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Abstract. We study the asymptotic behavior of the quadratic means on spheres of
increasing radius of the Fourier transforms of characteristic functions of sets with smooth
boundary. Beside to give different proofs of known Euclidean results, we also consider the
non-Euclidean Fourier transform on the two dimensional sphere and the hyperbolic disk.

This paper is devoted to the study of Fourier transforms of characteristic functions and

more generally of piecewise smooth functions, that is, functions of the form /(X)XQ(X) with

f(x) smooth and Ω a bounded domain with smooth boundary. The decay of these Fourier

transforms is related to the geometry of the domains, in particular, Herz and Hlawka have

proved that for bounded convex sets in R N with smooth boundary of positive Gaussian curva-

ture, | χβ(ξ) | < c |§ |~ ( i V + 1 ) / 2 . This agrees with the estimate for a ball, but for non convex sets

or convex with flat boundary it may fail. An example is given by the Fourier transforms of

characteristic functions of polyhedra which simultaneously present minimal and maximal rate

of decay. Along almost all directions there is a decay \ξ\~N, but in the directions orthogonal

to the faces the decay is only \ξ \~ι. This different behavior along different directions suggests

the study of an average decay, and indeed Varchenko has proved that for bounded domains

with smooth boundary one has

1/ 1/
I J[\σ\ = l} I JΩ

exp(—2πipσ x)dx
2 Λ\/2

dσ
JΩ

Observe that this quadratic estimate matches with the pointwise decay given by non-

vanishing curvature, and hence it is best possible. A two dimensional result of Podkorytov

replaces smoothness with convexity, but the peculiarity of Varchenko's result is that, except

for smoothness, there are no geometric assumptions on the domains.

In this paper, we give a different proof of the above quadratic estimate, using a method

that allows to establish analogous results for Fourier transforms on other symmetric spaces. In

particular, we shall consider explicitly the sphere and the hyperbolic disk, which are models

of the non-Euclidean elliptic and hyperbolic plane. In the case of the Euclidean spaces, we

consider integrals of the type

[J{\ {\σ\=\} Ω
/(jc)exp(-Iπipσ - x)dx

2 , 1 / 2

dσ\
J
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with fix) smooth. The Gauss-Green formula essentially reduces the integral to one on 3Ω,

(2πp)-1j / / fix)σ nix)cxpi-2πipσ
[ J{\σ\=l) JdΩ

2 , 1 / 2

dσ

and, introducing local coordinates on {|σ| = 1} and on dΩ,

cp
- 1

JRNi
F(u)A(t, u) exp(-2πipΦ(t, u))du dt

1/2

Hence one is led to estimate the boundedness on L2(RN ι) of a Fourier integral oper-

ator with phase Φ(t,u) = σ x. The point is that this phase degenerates, the determinant

[32Φ(f, u)/dtiduj] vanishes at some points and the standard techniques do not immediately

apply. See, for example, [9]. Nevertheless we shall prove that there exists a constant c such

that, if the support of fix) is suitably small,

[J{\σ\=\)
fix) exp(—Iπipσ x)dx dσ

1/2

•cp
-(ΛH-D/2

I JdΩ
\f{x)\2dx

1/2

For functions with big supports this asymptotic result may be false, and an example is

given by the Fourier transform of a ball, which vanishes on a sequence of spheres.

The exponentials {exp(27π£ x)} are eigenvectors of the Laplace operator onRN with

eigenvalues {47Γ2|£|2}, and the projection of the function /(X)XQ(X) to the subspace associ-

ated to eigenvalues between 4π2p2 and 4π 2 (p + I) 2 is given by

[ ί f{x) exp(2τπ§ (x - y))dydξ .

The result of Varchenko thus implies that the square norm of this projection satisfies the

estimate

l ί ί ί fix) exp(2τπ§ . ix - y))dydξ
[ JRN J{p<\t-\<p+\) JΩ

= I / / / fix)txpi-2πipσ x)dx
[Jp J{\σ\=l) JΩ

2 , 1 / 2

dx\

pN~ιdpdσ
1/2

C

P

We want to prove similar estimates for spherical harmonic expansions. Every square

integrable function on the sphere S = {x e R3; \x\ = 1} has a spherical harmonic expansion,

or Fourier-Laplace series,

9W = Σ\I Zkix -y)giy)dy\ ,

where the zonal harmonics {Z^(ί)} are multiples of Legendre polynomials. The terms of this

series are projections of the function to the eigenspaces of the Laplace operator on the sphere

corresponding to eigenvalues {kik + 1)}. It is not difficult to see that for piecewise regular
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functions, the terms of the series are pointwise bounded by ck~{/2, however the mean square

decay is better,

I//
[Js JΩ

Zk(x-y)f(y)dy dx
1/2 <£

- k

This estimate for the norms of the spherical harmonic projections is natural. Roughly

speaking, one should expect at least a decay k~1^2, since the sum of the square of the norms of

spherical harmonic projections is finite, plus an extra decay fc"1/2, because piecewise smooth

functions have half a derivative in L2(S). Also, this matches with the corresponding estimate

for the euclidean Fourier transform.

An important tool in the study of the decay of Fourier transforms is given by the method

of stationary phase. We shall not use explicitly this method, but we shall deduce our results

from an integral involving Bessel functions,

lim

which holds whenever a + β > — 1 and ψ(t) is smooth with compact support.

The first section of the paper contains the easy proof of this formula and some corollaries.

In the second section we prove quadratic estimates for the Euclidean Fourier transform of

piecewise regular functions. In the third and fourth sections we consider analogous problems

on the sphere and the hyperbolic disk. Our motivation for the study of the average decay

of Fourier transform arises from problems on estimates of the number of integer points in

large domains and also from problems on localization and convergence of Fourier expansions.

Some of the results in this paper are part of the dissertation of A. Torlaschi at the "Universita

degli Studi di Milano".

1. Some integrals involving Bessel functions. In this section we consider the as-

ymptotic behavior, when p -> +oo, of integrals of the type

, JΛp\χ-y\)ί t ' ' " (P\χ-y\)a

The following argument is heuristic.

Ja(p\χ-y

'** JR» ^ J / (P\χ-y\)a

+OO

~ " X= P~N ί ί ί G(x,
JR» JS Jθ

* p~N{sι (C°° tN~a~ija{t)dt) (fRJR"

Hence we expect that the integral is dominated by p~N, but we also expect an extra decay

if by chance /0

+o° tN~a~ιJa(t)dt vanishes. Let us consider this last integral. In books on

special functions one can find Weber's formula

f
Jo
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See, for instance, [15]. The function tβJa(t) on the left is integrable in a neighborhood of

ί = Oi fα + j β > — 1 , and in a neighborhood of t = +oo if β < -1/2. But the quotient

of Gamma functions on the right is finite for a larger set of indexes and it may vanish at the

poles of the denominator. This suggests the following.

LEMMA 1.1. If a + β > — 1, then there exist c and k such that for every ψ(t) smooth

with compact support and for every ε > 0,

\ΓJo

Moreover,

ψ{εt)tβJa{t)dt sup
dJ

PROOF. Since (d/dt)(ta+ιJa+\(t)) = ta+ιJa(t), an integration by parts reduces an

integral with parameters (α, β) for the function ^(^0 to one with (a + 1, β — 1) for an

associated function φ(εt) with φ(0) = (1 + a - β)ψ(0),

r+oo z +oo o

/ ψ(εt)tPJa(t)dt = / 1r(εt)tβ-a-ι-(taι

Jo Jo Bt
r+oor

o ~ /
JO

= / ((\+a-β)ψ{εt)-εtψ\εt))tβ-χJa+χ(t)dt
Jo

r+oo
= / φ(εt)tβ-ιJa+{(t)dt.

Jo

One can iterate until tβ~nJa+n{t) becomes absolutely integrable, then the dominated

convergence theorem applies. This show that / 0

+ σ o ψ(εt)tβ Ja(t)dt is uniformly bounded

in ε > 0 by c ^ = o s u P r > o \idJΨ/dtj){t)\ and that l im^ 0 +/o + 0 ° Ψ(εt)tβJa(t)dt =

c(α, β)ψ(0). To determine the constant c(α, β) it is enough to test the distribution on a

particular function. D

LEMMA 1.2. DenotebyL = -d2 /dt2-(N-l)t~ι 3 /dt the radial part ofthe Laplace

operator onRN. Then for n = 0, 1, 2, . . . ,

k=0

PROOF. We can prove this lemma by induction, using the formulas

= (2« + 2)ra-ιja+i(t) - raja(t).
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From these formulas it follows that

D

THEOREM 1.3. Let Ωbea bounded domain in R N with smooth boundary and F(x,y)
a smooth function inRN x RN. Then,

PROOF. The idea is that a Laplacian in front of a Bessel function gives a gain of a

factor p~2 and the Gauss-Green formula reduces an integration over Ω to one over dΩ. By

the previous lemma applied twice,

J(N-2)/2-n(p\x ~ y\) n-4\^,(λI „ . x Λ Λ ( J{N-2)/2-k(p\x ~ y

Hence we need to estimate integrals of the type

- 4
p

= p

with α = (N — 2)/2 — A: and 0 < k < n. The terms omitted are zero when F(JC, v) = 1,

and in the general case a reiterated use of Gauss-Green formula shows that these terms give

negligible contributions. Now observe that

\(p\χ-y\r) =dn(x) dn(y)

2 Ja+ι(p\x- y\)
= pzn(x) n(y)— — —

(ρ\x - y\)a+ι

Ja+2(p\χ-y\)
- P (x -y) ' n(x)(x - y) n(y)-

Using partition of unity, we may assume that the intersection of the support of F(x, y)

with dΩ x dΩ is essentially flat. For a fixed x it is possible to introduce a sort of polar

coordinates on dΩ centered at x, writing y — y(x, &, t) with t = \x - y\ and ϋ € S.

In order to obtain these coordinates one can consider the exponential map y = Exp[*, Y]

from RN~ι in dΩ, write in polar coordinates Y = rϋ and then make the change of vari-

ables t = |Exp[jc, rϋ] — x\. In these coordinates the surface measure takes the form dy =

φ(x, ϋ, t)tN~2dtdϋ. Also, for x and y on dΩ, one has \(x - y) rc(*)| < c\x - y\2 and
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(JC - y) n(x)(x - y) n(y) = ψ(x, #, t)t4. Then

F(x, y)(x - y) «(x)(x - y)ί
/

JBΩ

— i^W
p p p+OQ

= P~N~3 / / G(x
JdΩ Js JO

By the first lemma the inner integral in t is bounded, so that the contribution of this term

is of the order of cp~N~3. Finally,

ί F{x,y)n{x).n{
JdΩ

p p p+OQ

= P~N~l / / G(x,ϋ,t/p)tN-a-3Ja+{(t)dtdϋdx.
JdΩ Js Jθ

Again by the lemma, the above quantity is bounded by cp~N~ι and, when p —> +00, we also

have the asymptotic
p p /*+oo
/ / / G(x,ϋ,t/p)tN-a-3Ja+{(t)dtdϋdx

JdΩ JS Jθ

Γ((2α -N + 5)/2) ;9ί2 Λ
D

2. Fourier transforms in Euclidean spaces. Revisiting [14], we consider the mean

square decay of the Fourier transform in R N for functions of the type / (JC ) χ& (x), with / (JC )

smooth and Ω a bounded domain with smooth boundary.

THEOREM 2.1. Let Ω be a bounded domain in RN with smooth boundary and /(JC)

a smooth function inRN. Then,

2 , 1 / 2

\UL /(JC) exp(-2τrφσ x)dx dσ

Also, there exists a constant A such that, if the intersection of the support of f{x) with dΩ is

sufficiently small, then

2

lim
p \ p
/ I

J{\σ\=\) I JΩ
/(jc)exp(-2π/pσ x)dx dσ

p
- A

JdΩ
|/(JC)|2JJC = 0.

PROOF. Since

Λ|σ|=Π I JΩ
f(x) exp(—Iπipσ x)dx dσ

= ί ί ί f(x)f(y)εxp(2πipσ.(y-x))dσdxdy
JΩ JΩ ^{|σ|=l}

= ( 2 , ) ^ f f f
JΩ JΩ

the result follows from the theorem in the previous section. D
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In many respects the above theorem seems to be best possible. Indeed the example of

a ball shows that in order to have an asymptotic decay of the quadratic means of Fourier

transform some restrictions on the support of the function seems necessary:

X{\χ\<r}(ξ) = rN\rξΓN'2JN/2(2π\rξ\)

« 7 r " 1 r ( ; v - 1 ) / 2 | § Γ ( i v + 1 ) / 2 c o s ( 2 π r ^ | - (N + l)π/4).

This Fourier transform decays as cyθ~(7V+1)/2, but vanishes on a sequence of spheres

centered at the origin. Also, this example reflects the general situation, since there are no

domains that give a decay better than cp~^N+ι^2. Assume, by way of contradiction, that for

a given domain Ω and function /(JC),

lim \ULf(x)exp(-2πipσ x)dx
λ 1/2

dσ\ = 0.

Then for every ε > 0 there exists r > 0 such that for every R > r,

2ί Γ Γ
/ /

[J{\ξ\>R) JΩ

f(x)aφ(-2πiξ>x)d dξ εR~ι/2

This implies a restriction on the L2(RN) modulus of continuity of

instance [2],

1/2

see, for

tN
\f(x + y)XΩ(x + y)- f(x)XΩ(x)\2dx

This cannot be true unless f(x) vanishes on 3Ω.

3. Spherical harmonic expansions. We start by reviewing some results on the har-

monic analysis on spheres, as a reference see [10]. Let S = {(x\,X2, *3); x2 + x2 + x2 = 1}

be the unit sphere in the Euclidean space /?3. We have a system of polar coordinates,

x\ =
x2 =

The restriction to the sphere of the Euclidean measure is dx = ύn{ϋ)dϋdφ and the restriction

to the sphere of the Laplace operator is

/ a2 cos(#) a l a2 \

This operator has eigenvalues {k(k + 1); 0 < k < +00} and an orthonormal complete

system of eigenfunctions {φkj(x)\ 0 < k < +00, 1 < j < 2k + 1}, which are restriction

to the sphere of real homogeneous harmonic polynomials. Every function in L2(S) has a

spherical harmonic expansion

+00 2&+1 / p \ +OO /.

Σ * ^ /I \ u \ 1

/ ( / f iy^)Φk i(y}dy I φk ( ̂ ) —- / I ̂ k(x
k=0 j=\ χJS 7 k=0 J*
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where Z*(JC y) = Σj^1 ΦkjMΦkjiy)- The zonal harmonics are rotation invariant, and

hence functions of the scalar product x y, which satisfy the relations

/ Zk(x y)Zk(x z)dx = Zk(y z),
Js

ZΛ(jc.;y) =
2k 4-

where ί"̂  is the system of Legendre polynomials, and in 0 < ΰ < π — £,

with ao(&) = V^/sin(i>),... .For this Hilb-Szegό asymptotic formula, see [11, 12].

Recall that we want to study the size of the terms of the eigenfunction expansions of

piecewise regular functions. The example of the characteristic function of a spherical cap is

typical,

1 if x - n > cos(α),

1/2 if x - n — cos(α),

0 if x n < cos(α),

- cos(α)
+

k=o

By the asymptotic P*(cos(#)) « 2cos((A: + 1/2)^ - π/4)/y/π(2k + 1) sin(#), we deduce

that if JC = ±n, the terms of the series are of the order of A:"1/2, and if x φ ±n, then of the

order of k~ι. The following result shows that the quadratic mean of fΩ f(y)Zic(x y)dy has

a decay of the order of k~1.

THEOREM 3.1. Lei Ω be a domain in S with smooth boundary dΩ and f(y) a smooth

function in S. Then,

I//
I Js JΩ

Zk(χ-y)f(y)dy dx

PROOF. If the support of f(y) is strictly contained in Ω, then the result holds, and

hence, by a partition of unity argument, we may assume that f(y) is supported in a small
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neighborhood U and that U Π dΩ is suitably flat. Then, by Hub's formula,

Js JΩ
Zk(χ.y)f(y)dy dx

-Iff
JΩ JΩ JS

= ( ί
JΩ JΩ

f(y)f(z)Zk(x . y)Zk(x z)dxdydz

l f f
/ /

arccos(y z)

sin(arccos(v z))

-II f(y)f(z)Pk(yz)dydz
JΩ JΩ

+ l/2)arccos(j z))dydz

A change of variables that takes arccos(j z) into \u — v | transforms the integral into one

of the type considered in the first section. We thus obtain the bound c(2k 4-1)~2 and it can be

shown that the contribution of the remainders in Hub's formula is negligible. D

It is also possible to give pointwise estimates on the size of terms in the spherical har-

monic expansions of piecewise smooth functions on the sphere, that are analogous to results

in [5] and [6] on the Euclidean Fourier transform. The proofs are similar to the ones in the

preceding theorem, but one has to use the method of stationary phase in the estimates of some

integrals. Details can be found in [13]. These pointwise estimates suggest the convergence of

Σ ^ ( / β f(y)Zk(x -y)dy), which was proved by Weyl. In [1] there is an extension of Weyl's

result to eigenfunction expansions in two dimensional compact manifolds. In dimension three

the convergence may fail.

4. The non Euclidean plane. Following [3] and [4], we give a brief review of the

non-Euclidean harmonic analysis in the Poincare model of the hyperbolic plane. Let D =

[z = x + iy; x2 + y2 < 1} be the open unit disk in the complex plane, with Riemannian

metric ds2 = (1 - x2 - y2)~2(dx2 + dy2) and measure dz = (1 - x2 - y2)~2dxdy. The

group

acts transitively on D by linear fractional transformations z h> (az + b)/(μz + b), which

preserves the Riemannian structure. One has the Cartan decomposition SU(l, 1) = KA+K,

where

K =

A =

exp(/#/2)
0

0

exp(-i#/2)
0 < ϋ < 4π

cosh(ί/2) sinh(f/2)l
—oo < t < +oosinh(f/2) cosh(Y/2)J

and A+ is the subset of A with t > 0. In the coordinates induced by the Cartan decomposition

/ f(z)dz = — / / f(k(ϋ)a(t) • 0) sinh(t)dtdϋ .
JD lo7Γ Jo Jo
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Let b — exp(z'φ) be a point of the boundary B = dD. The complex powers of the

Poisson kernel Vμ(z, b) = ((1 — |z|2)|z — b\~2)μ are eigenfunctions of the Laplace-Beltrami

operator Δ = - ( 1 - x2 - y2)2(d2/dx2 + d2/dy2), with eigenvalues 4μ(l - μ). In particular,

The spherical functions are defined by

and in coordinates induced by the Cartan decomposition, φχ(k(ϋ)a(t) 0) =

P_(i_(_/λ)/2(cosh(ί)), where Pμ(z) is the Legendre function of first kind with degree μ. When

0 < t < c < +oo, we have Hub's formula

P-(l+/λ)/2(C0Sh(ί)) =

with ao(t) = y/t/ sinh(ί), See [11] and [8] for the asymptotic expansion of spherical

functions on rank one symmetric spaces. In the sequel we shall need the formula

f
JB

= φλ2π \l - ZW

For suitable functions on D one can define a non-Euclidean Fourier transform with an

inversion formula and a Plancherel identity by

F(λ,b)= f g(z)Vil-iλ)/2(z,b)dz,
JD

i /»-foo /»

F(z) = — / / F(λ,^)P (1+/λ)/2(z,Z7)λtanh(πλ/2)^Jλ,
4π J_oo JB

ί ί 1 ^ 2 ί 1 ί+o° ί
/ |F(z)|2ί/z| = — / / \F(λ,b)\2λt2inh(πλ/2)dbdλ

[JD J [2π JO JB

1/2

As in the preceding sections, our purpose is to estimate the decay of the quadratic means

{fB |F(λ, b)\2db/2π}1/2, where F(z) = f(z)χΩ(z) with f(z) smooth and χΩ(z) the char-

acteristic function of a bounded domain with smooth boundary.

THEOREM 4.1. Let Ω be a bounded domain in D with smooth boundary and f(z) a

smooth function in D. Then,

JΩ
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PROOF. We have

f ί
JB JΩ

= ί ί ί
JΩ JΩ JB

= ί ί
JΩJΩ

ί f{z)J(w)φ-χ (^^A dzdw .
Ω \l-zwj

If for fixed w we make the change of variables (z — w)/(l — zw) = u = k(ϋ)a(t) 0

and write f\Z)XΩ(Z) f\W)XQ{W) = F(w, u), we obtain

ί ί f(z)J(w)φ-λ (^—^Λ dzdw = [ f F{w, u)φ-λ(u)dudw
JΩJΩ \l-zwj JDJD

= T7~/ / / F(w,k(ϋ)a(t)-0)P-0+iλ)/2(cosh(t))ύnh(t)dtdϋdw
lθ7Γ JD Jo Jo

-iff
JD JO JO

+oo

G(w, k(ΰ)a(t) O)Jo(λt)tdtdϋdw

for an appropriate piecewise smooth function G(w, k(ΰ)a(t) 0). The integral is of the type

considered in the first section, thus it is dominated by cλ~~3. D
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