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Abstract. Some characters of semi-stable stochastic processes on local fields such as
epochs, spans, and indices are given, andréiffees in nature from the corresponding objects
for Euclidean spaces are clarified. Criteria for the recurrence and for the polarity of one point
sets are given, and it is shown that semi-stable processes are characterized as limits of suitably
scaled sums of independent identically distributed random variables.

1. Introduction. Since 1980’sp-adic stochastic analysis has been discussed in con-
nection withp-adic physics. In particular the fundamental solutiong+adic heat equations
are given by transition densities of rotation-symmegradic semi-stable processes, and with
respect to this point research of stochastic processes is expected to contribute to physical prob-
lems. Recent developments pradic mathematical physics are summarized by Vladimirov-
Volovich-Zelenov ([14]), and Kochubei ([4]) indicates some remarkable relations between
p-adic stochastic analysis and physics.

Rotation-symmetric additive processes on hadics, including rotation-symmetric
semi-stable processes, were constructed by Albeverio-Karwowski ([1]), and their properties
were investigated by the present author ([15]). She also showed in [16] limit theorems on
groups, and gave a characterization of infinitely divisible and semi-selfdecomposable distri-
butions as limits of sums of infinitesimal independent random variables. In partiptgatic
valued rotation-symmetric semi-stable processes are limits of suitably scaled sums of rotation-
symmetric independent identically distributed random variables.

This article aims at characteigy semi-stable processes on local fields, generalizing
the results in [15] and [16] even to non-symmetric case. Section 2 is a characterization of
semi-stable processes, where the range of epochs and the indices of processes are given
in contrast with semi-stable processes on EuclideapaceR”. The theory ofR*-valued
semi-selfsimilar processes have been established by Sato, Maejima, Watanabe et al. (e.g.,
[6,7,9, 12, 13]). Section 3 is devoted to criteria for the recurrence and for the polarity of one
point sets. In Section 4 we give several limit theorems. Theorem 4.1 claims that transition
probabilities of semi-stable processes are characterized as limit distributions of sums of i.i.d.
random variables. This assertion is essentially equivalent to the result given by Kochubei ([3]).
Maejima-Shah ([8]) deals with a more general cgpici.e., operator semi-stable measures,
where a corresponding limit theorem is given. Our main objective is Theorem 4.5, which
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gives a convergence in a stronger sense, namely semi-stable processes are realized as scaling

limits of sums of i.i.d. random variables in the space of right continuous paths with left limits.
Throughout this articlek denotes a local field of characteristic 0. Namdlyis a finite

algebraic extension of thg-adic fieldQ, for some primep. Let Ngjq, : K — Q, be the

norm map of the field extensiaki/Q,,, and let| |, be thep-adic norm orQ,,. Then

lxll = INkjQ, @)y x €K,

defines anorm onthe field. We denote the ring ofintegerskiby R := {x € K | ||x|| < 1}.
ThenP := {x € K | ||x|| < 1} is the unique prime ideal of the ring. Letq be the module of

K (i.e.,q is the cardinality of the residue fieRl/ P), and take a complete set of representatives
A of the classes oR modulo P. If we fix a prime elemend, then any non-zero elemenof

K is uniquely represented by a series

o
(1) X = Z a,-a)’ s
i=m

with m € Z anda; € A, a, # 0. For those elementsof K having a representation (1), it
holds thatl|x|| = g—™.

We denote byl/x the Haar measure okl hormalized so thafR 1ldx = 1, and by vo{-)
the volume with respect to the Haar measure (Bpl:= fB 1dx, B being a measurable subset
of K. We write B, := w ™R = {x € K | ||x|| < ¢™} forintegersn. Then it can be verified
that volB,,;,) = ¢™.

We fix a charactey of K with rank 0. Namely 1 is a homomorphism on the additive
group K to the multiplicative groups® = {w € C | |w| = 1}, such thaty1(Bo) = {1} and
x1(B1) # {1}. For eachy in K, x,(-) := x1(y-) gives a character o, and by means of
this correspondence — x,, the additive grougX is isomorphic to its character group. The
formula

", lyl<q™,
2 / X (X)dx={ _
@ Y 0, lyll>qg™™,

(see e.qg., [5]) will be frequently used in the subsequent sections.
The characteristic functioni of a probability measurg on K is the complex-valued
function onk, defined by

a(y) = /K Xy (X)p(dx) .

2. Semi-stable processes and characteristic functions. A stochastic procesk (¢),
t > 0, onK with X(0) = 0 is a Lévy process if it is stochastically continuous, tempo-
rally homogeneous, and if it has independent increments and right continuous paths with left
limits. Semi-stable processes @&hare K -valued Lévy processes (t) satisfying the semi-
selfsimilarity{X (at)} = {bX (¢)} in law for somez > 0,# 1,andb # 0in K.

Let us fix a semi-stable proce&qr) # 0 on K, and denote by, its transition proba-
bility. Then there are > 0 andb € K such thafX (ar)} = {bX ()} in law, but not unique.
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Indeed, we can see by iteration tHat(a"t)} = {b" X (r)} holds for any integen. Further-
more, even for a fixed, there may correspond some distia&. The following proposition
describes the structure of the set of sutd) as well as a relation betweerandb. The asser-
tion and the proof are analogous to known resul®irlLemma 13.8 and Theorem 13.11 in
[12]), except some differences indicated in the subsequent Remark.

Wesetl’ = I'(X) :={a > 0| {X(at)} = {bX(®)} in law for someb € K}.

PrRoPOSITION 2.1. (i) If b andd’ in K satisfy{bX (1)} = {b'X(¢)} in law, then
1Bl = 16"l

(i) Putag :=inf(I' N (1, 00)). Thenag > 1 andI is the cyclic group generated by
aop.

(iiiy There existee > 0such that for any: € I and any corresponding € K, it holds
thata = ||b||“.

PROOF. (i) Suppose|b| > ||| and puthb = b’/b. Then{X (1)} = {bX (1)} in law.
By iteration we have X (1)} = {b"X(¢)} for anyn > 1, and since|b| < 1, we obtain a
contradictionX (r) = 0.

(i)  We shall show thatl" is a proper closed subgroup @, +oc0). Supposel” =
(0, 400), fixa € I',and také € K suchthat{X (ar)} = {bX (r)}. Put||b|| = ¢". Then by the
assumption we hawe := a¥/®) ¢ I", and can také’ € K such thaf X (a't)} = {b'X (1)}.
Since{(b)*'X (1)} = {X((@)*'1)} = {X(a)} = {bX (1)}, (i) implies |o'|| = ||b|Y/ @ =
g2, which is impossible. Therefore we have (0, +00).

It is evident that 1€ I'. Suppose: anda’ belong tol". Then there exisb and b’
in K such that{X(at)} = {bX ()} and{X(a’t)} = {b’X(¥)} in law. Then it holds that
{X(ad't)} = {bX(a't)} = {bb'X(t)}, and thereforeia’ belongs toI". Fora € I' andb €
K such that{X (at)} = {bX (1)}, we have{b~1X (1)} = {X(a~1r)} and hencei™! € T.
Assume thaty, € I'yn = 1,2, ..., satisfya, — a € (0, +00), and takeb,, € K such
that {X (a,t)} = {b,X(¢)}. SinceX(¢) is stochastically continuous¥ (a,t) converges to
X (at) in law. Supposgb,} is non-compact inK, and take a subsequengek)}r=12...
of N so that||b,q | — +oo. Then we obtaini,(y) = [Lan(k),(b;&)y) — a0 = 1
for any y € K, which contradicts thak (r) # 0. Therefore there exists an accumulation
pointb € K of {b,}. If we take a subsequende(k)} so thatb,x, — b, then we have
{X(at)} = {limi— o by X (1)} = {bX (1)}, and hence belongs tol". Thus we have proved
thatI" is a proper closed group @f.

We can take € (0, +00)\I", and sincd” is closed, it holds that ~1c, rc) C (0, +00)\
I for somer > 1. If we supposerp = 1, we can také < (1, )Nr, namely we have
0 < logé < 2logr. Then loge — logr < nlogé < logce + logr holds for some: € N.
Therefore it holds that~1c < 6" < rc. Sincerl” is a group, we have” € I, a contradiction.

We have{ag},cz C I', sincel is a closed subgroup @D, 4+-00). Suppose that there

existsc € I' \ {a} and takeng € Z such thatiy® < ¢ < a6’°+1. Then we get a contradiction

caano el 1< caano < agp.
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(iif) Takebg € K for which{X (aot)} = {boX (¢)} holds, and pu& := logagp/ log || bo||.
Any a in I' is represented as= ag with some integen, and ifb € K is such tha{X (ar)} =
{bX (1)}, then we havegbX (1)} = {X(apt)} = {byX (1)}. Hence (i) implies|b|| = |lbgll =
al/®, O

We call an elemeni of I anepoch a corresponding € K aspan and thex theindex
of the semi-stable proces&().

REMARK 2.2. The indices oR?-valued semi-stable processes take value®ji2]
(Theorem 13.15 in [12]), while for any positive numberthere exists & -valued semi-stable
process having index. Indeed, for everyr > 0, there is a rotation-symmetric semi-stable
process ork of indexa having characteristic functioft, (y) = exp(—¢|y||%) (Proposition
4.1in[15]).

For aR?-valued semi-stable process, it may occur thigt 1 andl” = (0, co), in which
case the process is called stable. As seen in (ii) of the above proposition, there exists no stable
process orK .

Let {u:};>0 be a one-parameter convolution semigroup of probability measurés on
which converges weakly to themeasure at the origin as— 0. Since the field is totally
disconnected, the characteristic ftino has a canonical representation

(3) i (y) = xy(xo0) eXp<l/K(Xy (x) — 1)V(dX)> ,

wherexg € K, andv is ao-finite measure with (N¢) < oo for any neighborhoodv of the
origin ande(l—Rexy (x))v(dx) < oo foranyy € K. Thexg andv are uniquely determined
by {14+}:>0 (Theorem 10.1 and Remark 1 following Corollary 7.1 in [10]).

LEMMA 2.3. A Lévy procesX (r) on K is semi-stable with an epoehand the corre-
sponding spa if and only if in the canonical representati@8) of its transition probability
s, it holds thatrg = 0 andv(b~1dx) = av(dx).

PROOF. This is immediate fronXo = 0 a.s.,ii4(y) = i;(by), and the uniqueness of
the representation (3). a

3. Absolute continuity, recurrence, and polarity. In this section we will investigate
some properties of semi-stable processes. We begin with showing the absolute continuity of
the transition probabilities.

PrROPOSITION 3.1. The transition probability:, of a semi-stable process() # Oon
K is absolutely continuous relative to the Haar measared the Radon-Nikodym derivative
is given by

pi(x) = /K X (=) (¥)dy .

According to general theory of Fourier analysis on groups, the proposition is proved if
we can show that, is integrable (see, e.g., Section 1.7 in [11]).
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PROOF. Leta < 1 be an epoch anigda corresponding span, and gét] = ¢, k > 0.

Fory e K with ||yl = ¢~ %!, s € Z,0< 1 < k — 1, by the canonical representation (3) and
Lemma 2.3 it holds that

e ()] = exp( - I/K(l - Rexy(X))V(dX))

= exp( — a“'t/ 1- Rexy(bsx))v(dx)> .
K

Since 1- Rex, (b~*x) = 0, we proceed to

()| < eXp( - ast/| Y 1(1— Rexy(bsx))V(dX)>.
x||=q't

On the circle{]|x | = ¢/}, there exists < 1 such that Rg,(b~*x) < c. On the other hand,
there exists O< lp < k — 1 such thav(||x|| = ¢°*t1) > 0. Indeed, supposing the contrary,
we havev(g < |x|| < ¢¥) = 0, and by the self-similarity of, v(K \ {0}) = Y ovig <
Ibix|| < ¢*) = 32 alv(g < x|l < ¢*) = 0, which contradicts thaX (1) # 0. Hence
we have

oo k-1

/K ldy = 3 Y exp(—a't@—cw(lxll =q"))vol({llyl =g~ ')
s=—00 [=0
< Y exp(—a’t@—c(lxll = ¢)) A — g Hg
<. )

The next proposition gives a criterion for the recurrence and the polarity of one point sets
according to the index.

PROPOSITION 3.2. A semi-stable process(¢) of indexa is recurrent if and only if
a > 1. It visits almost every point with probabilityif and only ife > 1.

PrROOF. Take an epoch < 1, and leth be a corresponding span wil|| = a/% =:
g% < 1. Recall Formula (2), and put

h(t,y) = qm/lz(y)lB_m(y)=/ X (=) (y)dx .

B,

As in the proof of Proposition 3.1, we can take<Qp < k — 1 such thab (||x|| = g’o*1) > 0.



424 K. YASUDA

First of all, we assume that < 1. Let|y|| = ¢" < ¢, and put—n = ks + [ with
s € Zand 0< ! < k — 1. Then, similarly as in the proof of Proposition 3.1, we have

o
/ dt/ | (2, y)1dy
0 K

o0
— " / dr [ )| dy
0 B_.,
00 )

qm/O dt Y exp(—a't(L— (x| =¢)) @ - g Hg .
s=lm/k]

IA

By Fubini’s theorem we proceed to

o0
/ d f (s ¥)1dy
0 K
o0

e B . o
<(L—g He" Ao h(lxl = ¢t Y pEAes < oo
s=[m/k]

Therefore, by Proposition 3.1 and Fubini’s theorem, we obtain

/ e (Bu)dt = / a / dx / Hex DA (1)
O O 'm K

o0
=/ dt/ hp(t, y)dy < 00,
0 K

and thusX (¢) is transient provided < 1.
Leta be arbitrary. By Proposition 3.1 and Fubini's theorem, we have fer0,

/ dt/ exp(—At) |hy (¢, y)|dy
0 K

o0
q’"/o dt/ exp(—An)| i ()|dy
B_p,

<q" fo Tar Y - he e~ i '@ - (il = o)

s=[m/k]
1 ; i qfks
=0—-qg Hg"
_ — o+l
g M T at@=ov(lix| = plott)

00
S IR
s=[m/k]
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Pute(y) = fK(Xy(x) — Dv(dx). Then Lemma 2.3 implieg(by) = ap(y). Applying the
canonical representation (3), Proposition 3.1, and Fubini’s theorem, we obtain that

VH(By) = /Ooo exp(—A1) s (Bn)dt

= / Tt / exp(—At) iy (t, y)dy
4) ° K .
=qm/ dy/O exp(—An) i (y)dt

=g / (h — o)~ ldy.

Now we assume that > 1. Then it holds that

oo

k—1
| Re—ponayz Y ¥ /| L ReCeO) Ty
—m yl=g =~

s=[m/k]+11=0

o]

k—1
= > Y[ Recpw it
lyll=g~"

s=[m/k]+11=0

0 k-1
= Z q(a*l)kS Z/ [ Re(_(p(y))fldy
s=[m/k]+1 1=0 Y IIylI=¢~
=0Q.

SinceV*(B,,) is real, the monotone convergence theorem and Fatou’s lemma imply that
o
/ wi(Bp)dt =lim V*(By,)
0 20

=lim g™ Re(\ — 14
Alwq /Bm er —o(y) dy

>q" / Re(—¢(y) 'dy = o0,
B_m
and henceX (¢) is recurrent in case > 1.
By the above formula (4), we have

VA(Bn)
vol(B,)

| Reti- g0 ay.
If —n=ks+1[,s€Z, 0<]<k—1,then Lemma 2.3 implies that
[ Ret—p0n
llyll=¢"

_ ks / A —q """ Regp(y)
Ivl=a~" (A — g=* Rep())* + (g% Im g (1))

(5)
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Since Rep(y) < 0, it holds form < 0 that

V*(Bn)
vol(B,,)
oo k-1
< > g™ f (0= g™ Rep(y) My
s=[m/k] I=0 Iyll=¢~
1 k—1 00 k—1
< > q" / (" Rep(y) My + > ¢ Z/ 2 ldy
s=[m/k] 1=0 lyll=g~! s=0 1=0 lyll=q~!
-1 k—1 00
= gk / (Rep(y) My +171A—g™H ) g7
s=[m/k] =0 Iyll=q~ s=0

If « > 1, the last line converges as — —oo, and hence a one-point set is not essentially
polar. On the other hand, we derive from (5) that

0 k-1
VB Ly e / g% — Rep(y)

— 2 2
VOI(Bm) — 41 =0/ Ivl=a~" (g1 — Rep(y))" + (Img(y))

0 k—1

. Z q(a—l)kszf —Regp(y) dy.

s=[m/k]+1 1=0 7 Iyll=¢~" ()‘ - Re(p(y))z + ( Im (p(y))z

If we suppose Re(y) = 0 a.e. ong~*D < |y| < 1, then, sincep(by) = ap(y)
and|x,(x)| = 1, we obtaing(y) = 0 a.e. onK. This contradicts the non-degeneracy of
X (1), and hence the last integral is strictly positive. Then we obtain that, in«asel,
V*(B,,)/vol(B,,) diverges asm — —o0, and as a consequence, a one-point set is essentially
polar. 0

4. Limit theorem. This section is devoted to establishing limit theorems for semi-
stable processes. We show first that one dimensional distributions of semi-stable processes
are characterized as limit distributions of suitably scaled sums of independent identically dis-
tributed random variables. We make a further investigation, in what condition the limit gives
a convergence in paths space, and concludestirai-stable processes are realized as limits
of scaled sums in the space of right continuous paths with left limits.

Letg, i =1,2,..., beindependent identically distributétivalued random variables.

For positive numbers,, with lim,,_, 5, a, = 400, non-zero elements, of K (n =1, 2,...),
and: > 0, we consider a scaled su(z) := b, Z,[i’i] & . Here, forh € R, [h] denotes the
maximum integer which does not exceed

For a random variablg, we denote its law by ().

THEOREM 4.1. A Lévy process{(r) on K is semi-stable if and only if there exist
independent identically distributed random variablgsi = 1, 2, ..., positive numbersg,
a,, n =12,...,and non-zero elemenis b,, n = 1,2, ..., in K, such thata,, — +o0,
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iMoo ant1/an = a1 lim, - o bp+1/b, = b, and for anyr > 0the random variable, (¢)
converges weakly t& (t) asn — oo.

PrROOF. We assume first the existence of sugh a,, b,, and prove the semi-
selfsimilarity of the limit process<(¢). If we put p for the law ofé&;, then by the assump-
tion we haves (b, )\ = L£(b, Y1V &)(y) — fu(y) asn — oo, for everyy € K and
t > 0. Sinceb,+1/b, — b, we can verify that

pbnsa)! " = p(by(buga/bw) )" — 1 (by) .

On the other hand, the assumptiens— +oo anda,+1/a, — a1l imply that

Pl ia))l™ = (p(bypay)lemathlentVlanatl o (1)@ = g (y) -
Therefore we obtaim, (by) = u. (y) for everyy, and henceX (¢) is semi-stable.
Conversely, suppose th&f(r) is semi-stable, and take an epaeck: 1 and a correspond-
ing spanb. Leté&; be an i.i.d. random variables such th&§;) = w1, and puta, := a™",
b, := b". According to the canonical representation (3), it holds fhay) = expze(y))
with o(y) := [ (xy(x) — Dv(dx), andp(by) = ag(y). Then
LI 0)(y) = fad"y)! ™

= explp(®"y)l ]

= exp(p(y))“l* "

— i (y), asn — oo,
and hence for each> 0, Y,,(z) converges td (¢) in law. O

For a metric spac8, let Dy denote the space of right-continuatisalued functions on
[0, oo) with left limits. We give a sufficient condition for the relative compactness of the ran-
dom sequenck, in P(Dg), the space of probability measures®p. As a consequence, we
will see that Theorem 4.1 remains valid if the convergence of one-dimensional distributions
is substituted by the weak convergence of the random variables Dg .

PROPOSITION 4.2. Suppose there exiét > 0 and0 < r < 1 such that
(6) supa, P(l& | = I1ball"*q") < Cr!
n

holds for any integet. Then the sequend#,},>1 is relatively compact iP (Dg).
For a proof, we apply the following criterion (Theorems 8.6 and 8.8 in [2]).

LEMMA 4.3. Let(S, | |) be a complete separable metric spaard{Z, (1)} a family
of processes with sample pathsIiy. Suppose that

(i) foreverye > 0 and rationalr > 0, there exists a compact sét = F (e, t) such
that

7 inf P(Z,(t) € F®) > 1—¢,

whereF¢ := {x € S | infyer |lx — y|| < &},
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(i) foranyT > 0,there exist8 > 0,C’ > 0,and® > 1such that
®)  EWIZa(t +h) = Za@l ADPP(1Za(t) — Za(t — B ADPI?) < C'h°
holdsforalla, 0 <t < T 4+ 1,0< h < ¢, and such that

9) lim SUPE (11 Ze (8) = Za (O A 1P) =0.

Then{Z,} is relatively compact irP(Ds).

PROOF (Proposition 4.2). We shall verify the conditions in Lemma 4.3. By the non-
archimedean propertyié; || < R,i = 1,...,n, impliesthaty_"_; & < R, for R > 0 and
n > 1. Therefore for any integér

[ant]

Y& = ||bn||‘1ql>
i=1

< P& = 1bal7q", 1 < 3i < [ant])
=1— P(|&] < [Ibal~1ghlant]
< [ant1P(|& || = |1bal~1q")

< [antla;, tCr!,

PAY, 0] = ¢') = p(

(10)

where we used the inequality-1x" < n(1—x) forn > 1 andx < 1. Foranys > 0 and
rationalr > 0, take an integef = (¢, 1) large enough so thatr! < er~1 andg! > ¢. Put
F = B; and assume < F°. Then we can take € F for which ||x — y|| < &, and the
non-archimedean inequality impli¢s| < max(||y[l, lx — yl) < ¢'. Namely, we obtain
Ff = F, and hence
P (Ya(1) € FF) = 1= P(IY, ()] = ¢")
>1- [ant]a;let*l >1—¢.

Thus the condition (i) in Lemma 4.3 is cleared.

For the condition (ii), takg > —2logr/logq. Since the process, (¢) has independent
increments, it follows from (10) that

E((1Ya(t + h) = Yo ()]l A DP2(1Yo (1) = Yalt = )| A DFI?)
= E((IYa(t +h) = Yu ()| A DPYE(1Ya (1) = Yu(t — h)I| A DP/?)

o0
<Y g PP+ h) = Va0l = g™
m=0

9]

x 3 g PPV () = Yalt — )| = 7™

m=0

00 2
< (an(t + )] — [ant]) ([ant] — [an(t — h)])( Y a " 1Cr‘m)

m=0
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forO < h <t. Incase 2,h < 1, we have eithefa, (t + h)] = [ant] Of [ant] = [a,(t — h)],
and the above expectation is 0. i,z > 1, then we see that
([an(t + h)] = [antD([ant] — [an(t — B)]) < (@n(t + 1) — an(t — h) + D? < (4a,h)?,
and then
E((IYa(t + 1) = Yol A DP2 (1Y (0) = Yo = )] A 1P
< 1662< i(q—f‘/zr—h'")zhz.

m=0

By the assumptio > —2logr/logg, this implies (8). Furthermore, (10) leads to

E(Y,®) 1 ADP) <Y g PP, 0] = ¢™)

m

IA

=0

o

Z qiﬁm [a,,8]an*lCr*m
=0

m

oo
CsY (@ Pr ",
m=0

IA

and hence (9) follows immediately. O

REMARK 4.4. Suppose,ii/a, — a~ %, b,+1/b, — b, and Condition (6). Then, by
Proposition 4.2, there exists a subsequen@eg of N such that{Y,x)(t)}k=1,2,... has a limit
in Dk, and Theorem 4.1 implies that the limit(z) is a semi-stable process. It should be
noted that the original sequen{, (r)} does not necessarily converge, and as is shown in the
following example, it may have distinct accumulation points more than one.

Suppose thak (¢) is semi-stable with an epoeh< 1 and a corresponding spanLet
& be identically distributed aX (1), and puth, := b",

a ", n =3,

ap = 1{ 3 %*na", F<n<2.3,
4—3%na™m, 2.3k <n<3F1  [eN.

It can be verified that,,+1/a, — a1, by,+1/b, — b, and Condition (6) is fulfilled. If we
taken(k) = 3¥, then a%k — oo we have

N R _3k R 3k gk R
LTy @) ) = funb® )11 = ()@ 071 5 fy(y).

On the other hand, taking (k) = 2 - 3¢, we obtain

~ R  k —23k R 2.3k 2.3k R
LY@y (y) = an(b®2 )27 = g ()™ 277010 o, ().

ThusY,x)(t) converges tX (), while Y, ) (1) goes toX (2t).
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THEOREM 4.5. Let X(r) be a semi-stable process éhwith an epochz and a span
b. If & is identically distributed ax (1), a, = a™", andb,, = b", thenY,, weakly converges
to X in Dg.

PrROOF. Recalling the proof of Theorem 4.1, it is clear that for every, (r) converges
to X (r). SinceY, (¢) has independent increments, the convergence of every finite dimensional
distribution follows, and hence it suffices to show the relative compactnéssjah P (Dk).
It follows by Proposition 3.1, Fubini’s theorem, and Formula (2) that

PIX @O 2q1)=1—/ dw%(y)/ Xx(=y)dx
K Bi-1

=q't / (L= fu(y)dy.
B_j+1

Using the canonical representation (3).:(y) = expite(y)), ¢(y) = fK(Xy x) — Dv(dx),
the dominated convergencestirem, and (2), we proceed to

FLPAX O] = g = gt / 11— expirg(y))dy

B_i+1
=0 -1 / (—p(M)dy
B_i+1
11
(11) — q’*1/ v(dx) (1— xy(x)dy
K B_i+1

= qlil/;{ qil+l(1 - 1Bl,1(x))v(dx)
= U(Blc;l) .

Let ||| = ¢~* and puts := [I/k]. Then, by the self-similarity of the Lévy measurewe
obtain that

(12) V(Bf_1) < v(b™*B°)) =a*v(B°)) < a'/*a"tv(B ).
Here note that

P(IE N = 118" = PUIB"X (DIl = ¢') = P(IX (@) = ¢).
Then we have

a *supaT" P(IE | = 16717 ") < a7 *suprTtP(IX (1)1 = ¢,
n <1

and by (11) and (12), this is finite. Therefore (6) is fulfilled, and hefiGg is relatively
compact. a
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