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Abstract. In this paper, we are concerned withn-dimensional generalized competi-
tive or cooperative systems of ordinary differential equations. A result is established to show
that the flow generated by a generalized cooperative and irreducible system is strongly mono-
tone. Also, it is shown that an analogue of the Poincarè-Bendixon theorem holds for three
dimensional generalized competitive and dissipative systems. Finally, we provide a general-
ized Smale’s construction.

1. Introduction. Since the early works of Kamke [6] and M̈uller [7], monotone dy-
namical system theory has been showing its power in more and more models described by
various differential equations, including ordinary, delay and parabolic differential equations.
When considering models of ordinary differential equations, most frequently used ordering
in the phase space is the one induced by the first orthant inRn. This cone is a natural choice
and is especially plausible and convenient in studying population growth models, due to the
practical demand on positive invariance of the population density. Systems that are monotone
with respect to the ordering induced by this cone have been referred as (classical) cooperative-
competitive systems; see Hirsch’s series of works [1–5]. Such systems can demonstrate simple
dynamics (e.g., generic convergence) under some extra conditions. In the meantime, they can
also allow very complicated behaviour. Indeed, Smale’s construction (see Smale [11]) shows
that any vector field on the standard(n − 1)-simplex inRn can be embedded into a smooth
competitive vector field onRn for which the simplex is an attractor, which implies that the
limiting behaviour of classical competitive systems can be arbitrarily complicated. On the
other hand, from Hirsch [1], one knows that a classical competitive or cooperative system in
Rn behaves essentially like a system inRn−1.

As stated in the book by Smith [14], sometimes it is advantageous to consider other
orthants (other thanRn+ ) as order cones. For example, in analyzing a population model of
n interacting species wherek of which interact with each other in cooperative manner, the
remainingn − k species interact with each other in a cooperative manner, but the interaction
between any two species in different groups is competitive, Smith [12, 13] used the ordering
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induced by the corresponding orthant in which thek coordinates are nonnegative and the
remainingn−k coordinates are non-positive. This shows that by properly choosing an orthant
as the order cone, one may be able to enlarge the class of cooperative and competitive systems.
For a detailed discussion on the other orthant cones, the reader is referred to the book by Smith
[14, pp. 48–50].

The success of Smith [12, 13, 14] encouragespeople to further enlarge the class of
cooperative and competitive systems by considering other cones that are not orthants ofRn.
Recently, Ortega and Sánchez [8] examined the monotonicity of solution flows of ordinary
differential systems with respect to the ordering induced by the so-called “quadratic cones”.
In the special case ofn = 3, the resulting monotonicity was then employed to generalize
the Poincarè-Bendixon theorem and then to obtain the existence of an orbitally stable closed
orbit. The results in Ortega and Sánchez [8] have found an successful application to the
Rauch’s circuit system in Sánchez [9].

While attempts can be kept making to identifying other cones, one can also simultane-
ously work in the other direction, that is, studying cooperative and competitive systems with
respect to an arbitrary ordering (referred throughout this paper as generalized cooperative and
competitive systems). The former requires much knowledge and experience on the models and
is much more involved than the standard ordering inRn. For the latter, Walcher [16] recently
explored suchgeneralized cooperative systems. After clarifying some necessary notions on
and establishing the criteria for verification of such generalized cooperative systems, Watcher
[16] extended M̈uller’s classical monotonicity theorem and Kamke’s comparison theorem to
such generalized cooperative systems.

Walcher [16] has only developed conditions for the systems to generate a monotone flow
with respect to an arbitrary ordering. However, it is well-known that monotonicityonly is not
enough to guarantee some nice properties, and in order for the system to have such nice prop-
erties, stronger conditions are required among which is thestrong monotonicity. For example,
while monotonicity does not lead to the “generic convergence”,strong monotonicity does;
see, e.g., Smith and Thieme [15]. It is known that in the standard ordering case, cooperative
property andirreducibility guarantee the strong monotonicity of the flow of the system. One
naturally asks what about in a case with an arbitrary ordering? The primary objective of this
paper is to introduce the corresponding irreducibility for a system with respect to an arbitrary
ordering, by which we will establish the corresponding strong monotonicity for the solution
flow.

The second objective of this paper is to discuss Smale’s construction, which implies that
classical cooperative andirreducible systems inRn can admit any type of dynamic behaviour
of systems inRn−1, and thus, can demonstrate very complicated dynamics, such as chaos and
strange attractors. Smale’s classical construction is done under the standard ordering and it
heavily depends on the structure of the positive coneRn+. Now that one can generalize the
classical cooperative and irreducible systems to the ones with respect to arbitrary orderings,
and now that one has infinitely many choices for order cones, one may wonder if there is any
cone inRn that will induce an ordering with respect to which the corresponding cooperative
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and irreducible systems can only allow certain types (say, simpler ones) of dynamics. In
other words, are the implications of Smale’s construction ordering dependent? We will give a
negative answer to this question by extending Smale’s construction to a generalized one.

The rest of this paper is organized as follows. In Section 2, we give some key definitions
for generalized competitive, cooperative and irreducible systems, and establish a result (The-
orem 2.1) to show that the flow generated by a generalized cooperative and irreducible system
is strongly monotone. An example and some discussions are also given to illustrate that our
result is different from those in [3, 13] and is a generalization of some results in [8]. Section
3 is devoted to demonstrating that the results for the classical competitive-cooperative and
irreducible systems given by Smale [11] alsohold for generalized competitive or cooperative
systems studied in Section 2.

2. Generalized competitive and cooperative systems. In this section, we introduce
several concepts and notation which will be used throughout this paper.

Let K ⊂ Rn be a closed cone with nonempty interior and denote by IntK the interior
of K in Rn. In what follows,K∗ will be used to denote the dual cone ofK, i.e., K∗ =
{λ ∈ Rn; 〈λ, x〉 ≥ 0 for all x ∈ K}, in which 〈·, ·〉 is the standard inner product inRn. For
x, y ∈ Rn, we denote (i)x ≤K y if and only if y − x ∈ K; (ii) x <K y if and only if x ≤K y

andx �= y; and (iii) x 	K y if and only if y − x ∈ IntK. We say thatU ⊂ Rn is p-convex if
tx + (1 − t)y ∈ U for all t ∈ [0, 1] wheneverx, y ∈ U andx ≤K y.

We need the following key definitions.

DEFINITION 2.1. LetA be ann × n matrix.
(i) A is said to be cooperative with respect toK if for any x ∈ K and anyλ ∈ K∗

with 〈λ, x〉 = 0, we have〈λ,Ax〉 ≥ 0.

(ii) A is said to be irreducible with respect toK if for any x ∈ K\IntK\{0}, there
existsλ ∈ K∗ such that〈λ, x〉 = 0 and〈λ,Ax〉 �= 0 (necessarily,λ ∈ K∗\IntK\{0}).

(iii) A is said to be totally cooperative with respect toK if Ax ∈ IntK for all x ∈
K\{0}.

REMARK 2.1. If−A satisfies the hypotheses of (i) and (iii) respectively, thenA is said
to be competitive with respect toK and totally competitive with respect toK, respectively.

We need the following elementary results whose proofs are contained in [10, 16, 17].

LEMMA 2.1. Let x ∈ K . Then x ∈ IntK if and only if 〈λ, x〉 > 0 for all λ ∈ K∗\{0}.
LEMMA 2.2. Let x ∈ K\{0}. Then there exists λ ∈ K∗ such that 〈λ, x〉 > 0.

Consider ann-dimensional autonomous system of ordinary differential equations

(2.1) ẋ(t) = f (x(t)) ,

wheref : U −→ Rn is a continuously differentiable function andU is an open subset of
Rn. We denote byϕt(x)(ϕ) or ϕ(t, x)) the solution of the initial value problem. It will always
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be assumed that the initial value problem (2.1) withϕ0(x) = ϕ(0, x) = x which is always
assumed to exist globally and uniquely.

DEFINITION 2.2. Letf be defined as above. We say thatf is cooperative (irreducible,
totally cooperative) with respect toK if for every x ∈ U , Df (x) is cooperative (irreducible,
totally cooperative) with respect toK.

THEOREM 2.1. Let U be p-convex and f be cooperative with respect to K . Then ϕ is
monotone. If, in addition, f is irreducible with respect to K, then ϕ is strongly monotone.

PROOF. The first assertion follows from Proposition 1.5 in [16]. We next prove the
second assertion. Suppose thatx, y ∈ U with x >K y and setIt = {λ ∈ K∗ ; 〈λ, ϕt (x) −
ϕt(y)〉 > 0}. Then by Lemma 2.2, we haveIt �= φ for all t ∈ R+. We will show thatIt = K∗
for all t > 0. Otherwise, there existsδ > 0 such thatK∗\Iδ �= {0}. SinceU is p-convex, it
follows that

f (ϕ(δ, x)) − f (ϕ(δ, y)) =
∫ 1

0
Df (sϕ(δ, x) + (1 − s)ϕ(δ, y))(ϕ(δ, x) − ϕ(δ, y))ds .

Sincef is irreducible with respect toK, there existsλ ∈ K∗\Iδ\{0} such that

〈λ, (ϕ(δ, x) − ϕ(δ, y))〉 = 0 and 〈λ,Df (ϕ(δ, x))(ϕ(δ, x) − ϕ(δ, y))〉 > 0 .

Again, sincef is cooperative with respect toK, for the aboveλ ∈ K∗\Iδ\{0}, we have

〈λ,Df (sϕ(δ, x) + (1 − s)ϕ(δ, y))(ϕ(δ, x) − ϕ(δ, y))〉 ≥ 0, s ∈ [0, 1] .

It follows that

〈λ, ϕ′(δ, x) − ϕ′(δ, y)〉 = 〈λ, f (ϕ(δ, x)) − f (ϕ(δ, y))〉 > 0 .

Hence, from〈λ, ϕ(δ, x) − ϕ(δ, y)〉 = 0, there exists sufficiently smallε > 0 such that

〈λ, ϕ(δ − ε, x) − ϕ(δ − ε, y)〉 < 0 ,

from which one can conclude that(ϕ(δ − ε, x)−ϕ(δ − ε, y)) /∈ K, a contradiction to the first
assertion. From Lemma 2.1, we can deduce that the conclusion of the theorem holds true.

REMARK 2.2. A similar result as Theorem 2.1 holds for a nonautonomous system.

REMARK 2.3. If −f satisfies the hypotheses of Theorem 2.1, thenf is said to be
competitive(irreducible, totally competitive) with respect toK. Consider the negative flows
generated by system(2.1), then it is easy to obtain its related results.

REMARK 2.4. We should mention that many results of Hirsch [1–5] are also true for
generalized cooperative or competitive systems. In particular, note that the flow on a compact
limit set of a generalized cooperative or competitive system inRn is topologically equivalent
to a flow on a compact invariant set of a Lipschitz system of differential equations inRn−1,
which implies that generalized competitive or cooperative systems can behave no worse than
general systems of one less dimension. The arguments in the classical competitive or cooper-
ative systems [1] can be literally exploited to prove this.
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REMARK 2.5. In the case wheref is totally cooperative with respect toK, it is easy
to check that the flow generated by the system (2.1) is strongly monotone. A similar result
holds for the case wheref is totally competitive with respect toK.

To compare our results with those obtained in [3] and [13], we give the following illus-
trative example.

EXAMPLE 2.1. Consider the following system of 5-dimensional differential equations

(2.2) ẋ(t) = g(x(t)) ,

wherex(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))
T ∈ R5 and

g(x1, x2, . . . , x5) =




x1 + x2 + sinax3 + 3x5
x1 + 2x2 + x5
x5 + cosbx4
0
2x1 + x2 + 2x5


 ,

wherea ∈ (−3, 3) andb ∈ (−1, 1). SetK1 = {(x1, x2, . . . , x5)
T ∈ R5; x1 ≥ 0, x2 ≥ 0, x5 ≥√

x2
3 + x2

4}, and letΦ be the flow generated by the system (2.2).
First, we will show thatg is cooperative and irreducible with respect toK1. Indeed, a

direct calculation shows that

Dg(x) =




1 1 a cosax3 0 3
1 2 0 0 1
0 0 0 −b sinbx4 1
0 0 0 0 0
2 1 0 0 2


 .

Then for anyy = (y1, y2, . . . , y5) ∈ K1\{0}, we have

Dg(x)y =




y1 + y2 + ay3 cosax3 + 3y5
y1 + 2y2 + y5
y5 − by4 sinbx4
0
2y1 + y2 + 2y5


 .

It follows thatDg(x)y ∈ IntK1, that is,g is totally cooperative with respect toK1. Henceg
is cooperative and irreducible with respect toK1. Therefore, by Theorem 2.1,Φ is strongly
monotone in(R5,K1). However,

(i) if a = b = 0, then from the above discussion, we obtain

Dg(x) =




1 1 0 0 3
1 2 0 0 1
0 0 0 0 1
0 0 0 0 0
2 1 0 0 2


 .
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Hence for anyx ∈ R5, Dg(x) is cooperative with respect toR5+ but not irreducible, that is,
g satisfies the Kamke condition, butg is not irreducible in the sense of Hirsch [3]. Hence we
can only conclude thatΦ is monotone (but not necessarily strongly monotone) in the ordered
space(R5, R5+).

(ii) if a ∈ (−3, 3), b ∈ (−1, 1) andab �= 0, then from the above discussion,a cosax3

as one of the entries ofDg(x) is not sign-stable inR5, that is, the Jacobian matrix ofg is
not sign-stable inR5. Henceg does not satisfy the typeK condition (see [13, Lemma 2.1]).
Therefore, we can not apply the corresponding results of [3] and [13].

In the remaining part of this section, we illustrate that our Theorem 2.1 includes some of
the results obtained in Ortega and Sánchez [8] as a special case. To this end, we first recall that
(2.1) is said to be dissipative if there exists a compact setD ⊂ Rn such that for everyx ∈ Rn,
ϕt(x) = ϕ(t, x) is in D for t sufficiently large. Now, combining Theorem 2.1 and Remark 2.3
with Theorem 1 in [8], a generalization of Theorem 3 in [8] can be easily obtained as follows.

COROLLARY 2.1. Let K3 be an order cone with nonempty interior. Suppose that f is
competitive and irreducible with respect to K3, and there exists a unique equilibrium x = 0
such that the eigenvalues of DF(0) satisfy

λ1 < 0 , Reλ2 > 0 , Reλ3 > 0 .

If (2.1) is dissipative, then there exists at least one orbitally stable closed orbit. Moreover,
every orbit tends to the equilibrium or to a closed orbit as t −→ +∞.

REMARK 2.6. For some applications of Corollary 2.1, we refer the reader to [8, 9].

Let S be ann × n symmetric matrix having one positive eigenvalue andn − 1 negative
eigenvalues. Letλ+ denote the positive eigenvalue ande+ be an eigenvector satisfying

Se+ = λ+e+ , ‖e+‖ = 1 .

Define the set

KS = {ξ ∈ Rn ; 〈Sξ, ξ〉 ≥ 0, 〈ξ, e+〉 ≥ 0} .

SetK = KS , which we call a quadratic cone. As stated in [8],K is an order cone with
nonempty interior. Hence,K induces a strongly ordered space(Rn,K). Let A be ann × n

matrix. Then we shall say thatA is (strictly) S-competitive if there existsλ ∈ R such that
SA+AT S+λS is negative (definite) semidefinite, whereAT denotes the transposed matrix of
A. We shall say thatf is (strictly)S-competitive ifDf (ξ) (ξ ∈ U ) is (strictly)S-competitive.
The flowΦ generated by system (2.1) is said to be stronglyL-monotone (in the past) if for
eachξ ∈ Rn andδ ∈ K\{0} one hasDΦt (ξ)δ � 0 for all t < 0.

We now establish two crucial lemmas.

LEMMA 2.3. Let K∗
S be the dual cone of KS . Then K∗

S = SKS .

PROOF. SinceS is symmetric, there exists an orthogonal matrixT such thatT −1ST =
diag(λ1, λ2, . . . , λn) ≡ S1, whereλ1 = λ+ > 0 andλi < 0, i = 2, . . . , n. By the definition
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of KS , we obtain

KS = {ξ ∈ Rn ; 〈S1T
−1ξ, T −1ξ〉 ≥ 0, 〈T −1ξ, T −1e+〉 ≥ 0} .

HenceKS = T KS1. FromK∗
S1

= S1KS1, whereK∗
S1

denotes the dual cone ofKS1, it follows

thatK∗
S = T K∗

S1
= T S1KS1, that is,K∗

S = T S1T
−1KS = SKS . The proof is complete.

LEMMA 2.4. Let A be an n × n matrix. Then
(i) A is competitive with respect to K if and only if A is S-competitive;
(ii) A is competitive and irreducible with respect to K if and only if A is strictly S-

competitive.

PROOF. We only prove (ii). The proof of (i) is similar, and thus is omitted. Sufficiency
is straightforward. To prove necessity, let us assume thatA is competitive and irreducible
with respect toK. Let K∗ be the dual cone ofK. Then by Lemma 2.3, we obtainK∗ =
SK = {Sξ; ξ ∈ K}. Define the setKξ = {η ∈ K∗; 〈η, ξ〉 = 0}. Then

Kξ =



φ for ξ ∈ IntK ,
{Sξ} for ξ ∈ ∂K\{0} ,
K∗ for ξ = 0 ,

where∂K denotes the boundary ofK. SinceA is competitive and irreducible with respect to
K, for anyξ ∈ K\{0} with 〈Sξ, ξ〉 = 0 (which impliesξ ∈ K∪(−K), we have〈Sξ,Aξ〉 < 0.
Hence, for anyξ ∈ Rn\{0} with 〈Sξ, ξ〉 = 0, we can obtain that〈(SA + AT S)ξ, ξ〉 < 0. It
follows from Lemma 1 and its related illustrations in [8] that there existsλ ∈ R such that
SA + AT S + λS is negative definite, namely,A is strictlyS-competitive. This completes the
proof of the lemma.

An application of Lemma 2.4, together with Theorem 2.1 and Remark 2.3, yields an
immediate consequence below, which is in fact one of the main results of [8], that is, Theorem
2 in [8].

COROLLARY 2.2. Let f and S be defined as above. Then f is S-competitive if and
only if the flow generated by (2.1) is monotone in the past (with respect to K). Moreover, if
f is strictly S-competitive, then the flow is strongly L-monotone.

3. Generalized Smale’s construction. As noted in Section 1, Smale [11] has pointed
out that a smooth system can be embedded in a classical competitive and smooth system. On
the other hand, as mentioned in Remark 2.4, generalized competitive or cooperative systems in
Rn can not behave worse than general systems inRn−1. In consequence, any thoughts that we
can provide a complete description of the dynamicsgenerated by the classical competitive and
smooth systems have to be scrapped. It is natural to ask whether similar conditions are to be
found for generalized competitive and cooperative systems. To be more precise, when an order
coneK is given, is there any hope for cooresponding competitive or cooperative systems to
have simple dynamics? In this section we provide a negative answer to this question. Indeed,
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we present a generalized Smale’s construction and hence show that generalized competitive
or cooperative systems inRn can also not behave simpler than general systems inRn−1.

Before continuing, some definitions and preliminary results are necessary.

DEFINITION 3.1. LetK ⊂ Rn be an order cone with nonempty interior and suppose
thatλ ∈ K∗. We say thatλ is an admitting element ofK if λ ∈ IntK ∩ IntK∗.

REMARK 3.1. It is obvious from the separation theorem that an admitting element of
K must exist. See the proof of Lemma 3.2 below.

DEFINITION 3.2. LetK ⊂ Rn be an order cone with nonempty interior.K is called
an admitting cone ifλ = (0, 0, . . . , 0, 1)T ∈ Rn is an admitting element ofK.

DEFINITION 3.3. LetK1, K2 ⊂ Rn be order cones with nonempty interior. ThenK1

andK2 are said to be isomorphic if there exists an orthogonal transfomationT : Rn → Rn

such thatT K1 = K2. We say that suchT is an isomorphic map from the conesK1 to K2.

LEMMA 3.1. Let A be an n × n matrix. Suppose that K1 ⊂ Rn and K2 ⊂ Rn are
isomorphic order cones and define T as in Definition 3.3. If A are cooperative (irreducible,
totally cooperative) with respect to K1, then T AT −1 are also cooperative (irreducible, totally
cooperative) with respect to K2.

PROOF. We only consider the case whenA is cooperative with respect toK1, the other
cases being similar. LetK∗

1 andK∗
2 denote the dual cones ofK1 andK2, respectively. Since

K2 = T K1 andT is orthogonal, it follows thatK∗
2 = T K∗

1 . Suppose thatA is cooperative
with respect toK1, andλ2 ∈ K∗

2 andx2 ∈ K2 with 〈λ2, x2〉 = 0. Then there existλ1 ∈ K∗
1

andx1 ∈ K1 such that

x2 = T x1 , λ2 = T λ1 .

Thus,

〈λ1, x1〉 = 〈λ2, x2〉 = 0 .

It follows that〈λ1, Ax1〉≥ 0, and hence,〈T λ1,T AT −1T x1〉 ≥ 0. Therefore,〈T λ1, T AT −1x2〉
≥ 0, which implies thatT AT −1 is cooperative with respect toK2. The proof of the lemma is
complete.

REMARK 3.2. It should be noted that “cooperative” in Lemma 3.1 can be replaced by
“competitive”.

LEMMA 3.2. Let K1 ⊂ Rn be an order cone with nonempty interior. Then there exists
an admitting cone K2 in Rn such that K1 and K2 are isomorphic.

PROOF. We assume thatK∗
1 is the dual cone ofK1, and hence IntK∗

1 �= φ. We will
show that IntK1 ∩ IntK∗

1 �= φ. Otherwise, by the convex separation theorem, there exists
µ ∈ Rn\{0} such that〈µ, IntK1〉 ≥ 0 and〈µ, IntK∗

1〉 ≤ 0. Thus,µ ∈ K∗
1 and〈µ,K∗

1〉 ≤ 0. It
follows that〈µ,µ〉 ≤ 0, that is,µ = 0, a contradiction. So we can chooseλ ∈ IntK1 ∩ IntK∗

1 ,
which implies thatλ is an admitting element ofK1. Let an orthogonal transformationT :
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Rn → Rn be defined by
T λ = (0, 0, . . . , 0, 1)T ∈ Rn ,

and
T ({x ∈ Rn ; 〈λ, x〉 = 0}) = {x ∈ Rn ; xn = 0} .

Let K2 = T K1. ThenK2 is an admitting cone inRn, andK1 andK2 are isomorphic. This
completes the proof.

LEMMA 3.3. Let K be an admitting cone in Rn. Then the set {x ∈ K ; xn = 1} is a
closed and bounded set of Rn.

PROOF. SetG = {x ∈ K ; xn = 1}. Clearly,G is a closed set. We next show thatG is
bounded. Otherwise, there existsx(i) ∈ G such that‖x(i)‖ → +∞. Let y(i) = x(i)/‖x(i)‖ ∈
K. Then we havey(i) → y for somey = (y1, . . . , yn) as i → ∞ (if necessary, we may
choose a subsequence ofy(i)). Thus,y ∈ K andyn = 0. Sinceλ = (0, 0, . . . , 0, 1)T ∈ Rn

is an admitting element ofK, it follows that 0= 〈y, λ〉 > 0, a contradiction. This completes
the proof.

LEMMA 3.4. Let f : V → Rn be continuously differentiable, where V is a subset in
Rn, and let M = supx∈V,1≤i,j≤n |(Df (x))ij |. Suppose that M < +∞ and K is an admitting

cone in Rn+1. Then there exists a continuously differentiable function g : V × R1 → Rn+1

such that g is totally cooperative (totally competitive) with respect to K, and g|V ×{0} = f .

PROOF. Let gα : V × R1 → Rn+1 be defined by

gα = (x1, x2, . . . , xn, xn+1) = (f (x1, x2, . . . , xn), αxn+1) .

Then for anyα ∈ R, one sees thatgα is a smooth function andgα|V ×{0} = f . Since

Dgα(x) =
(

Df (x1, x2, . . . , xn) 0
0 α

)
andK is an admitting cone inRn+1, it follows thatλ = (0, 0, . . . , 0, 1) ∈ Rn+1 is an admitting
element ofK. By M < +∞ and Lemma 3.3, one can obtain that there existsα1 > 0 such
that for anyx ∈ V × R, Dgα1(x) is totally cooperative with respect toK. Similarly, there
existsα2 < 0 such that for anyx ∈ V × R, Dgα2(x) is totally competitive with respect to
K. Therefore,gα1 is totally cooperative with respect toK andgα2 is totally competitive with
respect toK. This completes the proof.

In what follows, we will always assume thatK is an order cone with nonempty
interior in Rn+1 andλ ∈ Rn+1. Let 〈λ, λ〉 = 1 and letλ be an admitting element ofK.
SetL = {x ∈ Rn+1 ; 〈λ, x〉 = 0}. In addition, assume thatf : U → L is a continuously
differentiable function, whereU is a subset of the hyperplaneL. We now make the key defi-
nition: HU = {x ∈ Rn+1 ; (x − 〈λ, x〉 · λ) ∈ U} = {x + aλ ; x ∈ U, a ∈ R}.

THEOREM 3.1. Let K and f be defined as above. Suppose that M = supx∈U,1≤i,j≤n

|(Df (x))ij | < +∞. Then there exists a continuously differentiable function g : HU → Rn+1

such that g|U = f , and g is totally cooperative (totally competitive) with respect to K .
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PROOF. By Lemma 3.2 and its argument, there exists an admitting coneK1 and an
orthogonal transformationT : Rn+1 → Rn+1 such thatT (L) = {x ∈ Rn+1 ; xn+1 = 0},
T (λ) = (0, 0, . . . , 0, 1)T , andT K = K1. It follows thatT U ⊂ {x ∈ Rn+1 ; xn+1 = 0}.
Define

∏ : Rn+1 → Rn and
∐ : Rn → Rn+1 by

∏
(x1, x2, . . . , xn+1)

T = (x1, x2, . . . , xn)
T

and
∐

(x1, x2, . . . , xn)
T = (x1, x2, . . . , xn, 0)T , respectively. LetV = ∏

(T U) and letf1 :
V → Rn be defined byf1(x) = ∏ ◦T ◦ f ◦ T −1 ◦ ∐

(x). Then, applying Lemma 3.4 tof1

andK1, we obtain that there existsg1 : V × R1 → Rn+1 such thatg1 is defined as Lemma
3.4. Defineg : HU → Rn+1 by g(x) = T ◦ g1 ◦ T −1(x). Then by Lemma 3.1,g satisfies the
conditions of Theorem 3.1, and hence the conclusion of Theorem 3.1 holds true.

REMARK 3.3. It is worth noting that in Theorem 3.1, ifU is compact inRn+1, then
the conditionM < +∞ automatically holds.

THEOREM 3.2. Let f and g be as in Theorem 3.1. Suppose that the set U is positively
invariant for the system

(3.1) ẋ(t) = f (x(t)) .

Then the set HU = {x ∈ Rn+1 ; (x − 〈λ, x〉 · λ) ∈ U} is invariant for the system

(3.2) ẋ(t) = g(x(t)) .

If, in addition, g is totally cooperative (totally competitive) with respect to K, then U is a
repeller (attractor) for the flows generated by the systems (3.2), and the system (3.2) defined
in U is equivalent to the system (3.1).

PROOF. By the preceding arguments in the proof of Theorem 3.1, we only need to
verify the theorem under the condition thatf andg are defined as in Lemma 3.4. In this case,
we also assume thatU ⊂ Rn is invariant for the system (3.1). From the choice ofg (see
Lemma 3.4), it follows thatHU = {x ∈ Rn+1 ; (x1, x2, . . . , xn+1)} is invariant for the system
(3.2). If g is totally cooperative with respect toK, then from the choice ofg (see Lemma 3.4),
we can obtainα > 0, and henceU × {0} is a repeller for the flows generated by the system
(3.2). If g is totally competitive with respect toK, then we can similarly obtain thatU × {0}
is an attractor for the flows generated by the system (3.2). Finally, again from the choice ofg
(see Lemma 3.4), the system (3.2) defined inU × {0} is equivalent to the system (3.1). The
proof of the theorem is complete.

REMARK 3.4. It is obvious from Theorem 3.2 that the dynamical properties of an
n-dimensional dynamical system can be possessed by an(n + 1)-dimensional generalized
competitive or cooperative system. In other words, an(n + 1)-dimensional generalized com-
petitive or cooperative system at least shares common dynamical properties of a system of
differential equations in one less dimension. Again, according to Remark 2.4 and the discus-
sion in Section 2, the dynamics of ann-dimensional generalized competitive or cooperative
system is essentially equivalent to the dynamics of a general system of one less dimension.
Therefore, we can rule out the possibility of generalized competitive or cooperative systems
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having simple dynamics without any additional hypotheses, which implies that the results of
Smale [11] also hold for generalized competitive or cooperative systems.

THEOREM 3.3. Let K and λ be as in Theorem 3.1. Suppose, for r > 0, that Lr =
{x ∈ Rn+1 ; 〈λ, x〉 = r}. Let f : Lr ∩ K → L be continuously differentiable. Then there
exists a continuously differentiable function g : K → Rn such that g|Lr∩K = f , and g is
totally cooperative (totally competitive) with respect to K .

PROOF. We may assume thatK is an admitting cone inRn+1. Otherwise, using a
similar argument to that for the proof of Theorem 3.1, we can show the conclusion is true. In
this case whereK is an admitting cone,Lr = {x ∈ Rn+1 ; xn+1 = r}. We can chooseη :
R → [0, 1] such thatη is continuously differentiable,η((−∞, r/3]) ≡ 0, η([5r/3,∞)) ≡ 0
andη([2r/3, 4r/3]) ≡ 1. Definegβ : K → Rn+1 by

gβ((x1, . . . , xn, xn+1)) =
(

η(xn+1)f

(
rx1

xn+1
, . . . ,

rxn

xn+1

)
, β(xn+1 − r)

)T

.

Set

f̃ (x1, . . . , xn, xn+1) = η(xn+1)f

(
rx1

xn+1
, . . . ,

rxn

xn+1

)
,

and let
M = sup

x∈Lr∩K,1≤i,j≤n

|(Df̃ (x))ij | .
Clearly, M < +∞. A similar argument as in Lemma 3.4 implies that there existsβ > 0
such thatgβ is totally cooperative with respect toK, andgβ |Lr∩K = f . Similarly, there exists
β < 0 such thatgβ is totally competitive with respect toK, andgβ |Lr∩K = f . This completes
the proof.

The following corollary is in fact the main result of Smale [11].

COROLLARY 3.1. Let K = Rn+1+ , λ = (1/
√

n, . . . , 1/
√

n)T ∈ Rn+1+ , and r =
1/

√
n. Suppose that f in Theorem 3.3 can be represented by f = (f1, . . . , fn+1) and

fi(x1, . . . , xn+1) = xif̃i (x1, . . . , xn+1), where f̃i is continuously differentiable. Then there
exists Mi : Rn+1+ → Rn+1 such that Mi |Lr∩K = f̃i and either ∂Mi/∂xj > 0 for all
i, j ∈ {1, 2, . . . , n} and x ∈ K, or ∂Mi/∂xj < 0 for all i, j ∈ {1, 2, . . . , n} and x ∈ K .
Moreover, the following system

(3.3) ẋi(t) = xi(t)Mi(x(t)), i = 1, 2, . . . , n + 1 ,

is totally cooperative (totally competitive) with respect to K, and �n is a repeller (attractor)
for the system, where �n = {x ∈ Rn+1+ ; ∑

xi = 1}.
PROOF. This corollary is a simple consequence of Theorem 3.3.
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