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Abstract. We prove a non-existence theorem for proper harmonic morphisms from
weakly asymptotically hyperbolic manifis to hyperbolic manifolds which are? up to the
boundary at infinity.

1. Introduction. Harmonic morphisms between Riemannian manifolds are maps
which pull back (local) harmonic functions to (local) harmonic functions. By a basic result of
Fuglede and Ishihara ([4, 6]) a smooth m@ap M — N between Riemannian manifolds is a
harmonic morphism if and only if it is harmonic ahdrizontally (weakly) conformal, in the
sense that at any pointe M not contained in the critical s€ly = {x € M |d¢, = 0} of ¢,
the restriction of the differential¢, to the orthogonal complement

{(XeTM| (X, Y)=0forall Y € Kerde,}

of Kerd¢, is surjective and conformal onto the tangent spfige) N. The interplay between
the analytical condition (harmonicity) and the geometrical one (horizontally weak conformal-
ity) is a rich source of properties. See [2] for a general account.

In [11] the authors showed that, when > n, there is no proper harmonic morphism
between hyperbolic manifolds which ¢ up to the boundary at infinity (also see [2]). This
contrasts sharply with the situation for harnmomaps, where Li and Tam constructed proper
harmonic maps between such manifolds by usihgnaps between their boundaries at infinity
([7, 8, 12]). Recall thata map : M — N is calledproper if ¢—1(U) N MO is compact for
each compact subsgtin N°, whereM© denotes the set of interior points &f.

Viewing hyperbolic spaces as complete mampact Riemannian manifolds with bound-
ary at infinity, their most natural generalization is weakly asymptotically hyperbolic mani-
folds, i.e., manifolds which are asymptotic to the hyperbolic space in a certain sense (see
Definition 2.3). For instance, the Anti de Sitter-Schwarzschild space is a weakly asymptoti-
cally hyperbolic manifold (see Example 2.4). The study of weakly asymptotically hyperbolic
manifolds has recently attracted a lot of attention [1, 14].

In this note we discuss proper harmonic morphisms from weakly asymptotically hyper-
bolic manifolds. We show that when > n, there is no proper harmonic morphism from an
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(m+1)-dimensional weakly asymptotically hyperbolic maniféitito an(n 4 1)-dimensional
hyperbolic manifoldd”+1 which is C? up to the boundary aff (see Theorem 6.3), general-
izing a result previously known only when the source manifold is a hyperbolic manifold.

2. Weakly asymptotically hyperbolic manifolds. Let M be a compact{m + 1)-
dimensional manifold with bounda®™ = d M. If £ is aC3-smooth function o satisfying
dé # 0 onX™, positive on the interior oM and zero onX™, then¢ is called adefining
function.

DEFINITION 2.1. A Riemannian manifoldM, 3) is calledC?-conformally compact
if ¢ := £25 can beC? extended to the boundary #f, wheret is a defining function ([14]).

Recently the study of conformally compact mifalds has attracted a lot of attention
[3, 10, 13, 15]. Let(M, g) be a conformally compact manifold with boundaxy’. The
restriction ofg to X gives rise to a metric oiX”. This metric changes by a conformal
factor if the defining function is changed, so th&t has a well-defined conformal structure.
We call X™ with this induced conformal structure tleenformal infinity. A straightforward
computation (see [10]) shows that the sectional curvaturgsapproach—|d$|§ onx™.

ExamMPLE 2.2. Using the Poincaré model, &n + 1)-dimensional hyperbolic space
H"* is identified with the(m + 1)-dimensional unit ballB”*+* equipped with the met-
ric § := 4(1 — |x|®~2dx?. ThenH"*1 is conformal compact with the conformal infinity
(S™, [dx?|sn]), where[dx?|sn] = {fdx?|sn| f : S" — RT}. If we take the defining
functioné := (1 — |x|%)/2, theng = dx2. Itis easy to see that

z = 2Dl = (2.

1 S
412 = Zld1x?2 = | 3o xdx’
i

Hence, for the sectional curvature we have
SeqH" = —1=—|d¢[%, .

DEerFINITION 2.3. Aconformally compact manifold, g) is said to beveakly asymp-
totically hyperbolic if |d$|§ = 1 on the boundary o#f for some defining functiog, where
g =E&%3.

Intuitively, for a weakly asymptotically hyperbolic manifold?, g), its sectional curva-

ture approaches that of hyperbolic space at the boundaw. do illustrate this definition, let
us consider the following

EXAmMPLE 2.4 ([14]). The Anti de Sitter-Schwarzchild space (ADS-Schwarzchild
space for short) is the product manifdid, ool x S2 with the metric

dr?

2 2
_ do”,
1+r2—c/r+r @

g =

wherec > 0 is a constant anch is the zero of the function % r2 — ¢/r. This manifold has
two ends with the same asymptotic behavior, so we only analyze the-endo. We change
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coordinates by solving the following ODE:

{ F(t) = —sintir Y () V/1+r2 —¢/r,

r(0)=o00.
Letu(r) = r(¢) sinh(r). A straightforward computation shows that (see [14])

{ cosht)u — sinh()i = \/sinhz(t) +u? — csint (1) /u,
u@ =1.
In the new coordinates, we have
(F(1)d1)? [ u
14+r2—c/r sinh(z)

Taking the defining functio§ := sinh(r) yields g = dt? + u(r)?dw?. A simple calculation
shows that

2
7= } dw? = sinh 2()[d1? + u(t)?do?] .

|d&|% = | coshit)dt | = costf(r)|dt| = costt(r) .
Lettingr — 0O, we obtain
|d&|% = costf(0) = 1.
Therefore the ADS-Schwarzchild spacenisakly asymptotically hyperbolic.
In general, we have the following (see [1, 14])

LEMMA 2.5. Supposethat (M, g) isaconformally compact manifold and go isa met-
ric on X which representstheinduced conformal structure. If (M, g) isweakly asymptotically
hyperbolic, then there is a unique defining function p in a collar neighborhood of X = dM,
satisfying § = sinh~2(p)(dp? + g,) With g, a p-dependent family of metrics on X such that
9plp=0 isthe given metric go.

We call p the special defining function determined byjo. Set
o = Grulo. mdn*dn*

and
g=dp*+,,
wheren” are local coordinates in the collar neighborhood. Then
6 g = sinh™2(p)(dp® + g (p, Mdn*dn*) = sinhi?(p)g.

We rewriteg andg as

m m
9= Z gijdx' ®@dx), §i= Z gijdx' ® dx’
i,j=0 i,j=0
where

Then
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From (1), we have
2 gij = sinh2(p)gi;, g = sintf(p)g"

where(g'/) = (g;;)~1. Itis easy to show that, from (2),

. 9gij —2+«(p) .
i} sinh2 S = g if k=0,
9Gij ) ap sint?(p) i
kK 9a:;
P L sinhr2(p) 2% if k1,
an
where
lim «(p) =0.
p—0
By a direct calculation we have
= 1 ., (9qi 0gij  0Gij
=gkt (290 9%, 09,
i =29 (axf axl  axi
1+¢(p) oo
3 ko — > sk if i=0,
© _ )} Y sinhp) / l
B 1+¢(p) e
k k0
K —8%g; ifi,j>1,
ij sinh(p) Gij L]z

whererl ) (resp.I}5) is the Christoffel symbol of (resp.g) andz (p) := —k (p)/2.

3. Hyperbolic spaces. We regard arin + 1)-dimensional hyperbolic spadé”*! as
the Poincaré model with Riemannian metric

n
}-l = Z }-laﬁdya ®dyﬁ,
o, =0
where

~ 22
@ (ag) = [ 4/(1—r9) 0 }

0 4r?/ (L —r®?)hp,
yo:zr, yP=07, if p>1,

6% are local coordinates off' andh ,,d9” ® d64 is the standard metric o'. Then

supy | (L—1?)?/4 0
® By = [ 0 (1= r2)2/4r2)hre
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where(h*?) = (hqp)~t. From (4) we have

16r
1—12)3 o=p=y
- 0 ifa=0,>1lora=p=0,y>1,
3h_a,3_ 8r(l+r?)
ayV maﬁ if ()[,}321,)/:0,
42 Bdhep
— if >1.
(1—}’2)289)/ aaﬂay_
Then the Christoffel symbol of are given by
2r .
1—}"2 Ifa:ﬁ:y:O’
0 ifa=p=0,y>1 ora=0, g,y=1,
_ r(1+r?) .
(6) FE;Z _—1—}’2 /’l/sy |f()l=0,,3,y21,
1+7r2 .
——68% if «, 8>1,y =0,
r(l—r2) P @, p= Y
Igy if o, B,y>1.

whereI'g’> is the Christoffel symbol with respect té ).

4. Horizontally conformal maps. From now on we assume th@¥, g) is a weakly
asymptotically hyperbolic manifold (see Section 2) &b+, i) is an(n + 1)-dimensional
hyperbolic space. Lep : (M, j) — (H"*1, k) be a horizontally conformal map. Then
satisfies ([2, 16])

7 gl %%

dx! ox/J
for some functiorp : M — [0, co) called thedilation of ¢, where¢ = (¢%). By using (5)
and (7), we have

= 0* ()i

..a¢aa¢ﬁ
o By . j_ 7 ¥
<V¢ ’V¢ >_g 8xi ax]
, (1—1r?)2 g B0
® ¢ 4sinf(p) Ta=p=0.
=30 if a=0,8>1,
, (1—7r?)?

—— nf ifa, p>1.
€ 4r2 sink?(p) hz

It follows that
(1-r??

. dr 0 ;007 0049
i s _("+1)92m-
sintt(p

9 V|2 = . . . . =
®) Vel g ax' axJ axi axi 1
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Substituting (9) into (8), we get
IVo[2/(n+ 1) if a=g=0,
(10) Vo, vePy =10 ifa=0,p8>1,
(IV$12/(n + Dr?)h*f if a, > 1.

5. Proper harmonic maps. By using (2), (3) and (6), we obtain the component of
the tension field (¢) := traceVde of ¢ in the directiorv:

L 0% L ar 0,007 9¢P
. =i _ k_ O
0(¢) =7 (axiax,- i gxk T Tep 5 —axj>
) ) d
(11) = SIﬂf’(p)[Slﬂf’(p)Ar +@Q-m(1+ K(p))—a;

2r sinh(p) 5 rsinh(p)(1+ r2)
it AT v Y e
+ 1—r2 v 1—r2

Ar e il 92%r rk ar
T \oxioxs T TUgxk

is the Laplacian operator ai/, ¢) and

hpg (VOP, ve%} ,

where

|Vr|? = (Vr, Vr),

(VeP, ve1) being defined by (8). Similarly, using (2), (3) and (6), we have the component of
the tension field o in the directior9?”:

[ 9%0P _ 90P - 0% 9P
=i _ k27 p* e
(@) =9 (8xi8xj i gxk Tap ox! 8xj)
. . a0?
(12 =sinh(p) Slnf’(p)AQP—l-(l—M)(lJr{(p))E
- - Proas UafLs « 142
+sinh(p)| sinh(p) Iy, (V6°*, Vo')+2 smr(,o)ﬁ(vn voPr)
r —r
where
. Or 967
13 v VGP = Y —_— .
13 (Vr, )i=g 9t )

Recall that a mag : M — N between Riemannian manifolds is callest monic if its
tension fieldr (¢) vanishes identically. From (11) and (12) we have the following

LEMMA 5.1. Let (M, g) an (m + 1)-dimensional weakly asymptotically hyperbolic

manifoldand ¢ : (M, §) — (H™t1, h) a C2-smooth map. Then ¢ is harmonic if and only if
. ar
sinh(p)Ar + (1 —m)(1+ 4(0))%

2r sinh(p) 5 rsinh(p)(1+ r2)
U v R U L
+ 1—r2 V7l 1—r2

(14
hpg(VOP,V69) =0
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and

0"
sinh(p) AO” + (1 — m)(1+ ¢(p) ——
ap
(15) 1+ r2
+sinh(p) Y (Ve*, Vo' + 2 sinh(p) ———(Vr, VOP) =0
r(l—r?
forp=1,...,n.

LEMMA 5.2. Assumethat¢ : (M, §) — (H"*, h) is C2-smooth up to the boundary
and proper. Then at the boundary, o = 0, we have

or 00°
16 —— =0 =1....n,
(16) op op p=1 n
or\? P wpd
(17) m | 3 = hpe (VOP,VOT) .
PrROOF.  From (15) we have
—m 067 1+r2
18 AOP + = 1 —— 4+ T(Ves, Vo' + 2———(Vr, VOP) =0
(18) + Sy L SO+ T )+ 2V Ve
onM. That s,
-1 20°?

(L= A0 + (r — D= A+ c(p) o

(19 sinh(p) ap
1+r2
1— )P ves, ve'y +2 Vr, VOP) = 0.
+(1—r)lg| )+ r(1+r)< r )
Sinceg is proper, we get
limr=1,
p—0
which implies that
(20) rOnt . ™) =1.
It then follows that
. r—1 o(r—1 or

21 lim — 1+ = = —
(21 m, Slnh(p)( ¢(p)) op o o o

by L'Hospital's rule. Note thatM, ¢) is compact, so that both6” and I} (Ve*, vo') are
bounded. Then, at¢ = 0, (19) yields that

ar 96°
(22) m—1DLL Lo very = 0.
ap dp
From (20), we have
d
(23) | =0, p=1...m.
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Combining this with (13), we get

oj Or 967 _ 9r 967
ax09x/  dp dp

Substituting (23) into (22) gives (16). Also, from (23), we see

2
;or 0 d
(25 I|m |Vr|? = lim g% T <_r>

(24) (Vr, VOP) =

0—0"  dxt dxJ ap
By using (14), we have

1 or 2r 2 r(1+r2)
(26) A—r)Ar+(m— 1)(1+§(p))smf‘(p) ap+1+r|w| =11

By the same argument and using (21), (25) and (26), we obtain (17) at the boyndaby

hpg(VOP, V6) .

6. A non-existencetheorem. A smooth mapf : P — Q between Riemannian man-
ifold is called aharmonic morphism if for any harmonic functiony : U — R defined on an
open subset/ of Q with f~(U) non-empty,y o f : f~1(U) — R is a harmonic func-
tion. The reader is referred to [2] for a detailed account of harmonic morphisms. Harmonic
morphisms can be characterized as follows:

THEOREM 6.1 ([4,6]). Amap¢ : M — N between Riemannian manifoldsis a har-
monic morphismif and only if it is a horizontally (weakly) conformal harmonic map.

LEMMA 6.2. Let (M, g) bean (m+ 1)-dimensional weakly asymptotically hyperbolic
manifoldand ¢ : (M, §) — (H"*1, i) aharmonic morphismwhichis proper and C2-smooth
up to the boundary of M. Then | V¢ |?= 0 on the boundary 9 M, where

n
~ = 89” 89‘7
2._,2
Vo : Z > " e
ru=1lp,qg=1
and ¢ == (¢, ..., ¢").
PROOF. Suppose there exisp € dM such thatVe |2 (xo) # 0. From (17), we get

9 2
m(é) (X0) = hpg (VOP, V) (x0)

2 00P 901
27 thqa—_(x0)+|v¢| (x0)

> |%|2(xo> #0.
Combining this with (16), we have

14
(28 —(@x0) =0, p=1,...,n
ap

Set

) or
2= Y g
~, ot
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Then it follows from (23) that

IVr?=0
Hence, akg we have

|VoP|2:=g" 06 967

ax' oxJ
96P\? &, 00700 & 967 967
Y [ A~ 7
_<a )+Zg v nrill) DI e s
P aop=1 non aop=1 non

from (28) and

L or or 907 907
axi ox) r’g” axt oxd P4

Br) " or or
~(5) + X o
(80 Pyt an* ant

97004, 5 ep a0,

IV|(x0) : =g"

(29

or 2 ~ - m+1 ~ -
= (a—) +V$|? = ——|Vg[*(x0)
0 m
from (27) and (28). On the other hand, sirgés horizontally conformalg = (¢°, ..., ¢")
satisfies (10). Combining this (8), (28) and (29), we get

m

=5 891’ 89‘7 ij a0° 891’
Vpl2= Y g =Y 4

an hpq = hpg
Pyt an 877“ axi dxJ
Ve
=h,,(VOP, Vo) = hP%h
pa ) n+1 rq
n n m+1 -
_ Vol — 2
n+1| ¢l n+1 VeI

Hence,|V¢|2(xo) = 0, sincem > n. This contradicts to our assumption.

THEOREM 6.3. Letm andn be positive integerswithm > n and (M, g) an (m + 1)-
dimensional weakly asymptotically hyperbolic manifold. Then there exists no proper har-
monic morphism from (M, §) to (H"*1, k) whichis C? up to the boundary at infinity of M.

PROOF. Let¢ : (M, ) — (H"L, h) be a proper harmonic map. By Lemma 6.2 we
haveV¢ = 0 at the boundary M, i.e., the image oM under¢ is a point, say;. Put
$(0) = O0’, where0 is a interior point ofM. Since¢ is C2-smooth to the boundary df,
there exists a convex closed sub&eof H"+1 with 9K being totally geodesic hypersurface,
such that)’ € H"*1\ K and¢ (3 B,) C K for sufficient larges, whereB, is the geodesic balll
with radiuse and centeiO ([11]). Since¢ is a harmonic morphism, the composite function
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f := h o ¢ is a subharmonic function, where the functibrs defined by:(y) = d(y, K)
(eg., [5, p. 510]). By the maximum principle arfd g, = 0, we knowf |, = 0 ([5]). Thus

0= f(0)=d(0'", K),
which is a contradiction and completes the proof of the theorem.

Acknowledgments. The authors are grateful to the rederfor his careful reading of the manu-
script and very helpful suggestions.

REFERENCES

[1] L.ANDERSSON ANDM. DAHL, Scalar curvature rigidity for asymptotically locally hyperolic manifolds, Ann.
Global Anal. Geom. 16 (1998), 1-27.

[2] P. BairRD AND J. C. WooD, Harmonic morphisms between Riemannian manifolds, London Math. Soc.
Monogr. (N.S.), Oxford University Press, 2003.

[3] P.T.CHRUSCIEL, J. EZIERSKI AND S. LESKI, The Trautman-Bondi mass of hyperboloidal initial data sets,
Adv. Theor. Math. Phys. 8(2004), 83-139.

[4] B.FUGLEDE, Harmonic morphisms between Riemannian rfads, Ann. Inst. Fourier (Grenoble) 28 (1978),
107-144.

[5] D. GILBARG AND N. S. TRUDINGER, Elliptic partial differential equations of second order, Grundlehren
Math. Wiss. 224, Springer-Verlag, Berlin, 1983.

[6] T. ISHIHARA, A mapping of Riemannian manifolds whichgserves harmonic functions, J. Math. Kyoto.
Univ. 19 (1979), 215-229.

[7] P.LIAND L. F. TAM, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991),
1-46.

[8] P.LiAND L. F. TaM, Uniquess and regularity of proper harmonic maps, Ann of Math. (2) 137 (1993), 167—
201.

[9] P.LIAND J. WANG, Convex hull properties of harmonic maps, J. Differential Geom. 48 (1998), 497-530.

[10] R. MAazzeo, The Hodge conformally of a compact metric, J. Differential Geom. 28 (1988), 309-339.

[11] X. Mo AND Y. SHI, A nonexistence theorem of proper harmonic morphisms between hyperbolic spaces,
Geom. Dedicata 93 (2002), 89-94.

[12] Y. SHI, L. F. TaM AND T. Y. WAN, Harmonic maps on hyperbolic spaces with singular boundary value, J.
Differential Geom. 51 (1999), 551-600.

[13] T. WAN AND Y. XIN, Vanishing theorems for conformally compact manifolds, Comm. Partal Differential
Equations 29 (2004), 1267-1279.

[14] X. WANG, The mass of asymptotically hyperbolic manifolds, J. Differential Geom. 57 (2001), 273-299.

[15] E. WITTEN AND S.-T. Yau, Connectedness of the boundary in the AdS/CFT correspondence, Adv. Theor.
Math. Phys. 3(1999), 1635-1655.

[16] J. C. Woob, The geometry of harmonic maps and morphisinsProceedings of the fourth international
workshop on differential geometry and its applications, (Brasov, Romania, 1999), 306-313, Transilvania
University Press, 1999.

KEY LABORATORY OF PURE AND APPLIED MATHEMATICS
SCHOOL OF MATHEMATICAL SCIENCES

PEKING UNIVERSITY

BEIJING 100871

P.R. CHINA

E-mail address: moxh@pku.edu.cn
ygshi@math.pku.edu.cn



