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Abstract. We present a self-contained combinatorial approach to Fujita’s conjectures
in the toric case. Our main new result is a generalization of Fujita’s very ampleness conjecture
for toric varieties with arbitrary singularities. In an appendix, we use similar methods to give
a new proof of an analogous toric generalization of Fujita’s freeness conjecture due to Fujino.

1. Introduction. Given an ample divisorD and any other Cartier divisorD′ on an
algebraic variety, we can chooset sufficiently large so thattD + D′ is basepoint free or very
ample. In either case, it is not easy to say how large we must chooset in general. However,
for the case whereD′ is in the canonical classKX, Fujita made the following conjectures.

FUJITA’ S CONJECTURES. Let X be an n-dimensional projective algebraic variety,
smooth or with mild singularities, D an ample divisor on X.

(i) For t ≥ n + 1, tD + KX is basepoint free.
(ii) For t ≥ n + 2, tD + KX is very ample.

The case whereX is Pn andD is a hyperplane shows that Fujita’s conjectured bounds
are best possible.

For smooth varieties, the corresponding statements with “basepoint free” and “very am-
ple” replaced by “nef” and “ample”, respectively, are consequences of Mori’s Cone Theorem
[Fuj]. For divisors on smoothtoric varieties, nefness and ampleness are equivalent to freeness
and very ampleness, respectively, so Fujita’s conjectures follow immediately for smooth toric
varieties. One can also deduce Fujita’s conjectures for smooth toric varieties by general (non-
toric) cohomological arguments of Ein and Lazarsfeld in characteristic zero [EL], and Smith
in positive characteristic [Sm1, Sm2], again using the fact that ample divisors on smooth toric
varieties are very ample.

For toric varieties with arbitrary singularities, a strong generalization of Fujita’s freeness
conjecture was proved by Fujino [Fu]. We follow the usual toric convention fixingKX =
− ∑

Di, the sum of theT -invariant prime divisors each with coefficient−1, as a convenient
representative of the canonical class.

FUJINO’ S THEOREM. Let X be a projective n-dimensional toric variety not isomor-
phic to Pn. Let D and D′ be Q-Cartier divisors such that 0 ≥ D′ ≥ KX, D + D′ is Cartier,
and D · C ≥ n for all T -curves C. Then D + D′ is basepoint free.
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Fujita’s freeness conjecture for toric varieties is the special case of Fujino’s Theorem
whenX is Gorenstein,D′ = KX, andD = tL for some ample Cartier divisorL and some
integert ≥ n+1. Fujino’s Theorem shows that, for toric varieties, Fujita’s conjectured bound
can be improved by excluding the extremal caseX ∼= Pn.

Of course, the case ofPn can be analyzed separately. The canonical divisor onPn is
linearly equivalent to(−n − 1)H , soD′ ∼ sH for some 0≥ s ≥ (−n − 1). Any Q-Cartier
divisorD on Pn is linearly equivalent totH for somet ∈ Q. ThenD + D′ is Cartier exactly
whent + s is an integer, and basepoint free exactly whent + s is a nonnegative integer.

The main purpose of this paper is to prove an analogous generalization of Fujita’s very
ampleness conjecture for toric varieties with arbitrary singularities.

THEOREM 1. Let X be a projective n-dimensional toric variety not isomorphic to Pn.
Let D and D′ be Q-Cartier divisors such that 0 ≥ D′ ≥ KX, D + D′ is Cartier, and
D · C ≥ n + 1 for all T -curves C. Then D + D′ is very ample.

The statement of Fujino’s Theorem can be strengthened by removing the assumption that
D + D′ is Cartier. A Cartier divisor on a toric variety is basepoint free if and only if it is nef,
i.e., if and only ifD intersects every curve nonnegatively [La, Proposition 1.5]. Without the
hypothesis thatD + D′ is Cartier, the sharper statement of Fujino’s Theorem, which one may
deduce from [Fu, Theorem 0.1], is then:

FUJINO’ S THEOREM+. Let X be a projective n-dimensional toric variety not isomor-
phic to Pn. Let D and D′ be Q-Cartier divisors such that 0 ≥ D′ ≥ KX and D · C ≥ n for
all T -curves C. Then D + D′ is nef.

Similarly, the statement of Theorem 1 can be strengthened by using a toric characteriza-
tion of very ampleness to remove the hypothesis thatD + D′ is Cartier. Since every divisor
on a toric variety is linearly equivalent to aT -invariant divisor, we may assumeD andD′ are
Q-linear combinations ofT -invariant divisors. To state the stronger theorem, we need some
notation from toric geometry.

Let D = ∑
diDi be aT -Q-Cartier divisor on a complete toric varietyX. Let M the

character lattice ofT , and letMQ = M ⊗ Q. For each maximal coneσ in the fan defining
X, we have a pointuσ ∈ MQ determined by the conditions〈uσ , vi〉 = −di for each of the
primitive generatorsvi of the rays ofσ . WhenD andD′ denoteT -Q-Cartier divisors, we will
write uσ andu′

σ for the points ofMQ associated toD andD′, respectively. The association
D � uσ is linear, i.e.,tD � tuσ andD+D′ � uσ +u′

σ . A T -Q-Cartier divisorD is Cartier
if and only if uσ ∈ M for all maximal conesσ . Also associated toD is a polytopePD ⊂ MQ

cut out by the inequalities〈u, vi〉 ≥ −di for all of the primitive generatorsvi of the rays of
the fan. WhenD is T -Q-Cartier and nef, the{uσ } are the vertices ofPD . If we translatePD

so that the vertexuσ is at the origin, then all ofPD sits inside the dual coneσ∨. Write Pσ
D for

this translation, i.e.,Pσ
D := PD − uσ . In caseD is Cartier, thenD is very ample if and only

if Pσ
D ∩ M generates the semigroupσ∨ ∩ M for all maximal conesσ . Without the hypothesis

thatD + D′ is Cartier, the stronger version of Theorem 1 we will prove is then:
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THEOREM 2. Let X be a projective n-dimensional toric variety not isomorphic to Pn.
Let D and D′ be T -Q-Cartier divisors such that 0 ≥ D′ ≥ KX and D · C ≥ n + 1 for all
T -curves C. Then Pσ

D+D′ ∩ M generates σ∨ ∩ M for all maximal cones σ .

Theorem 1 is the special case of Theorem 2 whenD + D′ is Cartier.
Our approach starts from an observation made by Laterveer in [La]: ifD is ample, then

the lattice length of the edge ofPD corresponding to aT -curveC is preciselyD ·C. This fact
can be seen as a consequence of Riemann-Roch for toric varieties [Ful, p. 112]. AddingD′
corresponds to moving the faces ofPD inward at most a unit distance with respect to the dual
lattice. When all of the edges ofPD have lattice length at leastn + 1, we show thatPσ

D+D′
contains an explicit generating set forσ∨ ∩ M for all maximal conesσ . The computations
are straightforward in the simplicial case, as can be seen in the example at the end of the
introduction.

In the proof of Fujino’s Theorem, there is a simple reduction to the simplicial case (see
[La, Lemma 2.4] or [Fu, 1.12, Step 2]). That reduction works via a partial projective resolution
of singularities corresponding to a regular triangulation of the fan definingX. This type of
reduction seems not to work for very ampleness. Instead, for each nonsimplicial maximal
coneσ , we make a canonical subdivision of the dual coneσ∨.

The earliest results on Fujita’s freeness conjecture for singular toric varieties of which
the author is aware are due to Laterveer. In [La], Laterveer proved Fujino’s Theorem forQ-
Gorenstein toric varieties whenD′ = KX using toric Mori theory, as developed in [Re]. Our
statement of Theorem 1, like the statement of Fujino’s Theorem, is influenced by Musta¸tǎ’s
formulations in [Mu]. In particular, Musta¸tǎ stated and proved Fujino’s Theorem and Theorem
1 for smooth toric varieties whenD andD′ are Cartier as consequences of a characteristic-
free vanishing theorem for toric varieties. For proofs of Fujino’s Theorem that do not use
vanishing theorems or toric Mori theory, see also [Lin] or the Appendix.

The only previous result on Fujita’s very ampleness conjecture for singular toric vari-
eties of which the author is aware is due to Lin,∗ who proved the conjecture for simplicial
Gorenstein toric varieties in dimension≤ 6 [Lin]. In [La], Laterveer also claimed to prove
a generalization of Fujita’s very ampleness conjecture for arbitraryQ-Gorenstein toric vari-
eties. As noted by Lin, there is an error in the proof of this claim. In particular, it is not true
in general thatPtD+KX containsP(t−1)D. The case whereX is Pn andD is a hyperplane is
a counterexample. Nevertheless, Laterveer’s approach to Fujita’s very ampleness conjecture
for singular toric varieties contains fruitful insights, in particular, the realization thatPn is
the only toric extremal case and the characterization of the intersection numbersD · C, for
T -curvesC, as the lattice lengths of the edges ofPD . The results we prove here are strong
enough to imply all of the very ampleness results claimed in [La].

∗ Another effective very ampleness result for singular toric varieties, due to Ewald and Wessels [EW], may be
stated as follows: letX be ann-dimensional projective toric variety andD a T -Q-Cartier divisor onX such that
D · C ≥ n − 1 for all T -curvesC. ThenPσ

D
∩ M generatesσ∨ ∩ M for all maximal conesσ . In particular, ifD is

Cartier, thenD is very ample.
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EXAMPLE. We illustrate the essential techniques of this paper in a concrete simplicial
example. Letu1, . . . , un be linearly independent primitive vectors inM. LetP be the simplex
with vertices{0, u1, . . . , un}. Associated toP , there is a projective toric varietyXP with an
ample divisorD such thatP = PD [Ful, Section 1.5]. The vertex 0 ofP corresponds to a
maximal coneσ of the fan definingXP whose dual coneσ∨ is spanned by{u1, . . . , un}. Let
D1, . . . ,Dn be the divisors corresponding to the rays ofσ , and letD′ = −D1 − · · · − Dn.
We will show that, fort ≥ n + 1, Pσ

tD+D′ ∩ M generatesσ∨ ∩ M.
Every point inM can be written uniquely as an integer linear combination of the{ui}

plus a fractional part. So the semigroupσ∨ ∩M is generated by{0, u1, . . . , un} together with
{(a1u1 + · · · + anun) ∈ M | 0 ≤ ai < 1}. For t ≥ n + 1, we will show thatPσ

tD+D′ contains
this generating set.

Define a linear functionλ onMQ by

λ(a1u1 + · · · + anun) = a1 + · · · + an .

Note thatPtD = {u ∈ σ∨|λ(u) ≤ t}. In other words, if{vi} are the primitive generators of
the rays ofσ , thenPtD is cut out by the conditions〈u, vi 〉 ≥ 0 and the conditionλ(u) ≤ t.
Similarly,PtD+D′ = {u′

σ +u | u ∈ σ∨, λ(u′
σ +u) ≤ t}, i.e.,PtD+D′ is cut out by the conditions

〈u, vi〉 ≥ 〈u′
σ , vi〉 = 1 and the conditionλ(u) ≤ t. It follows that any lattice point inPtD that

is in the interior ofσ∨ is contained inPtD+D′ . Indeed, ifu is in PtD, thenλ(u) ≤ t, and ifu
is a lattice point in the interior ofσ∨, then〈u, vi 〉 is a positive integer.

Supposet ≥ n + 1. Thenu1 + · · · + un is a lattice point inPtD that is in the interior of
σ∨, sou1 + · · · + un is contained inPtD+D′ . Note thatu′

σ is the point ofPtD+D′ for whichλ

achieves its minimum. In particular,λ(u′
σ ) ≤ λ(u1 + · · · + un) = n.

For eachui , we haveλ(u′
σ +ui) = λ(u′

σ )+1 ≤ n+1 ≤ t. Thereforeu′
σ +ui ∈ PtD+D′ ,

i.e.,ui ∈ Pσ
tD+D′ . Given a lattice pointp of the formp = a1u1+· · ·+anun with 0 ≤ ai < 1,

we have another lattice pointp′ = (1− a1)u1 + · · · + (1− an)un in PtD that is in the interior
of σ∨. Sop′ is contained inPtD+D′ , and therefore

λ(u′
σ ) ≤ λ(p′) = n − λ(p) .

Soλ(u′
σ + p) ≤ n < t, and hencep ∈ Pσ

tD+D′ , as required.

I wish to thank M. Hering, P. Horja, R. Lazarsfeld, and M. Musta¸tǎ for helpful conversa-
tions related to this work. I am especially grateful to W. Fulton for his encouragement on this
project and for his comments and suggestions on earlier drafts of this paper.

2. Preliminaries. As a first step to proving Theorem 2, we have:

LEMMA 1. Let X,D, and D′ satisfy the hypotheses of Theorem 2. Let σ be a maximal
cone, and let {u1, . . . , us} be the primitive generators of the rays of σ∨. Then Pσ

D+D′ contains
{0, u1, . . . , us}.
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PROOF. By Fujino’s Theorem+, (n/(n + 1))D + D′ is nef. Therefore, for anyT -curve
C,

(D + D′) · C = 1

n + 1
(D · C) +

(
n

n + 1
D + D′

)
· C ≥ 1 .

By Laterveer’s observation, this means that every edge ofPD+D′ has lattice length at least
1. Translating the vertexuσ to the origin, it follows thatPσ

D+D′ contains 0 and the primitive
generators of each of the rays ofσ∨. �

If σ is regular, thens = n and{0, u1, . . . , un} generatesσ∨ ∩ M, so the conclusion of
Theorem 2, i.e., the fact thatPσ

D+D′ ∩ M generatesσ∨ ∩ M, follows immediately. In general,
if we let ∆ = conv{0, u1, . . . , us}, then Lemma 1 says thatPσ

D+D′ contains∆. If σ is not
regular, then∆ may not contain a generating set forσ∨ ∩ M. The following example, due to
Ewald and Wessels [EW], illustrates this possibility.

EXAMPLE. Let M = Z3; u1 = (1, 0, 0), u2 = (0, 1, 0), andu3 = (1, 1, 2). Let σ∨ be
the cone spanned by{u1, u2, u3}, so∆ = conv{0, u1, u2, u3}. Then∆∩M = {0, u1, u2, u3},
so the semigroup generated by∆ ∩ M only contains lattice points whose third coordinate is
even. In particular, the lattice point(1, 1, 1) = (1/2)(u1 + u2 + u3) is in σ∨, but not in the
semigroup generated by∆ ∩ M.

Although ∆ may not contain a generating set forσ∨ ∩ M, we will show thatPσ
D+D′

contains a dilation of∆ that does contain a generating set. Letm = min{(D+D′) ·V (σ ∩τ )},
whereτ varies over all maximal cones adjacent toσ , so thatm is the minimum of the lattice
lengths of the edges ofPσ

D+D′ incident to the vertex 0. Note thatm∆ is the largest rational
dilation of ∆ contained inPσ

D+D′ . We will show thatm∆ does contain a generating set for
σ∨ ∩ M.

In preparation for proving this, we develop a few preliminaries. First, we generalize
Laterveer’s observation on the lattice lengths of the edges ofPD to the case whereD is not
necessarily ample.

LEMMA 2. Let X be a complete toric variety and D a T -Q-Cartier divisor on X. Let
σ, τ be adjacent maximal cones in the fan defining X, and let u be the primitive generator of
the ray of σ∨ perpendicular to σ ∩ τ . Then

uτ = uσ + (D · V (σ ∩ τ ))u .

PROOF. Sinceuσ anduτ agree onσ ∩ τ , their difference must vanish onσ ∩ τ , i.e.,
uτ − uσ = ku for some rational numberk. By the toric intersection formulas in [Ful, Section
5.1], forvj the primitive generator of any ray ofτ not contained inσ ,

D · V (σ ∩ τ ) = 〈uσ − uτ , vj 〉
−〈u, vj 〉 .

Therefore,

D · V (σ ∩ τ ) = 〈ku, vj 〉
〈u, vj 〉 = k . �
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Now we develop some tools for working with rational cones. Letσ∨ be a strictly convex
n-dimensional rational cone, and letu1, . . . , us be the primitive generators of the rays ofσ∨.
Define a functionλmin onσ∨ by

λmin(u) = min{(a1 + · · · + as) | a1u1 + · · · + asus = u, ai ≥ 0} .

Defineλmax similarly. A few combinatorial properties ofλmin andλmax, all of which are
immediate from the definitions, will be useful in what follows.

First, λmin andλmax are anticonvex and convex, respectively. In other words, for any
u, u′ ∈ σ∨,

λmin(u + u′) ≤ λmin(u) + λmin(u′) ,

and similarlyλmax(u + u′) ≥ λmax(u) + λmax(u′).
Second, suppose the restriction ofD′ = ∑

d ′
iDi to the affine openUσ is minus-effective,

i.e., for each of the primitive generatorsvi of the rays ofσ , d ′
i ≤ 0. Then〈u′

σ , vi〉 = −d ′
i ≥ 0.

Sou′
σ is in the dual coneσ∨. In particular,λmin(u′

σ ) andλmax(u′
σ ) are well-defined.

Finally, with ∆ = conv{0, u1, . . . , us}, note that

m∆ = {u ∈ σ∨ | λmin(u) ≤ m} .

The distinction betweenλmin andλmax is meaningful only in the nonsimplicial case;
whenσ is simplicial, then the primitive generators of the rays ofσ∨ are linearly independent,
so the expressionu = a1u1 + · · · + anun is unique.

In order to show thatm∆ contains a generating set forσ∨ ∩ M, one seeks lower bounds
for m. To get a rough idea of how one might get such bounds, imagine thatPD is very large,
as it will be under the hypotheses of Theorem 2. When we add a small, minus-effective
divisorD′ to D, we getPD+D′ by moving the faces ofPD in a small distance. The main idea
is to control the decrease in the lengths of the edges as the faces move in. After the faces
containinguσ move in a small distance, the new vertexuσ + u′

σ of PD+D′ will be insidePD

and a small distance from the old vertexuσ of PD . We can measure this distance byλmin(u′
σ ).

Suppose thatPD containsuσ + t∆ for some large positivet. Looking out from the new vertex
uσ + u′

σ in the direction of the ray spanned byui , we see thatPD containsuσ + u′
σ + bui

for 0 ≤ b ≤ t − λmin(u′
σ ). Now we want to know what portion of this segment is actually

contained inPD+D′ . This will depend on how far the faces cutting off the other end of the
edge move in. If these faces move in a distancer with respect to the dual lattice, then the
resulting edge ofPD+D′ will have length at leastt − λmin(u′

σ ) − r. The key to giving lower
bounds form will be the following proposition, which makes the essence of this discussion
precise.

PROPOSITION. Let X be a complete toric variety, and σ a maximal cone in the fan
defining X. Let D and D′ be T -Q-Cartier divisors such that D is nef and 0 ≥ D′ ≥ KX. Let
t = min{D · V (σ ∩ τ )} and m = min{(D + D′) · V (σ ∩ τ )}, where τ varies over all maximal
cones adjacent to σ . Suppose t ≥ λmin(u′

σ ). Then

m ≥ t − λmin(u′
σ ) − 1 .
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PROOF. Although we will only use the proposition as stated, we will prove somewhat
more. We replace the global condition 0≥ D′ ≥ KX by the following “local” conditions near
σ :

1. The restriction ofD′ to Uσ is minus-effective, i.e.,d ′
i ≤ 0 for each primitive gener-

atorvi of a ray ofσ .
2. There is a positive rational numberr and, for each maximal coneτ adjacent toσ , a

primitive generatorvj of a ray inτ \ σ such thatd ′
j ≥ −r.

Under these revised hypotheses, we will show thatm ≥ t − λmin(u′
σ ) − r. In the case

where 0≥ D′ ≥ KX, the conditions hold forr = 1, so the proposition as stated will follow.
Let τ be a maximal cone adjacent toσ . Let u be the primitive generator of the ray of

σ∨ perpendicular toσ ∩ τ , and letvj be the primitive generator of a ray inτ \ σ such that
d ′
j ≥ −r. Let c = t − λmin(u′

σ ), and letk = (D + D′) · V (σ ∩ τ ). We aim to showc − k ≤ r.

First, we claim thatuσ + u′
σ + cu is in PD . SinceD is nef,PD containsuσ + t∆, so it

will suffice to showλmin(u′
σ + cu) ≤ t. Now,cu is in σ∨ andλmin(cu) = c, so

λmin(u′
σ + cu) ≤ λmin(u′

σ ) + c = t .

This proves thatuσ + u′
σ + cu is in PD. Therefore, we have

〈uσ + u′
σ + cu, vj 〉 ≥ −dj .(1)

Next, recall thatuσ + u′
σ anduτ + u′

τ are the points ofMQ associated toD + D′ for σ

andτ , respectively. By Lemma 2,

uτ + u′
τ = uσ + u′

σ + ku .

So,

〈uσ + u′
σ + ku, vj 〉 = 〈uτ + u′

τ , vj 〉 = −dj − d ′
j ≤ −dj + r .(2)

Subtracting (2) from (1), we have(c − k)〈u, vj 〉 ≥ −r. Since〈u, vj 〉 is a negative integer, it
follows thatc − k ≤ r. �

REMARK. The conclusion of the proposition is false in general ift < λmin(u′
σ ). Con-

sider, for example, the complete toric surfaceX whose fan is spanned by three rays, the
primitive generators of which satisfyv1 + v2 + 2v3 = 0. (X is isomorphic to the weighted
projective planeP(1, 1, 2).) Let σ be the cone spanned byv2 andv3. TakingT -Q-Cartier
divisorsD = D1 andD′ = KX, one computest = D · D2 = (1/2), λmin(u′

σ ) = 2, and
(D + D′) · D2 = −3, which is strictly less than(1/2) − 2 − 1.

The proposition givesgood lower bounds form, provided we can give good upper bounds
for λmin(u′

σ ). We will get sufficient bounds indirectly by using convexity to boundλmax(u′
σ ).

LEMMA 3. Let D′ be T -Q-Cartier, with 0 ≥ D′ ≥ KX. Then λmax(u′
σ ) ≤ λmax(u)

for any lattice point u in the interior of σ∨.

PROOF. For any lattice pointu in the interior ofσ∨, and for the primitive generatorvj

of any ray ofσ , 〈u, vj 〉 is a positive integer. Now〈u′
σ , vj 〉 = −d ′

j , which, sinceD′ ≥ KX, is
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at most 1. Thereforeu − u′
σ is in σ∨. Sinceλmax is convex and nonnegative onσ∨, it follows

thatλmax(u′
σ ) ≤ λmax(u). �

3. Proof of Theorem 2. Let X,D, andD′ satisfy the hypotheses of Theorem 2, and
let σ be a maximal cone in the fan definingX. Let m = min{(D + D′) · V (σ ∩ τ )}, where
τ varies over all maximal cones adjacent toσ . Let {u1, . . . , us} be the primitive generators
of the rays ofσ∨, and let∆ = conv{0, u1, . . . , us}. To prove Theorem 2, it will suffice to
show thatm∆ contains a generating set forσ∨ ∩ M. To prove this, we will give a canonical
subdivision ofσ∨ and show that, for each maximal coneγ of the subdivision,γ ∩ m∆

contains a generating set forγ ∩ M.
We claim thatλmax is piecewise-linear and therefore defines a canonical subdivision of

σ∨: the subdivision whose maximal cones are the maximal subcones ofσ∨ on whichλmax is
linear. This subdivision can also be realized by looking atQ = conv{u1, . . . , us} and taking
the cones over the “lower faces” ofQ, i.e., the faces ofQ visible from the vertex 0 ofσ∨.
Indeed, for anyt > 0, tQ is the set ofu in σ∨ that can be writtenu = a1u1 + · · · + asus

with ai ≥ 0 anda1 + · · · + as = t. Now the points in the lower faces ofQ are precisely those
points that are not contained intQ for anyt > 1. So the restriction ofλmax to the lower faces
of Q is identically 1. Sinceλmax(cu) = cλmax(u) for anyc ≥ 0, it follows thatλmax is linear
precisely on the cones over the lower faces ofQ.

Letγ be the cone over a maximal lower face ofQ, and letγ (1) ⊂ {u1, . . . , us} denote the
set of primitive generators of the rays ofγ . We must show thatγ ∩ m∆ contains a generating
set forγ ∩ M. Every point ofγ can be written as a nonnegative linear combination:

u = a1ui1 + · · · + anuin ,

whereaj ≥ 0, and{uij } ⊂ γ (1) is linearly independent. This expression can be decomposed
as a nonnegative integer combination of the{uij } plus a nonnegative fractional part. Soγ ∩M

is generated by 0 andγ (1) together with{(a1ui1 +· · ·+anuin) ∈ M | 0 ≤ aj < 1, {uij } ⊂ γ (1)

linearly independent}. By Lemma 1,m∆ contains 0 andγ (1). It will therefore suffice to show
that any lattice pointp that is a nonnegative fractional linear combination of some independent
set{uij } ⊂ γ (1) is contained inm∆. For this, it will suffice to show thatm ≥ λmax(p).

Supposep = a1ui1 + · · · + anuin ∈ M, where 0≤ aj < 1, and{uij } ⊂ γ (1) is linearly
independent. Thenp′ = (1 − a1)ui1 + · · · + (1 − an)uin is a lattice point in the interior of
σ∨. By Lemma 3,λmax(u′

σ ) ≤ λmax(p′), and sinceλmax is linear onγ andλmax(uij ) = 1,
we have

λmax(p′) = (1 − a1) + · · · + (1 − an) = n − λmax(p) .

Therefore,

λmax(u′
σ ) ≤ n − λmax(p) .

Let t be as in the Proposition, i.e.,t = min{D · V (σ ∩ τ )}, whereτ varies over all maximal
cones adjacent toσ . Thent ≥ n + 1 > λmin(u′

σ ), so we can apply the Proposition withr = 1
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to obtain

m ≥ n + 1 − λmin(u′
σ ) − 1 .

≥ n − λmax(u′
σ ) .

≥ λmax(p) . �

REMARK. The collection of cones over the lower faces ofQ is an example of what
is called a “regular subdivision”. In general, a regular subdivision of a cone is constructed
by choosing a nonzero point on each of the rays of the cone, and perhaps specifying some
additional rays inside the cone with nonzero points on them as well. One looks at the convex
hull of all of these points and then takes the cones over all of the lower faces. For more
details on regular subdivisions of convex polytopes, see [Lee] and [Zi]. The translation from
polytopes to cones is straightforward.

In the toric literature, regular subdivisions have generally been applied to the fan defining
a toric variety, and sometimes to the polytope defining an ample line bundle. See, for instance,
[OP], [GKZ, Chapter 7], and [KKMS, §I.2]. The regular subdivisions that we have used in
this paper are of the dual cones{σ∨}. The author is not aware of any significant geometric
interpretation for these subdivisions.

The subdivisions of a fanΣ correspond naturally and bijectively to the proper birational
toric morphismsX̃ → X(Σ) [Ful, Section 2.5], and the regular subdivisions ofΣ are pre-
cisely those for which the corresponding morphism is projective. A regular subdivision of
Σ is obtained by specifying a continuous functionΨ on the support ofΣ that is convex and
piecewise-linear on each cone. By subdividing each cone ofΣ into the maximal subcones
on whichΨ is linear, we get a projective birational morphism for whichΨ is the piecewise-
linear function associated to a relatively ampleT -Q-Cartier divisor onX̃. In particular, if
D = ∑

diDi is aT -Q-Weil divisor onX, and if we defineΨ max
D on each maximal coneσ by

Ψ max
D (v) = max

{ ∑
vi∈σ

−aidi

∣∣∣∣
∑
vi∈σ

aivi = v, ai ≥ 0

}
,

then we get the unique projective birational morphismπ : X̃ → X such that the proper
transform ofD is Q-Cartier and relatively ample, andπ is an isomorphism in codimension 1.
If D is effective (resp. minus effective) then, for each maximal coneσ , the same subdivision is
obtained by looking at conv{(1/di)vi | vi ∈ σ } (resp. conv{−(1/di)vi , | vi ∈ σ }) and taking
the cones over the upper faces (resp. lower faces). Note that, for a subdivision of a fan to
be regular, it is not enough for the subdivisionto be regular on each cone. This is the toric
manifestation of the fact that quasiprojectivity is not local on the base (see [EGA, II.5.3]).

4. Appendix: Proof of Fujino’s Theorem+. The ideas and techniques of the main
part of this paper also give a new proof of Fujino’s Theorem+. This yields a unified combina-
torial approach to Fujita’s conjectures for toric varieties with arbitrary singularities, which is
independent of vanishing theorems and toric Mori theory.
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From the Proposition, we can immediately deduce a generalization of Fujita’s freeness
conjecture for toric varieties with arbitrary singularities. The statement we get in this way
is similar to Fujino’s Theorem+, but without the improved bound obtained by excluding the
extremal case whereX is Pn.

COROLLARY TO PROPOSITION. Let X be a projective n-dimensional toric variety. Let
D and D′ be Q-Cartier divisors such that 0 ≥ D′ ≥ KX and D · C ≥ n + 1 for all T -curves
C. Then D + D′ is nef.

PROOF. We may assume thatD andD′ areT -Q-Cartier. By the Proposition, it suffices
to show thatλmin(u′

σ ) ≤ n. Write u′
σ = a1u1 + · · · + anun, whereai ≥ 0 and theui are

linearly independent primitive generators of rays ofσ∨. The conditionD′ ≥ KX implies that
eachai ≤ 1. Soλmin(u′

σ ) ≤ a1 + · · · + an ≤ n. �

To prove Fujino’s Theorem+, it remains to show that the bound on the intersection num-
bers can be improved by one by excluding the case whereX ∼= Pn.

Using the Proposition, we can work “locally,” considering one maximal coneσ at a time.
The following lemma allows us to reduce to the case whereσ is regular.

LEMMA 4. Let D′ be a T -Q-Cartier divisor, 0 ≥ D′ ≥ KX. If σ is a maximal cone in
the fan defining X that is not regular, then λmin(u′

σ ) ≤ n − 1.

PROOF. By Lemma 3, it will suffice to show that there is a lattice pointp in the interior
of σ∨ such thatλmax(p) ≤ n − 1. Sinceσ is not regular,σ∨ is not regular either. Consider
two cases, according to whetherσ∨ is simplicial.

Supposeσ∨ is simplicial, and letu1, . . . , un be the primitive generators of the rays of
σ∨. Sinceσ∨ is not regular, after possibly renumbering theui , there is a lattice pointu =
a1u1 + · · · + arur in M, where 0< ai < 1 andr ≥ 2. Thenp = u1 + · · · + un − u and
p′ = u + ur+1 + · · · + un are lattice points in the interior ofσ∨. Nowλmax(p) + λmax(p′) =
2n − r ≤ 2n − 2. So min{λmax(p), λmax(p′)} ≤ n − 1, as required.

Supposeσ∨ is not simplicial. Let{u1, . . . , un} be a set of linearly independent primitive
generators of rays in some subcone ofσ∨ on whichλmax is linear. Letγ be the cone spanned
by {u1, . . . , un}. Sinceγ � σ∨, at least one of the facets ofγ is not contained in a face ofσ∨.
Sayτ , spanned by{u1, . . . , un−1}, is not contained in a face ofσ∨. Then the relative interior
of τ is contained in the interior ofσ∨. In particular,p = u1 + · · · + un−1 is a lattice point
in the interior ofσ∨. Sinceλmax is linear onγ andλmax(ui) = 1, it follows thatλmax(p) =
n − 1. �

PROOF OFFUJINO’ S THEOREM+. LetX,D, andD′ satisfy the hypotheses of Fujino’s
Theorem+. Let σ be a maximal cone in the fan definingX. Let t = min{D · V (σ ∩ τ )} and
m = min{(D + D′) · V (σ ∩ τ )}, whereτ varies over all maximal cones adjacent toσ . It
will suffice to show thatm ≥ 0. If σ is not regular, then, by Lemma 4,λmin(u′

σ ) ≤ n − 1.
Applying the Proposition, we havem ≥ t − n ≥ 0, as required.
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We may therefore assume thatσ is regular. Letv1, . . . , vn be the primitive generators of
the rays ofσ , and letu1, . . . , un be the dual basis. In particular,u1, . . . , un are the primitive
generators of the rays ofσ∨. By adding toD the numerically trivial divisor

∑〈uσ , vi 〉Di , we
may assume thatuσ = 0, and hencePσ

D = PD . Consider two cases, according to whetherPD

is a simplex.
Case 1: PD is a simplex. In this case, Pic(X) ∼= Z. We may linearly order PicX ⊗ Q so

that[D] is positive and the nef divisor classes are exactly those that are greater than or equal
to zero. We aim to show that[D+D′] ≥ 0. It will suffice to show thatPD+D′ is nonempty. In
fact, we will show thatp = u1 + · · · + un is in PD+D′ . Furthermore, since[D] ≥ [(n/t)D],
it will suffice to prove this in the case wheret = n.

Let v0 be the primitive generator of the unique ray of the fan definingX that is not inσ .
NowPD+D′ is cut out by the inequalities〈u, vi 〉 ≥ −d ′

i for 1 ≤ i ≤ n, and〈u, v0〉 ≥ −d0−d ′
0.

For 1≤ i ≤ n, we have〈p, vi 〉 = 1 ≥ −d ′
i . So it will suffice to show that〈p, v0〉 ≥ −d0−d ′

0.
Write PD = conv{0, a1u1, . . . , anun}. After possibly renumbering, we may assume

a1 = min{ai} = n. Furthermore, one of theai must be strictly greater thann (otherwisePD

would be a regular simplex and soX would be isomorphic toPn). The ray spanned byv0,
which is perpendicular to the face ofPD not containing 0, is also spanned by

v = −a2 · · · anv1 − · · · − a1 · · · âi · · · anvi − · · · − a1 · · · an−1vn .

Sov0 = bv for some positive rational numberb. Sincev0 is a lattice point,ba1 · · · âi · · · an

must be an integer for eachi. In particular,ba2 · · · an is an integer. Therefore,

d0 = −〈a1u1, v0〉 = ba1 · · · an = nba2 · · · an

is an integer.
Now, sincea1 = min{ai} = n and someai > n, we have

〈p, v0〉 = b〈p, v〉 > −nba2 · · · an = −d0 .

Since both〈p, v0〉 and−d0 are integers, their difference must be at least 1. So〈p, v0〉 ≥
−d0 + 1 ≥ −d0 − d ′

0.
Case 2: PD is not a simplex. Sinceσ is simplicial butPD is not a simplex,PD has a

vertexu0 that is not adjacent touσ = 0. Define a piecewise linear functionλ onσ∨ by

λ(u) = min{(na0 + a1 + · · · + an) | a0u0 + · · · + anun = u, ai ≥ 0} .

Now PD contains conv{0, u0, nu1, . . . , nun} = {u ∈ σ∨ | λ(u) ≤ n}. An argument identical
to the proof of the Proposition shows thatm ≥ n−λ(u′

σ )−1. It will therefore suffice to show
thatλ(u′

σ ) ≤ n − 1.
After possibly renumbering, we may writeu0 = b1u1 + · · · + brur , wherebi > 0 and

r ≥ 2. We claim thatbi ≥ n. Indeed, the rays along the edges ofPD coming out from
u0 span a translated cone containingPD, and hence containing 0. Since〈u0, vi〉 = bi > 0,
there must be some vertexu of PD adjacent tou0 such that〈u, vi 〉 < 〈u0, vi 〉. Let C be
theT -curve corresponding to the edge connectingu andu0. Sinceu ∈ PD ⊂ σ∨, we have
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bi = 〈u0, vi〉 ≥ 〈u0 − u, vi〉. Let u′ be the primitive generator of the ray spanned byu0 − u.
By Lemma 2, we have

〈u0 − u, vi〉 ≥ (D · C)〈u′, vi 〉 ≥ D · C ≥ n .

This proves the claim.
Let c0 be the largest rational number such thatu′

σ − c0u0 is in σ∨, i.e.,

c0 = min{−d ′
i/bi | 1 ≤ i ≤ r} .

So we may write

u′
σ = c0u0 + · · · + cnun ,

whereci ≥ 0 and someci = 0 for i ≥ 1. Sayc1 = 0. We claim thatnc0 + c2 ≤ 1. Indeed,

nc0 + c2 ≤ b2c0 + c2 = −d ′
2 ≤ 1 .

Therefore,

λ(u′
σ ) ≤ nc0 + c2 + · · · + cn ≤ 1 − d ′

3 − · · · − d ′
n ≤ n − 1 . �
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