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SEMI-STABLE PROCESSES ON LOCAL FIELDS

KUMI YASUDA

(Received November 29, 2004, revised October 6, 2005)

Abstract. Some characters of semi-stable stochastic processes on local fields such as
epochs, spans, and indices are given, and differences in nature from the corresponding objects
for Euclidean spaces are clarified. Criteria for the recurrence and for the polarity of one point
sets are given, and it is shown that semi-stable processes are characterized as limits of suitably
scaled sums of independent identically distributed random variables.

1. Introduction. Since 1980’sp-adic stochastic analysis has been discussed in con-
nection withp-adic physics. In particular the fundamental solutions top-adic heat equations
are given by transition densities of rotation-symmetricp-adic semi-stable processes, and with
respect to this point research of stochastic processes is expected to contribute to physical prob-
lems. Recent developments inp-adic mathematical physics are summarized by Vladimirov-
Volovich-Zelenov ([14]), and Kochubei ([4]) indicates some remarkable relations between
p-adic stochastic analysis and physics.

Rotation-symmetric additive processes on thep-adics, including rotation-symmetric
semi-stable processes, were constructed by Albeverio-Karwowski ([1]), and their properties
were investigated by the present author ([15]). She also showed in [16] limit theorems on
groups, and gave a characterization of infinitely divisible and semi-selfdecomposable distri-
butions as limits of sums of infinitesimal independent random variables. In particular,p-adic
valued rotation-symmetric semi-stable processes are limits of suitably scaled sums of rotation-
symmetric independent identically distributed random variables.

This article aims at characterizing semi-stable processes on local fields, generalizing
the results in [15] and [16] even to non-symmetric case. Section 2 is a characterization of
semi-stable processes, where the range of epochs and the indices of processes are given
in contrast with semi-stable processes on Euclideann-spaceRn. The theory ofRn-valued
semi-selfsimilar processes have been established by Sato, Maejima, Watanabe et al. (e.g.,
[6, 7, 9, 12, 13]). Section 3 is devoted to criteria for the recurrence and for the polarity of one
point sets. In Section 4 we give several limit theorems. Theorem 4.1 claims that transition
probabilities of semi-stable processes are characterized as limit distributions of sums of i.i.d.
random variables. This assertion is essentially equivalent to the result given by Kochubei ([3]).
Maejima-Shah ([8]) deals with a more general concept, i.e., operator semi-stable measures,
where a corresponding limit theorem is given. Our main objective is Theorem 4.5, which
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gives a convergence in a stronger sense, namely semi-stable processes are realized as scaling
limits of sums of i.i.d. random variables in the space of right continuous paths with left limits.

Throughout this article,K denotes a local field of characteristic 0. Namely,K is a finite
algebraic extension of thep-adic fieldQp for some primep. Let NK/Qp

: K → Qp be the
norm map of the field extensionK/Qp, and let| |p be thep-adic norm onQp. Then

‖x‖ := |NK/Qp
(x)|p , x ∈ K ,

defines a norm on the fieldK. We denote the ring of integers inK byR := {x ∈ K | ‖x‖ ≤ 1}.
ThenP := {x ∈ K | ‖x‖ < 1} is the unique prime ideal of the ringR. Letq be the module of
K (i.e.,q is the cardinality of the residue fieldR/P ), and take a complete set of representatives
A of the classes ofR moduloP . If we fix a prime elementω, then any non-zero elementx of
K is uniquely represented by a series

x =
∞∑

i=m

aiω
i ,(1)

with m ∈ Z andai ∈ A, am �= 0. For those elementsx of K having a representation (1), it
holds that‖x‖ = q−m.

We denote bydx the Haar measure onK normalized so that
∫
R 1dx = 1, and by vol(·)

the volume with respect to the Haar measure ; vol(B) := ∫
B 1dx, B being a measurable subset

of K. We writeBm := ω−mR = {x ∈ K | ‖x‖ ≤ qm} for integersm. Then it can be verified
that vol(Bm) = qm.

We fix a characterχ1 of K with rank 0. Namely,χ1 is a homomorphism on the additive
groupK to the multiplicative groupS1 = {w ∈ C | |w| = 1}, such thatχ1(B0) = {1} and
χ1(B1) �= {1}. For eachy in K, χy(·) := χ1(y·) gives a character onK, and by means of
this correspondencey �→ χy , the additive groupK is isomorphic to its character group. The
formula ∫

Bm

χy(x)dx =
{

qm , ‖y‖ ≤ q−m ,

0 , ‖y‖ > q−m ,
(2)

(see e.g., [5]) will be frequently used in the subsequent sections.
The characteristic functionµ̂ of a probability measureµ on K is the complex-valued

function onK, defined by

µ̂(y) :=
∫

K

χy(x)µ(dx) .

2. Semi-stable processes and characteristic functions. A stochastic processX(t),
t ≥ 0, on K with X(0) = 0 is a Lévy process if it is stochastically continuous, tempo-
rally homogeneous, and if it has independent increments and right continuous paths with left
limits. Semi-stable processes onK areK-valued Lévy processesX(t) satisfying the semi-
selfsimilarity{X(at)} = {bX(t)} in law for somea > 0, �= 1, andb �= 0 in K.

Let us fix a semi-stable processX(t) �≡ 0 onK, and denote byµt its transition proba-
bility. Then there area > 0 andb ∈ K such that{X(at)} = {bX(t)} in law, but not unique.
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Indeed, we can see by iteration that{X(ant)} = {bnX(t)} holds for any integern. Further-
more, even for a fixeda, there may correspond some distinctb’s. The following proposition
describes the structure of the set of sucha’s, as well as a relation betweena andb. The asser-
tion and the proof are analogous to known results inRn (Lemma 13.8 and Theorem 13.11 in
[12]), except some differences indicated in the subsequent Remark.

We setΓ = Γ (X) := {a > 0 | {X(at)} = {bX(t)} in law for someb ∈ K}.
PROPOSITION 2.1. (i) If b and b′ in K satisfy {bX(t)} = {b′X(t)} in law, then

‖b‖ = ‖b′‖.
(ii) Put a0 := inf(Γ ∩ (1,∞)). Thena0 > 1 andΓ is the cyclic group generated by

a0.
(iii) There existsα > 0 such that for anya ∈ Γ and any correspondingb ∈ K, it holds

thata = ‖b‖α.

PROOF. (i) Suppose‖b‖ > ‖b′‖ and putb̃ = b′/b. Then{X(t)} = {b̃X(t)} in law.
By iteration we have{X(t)} = {b̃nX(t)} for any n ≥ 1, and since‖b̃‖ < 1, we obtain a
contradictionX(t) ≡ 0.

(ii) We shall show thatΓ is a proper closed subgroup of(0,+∞). SupposeΓ =
(0,+∞), fix a ∈ Γ , and takeb ∈ K such that{X(at)} = {bX(t)}. Put‖b‖ = qn. Then by the
assumption we havea′ := a1/(2n) ∈ Γ , and can takeb′ ∈ K such that{X(a′t)} = {b′X(t)}.
Since{(b′)2nX(t)} = {X((a′)2nt)} = {X(at)} = {bX(t)}, (i) implies ‖b′‖ = ‖b‖1/(2n) =
q1/2, which is impossible. Therefore we haveΓ �= (0,+∞).

It is evident that 1∈ Γ . Supposea and a′ belong toΓ . Then there existb and b′
in K such that{X(at)} = {bX(t)} and {X(a′t)} = {b′X(t)} in law. Then it holds that
{X(aa′t)} = {bX(a′t)} = {bb′X(t)}, and thereforeaa′ belongs toΓ . For a ∈ Γ andb ∈
K such that{X(at)} = {bX(t)}, we have{b−1X(t)} = {X(a−1t)} and hencea−1 ∈ Γ .
Assume thatan ∈ Γ , n = 1, 2, . . . , satisfyan → a ∈ (0,+∞), and takebn ∈ K such
that {X(ant)} = {bnX(t)}. SinceX(t) is stochastically continuous,X(ant) converges to
X(at) in law. Suppose{bn} is non-compact inK, and take a subsequence{n(k)}k=1,2,...

of N so that‖bn(k)‖ → +∞. Then we obtainµ̂t (y) = µ̂an(k)t (b
−1
n(k)

y) → µ̂at (0) = 1
for any y ∈ K, which contradicts thatX(t) �≡ 0. Therefore there exists an accumulation
point b ∈ K of {bn}. If we take a subsequence{n(k)} so thatbn(k) → b, then we have
{X(at)} = {limk→∞ bn(k)X(t)} = {bX(t)}, and hencea belongs toΓ . Thus we have proved
thatΓ is a proper closed group ofΓ .

We can takec ∈ (0,+∞)\Γ , and sinceΓ is closed, it holds that(r−1c, rc) ⊂ (0,+∞)\
Γ for somer > 1. If we supposea0 = 1, we can takeθ ∈ (1, r2) ∩ Γ , namely we have
0 < logθ < 2 logr. Then logc − logr < n logθ < logc + logr holds for somen ∈ N.
Therefore it holds thatr−1c < θn < rc. SinceΓ is a group, we haveθn ∈ Γ , a contradiction.

We have{an
0}n∈Z ⊂ Γ , sinceΓ is a closed subgroup of(0,+∞). Suppose that there

existsc ∈ Γ \ {an
0} and taken0 ∈ Z such thatan0

0 < c < a
n0+1
0 . Then we get a contradiction

ca
−n0
0 ∈ Γ , 1 < ca

−n0
0 < a0.
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(iii) Takeb0 ∈ K for which{X(a0t)} = {b0X(t)} holds, and putα := loga0/ log‖b0‖.
Any a in Γ is represented asa = an

0 with some integern, and ifb ∈ K is such that{X(at)} =
{bX(t)}, then we have{bX(t)} = {X(an

0t)} = {bn
0X(t)}. Hence (i) implies‖b‖ = ‖bn

0‖ =
a1/α. �

We call an elementa of Γ anepoch, a correspondingb ∈ K a span, and theα the index
of the semi-stable processX(t).

REMARK 2.2. The indices ofRd -valued semi-stable processes take values in(0, 2]
(Theorem 13.15 in [12]), while for any positive numberα, there exists aK-valued semi-stable
process having indexα. Indeed, for everyα > 0, there is a rotation-symmetric semi-stable
process onK of indexα having characteristic function̂µt (y) = exp(−t‖y‖α) (Proposition
4.1 in [15]).

For aRd -valued semi-stable process, it may occur thata0 = 1 andΓ = (0,∞), in which
case the process is called stable. As seen in (ii) of the above proposition, there exists no stable
process onK.

Let {µt }t≥0 be a one-parameter convolution semigroup of probability measures onK

which converges weakly to theδ-measure at the origin ast → 0. Since the fieldK is totally
disconnected, the characteristic function has a canonical representation

µ̂t (y) = χy(x0) exp

(
t

∫
K

(χy(x) − 1)ν(dx)

)
,(3)

wherex0 ∈ K, andν is aσ -finite measure withν(Nc) < ∞ for any neighborhoodN of the
origin and

∫
K(1−Reχy(x))ν(dx) < ∞ for anyy ∈ K. Thex0 andν are uniquely determined

by {µt }t≥0 (Theorem 10.1 and Remark 1 following Corollary 7.1 in [10]).

LEMMA 2.3. A Lévy processX(t) onK is semi-stable with an epocha and the corre-
sponding spanb if and only if in the canonical representation(3) of its transition probability
µt , it holds thatx0 = 0 andν(b−1dx) = aν(dx).

PROOF. This is immediate fromX0 = 0 a.s.,µ̂at (y) = µ̂t (by), and the uniqueness of
the representation (3). �

3. Absolute continuity, recurrence, and polarity. In this section we will investigate
some properties of semi-stable processes. We begin with showing the absolute continuity of
the transition probabilities.

PROPOSITION 3.1. The transition probabilityµt of a semi-stable processX(t) �≡ 0 on
K is absolutely continuous relative to the Haar measure, and the Radon-Nikodým derivative
is given by

pt (x) =
∫

K

χx(−y)µ̂t (y)dy .

According to general theory of Fourier analysis on groups, the proposition is proved if
we can show that̂µt is integrable (see, e.g., Section 1.7 in [11]).
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PROOF. Leta < 1 be an epoch andb a corresponding span, and put‖b‖ = q−k, k > 0.
Fory ∈ K with ‖y‖ = q−ks−l, s ∈ Z, 0 ≤ l ≤ k − 1, by the canonical representation (3) and
Lemma 2.3 it holds that

|µ̂t (y)| = exp

(
− t

∫
K

(1 − Reχy(x))ν(dx)

)

= exp

(
− ast

∫
K

(1 − Reχy(b
−sx))ν(dx)

)
.

Since 1− Reχy(b−sx) ≥ 0, we proceed to

|µ̂t (y)| ≤ exp

(
− ast

∫
‖x‖=ql+1

(1 − Reχy(b
−sx))ν(dx)

)
.

On the circle{‖x‖ = ql+1}, there existsc < 1 such that Reχy(b
−sx) ≤ c. On the other hand,

there exists 0≤ l0 ≤ k − 1 such thatν(‖x‖ = ql0+1) > 0. Indeed, supposing the contrary,
we haveν(q ≤ ‖x‖ ≤ qk) = 0, and by the self-similarity ofν, ν(K \ {0}) = ∑∞

i=−∞ ν(q ≤
‖bix‖ ≤ qk) = ∑∞

i=−∞ aiν(q ≤ ‖x‖ ≤ qk) = 0, which contradicts thatX(t) �≡ 0. Hence
we have

∫
K

|µ̂t (y)|dy ≤
∞∑

s=−∞

k−1∑
l=0

exp
( − ast (1 − c)ν

(‖x‖ = ql+1))vol
({‖y‖ = q−ks−l})

≤
∞∑

s=−∞
exp

( − ast (1 − c)ν
(‖x‖ = ql0+1))(1 − q−1)q−ks−l0

< ∞ . �

The next proposition gives a criterion for the recurrence and the polarity of one point sets
according to the index.

PROPOSITION 3.2. A semi-stable processX(t) of indexα is recurrent if and only if
α ≥ 1. It visits almost every point with probability1 if and only ifα > 1.

PROOF. Take an epocha < 1, and letb be a corresponding span with‖b‖ = a1/α =:
q−k < 1. Recall Formula (2), and put

hm(t, y) := qmµ̂t (y)1B−m(y) =
∫

Bm

χx(−y)µ̂t (y)dx .

As in the proof of Proposition 3.1, we can take 0≤ l0 ≤ k − 1 such thatν
(‖x‖ = ql0+1

)
> 0.
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First of all, we assume thatα < 1. Let ‖y‖ = qn ≤ q−m, and put−n = ks + l with
s ∈ Z and 0≤ l ≤ k − 1. Then, similarly as in the proof of Proposition 3.1, we have

∫ ∞

0
dt

∫
K

|hm(t, y)|dy

= qm

∫ ∞

0
dt

∫
B−m

∣∣µ̂t (y)
∣∣ dy

≤ qm

∫ ∞

0
dt

∞∑
s=[m/k]

exp
( − ast (1 − c)ν

(‖x‖ = ql0+1))(1 − q−1)q−ks−l0 .

By Fubini’s theorem we proceed to

∫ ∞

0
dt

∫
K

|hm(t, y)|dy

≤ (1 − q−1)qm−l0(1 − c)−1ν
(‖x‖ = ql0+1)−1

∞∑
s=[m/k]

p−k(1−α)s < ∞ .

Therefore, by Proposition 3.1 and Fubini’s theorem, we obtain

∫ ∞

0
µt(Bm)dt =

∫ ∞

0
dt

∫
Bm

dx

∫
K

χ−x(y)µ̂t (y)dy

=
∫ ∞

0
dt

∫
K

hm(t, y)dy < ∞ ,

and thusX(t) is transient providedα < 1.
Let α be arbitrary. By Proposition 3.1 and Fubini’s theorem, we have forλ > 0,

∫ ∞

0
dt

∫
K

exp(−λt)|hm(t, y)|dy

= qm

∫ ∞

0
dt

∫
B−m

exp(−λt)|µ̂t (y)|dy

≤ qm

∫ ∞

0
dt

∞∑
s=[m/k]

(1 − q−1)q−ks−l0 exp
( − t

(
λ + as(1 − c)ν

(‖x‖ = pl0+1)))

= (1 − q−1)qm−l0

∞∑
s=[m/k]

q−ks

λ + as(1 − c)ν
(‖x‖ = pl0+1

)

≤ (1 − q−1)qm−l0λ−1
∞∑

s=[m/k]
q−ks < ∞ .
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Putϕ(y) := ∫
K

(χy(x) − 1)ν(dx). Then Lemma 2.3 impliesϕ(by) = aϕ(y). Applying the
canonical representation (3), Proposition 3.1, and Fubini’s theorem, we obtain that

V λ(Bm) :=
∫ ∞

0
exp(−λt)µt (Bm)dt

=
∫ ∞

0
dt

∫
K

exp(−λt)hm(t, y)dy

= qm

∫
B−m

dy

∫ ∞

0
exp(−λt)µ̂t (y)dt

= qm

∫
B−m

(λ − ϕ(y))−1dy .

(4)

Now we assume thatα ≥ 1. Then it holds that
∫

B−m

Re(−ϕ(y))−1dy ≥
∞∑

s=[m/k]+1

k−1∑
l=0

∫
‖y‖=q−ks−l

Re(−ϕ(y))−1dy

=
∞∑

s=[m/k]+1

k−1∑
l=0

∫
‖y‖=q−l

Re(−ϕ(bsy))−1q−ksdy

=
∞∑

s=[m/k]+1

q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

Re(−ϕ(y))−1dy

= ∞ .

SinceV λ(Bm) is real, the monotone convergence theorem and Fatou’s lemma imply that∫ ∞

0
µt(Bm)dt = lim

λ↓0
V λ(Bm)

= lim
λ↓0

qm

∫
B−m

Re(λ − ϕ(y))−1dy

≥ qm

∫
B−m

Re(−ϕ(y))−1dy = ∞ ,

and henceX(t) is recurrent in caseα ≥ 1.
By the above formula (4), we have

V λ(Bm)

vol(Bm)
=

∫
B−m

Re(λ − ϕ(y))−1dy .

If −n = ks + l, s ∈ Z, 0 ≤ l ≤ k − 1, then Lemma 2.3 implies that∫
‖y‖=qn

Re(λ − ϕ(y))−1dy

= q−ks

∫
‖y‖=q−l

λ − q−αks Reϕ(y)(
λ − q−αks Reϕ(y)

)2 + (
q−αks Im ϕ(y)

)2
dy .

(5)
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Since Reϕ(y) ≤ 0, it holds form < 0 that

V λ(Bm)

vol(Bm)

≤
∞∑

s=[m/k]

k−1∑
l=0

q−ks

∫
‖y‖=q−l

(λ − q−αks Reϕ(y))−1dy

≤
−1∑

s=[m/k]
q−ks

k−1∑
l=0

∫
‖y‖=q−l

(q−αks Reϕ(y))−1dy +
∞∑

s=0

q−ks
k−1∑
l=0

∫
‖y‖=q−l

λ−1dy

=
−1∑

s=[m/k]
q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

(Reϕ(y))−1dy + λ−1(1 − q−k)

∞∑
s=0

q−ks .

If α > 1, the last line converges asm → −∞, and hence a one-point set is not essentially
polar. On the other hand, we derive from (5) that

V λ(Bm)

vol(Bm)
≥

0∑
s=[m/k]+1

q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

qαksλ − Reϕ(y)(
qαksλ − Reϕ(y)

)2 + (
Im ϕ(y)

)2dy

≥
0∑

s=[m/k]+1

q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

− Reϕ(y)(
λ − Reϕ(y)

)2 + (
Im ϕ(y)

)2dy .

If we suppose Reϕ(y) = 0 a.e. onq−(k−1) ≤ ‖y‖ ≤ 1, then, sinceϕ(by) = aϕ(y)

and |χy(x)| ≡ 1, we obtainϕ(y) = 0 a.e. onK. This contradicts the non-degeneracy of
X(t), and hence the last integral is strictly positive. Then we obtain that, in caseα ≤ 1,
V λ(Bm)/vol(Bm) diverges asm → −∞, and as a consequence, a one-point set is essentially
polar. �

4. Limit theorem. This section is devoted to establishing limit theorems for semi-
stable processes. We show first that one dimensional distributions of semi-stable processes
are characterized as limit distributions of suitably scaled sums of independent identically dis-
tributed random variables. We make a further investigation, in what condition the limit gives
a convergence in paths space, and conclude thatsemi-stable processes are realized as limits
of scaled sums in the space of right continuous paths with left limits.

Let ξi , i = 1, 2, . . . , be independent identically distributedK-valued random variables.
For positive numbersan with limn→∞ an = +∞, non-zero elementsbn of K (n = 1, 2, . . . ),
andt > 0, we consider a scaled sumYn(t) := bn

∑[ant ]
i=1 ξi . Here, forh ∈ R, [h] denotes the

maximum integer which does not exceedh.
For a random variableξ , we denote its law byL(ξ).

THEOREM 4.1. A Lévy processX(t) on K is semi-stable if and only if there exist
independent identically distributed random variablesξi , i = 1, 2, . . . , positive numbersa,
an, n = 1, 2, . . . , and non-zero elementsb, bn, n = 1, 2, . . . , in K, such thatan → +∞,
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limn→∞ an+1/an = a−1, limn→∞ bn+1/bn = b, and for anyt > 0 the random variableYn(t)

converges weakly toX(t) asn → ∞.

PROOF. We assume first the existence of suchξi , an, bn, and prove the semi-
selfsimilarity of the limit processX(t). If we put ρ for the law ofξi , then by the assump-
tion we haveρ̂(bny)[ant ] = L̂(bn

∑[ant ]
i=1 ξi)(y) → µ̂t (y) asn → ∞, for everyy ∈ K and

t > 0. Sincebn+1/bn → b, we can verify that

ρ̂(bn+1y)[ant ] = ρ̂(bn(bn+1/bn)y))[ant ] → µt (by) .

On the other hand, the assumptionsan → +∞ andan+1/an → a−1 imply that

ρ̂(bn+1y)[ant ] = (ρ̂(bn+1y)[an+1t ])[ant ]/[an+1t ] → µt(y)a = µat(y) .

Therefore we obtainµt(by) = µat (y) for everyy, and henceX(t) is semi-stable.
Conversely, suppose thatX(t) is semi-stable, and take an epocha < 1 and a correspond-

ing spanb. Let ξi be an i.i.d. random variables such thatL(ξi) = µ1, and putan := a−n,
bn := bn. According to the canonical representation (3), it holds thatµ̂t (y) = exp(tϕ(y))

with ϕ(y) := ∫
K

(χy(x) − 1)ν(dx), andϕ(by) = aϕ(y). Then

L̂(Yn(t))(y) = µ̂1(b
ny)[a−nt ]

= exp(ϕ(bny))[a−nt ]

= exp(ϕ(y))an[a−nt ]

→ µt(y), asn → ∞ ,

and hence for eacht > 0, Yn(t) converges toX(t) in law. �

For a metric spaceS, letDS denote the space of right-continuousS-valued functions on
[0,∞) with left limits. We give a sufficient condition for the relative compactness of the ran-
dom sequenceYn in P(DK), the space of probability measures onDK . As a consequence, we
will see that Theorem 4.1 remains valid if the convergence of one-dimensional distributions
is substituted by the weak convergence of the random variablesYn onDK .

PROPOSITION 4.2. Suppose there existC > 0 and0 < r < 1 such that

sup
n

anP (‖ξi‖ ≥ ‖bn‖−1ql) ≤ Crl(6)

holds for any integerl. Then the sequence{Yn}n≥1 is relatively compact inP(DK).

For a proof, we apply the following criterion (Theorems 8.6 and 8.8 in [2]).

LEMMA 4.3. Let (S, ‖ ‖) be a complete separable metric space, and{Zα(t)} a family
of processes with sample paths inDS . Suppose that

(i) for everyε > 0 and rationalt ≥ 0, there exists a compact setF = F(ε, t) such
that

inf
α

P (Zα(t) ∈ Fε) ≥ 1 − ε ,(7)

whereFε := {x ∈ S | infy∈F ‖x − y‖ < ε},
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(ii) for anyT > 0, there existβ > 0, C′ > 0, andθ > 1 such that

E((‖Zα(t + h) − Zα(t)‖ ∧ 1)β/2(‖Zα(t) − Zα(t − h)‖ ∧ 1)β/2) ≤ C′hθ(8)

holds for allα, 0 ≤ t ≤ T + 1, 0≤ h ≤ t, and such that

lim
δ→0

sup
α

E((‖Zα(δ) − Zα(0)‖ ∧ 1)β) = 0 .(9)

Then{Zα} is relatively compact inP(DS).

PROOF (Proposition 4.2). We shall verify the conditions in Lemma 4.3. By the non-
archimedean property,‖ξi‖ < R, i = 1, . . . , n, implies that

∑n
i=1 ‖ξi‖ < R, for R > 0 and

n ≥ 1. Therefore for any integerl,

P(‖Yn(t)‖ ≥ ql) = P

(∥∥∥∥
[ant ]∑
i=1

ξi

∥∥∥∥ ≥ ‖bn‖−1ql

)

≤ P(‖ξi‖ ≥ ‖bn‖−1ql, 1 ≤ ∃i ≤ [ant])
= 1 − P(‖ξi‖ < ‖bn‖−1ql)[ant ]

≤ [ant]P(‖ξi‖ ≥ ‖bn‖−1ql)

≤ [ant]a−1
n Crl ,

(10)

where we used the inequality 1− xn ≤ n(1 − x) for n ≥ 1 andx ≤ 1. For anyε > 0 and
rationalt > 0, take an integerl = l(ε, t) large enough so thatCrl < εt−1 andql > ε. Put
F = Bl and assumex ∈ Fε. Then we can takey ∈ F for which ‖x − y‖ < ε, and the
non-archimedean inequality implies‖x‖ ≤ max(‖y‖, ‖x − y‖) ≤ ql. Namely, we obtain
Fε = F , and hence

P
(
Yn(t) ∈ Fε

) ≥ 1 − P(‖Yn(t)‖ ≥ ql)

≥ 1 − [ant]a−1
n εt−1 > 1 − ε .

Thus the condition (i) in Lemma 4.3 is cleared.
For the condition (ii), takeβ > −2 logr/ logq. Since the processYn(t) has independent

increments, it follows from (10) that

E((‖Yn(t + h) − Yn(t)‖ ∧ 1)β/2(‖Yn(t) − Yn(t − h)‖ ∧ 1)β/2)

= E((‖Yn(t + h) − Yn(t)‖ ∧ 1)β/2)E((‖Yn(t) − Yn(t − h)‖ ∧ 1)β/2)

≤
∞∑

m=0

q−βm/2P(‖Yn(t + h) − Yn(t)‖ ≥ q−m)

×
∞∑

m=0

q−βm/2P(‖Yn(t) − Yn(t − h)‖ ≥ q−m)

≤ ([an(t + h)] − [ant])([ant] − [an(t − h)])
( ∞∑

m=0

q−βm/2a−1
n Cr−m

)2
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for 0 ≤ h ≤ t. In case 2anh < 1, we have either[an(t + h)] = [ant] or [ant] = [an(t − h)],
and the above expectation is 0. If 2anh ≥ 1, then we see that

([an(t + h)] − [ant])([ant] − [an(t − h)]) ≤ (an(t + h) − an(t − h) + 1)2 ≤ (4anh)2 ,

and then

E((‖Yn(t + h) − Yn(t)‖ ∧ 1)β/2 (‖Yn(t) − Yn(t − h)‖ ∧ 1)β/2)

≤ 16C2
( ∞∑

m=0

(q−β/2r−1)m
)2

h2 .

By the assumptionβ > −2 logr/ logq, this implies (8). Furthermore, (10) leads to

E((‖Yn(δ)‖ ∧ 1)β) ≤
∞∑

m=0

q−βmP(‖Yn(δ)‖ ≥ q−m)

≤
∞∑

m=0

q−βm[anδ]a−1
n Cr−m

≤ Cδ

∞∑
m=0

(q−βr−1)m ,

and hence (9) follows immediately. �

REMARK 4.4. Supposean+1/an → a−1, bn+1/bn → b, and Condition (6). Then, by
Proposition 4.2, there exists a subsequencen(k) of N such that{Yn(k)(t)}k=1,2,... has a limit
in DK , and Theorem 4.1 implies that the limitX(t) is a semi-stable process. It should be
noted that the original sequence{Yn(t)} does not necessarily converge, and as is shown in the
following example, it may have distinct accumulation points more than one.

Suppose thatX(t) is semi-stable with an epocha < 1 and a corresponding spanb. Let
ξi be identically distributed asX(1), and putbn := bn,

an :=




a−n , n = 3k ,

3−kna−n , 3k < n ≤ 2 · 3k ,

(4 − 3−kn)a−n , 2 · 3k < n < 3k+1 , k ∈ N .

It can be verified thatan+1/an → a−1, bn+1/bn → b, and Condition (6) is fulfilled. If we
taken(k) = 3k, then ask → ∞ we have

L̂(Yn(k)(t))(y) = µ̂1(b
3k

y)[a−3k t ] = µ̂1(y)a
3k [a−3k

t ] → µ̂t (y) .

On the other hand, takingn′(k) = 2 · 3k, we obtain

L̂(Yn′(k)(t)(y) = µ̂1(b
2·3k

y)[2a−2·3k ] = µ̂1(y)a
2·3k [2a−2·3k

t ] → µ̂2t (y) .

ThusYn(k)(t) converges toX(t), while Yn′(k)(t) goes toX(2t).



430 K. YASUDA

THEOREM 4.5. Let X(t) be a semi-stable process onK with an epocha and a span
b. If ξi is identically distributed asX(1), an = a−n, andbn = bn, thenYn weakly converges
to X in DK .

PROOF. Recalling the proof of Theorem 4.1, it is clear that for everyt, Yn(t) converges
to X(t). SinceYn(t) has independent increments, the convergence of every finite dimensional
distribution follows, and hence it suffices to show the relative compactness of{Yn} in P(DK).
It follows by Proposition 3.1, Fubini’s theorem, and Formula (2) that

P(‖X(t)‖ ≥ ql) = 1 −
∫

K

dyµ̂t(y)

∫
Bl−1

χx(−y)dx

= ql−1
∫

B−l+1

(1 − µ̂t (y))dy .

Using the canonical representation (3) :µ̂t (y) = exp(tϕ(y)), ϕ(y) = ∫
K

(χy(x) − 1)ν(dx),
the dominated convergence theorem, and (2), we proceed to

t−1P(‖X(t)‖ ≥ ql) = ql−1
∫

B−l+1

t−1(1 − exp(tϕ(y)))dy

t→0→ ql−1
∫

B−l+1

(−ϕ(y))dy

= ql−1
∫

K

ν(dx)

∫
B−l+1

(1 − χy(x))dy

= ql−1
∫

K

q−l+1(1 − 1Bl−1(x))ν(dx)

= ν(Bc
l−1) .

(11)

Let ‖b‖ = q−k and puts := [l/k]. Then, by the self-similarity of the Lévy measureν, we
obtain that

ν(Bc
l−1) ≤ ν(b−sBc

−1) = asν(Bc
−1) ≤ al/ka−1ν(Bc

−1) .(12)

Here note that

P(‖ξi‖ ≥ ‖bn‖−1ql) = P(‖bnX(1)‖ ≥ ql) = P(‖X(an)‖ ≥ ql) .

Then we have

a−l/k sup
n

a−nP (‖ξi‖ ≥ ‖bn‖−1ql) ≤ a−l/k sup
t≤1

t−1P(‖X(t)‖ ≥ ql) ,

and by (11) and (12), this is finite. Therefore (6) is fulfilled, and hence{Yn} is relatively
compact. �
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