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FLAT SURFACES IN HYPERBOLIC SPACE AS NORMAL SURFACES
TO A CONGRUENCE OF GEODESICS
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Abstract. We first present an alternative derivation of a local Weierstrass representa-
tion for flat surfaces in the real hyperbolic three-space, H3, using as a starting point an old
result due to Luigi Bianchi. We then prove the following: let M ⊂ H3 be a flat compact
connected smooth surface with ∂M �= ∅, transversal to a foliation of H3 by horospheres. If,
along ∂M, M makes a constant angle with the leaves of the foliation, then M is part of an
equidistant surface to a geodesic orthogonal to the foliation. We also consider the caustic sur-
face associated with a family of parallel flat surfaces and prove that the caustic of such a family
is also a flat surface (possibly with singularities). Finally, a rigidity result for flat surfaces with
singularities and a geometrical application of Schwarz’s reflection principle are shown.

Introduction. In the early 1970s [8] and Volkov and Vladimirova [11] proved indepen-
dently that in the real hyperbolic three-space H3, i.e. the simply connected real space-form
of dimension three with constant curvature −1, the only complete examples of flat surfaces
(flat surfaces for short) are horospheres and the equidistant surfaces to geodesics. This lack
of complete examples may have contributed to almost three decades without new works on
them.

A Weierstrass representation for flat surfaces was derived by Gálvez et al [4]. They have
also shown that there is a correspondence between flat surfaces and holomorphic Legendrian
curves in PSL(2, C). This is interesting, since it somehow connects hyperbolic geometry with
complex contact geometry. More recently, Kokubu et al. have shown an alternative way to
obtain a Weierstrass representation and have explored some connections between hyperbolic
and contact geometry [5, 6]. Both works are inspired by the theory for constant mean curva-
ture one (CMC-1) surfaces in H3, and by the fact shown in [4] that by choosing an appropriate
conformal structure for a flat surface, namely that induced by its second fundamental form,
one can characterize flat surfaces as those having a holomorphic Gauss map.

We first show how a local version of a Weierstrass representation (Theorem 2.2) is ob-
tained using an old result of Luigi Bianchi, which roughly says the following: the correspon-
dence between the two hyperbolic Gauss maps of a surface M ⊂ H3 is weakly conformal if
and only if M is flat (except for totally umbilical surfaces). We note that integration of the
holomorphic data is required to determine a flat surface.

Since there are essentially two possible examples of complete flat surfaces, the Weier-
strass representation will furnish, in general, surfaces having singularities. Therefore, if one
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seeks global results, it is natural to consider smooth surfaces with boundary and also surfaces
with singularities. For smooth surfaces with boundary we have the following.

THEOREM 2.6. Let M be a flat compact connected smooth surface with boundary,
∂M �= ∅, transversal to a foliation of H3 by horospheres. If, along ∂M , M makes a constant
angle with the leaves of the foliation, then M is part of an equidistant surface to a geodesic
orthogonal to the foliation.

It is a well-known fact that the parallel surfaces at distance t , {Mt }, to a flat surface M are
also flat surfaces; see, for instance, [10]. As we shall see, it is natural to study such a family
of parallel flat surfaces {Mt } instead of a particular member of the family. As mentioned,
flat surfaces constructed via the Weierstrass representation will have singularities (except for
horospheres and equidistants to a geodesic). These are the singularities treated in this paper.

Let M be a flat surface constructed via the Weierstrass representation. We will consider
curves γ ⊂ M , that are smooth space curves in H3 and are singular curves of M . This means
that M is not an immersion along γ . Such curves will be called smooth singular curves.

Now consider the family of parallel surfaces {Mt } to a flat surface M , and the set of
singularities of all {Mt }. We call this set the caustic MC associated with the family {Mt }.
Note that smooth singular curves γt of Mt are curves also on MC. The caustic MC might be a
degenerate object such as a curve, but in general it is a surface with singularities. The reader
is directed to [1] for a classification of such singularities. In the classical literature caustics
are sometimes referred to as surfaces of centers, focal surfaces or evolutes.

For a family of flat surfaces {Mt } we have the following relation between {Mt } and MC.

THEOREM 3.3. Let {Mt } be a family of parallel flat surfaces and MC the caustic as-
sociated with this family. Then MC is flat at smooth points. Furthermore, for some t , let γt

be a smooth singular curve common to Mt and MC. If MC is smooth in a neighborhood of γt ,
then γt is a geodesic of MC.

We note that one may find a very interesting alternative approach to flat surfaces with
singularities in [6].

The consideration of caustics motivates a better understanding of the principal radii of
curvature of a flat surface. In Theorem 3.6 we prove that, for umbilic-free flat surfaces, the ra-
dius of curvature associated with the principal curvature that is greater than one is a harmonic
function, for a chosen conformal structure.

Two applications of Theorem 3.3 are given. First, we will derive an alternative Weier-
strass representation for flat surfaces that requires no integration of the holomorphic data
(Theorem 3.5). This follows easily from Theorems 2.2 and 3.3, and from the fact that to
obtain a caustic from a surface we only have to take first derivatives.

Since flat surfaces are constructed via holomorphic data, it is reasonable to expect some
rigidity results. Our second application (Theorem 3.8) confirms this expectation and roughly
states that if two flat surfaces have a common singular curve then they are the same surface.



FLAT SURFACES IN HYPERBOLIC SPACE 23

Finally, we give a geometrical application of Schwarz’s reflection principle for flat sur-
faces (Theorem 4.1). Roughly stated, it says that if we have a planar geodesic on a flat surface
M , then the plane containing this geodesic is a symmetry plane of M .

This paper is organized as follows. In Section 1 we present the models of H3 to be used
and review the adapted moving frames for surfaces in H3. We also present the hyperbolic
Gauss maps associated with a surface in H3 and refine Bianchi’s characterization of flat sur-
faces in terms of the hyperbolic Gauss maps. In Section 2 we regard flat surfaces as normal
surfaces to a congruence of geodesics and derive a Weierstrass representation for flat surfaces
(Theorem 2.2). Some examples are shown and Theorem 2.6 is proved. In Section 3 we discuss
caustics of flat surfaces and give proofs of Theorems 3.3, 3.5, 3.6 and 3.8. Section 4 contains
the above-mentioned geometrical application of Schwarz’s reflection principle (Theorem 4.1).

The author thanks Ricardo Uribe for our discussion regarding caustics.

1. Preliminaries. 1.1. Structure equations in hyperbolic three-space. In some of
our calculations we shall use moving frames, and the notation used here coincides with that
in [3]. Let e0, e1, e2 and e3 be a positive oriented frame in L4 (Lorentzian space) satisfying

〈eα, eβ 〉 =




−1 if α, β = 0 ,

0 if α �= β ,

1 if α = β = 1, 2 or 3 ,

(1)

where 〈· , ·〉 denotes the standard Lorentzian inner product. Let ωi be the dual forms of ei and
ωα

β the connection forms defined by

deα = eβωβ
α .

Using the index range 1 ≤ i, j, k ≤ 3 and writing ωi for ωi
0, we have

de0 = eiω
i,

dei = e0ω
i + ejω

j
i ,(2)

ωi
j = −ω

j
i .

Differentiation of (2) yields

dωi = −ωi
j ∧ ωj ,

dωi
j = −ωi

k ∧ ωk
j − ωi ∧ ωj .

(3)

Now, let M denote a connected smooth oriented surface immersed in H3. We shall regard
e0 as its position vector, e1 and e2 spanning the tangent plane of M , and e3 as a normal field
to M and in the tangent space of H3. Restricting our forms to M , we obtain ω3 = 0. From
dω3 = 0 together with Cartan’s lemma we have

(
ω3

1

ω3
2

)
=

(
h11 h12

h21 h22

)(
ω1

ω2

)
,(4)
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where the smooth functions hij are the coefficients of the second fundamental form. Recall
that the Gaussian and mean curvatures are given, respectively, by

K = −1 + h11h22 − h2
12 ,(5)

H = (h11 + h22)/2 .(6)

For more details we refer the reader to [3].
1.2. Upper half-space model. To simplify our local calculations, as well as to visual-

ize some examples, we use the standard upper half-space model, and identify the ideal plane
∂∞H3 \ {∞} with the complex plane C with coordinates z = x + iy. The third coordinate will
be denoted by w, so a point in the upper half-space will be written as (x, y,w), w > 0.

1.3. Hyperbolic Gauss maps and Bianchi’s characterization of flat surfaces. Let p ∈
M , where M is a smooth oriented surface immersed in H3. Consider an oriented geodesic of
H3 passing through p and orthogonal to M at p. This geodesic has two limit points in ∂∞H3,
the ideal boundary of H3. If we fix an orientation for the geodesics orthogonal to M , we have
two maps defined on M . Namely, associate with p ∈ M the initial limit point and final limit
point of the oriented geodesic orthogonal to M .

If we fix an orientation of M , this determines an orientation for the geodesics orthogonal
to M . For a fixed orientation we shall denote by G+ : M → ∂∞H3 (respectively G− : M →
∂∞H3) the map that associates with p ∈ M the final (respectively initial) limit point of the
geodesic (oriented by the chosen orientation of M) through p and orthogonal to M . These are
called the hyperbolic Gauss maps of M .

Now, let M be a flat surface. From (5) we see that the extrinsic curvature of M is one
and therefore the mean curvature of M never vanishes. From now on we shall orient M by its
mean curvature vector so that we have H ≥ 1.

In terms of moving frames we write G+ = [e0 + e3] and G− = [e0 − e3], where the
brackets indicate the equivalence class under the equivalence relation of being in a straight
line in the positive null cone of L4. It is standard to identify ∂∞H3 with the quotient of the
positive null cone under this equivalence relation. The reader may consult [3] for more details.

LEMMA 1.1. Let M be a flat surface, oriented by its mean curvature vector. Then
G− : M → ∂∞H3 is an immersion, while G+ : M → ∂∞H3 is an immersion except at
umbilical points.

PROOF. We have

dG± = de0 ± de3 = (ω1 ∓ ω3
1)e1 + (ω2 ∓ ω3

2)e2 .(7)

Using (3), we may write

〈dG±, dG±〉 = ((1 ∓ h11)
2 + h2

12)(ω
1)2 ∓ h12(2 ∓ (h11 + h22))ω

1ω2

+ ((1 ∓ h22)
2 + h2

12)(ω
2)2.
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After some manipulation, using (6) and (7), the discriminants D± of the corresponding qua-
dratic forms are

D± = 4(H ∓ 1)2 .(8)

For the chosen orientation H ≥ 1 and, for p ∈ M, H(p) = 1 if and only if p is an umbilical
point. �

We now state an old result due to Luigi Bianchi that characterizes flat surfaces in terms
of a conformal map. Up to notation and terminology, this result is precisely the one proved
many years ago in Bianchi’s Lezioni [2].

PROPOSITION 1.2 (Bianchi [2]). Let M be a smooth connected flat surface oriented
by its mean curvature. Then the local correspondence G− → G+ is weakly conformal.
Conversely, if M is a connected surface such that there is an orientation that makes the
correspondence G− → G+ weakly conformal, then either M is totally umbilical or M is a
flat surface.

PROOF. Let us suppose that there is an orientation of M such that locally the correspon-
dence G− → G+ is well defined, in other words, that G− is an immersion. The correspon-
dence G− → G+ will be weakly conformal if and only if we have

〈dG−, dG−〉 = λ2〈dG+, dG+〉 ,(9)

where λ is a smooth real-valued function locally defined on M . From (7) and (9) we may
write this as

((1 − h11)
2 + h2

12) = λ2((1 + h11)
2 + h2

12) ,(10)

((1 − h22)
2 + h2

12) = λ2((1 + h22)
2 + h2

12)(11)

and

h12(−2 + (h11 + h22)) = λ2h12(2 + (h11 + h22)) .(12)

If λ(p) = 0 for p ∈ M , we must have

((1 − h11)
2 + h2

12) = ((1 − h22)
2 + h2

12) = 0 ,

which implies that h11(p) = h22(p) = 1 and h12(p) = 0, so that K(p) = 0 and we have a
flat umbilical point.

If λ �= 0, we may use (10), (11) and (12) to conclude that G− → G+ is weakly confor-
mal if and only if

2(h22 − h11)(1 − (h11h22 − h2
12)) + h12(h

2
11 − h22) = 0

and

h11h22 − h2
12 = 1 ,
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in the case h12 �= 0. In other words, if for p ∈ M we have h12(p) �= 0, then K(p) = 0. Also,
if h12(p) = 0, then

(h22 − h11)(1 − h11h22) = 0

at p. This means that either h11(p) = h22(p), so that p is umbilical, or h11(p)h22(p) = 1,
so that K(p) = 0.

From Lemma 1.1, if M is flat, it can be oriented by its mean curvature vector and the local
correspondence G− → G+ is well defined. From the discussion above this correspondence
is weakly conformal.

Now suppose that M is not flat and that there is an orientation of M such that the local
correspondence G− → G+ is weakly conformal. Consider the open set U = {p ∈ M |
K(p) �= 0}. Let V be a connected component of U . Then V is part of a totally umbilical
surface and for such a surface K is constant. Hence, by the continuity of K, V̄ ⊂ U and
therefore U is also closed. Since M is connected, U = M and M is totally umbilical. �

2. Flat surfaces as normal surfaces to a congruence of geodesics. 2.1. A Weier-
strass representation from Bianchi’s characterization. Bianchi’s result (Proposition 1.2) sug-
gests a method for constructing surfaces from a pair of meromorphic maps G− and G+ de-
fined on a Riemann surface F . We regard them as holomorphic maps F → S2, and look
at the unit sphere S2 as the ideal boundary ∂∞H3. For each p ∈ F , if we have G−(p) �=
G+(p), then the pair of points G−(p) and G+(p) define a unique geodesic of H3, i.e., the
one having these points as limit points. Now note that, if we can find a smooth surface M ,
normal at each of its points to a geodesic defined by G− and G+, and we suppose that locally
the correspondence G− → G+ is well defined, then, by Bianchi’s proposition, M will be a
flat surface.

One may compare this approach with that in [4] and [5], where flat surfaces are viewed
as projections of holomorphic Legendrian curves in SL(2, C), for a canonical complex con-
tact structure. These are easily seen to be equivalent (see Remark 2.3). For this reason we
will content ourselves with a local version of the Weierstrass representation, since a global
formulation is already available in [4] or [5].

Our reason to present this derivation of a Weierstrass representation is twofold. In the first
place we believe that an elementary geometrical proof, stemming from the ideas of a brilliant
geometer such as Bianchi, is always welcome. Furthermore, using this classical approach, we
are led to consider a harmonic function, admitting a simple geometrical interpretation. This
harmonic function will be used in the proof of Theorem 2.6.

REMARK 2.1. It turns out that, in general, given the meromorphic maps G− and G+,
there exists no smooth flat surface normal to the corresponding geodesics. In this context it is
then natural to consider flat surfaces with singularities.

To simplify our local calculations, and to visualize some examples, we will now use the
upper half-space model. One then has the following.
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THEOREM 2.2. Let Ω ⊂ C be simply connected, τ ∈ R and f : Ω → C be holomor-
phic such that f (z) �= z. Then the map

X(z) = c(z) + R(z)(cos θ(z)v1(z) + sin θ(z)v3) ,(13)

where

c(z) = f (z) + z

2
, R(z) = |f (z) − z|

2
, v1(z) = f (z) − z

|f (z) − z| ,

cos θ(z) = 1 − (exp 2 Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|2

1 + (exp 2 Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|2 ,

sin θ(z) = 2(exp Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|

1 + (exp 2 Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|2 ,

(14)

and v3 is a constant vector orthogonal to the z-plane (∂∞H3\{∞}), yields a parametrized flat
surface in the upper half-space model on a subset Λ ⊂ Ω for which X(z) is an immersion.

If Ω is not simply connected, (13) defines a parametrized flat surface in the upper half-
space model if the integral ∫

γ

dz

f (z) − z
∈ iR ,

where γ is any closed loop in Λ.

PROOF. Using the upper half-space model, identify C with ∂∞H3 \ {∞}, and consider
the two-parameter family of geodesics defined by f , that is, those having z and f (z) as limit
points. We may parametrize this family of geodesics as

X(z, θ) = c(z) + R(z)(cos θv1(z) + sin θv3) ,(15)

where c(z) = (f (z) + z)/2 is the center of the Euclidean circle orthogonal to ∂∞H3 \ {∞};
R(z) = |f (z) − z|/2 is the Euclidean radius of the same circle. Also, v1(z) = (f (z) −
z)/|f (z) − z| and v3 are unit vectors, in the standard Euclidean metric, defining the plane of
the circle. The vector v3 is constant and orthogonal to the plane ∂∞H3 \ {∞}; see Figure 1.

According to Bianchi’s characterization of flat surfaces (Proposition 1.2), if we can de-
termine a surface M orthogonal to the family of geodesics, it will be flat at smooth points. In
terms of our parametrization, one has to determine a function θ(z) so that the parametrized

FIGURE 1. Parametrized congruence of geodesics.
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surface

X(z) = X(z, θ(z))

is orthogonal to the family of geodesics. A necessary condition is

〈dX,−sin θv1(z) + cos θv3〉e = 0 ,(16)

where 〈· , ·〉e is the standard Euclidean inner product. From (15), we have

dX = dc + dR(cos θv1 + sin θv3) + R(dθ(−sin θv1 + cos θv3) + cos θ dv1) .

We may rewrite (16) as

R dθ = sin θ〈dc, v1〉e .(17)

So, in our coordinates z = (x, y), (17) is written as a differential system for θ :

θx = sin θ

R
〈cx, v1〉e ,

θy = sin θ

R
〈cy, v1〉e .

(18)

Using the expressions for R and c in (14) and writing f (z) = u(z) + iv(z), we obtain

cx =
(

ux + 1

2
,
vx

2

)
,

cy =
(

uy

2
,
vy + 1

2

)
,

v1

R
= 2

(u − x, v − y)

(u − x)2 + (v − y)2 .

If we define α = u − x and β = v − y, the system (18) becomes

θx

sin θ
= α(αx + 2) + β(βx)

α2 + β2 = 1

2
ln(α2 + β2)x + 2α

α2 + β2 ,

θy

sin θ
= α(αy) + β(βy + 2)

α2 + β2
= 1

2
ln(α2 + β2)y + 2β

α2 + β2
.

(19)

The general solution θ(z) of (19) is then easily seen to satisfy

ln

(
1 − cos θ(z)

sin θ(z)

)
+ τ = ln |f (z) − z| + Re

(∫
1

f (z) − z
dz

)
,(20)

where τ is a real constant, assuming that Re(
∫
(f (z) − z)−1 dz) is well defined.

Solving (20) for cos θ(z), we have

cos θ(z) = 1 − (exp 2 Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|2

1 + (exp 2 Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|2 ,

and therefore

sin θ(z) = 2(exp Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|

1 + (exp 2 Re(
∫
(f (z) − z)−1 dz − τ ))|f (z) − z|2 . �
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REMARK 2.3. If one considers the Weierstrass representation in [5, Theorem 3.3],
rewrites it in terms of the upper half-space model (instead of the Hermitian model used there)
and sets G = z and G∗ = f (z), then one obtains our Theorem 2.2. I thank Masaaki Umehara
for this observation.

REMARK 2.4. If we start with f meromorphic instead of holomorphic, we also get a
surface for which, at the poles of f , the Euclidean tangent plane, in the chosen upper half-
space model, becomes horizontal. It is also clear that points such that f (z) = z correspond to
ends of the surface, and points such that f ′(z) = 0 correspond to umbilical points.

REMARK 2.5. The Weierstrass representation for flat surfaces derived in [4] was in-
spired by the one known for CMC-1 surfaces in H3. It is worth mentioning that Bianchi
considered a Weierstrass representation for CMC-1 surfaces, although he did not write it ex-
plicitly; see [2] or [7].

2.2. Examples. (1) The complete examples. Families of horospheres are easily
seen to correspond to f (z) = c ∈ C. A family of equidistant surfaces to a geodesic cor-
responds to f (z) = −z.

(2) A periodic example. Let f (z) = z + 2. The surface corresponding to such an
f has a horocycle, a non-compact curve, as a singular curve. Furthermore, this surface is
invariant under a parabolic translation and curiously the profile curve, in the upper half-space
model, is a tractrix. In Figure 2 we show the profile curve and some of the geodesics defined
by f .

More elaborate examples are constructed in [6].
2.3. The constant-angle theorem. Let M be a flat surface transversal to a foliation

of H3 by horospheres. Without loss of generality, we may describe the above foliation as
horizontal planes in the upper half-space model. If M is transversal to the foliation, then for
each p ∈ M there is a unique q ∈ H3 belonging to the geodesic orthogonal to M at p and to
a geodesic orthogonal to the foliation; see Figure 3.

Let d : M → R be the function defined by d(p) = distH3(p, q). We now prove the
following.

THEOREM 2.6. Let M be a flat compact connected smooth surface with boundary,
∂M �= ∅, transversal to a foliation of H3 by horospheres. If, along ∂M , M makes a constant

FIGURE 2. An example with a horocycle as a singularity.
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FIGURE 3. The function d.

angle with the leaves of the foliation, then M is part of an equidistant surface to a geodesic
orthogonal to the foliation.

PROOF. Consider the conformal structure on M induced by the immersion G−, namely,
the pullback of the conformal structure on ∂∞H3 identified with S2. Since M is transversal
to the foliation, we may use the local representation of Theorem 2.2. Then the function d

defined above is a harmonic function. Indeed, in terms of coordinates in the upper half-space
model d is given by

d = ln

(
1 − cos θ

sin θ

)
,

which is seen to be harmonic by (20). Note that the angle θ is the angle of the surface with
the foliation. Thus, if θ is constant on ∂M , then d is also constant on ∂M . However, since d

is harmonic on M (for the conformal structure just considered), d is constant on M , so θ is
constant on M .

Finally, since θ is constant, the system (18) allows one to conclude that c(z) is also
constant. Thus M is part of an equidistant surface to a geodesic orthogonal to the foliation. �

REMARK 2.7. Note that the transversality hypothesis is necessary, otherwise a piece
of a horosphere, shown in Figure 4, would be a counter-example.

3. Caustics of flat surfaces. As a motivation, consider the family of parallel surfaces
to the surface in Figure 2. Note that each of them has a horocycle as a singularity, and as we
consider all such horocycles, corresponding to all parallel surfaces, we get a horosphere. So,
the surface generated by the singularities (horocycles in this example) is also a flat surface.
This is not a mere coincidence, as we now show.

Let M be a flat surface without umbilics, and let κ1 > 1 and κ2 < 1 denote the principal
curvatures of M . Consider a local adapted frame as in Section 2. We shall specialize further
and admit that e1 and e2 are principal directions. In this way we have ω3

1 = κ1ω
1 and ω3

2 =
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FIGURE 4. A piece of a horosphere not transversal to the foliation.

κ2ω
2. Let ρ1 and ρ2 be the radii of curvature associated with the directions e1 and e2, which

are related to κi , i = 1, 2 by κ1 = coth ρ1, κ2 = tanh ρ1.
We define the map

ε0 = cosh ρ1e0 + sinh ρ1e3(21)

and call it the caustic MC associated with M . It is a simple matter to check that parallel
surfaces have the same caustics, so that we may speak of the caustic MC associated with a
family of parallel surfaces {Mt }.

REMARK 3.1. There are at least three different ways to look at a caustic of a sur-
face: as the loci of the centers of curvature of the surface, as the envelope of geodesics,
or a system of rays, and as the loci of the singularities of the parallel surfaces to the given
one [1]. Caustics are a classical subject in differential geometry, which are also called evo-
lutes, focal surfaces or surfaces of centers.

REMARK 3.2. In the above considerations about caustics of flat surfaces we have
omitted the umbilical points. As can be checked without difficulty, umbilical points corre-
spond to the critical points of f , as appearing in Theorem 2.2, and are isolated. Such points
correspond to ends of the caustic surface. Loosely speaking, we may say that the focal point
associated with an umbilical point ‘is at infinity’. Thus, there is a link between the umbilical
set of the surface and the topology of the caustic surface.

As mentioned in the Introduction, the flat surfaces constructed via the Weierstrass rep-
resentation, in general, have singularities. These are the singularities we shall be concerned
with.

Let M be a flat surface constructed via the Weierstass representation. We will consider
curves γ ⊂ M , that are smooth space curves in H3 and are singular curves of M (i.e., M is
not an immersion along γ ). We call such curves smooth singular curves.

We will also consider the limiting position of the planes tangent to M as one approaches
a smooth singular curve γ . Although M is not an immersion along γ , there is a limiting
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position for the tangent planes. Note that in principle we could have isolated points (cusps)
for which there is no limiting position for the tangent plane, so we consider γ to be a smooth
space curve to exclude this possibility. So, for p ∈ M and p ∈ γ , we will write TpM , meaning
the limiting position of the tangent planes to M as one approaches p.

THEOREM 3.3. Let {Mt } be a family of parallel flat surfaces, possibly with singulari-
ties, and let MC be the caustic associated with this family. Then MC is flat at smooth points.
Furthermore, for some t , let γt be a smooth singular curve common to Mt and MC. If MC is
smooth in a neighborhood of γt , then γt is a geodesic of MC.

PROOF. We shall calculate the Gaussian curvature K̃ of the caustic MC using moving
frames. First of all, we shall find an adapted orthonormal frame to MC. If we differentiate
(21), we get

dε0 = dρ1(sinh ρ1e0 + cosh ρ1e3) + sinh ρ1(κ1 − κ2)ω
2e2 .

So we may take, as an orthonormal basis for the tangent planes of MC, the following vector
fields:

ε1 = sinh ρ1e0 + cosh ρ1e3

and

ε2 = e2 .

If we define ε3 = e1, then the vector fields εi , 0 ≤ i ≤ 3, constitute an orthonormal frame
adapted to MC. We denote by ω̃i and ω̃

j
i the corresponding dual and connection forms. By

definition

ω̃2
1 = 〈dε1, ε2〉 ;

thus,

ω̃2
1 =

〈
dρ1ε0 − ω1

sinh ρ1
e1 + (sinh ρ1 − cosh ρ1κ2)ω

2ε2, ε2

〉

= (sinh ρ1 − cosh ρ1κ2)ω
2 = (sinh ρ1 − cosh ρ1 tanh ρ1)ω

2 = 0 ,

where we have used κ1κ2 = 1 and κ1 = coth ρ1. The above equation shows that if MC is a
smooth surface, then the integral curves of ε1 and ε2 are geodesics of MC and that K̃ = 0,
since

dω̃2
1 = −K̃ω̃1 ∧ ω̃2 .

Now consider a smooth curve γt common to a flat surface Mt and its caustic MC. The tangent
vector γ ′

t to γt belongs to the tangent planes of Mt and MC, so it must be parallel to e2 = ε2.
By what we have discussed above, i.e. ω̃2

1 = 0, it follows that γt , being an integral curve of
ε2, must be a geodesic of MC. �

REMARK 3.4. The integral curves of the vector field ε1 are also geodesics of MC.
However, this is true in general, it has nothing to do with Mt being flat.
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From Theorems 2.2 and 3.3 we obtain a Weierstrass representation for flat surfaces where
no integration is required.

THEOREM 3.5. Let Ω ⊂ C be an open set and f : Ω → C be holomorphic. Then the
map

XC(z) = c(z) + R(z)(cos η(z)v1(z) + sin η(z)v3) ,

where

c(z) = f (z) + z

2
, R(z) = |f (z) − z|

2
, v1(z) = f (z) − z

|f (z) − z| ,(22)

cos η(z) = 1 − |f ′(z)|1/2

1 + |f ′(z)|1/2
,(23)

sin η(z) = 2|f ′(z)|1/4

1 + |f ′(z)|1/2 ,(24)

and v3 is a constant vector orthogonal to the z-plane (∂∞H 3 \ {∞}), is a parametrized flat
surface in the upper half-space model, on a subset Λ ⊂ Ω for which XC(z) is an immersion.

PROOF. We shall prove that XC(z) is just the caustic associated with the map X(z)

defined in Theorem 2.2. By Theorem 3.3, XC is flat for points of Ω where it defines an
immersion.

Indeed, it is a standard fact that the envelope for a map as in (15) is the set of points
satisfying

∆ = det(Xx,Xy,Xθ ) = 0 ,

where for instance Xx = ∂X/∂x. If we use (14) and (15), differentiate and carry out some
obvious manipulations, we can see that ∆ = 0 if and only if

det


αx(1 + cos θ) + 2 βx(1 + cos θ) (ααx + ββx) sin θ

−βx(1 + cos θ) αx(1 + cos θ) + 2 (−αβx − βαx) sin θ

−α sin θ −β sin θ cos θ(α2 + β2)


 = 0 ,

where α(z) = Re(f (z) − z) and β(z) = Im(f (z) − z). After some manipulation, and using
cos2 θ = 1 − sin2 θ , the above equation is equivalent to the following quadratic polynomial
for cos θ :

(|f ′(z)| − 1) cos2 θ + 2(|f ′(z)| + 1) cos θ + |f ′(z)| − 1 = 0 .

We now solve the above equation for cos θ . If we denote the root having absolute value smaller
than or equal to one by cos η(z), we have

cos η(z) = 1 − |f ′(z)|1/2

1 + |f ′(z)|1/2 ,

and we have sin η(z) = √
1 − cos2 η(z) given by

sin η(z) = 2|f ′(z)|1/4

1 + |f ′(z)|1/2 . �
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The consideration of the caustic associated with a flat surface motivates the study of the
function ρ1, the radius of curvature associated with the principal curvature κ1 > 1. We have
the following.

THEOREM 3.6. Let M be a flat surface in H3 without umbilical points and let ρ1 be
the radius of curvature associated with the principal curvature κ1 > 1. Then, with respect
to the conformal structure on M induced by G− : M → S2, ρ1 : M → R is a harmonic
function.

PROOF. Without loss of generality we may assume that, for p ∈ M , M is locally
transversal to a foliation by horospheres that can be taken to be horizontal planes in the upper
half-space. By elementary geometry (see Figure 5), we have

ρ1(p) = d(p) − h(p) ,

where d(p) is the function defined in Subsection 2.3 and h(p) is the corresponding distance
from the point of MC (the caustic of M) to a geodesic orthogonal to the foliation. We know
already that d is harmonic (see the proof of Theorem 2.6); it suffices to show that h is also
harmonic. In local coordinates, in the z-plane, this function is given by

h(z) = ln
1 − cos η(z)

sin η(z)
,

where sin η(z) and cos η(z) are given by (23) and (24). Thus,

h(z) = ln
1 − (1 − |f ′(z)|1/2)/(1 + |f ′(z)|1/2)

2|f ′(z)|1/4/(1 + |f ′(z)|1/2)
= 1

4
ln |f ′(z)| .

Since we assume that M is umbilic free, f ′(z) is not zero, and therefore h is harmonic. �

COROLLARY 3.7. Let M be a smooth compact flat surface with boundary in H3,
∂M �= ∅, without umbilical points and let ρ1 be the radius of curvature associated with
the principal curvature κ1 > 1. Then the following hold.

(i) If ρ1 is constant along ∂M , M is part of an equidistant surface to a geodesic.

FIGURE 5. Radius of curvature in terms of h(z) and d(z).
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(ii) If ρ1 has an interior maximum (or minimum), then M is part of an equidistant
surface to a geodesic.

PROOF. By the maximum principle for harmonic functions, ρ1 must be constant. It
is then a standard fact [9] that in this case the surface must be an equidistant surface to a
geodesic. �

Our last result in this section shows that, in a sense to be made precise below, a smooth
singular curve of a flat surface determines the surface. We will say that ME is a flat extension
of a flat surface M if ME is flat and M ⊂ ME.

THEOREM 3.8. Let M ⊂ H3 and M̂ ⊂ H3 be flat surfaces and γ a smooth singular
curve of M and M̂ . Then there exists ME, a flat extension of M and M̂ . In particular, M and
M̂ coincide in a neighborhood of γ in ME.

PROOF. First of all, we show that, without loss of generality, γ can be considered as
a curve with non-vanishing curvature (as a space curve in H3) and such that MC is smooth
along a neighborhood of γ .

In fact, by Theorem 3.3, γ is a geodesic of the caustic MC of M . Since γ ⊂ MC, and
MC is flat by Theorem 3.3, γ cannot be a geodesic of H3. The normal curvature of MC in the
direction of γ would be zero, a contradiction.

We shall now show that MC cannot be singular along an open set of γ . Indeed, using the
frames and notation introduced in this section, and writing

dρ1 = ρ1,1ω
1 + ρ1,2ω

2 ,(25)

MC will be singular for points where ρ1,1 = 0, for

ω̃1 ∧ ω̃2 = ρ1,1

cosh ρ1
ω1 ∧ ω2 .

This means that ∇ρ1, if it is not zero, is tangent to e2 for points of M corresponding to singular
points of MC. On the other hand, ρ1 = 0 along a singular curve such as γ , and γ is an integral
curve of the vector field ε2 = e2, since it is common to both M and MC. However, this implies
that ∇ρ1 is orthogonal to e2 along γ . In conclusion, if MC were singular along an open set
of γ , we would have ∇ρ1 = 0 on this open set. Theorem 3.6 shows that the points for which
∇ρ1 = 0 are isolated, so we get a contradiction.

Thus, possibly restricting ourselves to a piece of γ , we may assume that κγ , the curvature
vector of γ , as a space curve in H3, does not vanish and that MC is smooth along γ .

Let p ∈ M, and p ∈ γ . Then the vector κγ (p) is orthogonal to TpMC (γ is a geodesic
on MC). By looking at the relations between adapted frames to M and MC (in the proof of
Theorem 3.3), one sees that κγ (p) is orthogonal to TpM . The same reasoning applies to M̂

and M̂C.
From the above, we may conclude that M and M̂ have the same tangent planes (in the

generalized sense explained in this section) along γ . However, this means that the local holo-
morphic correspondences (as in Theorem 2.2), say f (z) for M and f̂ (z) for M̂ , coincide
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along a curve in the z-plane. Being holomorphic, the functions f (z) and f̂ (z) coincide in a
neighborhood of this curve. So M and M̂ coincide in a neighborhood of γ .

By analytic continuation, we may construct the extension ME. �

4. Schwarz’s reflection principle for flat surfaces. A well-known technique for un-
derstanding and constructing minimal surfaces in R3 with symmetries can also be used for flat
surfaces in H3. We have the following.

THEOREM 4.1. Let M be a flat surface and γ ⊂ P be a planar geodesic of M , where
P is a hyperbolic plane containing γ . Then M can be extended to a flat surface M̂ so that P

is a plane of symmetry of M̂.

PROOF. Without loss of generality, we may describe the plane P as a vertical plane in
the upper half-space model in such a way that the ideal boundary of P, with a point missing,
coincides with the real axis.

Since γ is a geodesic of M , the normal vector to M along γ lies, in this model, in
the plane P . Thus, the local correspondence z �→ f (z) is real along the real axis, and by
Schwarz’s reflection principle we have f (z̄) = f (z) in a neighborhood V of the real axis.
So, the congruence of geodesics associated with f (z) is locally symmetric with respect to the
plane P .

Let M∗ and M� be the parts of M on the two closed half-spaces defined by P , corre-
sponding to the points of V . Then the reflection with respect to P of M∗, denoted by RP (M∗),
must be a surface parallel to M�. But M∗ and M� coincide along P , so that RP (M∗) = M�.
By analytic continuation, M can be extended so that it is symmetric with respect to P . �

REFERENCES

[ 1 ] V. I. ARNOLD, Singularities of caustics and wave fronts, Math. Appl. (Sov. Ser.), vol. 62, Kluwer Academic,
Dordrecht, 1990.

[ 2 ] L. BIANCHI, Lezioni di Geometria Differenziale, third edition, N. Zanichelli Editore, Bologna, 1927.
[ 3 ] R. BRYANT, Surfaces of mean curvature one in hyperbolic space, in Théorie des Variétés Minimales et Appli-

cations (Palaiseau, 1983–1984), Astérisque 154–155 (1987), 321–347.
[ 4 ] J. A. GÁLVEZ, A. MARTÍNEZ AND F. MILÁN, Flat surfaces in the hyperbolic 3-space, Math. Ann. 316 (2000),

419–435.
[ 5 ] M. KOKUBU, M. UMEHARA AND K. YAMADA, An elementary proof of Small’s formula for null curves in

PSL(2, C) and an analogue for Legendrian curves in PSL(2, C), Osaka J. Math. 40 (2003), 697–715.
[ 6 ] M. KOKUBU, M. UMEHARA AND K. YAMADA, Flat fronts in hyperbolic 3-space, Pacific J. Math. 216 (2004),

149–175.
[ 7 ] L. L. DE LIMA AND P. ROITMAN, Constant mean curvature one surfaces in hyperbolic 3-space using the

Bianchi-Calò method, An. Acad. Brasil. Ciênc. 74 (2002), 19–24.
[ 8 ] S. SASAKI, On complete flat surfaces in hyperbolic 3-space, Kôdai Math. Sem. Rep. 25 (1973),

449–457.
[ 9 ] M. SPIVAK, A comprehensive introduction to differential geometry vol. 3, third edition, Publish or Perish,

Wilmington, DE, 1999.
[10] K. TENENBLAT, Transformations of manifolds and applications to differential equations, Pitman Monogr.



FLAT SURFACES IN HYPERBOLIC SPACE 37

Surv. Pure Appl. Math. vol. 93, Longman, Harlow, 1998.
[11] J. A. VOLKOV AND S. M. VLADIMIROVA, Isometric immersions of the Euclidean plane in Lobačevskı̌ space,
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