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Abstract. In this paper, we are concerned withdimensional generalized competi-
tive or cooperative systems of ordinary differential equations. A result is established to show
that the flow generated by a generalized coafree and irreducible system is strongly mono-
tone. Also, it is shown that an analogue oé tRoincare-Bendixon theorem holds for three
dimensional generalized competitive and dissipative systems. Finally, we provide a general-
ized Smale’s construction.

1. Introduction. Since the early works of Kamke [6] andiMer [7], monotone dy-
namical system theory has been showing its power in more and more models described by
various differential equations, including ordinary, delay and parabolic differential equations.
When considering models of ordinary differential equations, most frequently used ordering
in the phase space is the one induced by the first orthaRit.iThis cone is a natural choice
and is especially plausible and convenient in studying population growth models, due to the
practical demand on positive invariance of the population density. Systems that are monotone
with respect to the ordering induced by this cone have been referreldissidal) cooperative-
competitive systems; see Hirsch’s series of works [1-5]. Such systems can demonstrate simple
dynamics (e.g., generic convergence) under some extra conditions. In the meantime, they can
also allow very complicated behaviour. Indeed, Smale’s construction (see Smale [11]) shows
that any vector field on the standagd — 1)-simplex inR" can be embedded into a smooth
competitive vector field ofir” for which the simplex is an attractor, which implies that the
limiting behaviour of classical competitive systems can be arbitrarily complicated. On the
other hand, from Hirsch [1], one knows that a classical competitive or cooperative system in
R" behaves essentially like a systenRfi L.

As stated in the book by Smith [14], sometimes it is advantageous to consider other
orthants (other thaR'} ) as order cones. For example, in analyzing a population model of
n interacting species whereof which interact with each other in cooperative manner, the
remainingn — k species interact with each other in a cooperative manner, but the interaction
between any two species in different groups is competitive, Smith [12, 13] used the ordering
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induced by the corresponding orthant in which theoordinates are nonnegative and the
remaining: —k coordinates are non-positive. This shows that by properly choosing an orthant
as the order cone, one may be able to enlarge the class of cooperative and competitive systems.
For a detailed discussion on the other orthant cones, the reader is referred to the book by Smith
[14, pp. 48-50].

The success of Smith [12, 13, 14] encouragesple to further enlarge the class of
cooperative and competitive systems by considering other cones that are not ortH&hts of
Recently, Ortega and Sanchez [8] examineal ifonotonicity of solution flows of ordinary
differential systems with respect to the ordering induced by the so-called “quadratic cones”.
In the special case of = 3, the resulting monotonicity was then employed to generalize
the Poincare-Bendixon theorem and then to obtain the existence of an orbitally stable closed
orbit. The results in Ortega and Sanchek idve found an successful application to the
Rauch’s circuit system in Sanchez [9].

While attempts can be kept making to identifying other cones, one can also simultane-
ously work in the other direction, that isuslying cooperative and competitive systems with
respect to an arbitrary ordering (referred throughout this paper as generalized cooperative and
competitive systems). The former requires much knowledge and experience on the models and
is much more involved than the standard orderin’in For the latter, Walcher [16] recently
explored suctgeneralized cooperative systems. After ciffing some necessary notions on
and establishing the criteria for verification afch generalized cooperative systems, Watcher
[16] extended MNiller’'s classical monotonicity theorem and Kamke’s comparison theorem to
such generalized cooperative systems.

Walcher [16] has only developed conditions for the systems to generate a monotone flow
with respect to an arbitrary ordering. However, it is well-known that monotoniaity is not
enough to guarantee some nice properties, and in order for the system to have such nice prop-
erties, stronger conditions are required among which isttbag monotonicity. For example,
while monotonicity does not lead to the “generic convergencgfong monotonicity does;
see, e.g., Smith and Thieme [15]. It is known that in the standard ordering case, cooperative
property andrreducibility guarantee the strong monotonicity of the flow of the system. One
naturally asks what about in a case with an arbitrary ordering? The primary objective of this
paper is to introduce the coronding irreducibility for a system with respect to an arbitrary
ordering, by which we will establish the corresponding strong monotonicity for the solution
flow.

The second objective of this paper is to discuss Smale’s construction, which implies that
classical cooperative arideducible systems iR" can admit any type of dynamic behaviour
of systems irR"~1, and thus, can demonstrate very complicated dynamics, such as chaos and
strange attractors. Smale’s classical construction is done under the standard ordering and it
heavily depends on the structure of the positive cBfie Now that one can generalize the
classical cooperative and irredble systems to the ones with respect to arbitrary orderings,
and now that one has infinitely many choices for order cones, one may wonder if there is any
cone inR" that will induce an ordering with respect to which the corresponding cooperative
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and irreducible systems can only allow certain types (say, simpler ones) of dynamics. In
other words, are the implications of Smale’s construction ordering dependent? We will give a
negative answer to this question by extending Smale’s construction to a generalized one.

The rest of this paper is organized as follows. In Section 2, we give some key definitions
for generalized competitive, cooperative anddueible systems, and establish a result (The-
orem 2.1) to show that the flow generated by a generalized cooperative and irreducible system
is strongly monotone. An example and some discussions are also given to illustrate that our
result is different from those in [3, 13] and is a generalization of some results in [8]. Section
3 is devoted to demonstrating that the results for the classical competitive-cooperative and
irreducible systems given by Smale [11] alsuld for generalized competitive or cooperative
systems studied in Section 2.

2. Generalized competitive and cooper ative systems. In this section, we introduce
several concepts and notation which will be used throughout this paper.

Let K ¢ R" be a closed cone with nonempty interior and denote by ltite interior
of K in R". In what follows, K* will be used to denote the dual cone &f, i.e., K* =
{» € R"; (A, x) > O forallx € K}, in which (., -) is the standard inner product R'. For
x,y € R*,we denote (ix <x yifandonlyify —x € K; (ii) x <g yifandonlyifx <g y
andx # y; and (iii) x «g yifandonlyify — x € IntK. We say thaU c R" is p-convex if
tx + (1—1t)y € U forall r € [0, 1] whenever, y € U andx <k y.

We need the following key definitions.

DEFINITION 2.1. LetA be ann x n matrix.
(i) A is said to be cooperative with respectkoif for any x € K and anyr € K*
with (A, x) = 0, we havei, Ax) > 0.
(i) A is said to be irreducible with respect 1o if for any x € K\IntK\{0}, there
existsh € K* such thata, x) = 0 and(A, Ax) # 0 (necessarily) € K*\IntK\{0}).
(i) A is said to be totally cooperative with respectkoif Ax € IntK for all x €
K\{0}.

REMARK 2.1. If—A satisfies the hypotheses of (i) and (iii) respectively, thes said
to be competitive with respect # and totally competitive with respect 16, respectively.

We need the following elementary results whose proofs are contained in [10, 16, 17].
LEMMA 2.1. Letx € K. Thenx € IntK ifand onlyif (1, x) > Ofor all » € K*\{0}.
LEMMA 2.2. Letx € K\{0}. Thenthereexists . € K* suchthat (A, x) > 0.

Consider am-dimensional autonomous system of ordinary differential equations

2.1 X(t) = f(x(),

where f : U — R" is a continuously differentiable function arid is an open subset of
R™. We denote by, (x)(¢) or ¢(t, x)) the solution of the initial value problem. It will always
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be assumed that the initial value problem (2.1) witlix) = ¢ (0, x) = x which is always
assumed to exist globally and uniquely.

DEFINITION 2.2. Letf be defined as above. We say tlfas cooperative (irreducible,
totally cooperative) with respect t& if for every x € U, Df (x) is cooperative (irreducible,
totally cooperative) with respect %.

THEOREM 2.1. Let U be p-convex and f be cooperative with respectto K. Then ¢ is
monoatone. If, in addition, f isirreducible with respect to K, then ¢ is strongly monotone.

PROOF.  The first assertion follows from Proposition 1.5 in [16]. We next prove the
second assertion. Suppose thay € U with x >x y and setl; = {» € K*; (A, ¢:(x) —
¢:(y)) > 0}. Then by Lemma 2.2, we have # ¢ for allr € Ry. We will show thatl, = K*
for all + > 0. Otherwise, there exisés> 0 such thatk*\Is # {0}. SinceU is p-convex, it
follows that

f@,x) — fp@,y) = /01 Df (sp(8,x) + (1 —5)9, y) (@, x) — ¢4, y))ds .
Sincef is irreducible with respect t& , there exists. € K*\ I\ {0} such that
(A, (@8, x) — (@8, y)) =0 and (&, Df (@8, x)) (¢, x) — (8, y)) > 0.
Again, sincef is cooperative with respect &, for the above. € K*\ I5\{0}, we have
(A, Df (s, x) + (1= 95)9@. y)) (g, x) — (6, y)) =0, se[01].
It follows that
(A, @' (8, x) = ¢'(8, »)) = (&, f(9(3, ) = flg(, ) > 0.
Hence, from(x, (8, x) — (8, y)) = 0, there exists sufficiently small> 0 such that
(A, 9@ —ex)—p@B—¢y) <0,

from which one can conclude th@t(s§ — e, x) — (8§ — ¢, y)) ¢ K, a contradiction to the first
assertion. From Lemma 2.1, we can deduce tietbnclusion of the theorem holds true.

REMARK 2.2. A similar result as Theorem 2.1 holds for a nonautonomous system.

REMARK 2.3. If —f satisfies the hypotheses of Theorem 2.1, tlfeis said to be
competitive(irreducible, totally competitivewith respect tak. Consider the negative flows
generated by syste(i2.1), then it is easy to obtain its related results.

REMARK 2.4. We should mention that many results of Hirsch [1-5] are also true for
generalized cooperative or competitive systems. In particular, note that the flow on a compact
limit set of a generalized cooperative or competitive systeiR'ins topologically equivalent
to a flow on a compact invariant set of a Lipschitz system of differential equatioR&ih,
which implies that generalized competitive or cooperative systems can behave no worse than
general systems of one less dims®n. The arguments in the classical competitive or cooper-
ative systems [1] can be literally exploited to prove this.
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REMARK 2.5. Inthe case wherg is totally cooperative with respect 1, it is easy
to check that the flow generated by the system (2.1) is strongly monotone. A similar result
holds for the case whergis totally competitive with respect t& .

To compare our results with those obtained in [3] and [13], we give the following illus-
trative example.

ExampLE 2.1. Consider the following system of 5-dimensional differential equations
2.2 x(1) = g(x()),
wherex (1) = (x1(1), x2(1), x3(t), x4(t), x5(1))” € R® and

X1+ x2 + Sinaxz + 3xs5

X1+ 2x2 + x5
g(x1,x2,...,x5) = | x5+ Ccosbxy ,
0
2x1 4+ x2 + 2x5
whereq € (—3,3)andb € (—1,1). SetK1 = {(x1, x2, ..., x5 7 € R% x1 >0, x> 0, x5 >

Jx2 +x2}, and let® be the flow generated by the system (2.2).
First, we will show thatg is cooperative and irreducible with respectke. Indeed, a
direct calculation shows that

1 1 acosaxs 0 3
1 2 0 0 1
Dgx)=] 0 O 0 —bsinbxg 1
00 0 0 0
2 1 0 0 2

Then for anyy = (y1, y2, ..., y5) € K1\{0}, we have

y1+ y2 + ay3cosaxsz + 3ys

y1+2y2+ s
Dg(x)y = | ys—bysSinbxy
0

2y1+y2 + 2y5

It follows that Dg(x)y € IntKy, that is, g is totally cooperative with respect #;. Henceg
is cooperative and irreducible with respectke. Therefore, by Theorem 2.8 is strongly
monotone iR, K1). However,

() if a =b =0, thenfrom the above discussion, we obtain

1100 3
1 2 0 01
Dgix)y=1 0 0 0 0 1
0O 00 0O
21 0 0 2
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Hence for anye € R®, Dg(x) is cooperative with respect I@i but not irreducible, that is,
g satisfies the Kamke condition, bytis not irreducible in the sense of Hirsch [3]. Hence we
can only conclude thap is monotone (but not necessarily strongly monotone) in the ordered
spaceR®% R3).

(i) if a e (—=3,3),b e (—1,1) andab # 0, then from the above discussian;osaxs
as one of the entries dbg(x) is not sign-stable iR®, that is, the Jacobian matrix gfis
not sign-stable iR®. Hencey does not satisfy the typ& condition (see [13, Lemma 2.1]).
Therefore, we can not apply the corresponding results of [3] and [13].

In the remaining part of this section, we illustrate that our Theorem 2.1 includes some of
the results obtained in Ortega an@&hez [8] as a special case. To this end, we first recall that
(2.1) is said to be dissipative if there exists a compactset R” such that for every € R”,

@ (x) = @(t, x) isin D for ¢ sufficiently large. Now, combining Theorem 2.1 and Remark 2.3
with Theorem 1 in [8], a generalization of Theorem 3 in [8] can be easily obtained as follows.

COROLLARY 2.1. Let K3 bean order conewith nonempty interior. Supposethat f is
competitive and irreducible with respect to K3, and there exists a unique equilibrium x = 0
such that the eigenvalues of D F(0) satisfy

M <0, Reo>0, Rewg>D0.

If (2.1) is dissipative, then there exists at least one orbitally stable closed orbit. Moreover,
every orbit tendsto the equilibrium or to a closed orbit ast —> +o0.

REMARK 2.6. For some applications of Corollary 2.1, we refer the reader to [8, 9].

Let S be ann x n symmetric matrix having one positive eigenvalue and 1 negative
eigenvalues. Let, denote the positive eigenvalue andbe an eigenvector satisfying

Ser =Arer, letll=1.
Define the set
Ks={t eR";(S£,£) >0, (§,e4) >0}

SetK = Kg, which we call a quadratic cone. As stated in [&],is an order cone with
nonempty interior. Hencek induces a strongly ordered spad®, K). Let A be ann x n
matrix. Then we shall say that is (strictly) S-competitive if there existd € R such that
SA+AT S +1S is negative (definite) semidefinite, wheté denotes the transposed matrix of
A. We shall say thaf is (strictly) S-competitive ifDf (§) (¢ € U) is (strictly) S-competitive.
The flow @ generated by system (2.1) is said to be strorigijnonotone (in the past) if for
eacht € R andé € K\{0} one hasD®,(£)é > Oforallt < 0.

We now establish two crucial lemmas.

LEMMA 2.3. Let K§ bethedual coneof K. Then K = SK.

PROOF.  SinceS is symmetric, there exists an orthogonal maffisuch tha?’ 157 =
diagA1, A2, ..., &,) = S1, wherea; = A, > 0andi; < 0,i = 2,...,n. By the definition
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of Kg, we obtain
Ks={ eR; (1T, 77%%) >0, (77, T 2ey) > 0}.

HenceKs = T K. FromK;‘l = $1Ks,, whereK;1 denotes the dual cone @fs,, it follows
thatK§ = TK:;1 =T $1Ks,, thatis, K¢ = TS1T~1Ks = SKs. The proof is complete.

LEMMA 2.4. Let A beann x n matrix. Then

(i) A iscompetitive with respect to K if and only if A is S-competitive;

(i) A is competitive and irreducible with respect to K if and only if A is strictly S-
competitive.

PROOF.  We only prove (ii). The proof of (i) is similar, and thus is omitted. Sufficiency
is straightforward. To prove necessity, let us assume Ahit competitive and irreducible
with respect toK. Let K* be the dual cone oK. Then by Lemma 2.3, we obtaiki* =
SK = {S&; & € K}. Definethe seK: = {n € K*; (n,€) = 0}. Then

) for & € IntK
Ke = {{S&} for £ € 9K\{O},
K* for &=0,

whered K denotes the boundary &f. SinceA is competitive and irreducible with respect to
K, foranyé € K\{0} with (S&, &) = O (whichimpliest € KU(—K), we have/S&, A¢) < 0.
Hence, for any € R\ {0} with (S&, £) = 0, we can obtain tha(SA + AT $)£, &) < 0. It
follows from Lemma 1 and its related illustrations in [8] that there exists R such that
SA 4+ ATS + 1S is negative definite, namely, is strictly S-competitive. This completes the
proof of the lemma.

An application of Lemma 2.4, together with Theorem 2.1 and Remark 2.3, yields an
immediate consequence below, which is in fact one of the main results of [8], that is, Theorem
2in[8].

COROLLARY 2.2. Let f and S be defined as above. Then f is S-competitive if and
only if the flow generated by (2.1) is monotone in the past (with respect to K). Moreover, if
[ isstrictly S-competitive, then the flow is strongly L-monotone.

3. Generalized Smal€'sconstruction. As noted in Section 1, Smale [11] has pointed
out that a smooth system can be embedded in a classical competitive and smooth system. On
the other hand, as mentioned in Remark 2.4, generalized competitive or cooperative systems in
R can not behave worse than general systen®&ir. In consequence, any thoughts that we
can provide a complete description of the dynargieserated by the classical competitive and
smooth systems have to be scrapped. It is natural to ask whether similar conditions are to be
found for generalized competitive and cooperative systems. To be more precise, when an order
conek is given, is there any hope for cooresponding competitive or cooperative systems to
have simple dynamics? In this section we provide a negative answer to this question. Indeed,
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we present a generalized Smale’s construction and hence show that generalized competitive
or cooperative systems R* can also not behave simpler than general systerR§A.
Before continuing, some definitions and preliminary results are necessary.

DerFINITION 3.1. LetK C R" be an order cone with nonempty interior and suppose
thati € K*. We say thab is an admitting element of if A € IntK N IntK*.

REMARK 3.1. Itis obvious from the separation theorem that an admitting element of
K must exist. See the proof of Lemma 3.2 below.

DEFINITION 3.2. LetK C R" be an order cone with nonempty interid. is called
an admitting cone if. = (0,0, ...,0, 1) € R" is an admitting element of .

DEerFINITION 3.3. LetKi, K2 C R" be order cones with nonempty interior. ThEn
and K> are said to be isomorphic if there exists an orthogonal transfométioR” — R”
such thatl' K1 = K2. We say that suclf’ is an isomorphic map from the con&g to K».

LEMMA 3.1. Let A beann x n matrix. Suppose that K1 ¢ R" and K, C R" are
isomorphic order cones and define T as in Definition 3.3. If A are cooperative (irreducible,
totally cooperative) with respect to K1, then T AT~ are also cooperative (irreducible, totally
cooperative) with respect to K.

PROOF. We only consider the case whdns cooperative with respect %1, the other
cases being similar. Let] andK; denote the dual cones &h and K>, respectively. Since
K> = TKjy andT is orthogonal, it follows thakK; = T K;. Suppose tha# is cooperative
with respect toK1, andi; € K5 andxz € Kz with (A2, x2) = 0. Then there exist; € K7
andxi € K1 such that

xo=Tx1, Aix=TA.
Thus,
(A1, x1) = (A2, x2) = 0.

It follows that(r1, Ax1) > 0, and henceT'A1,T AT ~1Tx7) > 0. Therefore(Tr1, TAT ~1xp)
> 0, which implies tha” AT ~1 is cooperative with respect t&,. The proof of the lemma is
complete.

REMARK 3.2. It should be noted that “cooperative” in Lemma 3.1 can be replaced by
“competitive”.

LEMMA 3.2. Let K1 C R" bean order cone with nonempty interior. Then there exists
an admitting cone K2 in R" such that K1 and K> areisomorphic.

PROOF. We assume thak] is the dual cone oK1, and hence IK; # ¢. We will
show that InK; N IntK] # ¢. Otherwise, by the convex separation theorem, there exists
w € R™\{0} such thafu, IntK1) > 0 and{u, Intk}) < 0. Thus,u € K7 and(u, K7) < 0. It
follows that(u, u) < 0, thatis,u = 0, a contradiction. So we can choose IntK1NIntK,
which implies thath is an admitting element ok;. Let an orthogonal transformatich :
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R" — R" be defined by
T)r=(0,0,...,0,1)7 eR",
and
T{xeR';(A,x)=0)={xeR";x, =0}.
Let Ko = TKj. ThenkK is an admitting cone iiR", andK1 and K> are isomorphic. This
completes the proof.

LEMMA 3.3. Let K bean admitting conein R". Thentheset {x € K; x, = 1} isa
closed and bounded set of R".

PROOF. SetG = {x € K ; x, = 1}. Clearly,G is a closed set. We next show thats
bounded. Otherwise, there exist¥ € G such thatjx® || — +oo. Let y@ = x@/||xD| e
K. Then we havey) — y for somey = (y1,..., y,) asi — oo (if necessary, we may
choose a subsequenceydf). Thus,y € K andy, = 0. Sincex = (0,0,...,0,1)7 ¢ R*
is an admitting element of , it follows that 0= (y, ») > 0, a contradiction. This completes
the proof.

LEMMA 3.4. Let f: V — R" be continuoudly differentiable, where V is a subset in
R",andlet M = SURcey 1<i, j<n (DS (X))ijl. Suppose that M < +oo and K is an admitting
conein R**1. Then there exists a continuously differentiable function g : V x R? — R*+1
such that g istotally cooperative (totally competitive) with respect to K, and gy xj0) = f.

PROOF. Letg, : V x Rt — R"*1 be defined by

gOl = (-xls -x27 ety -xl”lv xn+l) = (f(-x17 x21 ceey xn)v a'xn+l) .
Then for anyx € R, one sees that, is a smooth function ang,|v «0; = f. Since

u) = (P02 )
andkK is an admitting cone iR"*+1, it follows thatr = (0,0, ..., 0, 1) € R"tlis an admitting
element ofK. By M < +o0 and Lemma 3.3, one can obtain that there exigts- 0 such
that for anyx € V x R, Dgq,(x) is totally cooperative with respect &. Similarly, there
existsap < 0 such that for any € V x R, Dg,,(x) is totally competitive with respect to
K. Therefore gy, is totally cooperative with respect & and g, is totally competitive with
respect tak . This completes the proof.

In what follows, we will always assume tha& is an order cone with nonempty
interior in R**1 andx € R*™L. Let (x,A) = 1 and letx be an admitting element of .
SetL = {x € R*; (x,x) = 0}. In addition, assume that : U — L is a continuously
differentiable function, wher# is a subset of the hyperplade We now make the key defi-
nition: Hy = {x e R*™1; (x = (A, x)-A) e U} ={x+ar; x € U,a € R}.

THEOREM 3.1. Let K and f be defined as above. Suppose that M = SUP.cy 1<, j<n
[(Df (x))ij| < 4o0c. Then there exists a continuously differentiable function g : Hy — R+l
suchthat g|y = f, and ¢ istotally cooperative (totally competitive) with respect to K.
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PrOOF. By Lemma 3.2 and its argument, there exists an admitting donand an
orthogonal transformatioff : R**1 — R**1 such that' (L) = {x € R**1; x,41 = 0},
T(\) = (0,0,...,0,1)7, andTK = Kj. It follows that7U c {x € R"*1;x,,1 = O}.
Define]] : R+l 5 Re and[][ : R" — R+l py [T, x2, .. xpr )T = (k1. x2, .. x0) T
and] [(x1, x2, ..., x,)T = (x1,x2, ..., x,, 07, respectively. Lev = [[(TU) and letf; :
V — R" be defined byfi(x) = [JoT o f o T~ o ]](x). Then, applying Lemma 3.4 tf;
and K1, we obtain that there existg : V x Rt — R**1 such thatg is defined as Lemma
3.4. Defineg : Hy — Rl by g(x) = T o g1 0 T~1(x). Then by Lemma 3.1y satisfies the
conditions of Theorem 3.1, and hence the conclusion of Theorem 3.1 holds true.

REMARK 3.3. It is worth noting that in Theorem 3.1, if is compact inR"*1, then
the conditionM < +oo automatically holds.

THEOREM 3.2. Let f and g beasin Theorem 3.1. Suppose that the set U is positively
invariant for the system

(CX) X)) = f(x@).

Thentheset Hy = {x € R™™L; (x — (A, x) - 1) € U} isinvariant for the system

(3.2 x(t) = g(x(1)).

If, in addition, g is totally cooperative (totally competitive) with respect to K, then U isa
repeller (attractor) for the flows generated by the systems (3.2), and the system (3.2) defined
in U isequivalent to the system (3.1).

PROOF. By the preceding arguments in the proof of Theorem 3.1, we only need to
verify the theorem under the condition thatandg are defined as in Lemma 3.4. In this case,
we also assume thdt c R” is invariant for the system (3.1). From the choicegofsee
Lemma 3.4), it follows thaHy = {x € R**1; (x1, x2, .. ., xp+1)} is invariant for the system
(3.2). If g is totally cooperative with respect #0, then from the choice of (see Lemma 3.4),
we can obtainr > 0, and hencé/ x {0} is a repeller for the flows generated by the system
(3.2). If g is totally competitive with respect t&, then we can similarly obtain that x {0}
is an attractor for the flows generated by the system (3.2). Finally, again from the chgice of
(see Lemma 3.4), the system (3.2) defined/irx {0} is equivalent to the system (3.1). The
proof of the theorem is complete.

REMARK 3.4. It is obvious from Theorem 3.2 that the dynamical properties of an
n-dimensional dynamical system can be possessed ly anl)-dimensional generalized
competitive or cooperative system. In other words(:an- 1)-dimensional generalized com-
petitive or cooperative system at least shares common dynamical properties of a system of
differential equations in one less dimension.afty according to Remark 2.4 and the discus-
sion in Section 2, the dynamics of ardimensional generalized competitive or cooperative
system is essentially equivalent to the dynamics of a general system of one less dimension.
Therefore, we can rule out the possibility of geadezed competitive or cooperative systems
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having simple dynamics without any additiongilotheses, which implies that the results of
Smale [11] also hold for generalized competitive or cooperative systems.

THEOREM 3.3. Let K and A be asin Theorem 3.1. Suppose, for r > 0, that L, =
{x e "1, (A, x) = r}). Let f : L, N K — L be continuously differentiable. Then there
exists a continuoudly differentiable function g : K — R" such that g|.,nx = f, and g is
totally cooperative (totally competitive) with respect to K.

PROOF. We may assume thak is an admitting cone irR"*1. Otherwise, using a
similar argument to that for the proof of Theorem 3.1, we can show the conclusion is true. In
this case wher& is an admitting conel, = {x € R”+l;x,1+1 = r}. We can choose :

R — [0, 1] such that; is continuously differentiable;((—oo, r/3]) = 0, n([5r/3, 0)) = 0
andn([2r/3, 4r/3]) = 1. Definegg : K — R**1 by

rxa Xy r
gp((x1, ..oy Xn, Xnt1)) = <77(xn+1)f( ) s B(xnt1 — r)) .

Xn+1 Xn+1
Set

- rx1 rXn
SO, xn, xpg1) =g f seees T |

Xn4+1 ' Xn+1
and let

M = sup  [(DF )il
xeL,NK,1<i,j<n

Clearly, M < +o0. A similar argument as in Lemma 3.4 implies that there exfsts 0
such thaigg is totally cooperative with respect 0, andgg|.,nx = f. Similarly, there exists
B < 0 such thaty is totally competitive with respect t&, andgg|,nx = f. This completes
the proof.

The following corollary is in fact the main result of Smale [11].

COROLLARY 3.1. Let K = R 4 = A//m, ..., 1/ymT e R and r =
1/4/n. Suppose that f in Theorem 3.3 can be represented by f = (f1,..., fu+1) and
fi(x1y ...y Xne1) = Xi fi(x1, ..., Xns1), Where f; is continuously differentiable. Then there
exists M; : R — R+ such that Mi|r,nx = f; and either 9M;/dx; > O for all
i,jef{l2...,njandx € K,or 9M;/dx; < Oforalli,j € {1,2,...,n} andx € K.
Moreover, the following system

(3.3) () = x (OMi(x(0), i=1,2,....,n+1,

istotally cooperative (totally competitive) with respect to K, and A" isarepeller (attractor)
for the system, where A" = {x € U™ Y x; = 1).

PROOF  This corollary is a simple consequence of Theorem 3.3.
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