i)n(κ j) 5

C(£"). Then, from (4.8) and (4.10), we obtain the desired result. D

Now we can prove Lemma 4.4 in a way similar to that for Lemma 3.3. We partition

(0, oo) into intervals // such that

(4.20) \\w\\iM;ij)<η,

instead of (3.19). Then we have the estimate for the number of the intervals N^μη < L. By

Lemma 4.1, (4.8) and (4.7), we have

(4.21) \\w\\(v jj)n(W;ij) < Do(η, E), IMI(V;/, )n(W;/; ) < A)(κ, E),

instead of (3.20). By (4.4) and (4.6), we have

\\9\\(V J)Π(W;ϊ) < \\9j\\(V;I)n(W\I)+C2(\\w\\fy.j) + \\u\\fy.I)
y\.ΔΔ) n. n.

instead of (3.22), and a similar estimate instead of (3.23). Then, in the same way as for

Lemma 3.3, we obtain ||w ||(v;/7 )n(V ;̂/7 ) < Q)(E) and by Lemma 4.1, ||w||(M;(0,oo)) < NC\ <

C(E,L).

Now we can prove the global estimate ||W||(M;/?) < C(E(u)) in the same way as in

Proposition 10.1*. Then, partitioning the time axis into intervals and applying Lemma 3.1 on

each interval, we obtain the desired estimate

(4-23) II»II(*;JO + II«II(5;Λ) < C(E(u)) .

5. Scattering result. In this section we prove the scattering results in Theorem 1.1

from the global space-time estimates derived in the previous sections. First, we show that the
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wave operators υ(O) ι-> w(0) is well-defined in the whole Hι. In this step, we need only the

global estimate for the free solutions. We have to solve the integral equation

/ '
Joo

(5.1) u(t) = υ(t)+l K(t-s)f(u(s))ds,

locally near t = oo, where

ω~1 (sin tω, cos tώ), for NLKG,

Let u i = υ, and define UJ inductively by the linear equation

(5.3) Uj(t) = υ(t)+ f K(t-s)f(uj-l(s))ds.
Joo

For NLS with any n and NLKG with n < 2, by (3.7)* and (3.9) we have

IK>1 -Ky||(K;(7\00)) < C||«_/ - K/-1 ||(K;(7\θθ))

x(ll"yllfx;(Γ,oo)) + ll"y-lllfx;(Γ,oo)) + W"j llfi' (Γ.oo)) + " ^ " l llfi' (Γ.oo))) '

By Lemma 3.2, if ||ιΊI(y,(r,oo)) is sufficiently small, then we can show, by the standard argu-

ment, that UJ converges in (F; (7\ oo)) and is bounded in (X; (7\ oo)) Π (K; (7\ oo)). Then

the limit function is the unique solution to (5.1) satisfying ||«||(#;(7\oo)) + WuW(X;(τ,oo)) < ̂ °

(the uniqueness follows from an estimate silimar to (5.4)). Now we can extend the local so-

lution to a global one by the standard and well-known argument. By (3.10) and (3.8), we

have

(5.5) ||u - t;||(E;(r,oo)) < C||M||(^;(r,cx)))(ll«ll^;(Γf00)) + l l<r ; (r ,oo))) '

which tends to 0 as T -> oo. Thus we obtain the wave operators defined on Hι.

Next we show that the wave operators are surjective (it is trivial that they are injective).

Now we have to prove that any finite energy solution u of NLKG or NLS approaches to some

free solution. For NLS with any n and NLKG with n < 2, by (3.10) and (3.8), we have for

T <t

(5.6) (s)f(u(s))ds

which tends to 0 as T -> oo, since we have the finiteness of the norms. So, there exists the

limit in Hι of

(5.7) α:= / K{-t)f{u{t))dt.

Jo
Now, let v be the free solution with the initial data v(0) = u(0) + a. Then we have (5.1) and

(5.5) for these u and υ, so that we obtain the surjectivity of the wave operators. For NLKG

with n > 3, we just replace (Y) with (V) Π (W), (X) with (Λf), (X') in (5.4) with (V) and

(K) with (A') Π (5) in the above argument. Using the uniform bound for the global space-time

norms, we can show the weak continuity of the wave operators and their inverses. Then, the

strong continuity follows from the weak continuity and the energy conservation law (see [11,

Corollary 6.3] for more detail). Thus we finish the proof of Theorem 1.1.
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