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Abstract. We extend the well-known results about the process of confluence for the
Gauss hypergeometric differential equation to the case of general hypergeometric systems.
We see that the process of confluence comes from the geometry of the set of regular elements
of the Lie algebra of complex general linear group. As a consequence, we give a geometric
and group-theoretic view on the process of confluence for classical special functions.

1. Introduction. Inspired by the works of Aomoto [1] and Gel’fand et al. [7, 8, 9],
we introduced in [16], for any given partitionλ of n, the general hypergeometric functions of
typeλ defined on the spaceZ of r × n complex matrices of rankr, wherer andn are positive
integers withr < n. They are defined as solutions of the system of partial differential equa-
tions onZ called thegeneral hypergeometric system of type λ. Outside the singular locus of
the system, its solution has the integral representation, which is the “Radon transform” of the
character of the universal covering group of the maximal abelian subgroupHλ of GL(n,C)
(see Subsection 2.2). In the case where the partition ofn is λ = (1, . . . ,1), our hypergeomet-
ric function coincides with the general hypergeometric function due to Aomoto and Gel’fand
([1, 7]), which is a generalization of Gauss hypergeometric function, whose system of partial
differential equations has only regular singularities. In the case whereλ = (n), the general
hypergeometric function has already been defined and studied in [9] and it gives a generaliza-
tion of the classical Airy function Ai(x). It is well-known [11] that the Airy function has the
integral representation

Ai(x) = 1

2πi

∫
∆

ext−t3/3 dt ,

where the path of integration∆ starts from∞ in a sector in which integrand is exponentially
recessive and goes to∞ in another recessive sector (cf. [15]). This integral can be viewed as
a simple example of an oscillatory integral whose phase functionxt − t3/3 is a deformation
of the simple singularity−t3/3 ofA2-type (cf. [3]). The differential equation which charac-
terizes Ai(x) as its solution has only one singular pointx = ∞ of irregular type, unlike the
case of the Gauss hypergeometric differential equation. For the partitionsλ �= (1, . . . ,1), (n),
our functions provide generalizations of special functions of one variable such as Kummer’s
confluent hypergeometric function, the Bessel function and the Hermite-Weber function. In
fact, the special functions, Gauss, Kummer, Bessel, Hermite-Weber and Airy are obtained as
the general hypergeometric functions forr = 2, n = 4 in the cases where the partitions of 4
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are(1,1,1,1), (2,1,1), (2,2), (3,1) and(4), respectively. See [2, 4, 10, 11] for the classi-
cal special functions mentioned above, and see also [10, 19] for a relation with the nonlinear
integrable systems such as Painlevé equations and Garnier systems.

For the differential equations of these special functions, a kind of limit process, called
theconfluence of singularities, is known, and it enables us to obtain one special differential
equation from another one as illustrated in the following diagram.

Bessel

↗ ↘
Gauss−→Kummer Airy(1.1)

↘ ↗
Hermite

For example, the process of confluence “Gauss→ Kummer” is described as follows (cf.
[2]). The Gauss hypergeometric differential equation is

x(1 − x)u′′ + {c− (a + b + 1)x}u′ − abu = 0 , ′ = d/dx .(1.2)

This equation, considered inP1, has three regular singular points ofx = 0,1,∞. For the
equation (1.2), we make the change of variable and parameters

x = εξ , b = 1/ε .(1.3)

Then the equation for(ξ, u) is

ξ(1 − εξ)
d2u

dξ2 + (c − ε(a + ε−1 + 1)ξ)
du

dξ
− au = 0 .(1.4)

We see that the coefficients ofd2u/dξ2, du/dξ andu depend holomorphically onε atε = 0.
Taking the limitε → 0 in the equation (1.4), we obtain the Kummer’s confluent hypergeo-
metric equation

ξ
d2u

dξ2 + (c − ξ)
du

dξ
− au = 0 .(1.5)

Notice that by the change of variable (1.3) the singular pointsx = 0,1,∞ of (1.2) turn
into the singular pointsξ = 0,1/ε,∞ of (1.4), respectively, and that, asε tends to 0, the
singular pointsξ = 1/ε andξ = ∞ approach to each other and are amalgamated into the
irregular singular pointξ = ∞ of (1.5). The name “confluence of singularities” comes from
this phenomenon.

It is natural to ask if one can extend the “process of confluence” to the general hyperge-
ometric system and if one can understand the geometrical meaning of the above classically
known process for the Gauss differential equation.

So the objective of this paper is summarized as follows:
• To construct explicitly the limit process by which all the general hypergeometric

system for various partitionλ �= (1, . . . ,1) can be obtained from the system of typeλ =
(1, . . . ,1).We call this limit process theprocess of confluence.
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• To clarify a relation between the geometry of stratification for the set of regular ele-
ments of the Lie algebragl(n; C) and the process of confluence for the general hypergeometric
system.

Indeed, our construction will give directly the process of confluence of singular points of
the Gauss hypergeometric equation to Kummer’s confluent hypergeometric equation ([17]).

In order to realize our purpose, we need to enlarge slightly the class of systems of hyper-
geometric type given in [16] so that we can consider the systems associated with centralizers
of regular elements ofgl(n,C), not only the systems associated with the Lie algebrahλ (see
Definition 2.1).

This paper is organized as follows. In Section 2 we give the definition of the general
hypergeometric systems onZ, each of which is determined by the centralizerhb of a regular
elementb ∈ gl(n,C) and a weightα of hb.We also recall results on the integral representation
of its solutions. In Section 3 we recall results on a stratification in the setB of regular elements
of gl(n,C) and describe explicitly the relation of adherence among the strata ofB and the
properties of each stratum. In Section 4, we give key lemmas, which will be proved in the last
section. We study in Section 5 the relation of adherence among the centralizershb (b ∈ B) in
an explicit way. This explicit construction yields a process of confluence among the general
hypergeometric systems (Theorem 5.3). Thus we see that the process of confluence among our
systems is nothing but the explicit realization of the relation of adherence among the strata
of regular elements ofgl(n,C) and among the maximal abelian Lie subalgebras which are
defined as the centralizers of regular elements. In Section 6, we shall show that the process of
confluence for the general hypergeometric systems also provides the confluence on the level of
integrands of the integral representations. In Section 8, we discuss the process of confluence
for the special differential equations in (1.1) and for Appell’s hypergeometric system (F1) in
detail in the framework of general hypergeometric systems using Theorem 5.3. Parts of the
results of this paper have been announced in [17].

We thank the referee for valuable comments for the improvement of this paper. We thank
also Professors M. Noumi and T. Sasaki for helpful discussion with them. The first author
thanks Professor F. Pham and the members of Université de Nice for their hospitality during
his stay in Nice. A part of this paper was written in Nice.

2. General hypergeometric systems. In this section, we reformulate general hyper-
geometric systems for centralizers of regular elements ofgl(n,C) and their weights.

2.1. Hypergeometric systems. Letb ∈ gl(n,C) be a regular element, namely, the
dimension of its centralizer{X ∈ gl(n,C) | [b,X] := bX − Xb = 0} is equal ton, the rank
of gl(n,C). If b hasl distinct eigenvaluesb(0), . . . , b(l−1) of multiplicitiesλ0, . . . , λl−1 with
λ0 ≥ λ1 ≥ · · · ≥ λl−1 andλ0 + · · · + λl−1 = n, then it is expressed as

b = (Ad gb)((b(0)Iλ0 +Λλ0)⊕ · · · ⊕ (b(l−1)Iλl−1 +Λλl−1))(2.1)

for somegb ∈ GL(n,C) and its centralizer, denoted byhb, is given as

hb = (Ad gb)(j(λ0)⊕ · · · ⊕ j(λl−1)) .
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Here, for any positive integerm, Im denotes the identity matrix of sizem,Λm=(δi+1,j )0≤i,j<m
is the shift matrix of sizem and

j(m) =
{ ∑

0≤i<m
xiΛ

i
m

∣∣∣∣ xi ∈ C
}
.

We consider the sequenceλ := (λ0, . . . , λl−1) as a partition ofn and denote byYn the set of
partitions ofn. Forλ = (λ0, . . . , λl−1) ∈ Yn, we calll the length of λ and denote it by	(λ).
Let B be the set of regular elements ofgl(n,C) andBλ, for λ = (λ0, . . . , λl−1) ∈ Yn, the
subset ofB whose element hasl distinct eigenvalues of multiplicitiesλ0, . . . , λl−1. Then

B =
⊔
λ∈Yn

Bλ (disjoint union).(2.2)

If we use the notation

hλ := j(λ0)⊕ · · · ⊕ j(λl−1) ,(2.3)

then we have

hb = (Ad gb)hλ .

Note thathλ = hb whengb = In.
Now let r andn be positive integers withr < n andZ the set ofr × n complex matrices

of rank r. We denote byz = (zij )0≤i<r,0≤j<n the coordinates ofZ, and by∂z = (∂ij ) the
matrix whose(i, j) entry is the partial derivation∂ij := ∂/∂zij .

Let h∗
b be the dual space ofhb and〈· , ·〉 the canonical bilinear pairingh∗

b × hb → C.

DEFINITION 2.1. For a regular elementb of gl(n,C) andα ∈ h∗
b satisfying the condi-

tion

〈α, In〉 = −r ,(2.4)

the following system of partial differential equations


LXu := {Tr(zX t∂z)− 〈α,X〉}u = 0 , X ∈ hb ,

MYu := Tr(Y z t∂z + Y )u = 0 , Y ∈ gl(r,C) ,

�ii′,jj ′u := {∂ij ∂i′j ′ − ∂ij ′∂i′j }u = 0 , 0 ≤ i, i ′ < r , 0 ≤ j, j ′ < n

(2.5)

is called thegeneral hypergeometric system associated with(α, hb) (GHG system for short).
Let C[zij , ∂ij (0 ≤ i < r,0 ≤ j < n)] be the Weyl algebra andI(α; hb) its left ideal
generated byLX (X ∈ hb),MY (Y ∈ gl(r,C)) and�ii′,jj ′ (0 ≤ i, i ′ < r,0 ≤ j, j ′ < n). We
often identify the system with the left idealI(α; hb).

REMARK 2.1. (2.4) is a compatibility condition of the system. Indeed, ifX = In and
Y = Ir in (2.5), the equationsLXu = 0 andMYu = 0 coincide with each other and then
〈α, In〉 = −Tr(Ir ) = −r.
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REMARK 2.2. The equationsLXu = 0 andMYu = 0 imply that a solutionu(z) of
(2.5) satisfies

u(z exp(tX)) = u(z)χb(α; exp(tX)) , X ∈ hb ,

u(gz) = det(g−1)u(z) , g ∈ GL(r,C) ,

whereχb(α; ·) is that defined in (2.8). The third equations�ii′,jj ′u = 0 of (2.5) are those
of ultrahyperbolic type used in characterizing the range of Radon transform, see [6], [12] and
[13].

REMARK 2.3. The system (2.5) is a holonomic system on an Zariski open set ofZ.

The dimension of the solution space at a generic point ofZ is conjectured to be
(
n−2
r−1

)
. This

is true for the system withb of typeλ = (1, . . . ,1), (n) and anyr ≥ 2. It is also true in the
casesr = 2 with b of any typeλ.

2.2. Integral representation. The GHG systemI(α; hb) for b ∈ B andα ∈ h∗
b has

solutions given by definite integrals whose integrand is expressed in terms of a character
χb(α; ·) of the simply connected Lie group̃Hb of the Lie algebrahb, where the character is
determined by the following commutative diagram:

H̃b
χb(α;·)−−−−→ C×

log

� �exp

hb
α−−→ C

We give here explicit expressions of the character and the integrand.
For anyb ∈ Bλ given by (2.1) for somegb ∈ GL(n,C), we defineHb, a maximal abelian

subgroup of GL(n,C), by

Hb = (Ad gb)(J (λ0)× · · · × J (λl−1)) ,

whereJ (m), for any positive integerm, is the matrix group

J (m) =
{
h =

∑
0≤i<m

hiΛ
i
m

∣∣∣∣ hi ∈ C, h0 �= 0

}
⊂ GL(m,C) ,

called theJordan group of sizem. ThenHb is a Lie group ofhb and its universal covering
group coincides withH̃b. Corresponding to (2.3), we use the notation

Hλ := J (λ0)× · · · × J (λl−1) .

Then

Hb = (Ad gb)Hλ
andHb = Hλ whengb = In.

Let us obtain an explicit expression of the characterχb(α; ·). Suppose firstgb = In. In
this case, we also denoteχb(α; ·) by χλ(α; ·). SinceH̃λ is a direct product ofJ̃ (λk), 0 ≤
k < 	(λ), we suppose furtherλ = (n).
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Here we introduce functionsθi(z), i ≥ 0, of infinitely many variablesz = (z0, z1, . . . )

with zi ∈ C, i ≥ 0, z0 �= 0, defined by∑
i≥0

θi(z)t
i = log

(∑
i≥0

zi t
i

)
= log(z0)+ log

(
1 +

∑
i≥1

(zi/z0)t
i

)
(2.6)

as formal power series oft, where log 1= 0. Notice thatθ0(z) = logz0 and eachθi(z), i ≥
1, is a weighted homogeneous polynomial ofz1/z0, . . . , zi/z0 of weighti, where the weight
of zk/z0 is defined to bek.

Now leth = ∑
0≤i<n hiΛin ∈ J̃ (n) andα ∈ h∗

(n). Then we have

logh = log

( ∑
0≤i<n

hiΛ
i
n

)
= (logh0)In + log

(
In +

∑
1≤i<n

(hi/h0)Λ
i
n

)

= (logh0)In +
∑

1≤i<n
θi(h0, . . . , hi)Λ

i
n ,

becauseΛin = 0 for anyi ≥ n. Hence, setting

αi := 〈α,Λin〉 , 0 ≤ i < n ,(2.7)

we obtain

χ(n)(α; h) = exp(〈α, logh〉) = exp

(
〈α,

∑
0≤i<n

θi(h0, . . . , hi)Λ
i
n〉
)

= exp

( ∑
0≤i<n

αiθi(h0, . . . , hi)

)
= h

α0
0 exp

( ∑
1≤i<n

αiθi(h0, . . . , hi)

)
.

Therefore the character of̃Hλ for anyλ = (λ0, . . . , λl−1) ∈ Yn andα ∈ h∗
λ is given as

χλ(α; h) =
∏

0≤k<l
χ(λk)(α

(k); h(k)) , h ∈ H̃λ ,

whereα(k) := α|�(λk) andh(k) ∈ J̃ (λk) is thek-th component ofh.
For a generalb ∈ Bλ wheregb �= In, we have sincehb = (Ad gb)hλ andHb =

(Ad gb)Hλ,

χb(α; h) = χλ((Ad gb)∗α; (Ad gb)−1h) , h ∈ H̃b ,(2.8)

where(Ad gb)∗ : h∗
b → h∗

λ is the dual of the isomorphism Adgb : hλ → hb.
In order to give an integrand of integral representations for solutions of the GHG sys-

tem I(α; hb) (b ∈ Bλ), we introduce an injective mappingιb from Hb to the space ofn
dimensional row vectors:ιb : Hb → Cn. In the case ofgb = In, ιλ := ιb is defined by

ιλ(h) = (h
(0)
0 , . . . , h

(0)
λ0−1, . . . , h

(l−1)
0 , . . . , h

(l−1)
λl−1−1)

for h = ⊕
0≤k<l

∑
0≤i<λk h

(k)
i Λ

i
λk

∈ Hλ. For a generalb ∈ Bλ wheregb �= In, it is defined
by

ιb = R−1
gb ◦ ιλ ◦ (Ad gb)−1 ,
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whereRgb denotes the right multiplication operator bygb. Notice thatιb(Hb)=(∏0≤k<l(C××
Cλk−1))g−1

b . This mapping can be lifted to a biholomorphic mapping fromH̃b to the universal
covering space of(

∏
0≤k<l(C× × Cλk−1))g−1

b , which is also denoted by the same symbolιb.
In the same way, we define a bijective mapping denoted also byιb:

ιb : hb → Cn =
( ⊕

0≤k<l
Cλk

)
g−1
b .

Notice that for any row vectors = (s0, . . . , sn−1) ∈ Cn andh ∈ H̃b, it holds that

ι−1
b (sh) = ι−1

b (s)h .

From this and the fact thatχb(α; ·) is a character, we obtain

χb(α; ι−1
b (tzh)) = χb(α; ι−1

b (tz)) · χb(α; h) , h ∈ H̃b .
Let τ be the(r − 1)-form in r dimensional complex affine space defined by

τ =
∑

0≤i<r
(−1)i tidt0 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtr−1 ,

then the(r − 1)-form χb(α; ι−1
b (tz)) · τ is invariant under the homothetyt �→ ct (c ∈ C×) by

virtue of (2.4), and hence it defines a multivalued complex analytic(r − 1)-form on an open
submanifold ofr − 1 dimensional complex projective space. Thisχb(α; ι−1

b (tz)) · τ is the
integrand of integral representations for the systemI(α; hb), namelyintegrals

u(z) = Φb(α; z) :=
∫
∆(z)

χb(α; ι−1
b (tz)) · τ

for various twisted cycles ∆(z) give solutions of the system I(α; hb).

3. Stratification of regular elements and confluence of GHG systems. In the fol-
lowing part of this paper, we study confluence process of GHG systems and integral represen-
tations of solutions of the systems. In this section, we give an outline.

3.1. Stratification of regular elements. We first define a relation in partitions ofn.

DEFINITION 3.1. We say thatµ ∈ Yn is adjacent to λ ∈ Yn and write asλ → µ if
(1) 	(µ) = 	(λ)− 1, where	(·) denotes the length of a partition,
(2) there exist 0≤ j < 	(µ), 0 ≤ j2 < j1 < 	(λ) with µj = λj1 + λj2 such that

{µk}0≤k<	(µ),k �=j = {λk}0≤k<	(λ),k �=j1,j2 as set.

For example, the adjacent relations among the elements ofY4 are given by

(2,2)

↗ ↘
(1,1,1,1) −→(2,1,1) (4) .

↘ ↗
(3,1)
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Compare the diagram with that of classical hypergeometric and confluent hypergeometric
equations in Section 1.

Now recallB andBλ and the decomposition (2.2) ofB. We notice a well-known fact that
(2.2) defines a stratification ofB in the sense that eachBλ is a complex manifold of dimension
n2 − n+ 	(λ) and

B̄λ =
⊔
µ≤λ

Bµ ,(3.1)

whereB̄λ is the closure ofBλ in B with respect to the usual topology ofB andµ ≤ λ means
that there is a sequenceλ′, λ′′, . . . of partitions ofn with λ → λ′ → λ′′ → · · · → µ.

3.2. Outline of confluence process of GHG systems. Letµ ∈ Yn be adjacent toλ ∈
Yn. Then, for anyb ∈ Bµ, (3.1) says that there exists a sequence of points inBλ which
converges tob.

We will realize this limit process by constructing a family of mappingsσε (ε �= 0) from
Bµ to Bλ so thatσε(b) is holomorphic inε and limε→0 σε(b) = b for anyb ∈ Bµ. Notice
that, for fixedb ∈ Bµ, ε �→ σε(b) defines a complex analytic curve inBλ which tends tob as
ε → 0. We will next construct a Lie algebra isomorphismΨε fromhb tohσε(b) for b ∈ Bµ. Let
Ψ ∗
ε be the dual isomorphism ofΨε and consider GHG systemI((Ψ ∗

ε )
−1(α); hσε(b)) of type

λ for anyα ∈ h∗
b with 〈α, In〉 = −r. It will be proved that the systemI((Ψ ∗

ε )
−1(α); hσε(b))

converges to the systemI(α; hb) and integrands of integral representations of solutions of the
systemI((Ψ ∗

ε )
−1(α); hσε(b)) converge to those of the systemI(α; hb) asε → 0. We note

that the process reduces to the classical one in each case ofr = 2, n = 4.
3.3. A fibration structure of each stratum ofB. In this subsection, we give a fibration

of each stratum ofB in order to understand more clearly the mappingσε : Bµ → Bλ, which
will be given in Section 5.

Let Y be a copy ofCn andF : B → Y a mapping which sendsb ∈ B to F(b) =
(F1(b), . . . , Fn(b)) ∈ Y, where

det(sI − b) = sn − F1(b)s
n−1 + · · · + (−1)nFn(b) .

Forλ = (λ0, . . . , λ	(λ)−1) ∈ Yn, setFλ := F |Bλ and

Yλ := F(Bλ) .

We can verify thatYλ is anl dimensional complex submanifold ofY and hence the decompo-
sitionY = ⊔

λ Yλ gives a stratification ofY . Fory ∈ Yλ, let a(0)(y), . . . , a(	(λ)−1)(y) be the
distinct roots of

tn − y1t
n−1 + y2t

n−2 + · · · + (−1)nyn = 0

of multiplicitiesλ0, . . . , λ	(λ)−1 and set

sλ(y) :=
⊕

0≤k<	(λ)
(a(k)(y)Iλk +Λλk) .(3.2)



CONFLUENCES OF GENERAL HYPERGEOMETRIC SYSTEMS 9

Thensλ(y) is in F−1
λ (y) and the fiberF−1

λ (y) is theG-orbitO(sλ(y)) of sλ(y) with respect
to the adjoint action ofG := GL(n,C) ongl(n,C) and hence

F−1
λ (y) = O(sλ(y)) � G/Hλ .

It is easy to see that the mappingFλ : Bλ → Yλ defines a locally trivial complex analytic
fibration and we can take a holomorphic local section of the form (3.2).

4. Key lemmmas. In this section, we give lemmas which will play an essential role in
constructing the mappingσε : Bµ → Bλ and the Lie algebra isomorphismΨε : hb → hσε(b)
for b ∈ Bµ.

We first consider a simple case. Letp andq be positive integers. We introduce a matrix
g(ε) ∈ GL(p + q,C) depending holomorphically onε ∈ C× given by

g(ε) =
(
Ip G12(ε)

0 G22(ε)

)
,(4.1)

where thep × q matrixG12 = G12(ε) andq × q matrixG22 = G22(ε) are defined by

(
G12
G22

)
= Dp+q(ε)




(0
0

) (0
1

)
. . .

( 0
q−1

)
(1
0

) (1
1

)
. . .

( 1
q−1

)
...

...
. . .

...(
p+q−1

0

) (
p+q−1

1

)
. . .

(
p+q−1
q−1

)



Dq(ε

−1) ,(4.2)

Dm(ε) (for any positive integerm) denoting diag(1, ε, ε2, . . . , εm−1) and
(
i
j

)
denoting the

binomial coefficient which is equal to 0 ifi < j by the usual convention. We remark that
detg(ε) = εpq and theng(ε) is nonsingular ifε �= 0.

Now, for anyX = ∑
0≤i<p+q xiΛip+q ∈ h(p+q), we defineX(ε) ∈ (Ad g(ε))h(p,q) as

follows:

(y0(ε), . . . , yp+q−1(ε)) := (x0, . . . , xp+q−1)g(ε) ,

Y (ε) :=
( ∑

0≤i<p
yi(ε)Λ

i
p

)
⊕
( ∑
p≤i<p+q

yi(ε)Λ
i−p
q

)
∈ h(p,q) ,

X(ε) := (Ad g(ε))Y (ε) .

(4.3)

By using the notation introduced in Section 2, we can express it as

X(ε) = ((Ad g(ε)) ◦ ι−1
(p,q) ◦ Rg(ε) ◦ ι(p+q))(X) .

Then we have

LEMMA 4.1 (Key lemma 1). For any X ∈ h(p+q), X(ε) ∈ (Ad g(ε))h(p,q) is holo-
morphic in ε in a neighborhood of ε = 0 and

lim
ε→0

X(ε) = X .
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The proof of this lemma will be given in Section 7.
We next give a lemma of more general form, which is an immediate consequence of

Lemma 4.1. Letµ ∈ Yn is adjacent toλ ∈ Yn with µj = λj1 + λj2 for some 0≤ j <

	(µ), 0 ≤ j2 < j1 < 	(λ). Then we have a permutationρ of the set{0,1, . . . , l − 1}
(l := 	(λ)) defined by

(λρ(0), . . . , λρ(l−1)) = (µ0, . . . , µj−1, λj1, λj2, µj+1, . . . , µl−2) .

Let gρ ∈ GL(n,C) be a permutation matrix determined by

(s(ρ(0)), . . . , s(ρ(l−1)))gρ = (s(0), . . . , s(l−1))

for any row vector(s(0), . . . , s(l−1)) ∈ Cn, wheres(k) = (s
(k)
0 , . . . , s

(k)
λk−1) ∈ Cλk , 0 ≤ k < l.

We define a matrixgλ→µ(ε) ∈ GL(n,C) by

gλ→µ(ε) = (Iµ0+···+µj−1 ⊕ g(j)(ε)⊕ Iµj+1+···+µl−2)gρ ,(4.4)

whereg(j)(ε) ∈ GL(µj ; C) is the matrix determined by (4.1) and (4.2) withp = λj1 and
q = λj2. ForX ∈ hµ, we defineX(ε) by

X(ε) = ((Ad gλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ)(X) .

Then we have

LEMMA 4.2 (Key lemma 2). For any X ∈ hµ, X(ε) is holomorphic in ε in a neigh-
borhood of ε = 0 and satisfies

lim
ε→0

X(ε) = X .

PROOF. SupposeX = ⊕
0≤k<l−1X

(k) with X(k) ∈ j(µk). We can verify that

X(ε) =
⊕

0≤k≤j−1

X(k) ⊕ ((Ad g(j)(ε)) ◦ ι−1
(λj1,λj2)

◦ Rg (j)(ε) ◦ ι(µj ))(X(j))
⊕

j+1≤k<l−1

X(k).

Then the lemma follows from Lemma 4.1. �

5. Confluence of GHG systems.
5.1. Convergence of regular elements and Lie algebras.

THEOREM 5.1 (Convergence of regular elements).Suppose that λ → µ, λ,µ ∈ Yn,
namely,µ is adjacent to λ. Given b ∈ Bµ with b ∈ (Ad gb)hµ, let

σε(b) := ((Ad gbgλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ ◦ (Ad gb)−1)(b) ,

then σε(b) is an element of Bλ ∩ (Ad gbgλ→µ(ε))hλ for any fixed ε with 0 < |ε| � 1,
holomorphic in ε in a neighborhood of ε = 0 and satisfies

lim
ε→0

σε(b) = b .(5.1)
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PROOF. Let µj = λj1 + λj2 for 0 ≤ j < 	(µ),0 ≤ j2 < j1 < 	(λ), and let
b(0), . . . , b(	(µ)−1) be	(µ) distinct eigenvalues ofb of multiplicitiesµ0, . . . , µ	(µ)−1. Then
we have

c := (Ad gb)−1(b) =
⊕

0≤k<	(µ)
(b(k)Iµk +Λµk) .

Setl = 	(λ) and

(b
(0)
0 (ε), . . . , b

(0)
λ0−1(ε), . . . , b

(l−1)
0 (ε), . . . , b

(l−1)
λl−1−1(ε)) := (Rgλ→µ(ε) ◦ ιµ)(c) .

Then we see that

b
(k)
0 (ε) = b(k) , b

(k)
1 (ε) = 1 , b

(k)
i (ε) = 0 , 2 ≤ i < λk,0 ≤ k < l, k �= j1, j2 ,

b
(j1)

0 (ε) = b(j) , b
(j1)

1 (ε) = 1 , b
(j1)
i (ε) = 0 , 2 ≤ i < λj1 ,

b
(j2)

0 (ε) = b(j) + ε , b
(j2)

1 (ε) = 1 , b
(j2)
i (ε) = 0 , 2 ≤ i < λj2 .

Hence(ι−1
λ ◦Rgλ→µ(ε) ◦ ιµ)(c) is of Jordan’s normal form withl distinct eigenvaluesb(k) (k �=

j1, j2), b
(j), b(j) + ε of multiplicities λk (k �= j1, j2), λj1, λj2 for 0 < |ε| � 1, which

implies σε(b) ∈ Bλ. The propertyσε(b) ∈ (Ad gbgλ→µ(ε))hλ follows from its definition.
The equation (5.1) is derived fromb = (Ad gb)c and

lim
ε→0

((Ad gλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ)(c) = c ,

which is verified by Lemma 4.2. �

THEOREM 5.2 (Convergence of Lie algebras).Let b ∈ Bµ and σε(b) be those given
in Theorem 5.1,and let λ → µ. For any X ∈ hb, define Ψε(X) by

Ψε(X) := ((Ad gbgλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ ◦ (Ad gb)−1)(X) .

Then Ψε is a Lie algebra isomorphism from hb to hσε(b) satisfying

lim
ε→0

Ψε(X) = X, X ∈ hb .(5.2)

PROOF. As in the proof of Theorem 5.1, we can verify thatΨε(X) ∈ (Ad gbgλ→µ(ε))hλ,
which implesΨε(X) ∈ hσε(b) and (5.2). SinceΨε is a linear isomorphism and bothhb and
hσε(b) are abelian, it is a Lie algebra isomorphism. �

It would be better to explain how we understand the construction ofσε(b) in Theorem
5.1 in the picture of fibration structureFλ : Bλ → Yλ for the stratumBλ of the stratification
of B explained in Section 3.

Let us restrict ourselves to the case whereλ = (p, q), µ = (n) = (p + q) andb ∈ hµ is
of Jordan’s normal form

b = b(1)In +Λn .

First we formed

bε := (ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ)(b) = (b(1)Ip +Λp)⊕ ((b(1) + ε)Iq +Λq) .

For anyε �= 0, bε is a regular element belonging toBλ. Let y0 = F(b) ∈ Yµ andyε =
F(bε) ∈ Yλ (ε �= 0). Thenyε defines a holomorphic curveε �→ yε in Yλ which tends to
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FIGURE 1. Curveσε .

y0 ∈ Yµ asε → 0. But bε, which is a lift of the curveyε and defines a holomorphic curve in
Bλ, tends not to the regular elementb but to a subregular element(b(1)Ip+Λp)⊕(b(1)Iq+Λq)
asε → 0. So we movebε in the fiberF−1(yε) by twisting it by the action Adgλ→µ(ε). This
process defines a desired holomorphic curveε �→ σε(b) in Bλ, which is a lift of holomorphic
curveε �→ yε in Yλ and satisfies (5.1) (see Fig. 1).

Theorem 5.2 says that the same limit process works well not only for a regular element
b ∈ Bµ but also for any elements of Lie algebrahb obtained as a centralizer of regular element
b ∈ Bµ.

5.2. Conflucence of GHG systems. LetΨ ∗
ε : h∗

σε(b)
→ h∗

b be the dual isomorphism
of Ψε : hb → hσε(b). Then we have the following theorem, which is the first main assertion
of this paper.

THEOREM 5.3 (Confluence of GHG systems).Suppose µ ∈ Yn is adjacent to λ ∈
Yn. Given a GHG system I(α; hb) for b ∈ Bµ and α ∈ h∗

b with 〈α, In〉 = −r, consider the
GHG system I(α(ε); hλ), where

α(ε) = ((Ad gbgλ→µ(ε))
∗ ◦ (Ψ ∗

ε )
−1)(α) ∈ h∗

λ .

Then the change of variables

z = wgbgλ→µ(ε)

transforms the system I(α(ε); hλ) in z to I((Ψ ∗
ε )

−1(α); hσε(b)) in w, namely,

(R(gbgλ→µ(ε))−1)∗ I(α(ε); hλ) = I((Ψ ∗
ε )

−1(α); hσε(b))
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and

lim
ε→0

I((Ψ ∗
ε )

−1(α); hσb(ε)) = I(α; hb)

in the sense that a set of generators of the ideal I(α; hb) are obtained as limits of a set of
generators of I((Ψ ∗

ε )
−1(α); hσb(ε)) as ε → 0.

REMARK 5.1. In the case wherer = 2, n = 4, λ = (1,1,1,1) andµ = (2,1,1), the
theorem withgb = I4 reduces to the confluence process from Gauss to Kummmer explained
in the introduction. Indeed, the systemI(β; hλ) with β ∈ h∗

λ, 〈β, In〉 = −2, the change of
variables and parametersz = wgλ→µ(ε), β = α(ε), the systemI((Ψ ∗

ε )
−1(α); hσε(b)), and

the systemI(α; hb) reduce to (1.2), (1.3), (1.4), and (1.5), respectively (see also Section 8).

In order to prove the first part of Theorem 5.3, we first show the following lemma.

LEMMA 5.1. Let b ∈ Bλ and α ∈ h∗
b with 〈α, In〉 = −r . Then, for any g ∈ GL(n,C),

the change of variables z = wg transforms the system I(α; hb) in z to the system
I((Ad g−1)∗(α); h(Adg)b) in w, namely,

(Rg−1)∗ I(α; hb) = I((Ad g−1)∗(α); h(Ad g)b) .

PROOF OFLEMMA 5.1. Recalling that∂z and∂w are the matrices whose(i, j) entry is
∂/∂zij and∂/∂wij , respectively, we have

t∂z = g−1 t∂w .

Therefore the mappingRg−1 takes the generatorsLX (X ∈ hb), MY (Y ∈ gl(r,C)) and
�ii′,jj ′ of the idealI(hb ; α) to

(Rg−1)∗LX = Tr(wgXg−1 t ∂w)− 〈α,X〉
= Tr(w((Ad g)X) t ∂w)− 〈(Ad g−1)∗α, (Ad g)X〉 ,

(Rg−1)∗MY = Tr(Ywgg−1 t ∂w + Y ) = Tr(Ywt∂w + Y ) ,

and

(Rg−1)∗�ii′,jj ′ =
∑
k,k′
((g−1)jk(g−1)j ′k′ − (g−1)jk′(g−1)j ′k)∂w,ik∂w,i′k′ .(5.3)

Hence it is sufficient to show that the elements(Rg−1)∗�ii′,jj ′ (0 ≤ i, i ′ < r,0 ≤ j, j ′ < n)

generate the same ideal of the Weyl algebra onZ as

�w,ii′,jj ′ = ∂w,ij ∂w,i′j ′ − ∂w,ij ′∂w,i′j , 0 ≤ i, i ′ < r,0 ≤ j, j ′ < n .

Take arbitrary indicesa, a′(a �= a′).Multiplying both sides on (5.3) bygajga′j ′ and summing
them up with respect toj, j ′, we have∑

j,j ′
gajga′j ′(Rg−1)∗�ii′,jj ′ =

∑
k,k′
(δakδa′k′ − δak′δa′k)∂w,ik∂w,i′k′

= ∂w,ia∂w,i′a′ − ∂w,ia′∂w,i′a = �w,ii′,aa′ . �
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PROOF OFTHEOREM 5.3. Since the first half of the theorem is obtained by Lemma
5.1, we have only to show the second half.

As generators of the idealI(α; hb), we takeLX (X ∈ hb),MY (Y ∈ gl(r,C)) and
�ii′,jj ′ (0 ≤ i, i ′ < r,0 ≤ j, j ′ < n). Since the mappingΨε : hb → hσε(b) is a Lie algebra
isomorphism, we can choose, as generators of the idealI((Ψ ∗

ε )
−1(α); hσε(b)), the elements

LX(ε) := Tr(zΨε(X)t ∂z)− 〈(Ψ ∗
ε )

−1(α), Ψε(X)〉 , X ∈ hb ,

MY , Y ∈ gl(r,C) and�ii′,jj ′ , 0 ≤ i, i ′ < r,0 ≤ j, j ′ < n. Therefore it is sufficient to show
that

lim
ε→0

LX(ε) = LX, X ∈ hb ,

and this follows from limε→0Ψε(X) = X (Theorem 5.2) and the trivial equation

〈(Ψ ∗
ε )

−1(α), Ψε(X)〉 = 〈α,X〉 . �

6. Confluence of integral representations.
6.1. Convergence of integrands. In this section, we show that the process of conflu-

ence of GHG systems given in Section 5 can be lifted to the convergence of integrands of
integral representations.

Let λ,µ ∈ Yn such thatµ is adjacent toλ. For b ∈ Bµ, we define an isomorphism
ψε : H̃b → H̃σε(b) so that the following diagram commutes

H̃b
ψε−−→ H̃σε(b)

log

� �log

hb
Ψε−−→ hσε(b) ,

namely,

ψε(h) = (log)−1(Ψε(logh)), h ∈ H̃σε(b) .
We first note

THEOREM 6.1 (Convergence of Lie groups).Suppose λ → µ. Then, for any h ∈
H̃b, we have

lim
ε→0

ψε(h) = h.

PROOF. TakeX ∈ hb such thatX = logh. Then, by Theorem 5.2, we have

lim
ε→0

ψε(h) = lim
ε→0

(log)−1((Ψε(X)) = log−1(X) = h . �

Concerning a characterχσε(b) of H̃σε(b), we notice the following trivial property.

THEOREM 6.2. For any h ∈ H̃b and α ∈ h∗
b, it holds that

χσε(b)((Ψ
∗
ε )

−1(α);ψε(h)) = χb(α; h) , 0< |ε| � 1 .
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PROOF. LetX = logh ∈ hb. Then we have

χb(α; h) = exp(〈α,X〉), χσε(b)((Ψ ∗
ε )

−1(α);ψε(h)) = exp(〈(Ψ ∗
ε )

−1(α), Ψε(X)〉) .
Hence the theorem is derived from〈(Ψ ∗

ε )
−1(α), Ψε(X)〉 = 〈α,X〉. �

Now we give the following theorem, which is the latter part of our main assertion of this
paper.

THEOREM 6.3 (Convergence of integrands).Suppose that λ → µ, b ∈ Bµ and α ∈
h∗
b. Then we have

lim
ε→0

χσε(b)((Ψ
∗
ε )

−1(α); ι−1
σε(b)

(ιb(h))) = χb(α; h)(6.1)

for any h ∈ H̃b, and hence we have

lim
ε→0

χσε(b)((Ψ
∗
ε )

−1(α); ι−1
σε(b)

(tz)) = χb(α; ι−1
b (tz)) .

REMARK 6.1. We remark that in Theorem 6.3

χσε(b)((Ψ
∗
ε )

−1(α); ι−1
σε(b)

(ιb(h))) �= χb(α; h)
for generalh ∈ H̃b. This fact does not contradict Theorem 6.2, becauseι−1

σε(b)
(ιb(h)) �= ψε(h),

although

ι−1
σε(b)

(ιb(h)) = ψε(h)(In +O(ε)) .(6.2)

We omit the proof of (6.2), since it can be verified by the same argument as in the next
subsection.

6.2. Proof of Theorem 6.3. We first show a lemma which will be used in proving
Theorem 6.3.

LEMMA 6.1. Let x = (x0, x1, . . . ) and let y(x, t) = (y0(x, t), y1(x, t), . . . ) be a
sequence of formal power series of t defined by

yi(x, t) =
∑
k≥0

(
i + k

k

)
xi+ktk , i ≥ 0 .

Then we have

θi(y0(x, t), y1(x, t), . . . ) =
∑
k≥0

(
i + k

k

)
θi+k(x0, x1, . . . )t

k , i ≥ 0 ,

where θi are functions defined by (2.6).

PROOF. Denote byf (x, t) the formal power series
∑
k≥0 xkt

k . Then

yi(x, t) = (1/i!)(d/dt)if (x, t) .
Therefore, we have

f (y(x, t), s) =
∑
i≥0

(1/i!)(d/dt)if (x, t)si = es(d/dt)f (x, t) = f (x, t + s) .
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By expanding both sides of logf (y(x, t), s) = logf (x, t + s) into formal power series ofs,
and by comparing the coefficients ofsi , we obtain the desired result. �

PROOF OFTHEOREM 6.3. Letµj = λj1 +λj2 for 0 ≤ j < 	(µ), 0 ≤ j2 < j1 < 	(λ).
Sinceσε(b) ∈ (Ad gbgλ→µ(ε))hλ, we have

χσε(b)((Ψ
∗
ε )

−1(α); ι−1
σε(b)

(ιb(h)))

= χλ((Ad gbgλ→µ(ε))
∗(Ψ ∗

ε )
−1(α); (Ad gbgλ→µ(ε))

−1ι−1
σε(b)

(ιb(h))) .

We can verify that

((Ad gbgλ→µ(ε))
∗ ◦ (Ψ ∗

ε )
−1)(α) = (fε

−1)∗(Ad gb)∗(α) ,
(Ad gbgλ→µ(ε))

−1ι−1
σε(b)

(ιb(h)) = ((fε) ◦ (Ad gb)−1)(h) ,

where
fε := ι−1

λ ◦ Rgλ→µ(ε) ◦ ιµ .
Notice that by the same letterfε, we express an isomorphismfε : hµ → hλ and a mapping
fε : H̃µ → H̃λ. We have also

χb(α; h) = χµ((Ad gb)∗(α); (Ad gb)−1h) ,

sinceb ∈ (Ad gb)hµ. Therefore (6.1) is equivalent to

lim
ε→0

χλ((f
−1
ε )∗(α); fε(h)) = χλ(α; h)(6.3)

for anyα ∈ h∗
µ andh ∈ H̃µ. Setλ′ := (λj1, λj2) ∈ Yµj , µ

′ = (µj ) ∈ Yµj , α
′ := α|�(µj ) and

denote byh′ ∈ J̃ (µj ) thej -th component ofh ∈ H̃µ. We also setf ′
ε := ι−1

λ′ ◦ Rg (j)(ε) ◦ ιµ′ .
Then we can verify

χλ((f
−1
ε )∗(α); fε(h))/χλ(α; h) = χλ′((f ′

ε
−1
)∗(α′); f ′

ε(h
′))/χµ′(α′; h′) .

Therefore we have only to prove (6.3) in the case whereλ = (p, q) andµ = (p + q) with
p + q = n.

Hereafter we supposeλ = (p, q), µ = (p+ q) = (n) andfε = ι−1
λ ◦Rgλ→µ(ε) ◦ ιµ. For

h = ∑
0≤i<p+q hiΛip+q , put

fε(h) =
( ∑

0≤i<p
h′
i (ε)Λ

i
p

)
⊕
( ∑

0≤i<q
h′′
i (ε)Λ

i
q

)
.

We notice thath′
i (ε) = hi, 0 ≤ i < p and

h′′
i (ε) =

∑
k≥0

(
i + k

i

)
hi+kεk , 0 ≤ i < q .(6.4)

Forα ∈ h∗
µ, set

αi :=〈α,Λip+q 〉 , 0 ≤ i < p + q ,

α′
i (ε) :=〈(f−1

ε )∗(α),Λip ⊕Oq〉 , 0 ≤ i < p ,

α′′
i (ε) :=〈(f−1

ε )∗(α),Op ⊕Λiq〉 , 0 ≤ i < q ,
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whereOq andOp are zero matrices of sizeq andp, respectively. We see that

(α′
0(ε), . . . , α

′
p(ε), α

′′
0(ε), . . . , α

′′
q (ε))

tgλ→µ(ε) = (α0, . . . , αp+q ) .(6.5)

Therefore we have

logχλ((f−1
ε )∗(α); fε(h)) =

∑
0≤i<p

α′
i (ε)θi(h0, h1, . . . )

+
∑

0≤i<q
α′′
i (ε)θi(h

′′
0(ε), h

′′
1(ε), . . . ) .

(6.6)

From (6.4) and Lemma 6.1, it follows that

θi(h
′′
0(ε), h

′′
1(ε), . . . ) =

∑
k≥0

(
i + k

k

)
θi+k(h0, h1, . . . )ε

k , 0 ≤ i < q .(6.7)

Substituting (6.7) into (6.6), we obtain

logχλ =
∑

0≤i<p

(
α′
i (ε)+

∑
0≤k<q

(
i

k

)
α′′
k (ε)ε

i−k
)
θi(h0, h1, . . . )

+
∑

p≤i<p+q

( ∑
0≤k<q

(
i

k

)
α′′
k (ε)ε

i−k
)
θi(h0, h1, . . . )+O(ε) .

Here we notice that the relation (6.5) means

α′
i (ε)+

∑
0≤k<q

(
i

k

)
α′′
k (ε)ε

i−k = αi , 0 ≤ i < p ,

∑
0≤k<q

(
i

k

)
α′′
k (ε)ε

i−k = αi , p ≤ i < p + q .

Therefore we get

logχλ((f
−1
ε )∗(α); fε(h)) =

∑
0≤i<p+q

αiθi(h0, h1, . . . )+O(ε) = logχµ(α; h)+O(ε) .

Thus we have completed the proof of Theorem 6.3. �

7. Proof of Lemma 4.1. Denote byA12 thep×q matrix whose(i, j) entry(0 ≤ i <

p, 0 ≤ j < q) is
(
i
j

)
and byA22 theq × q matrix whose(i, j) entry(0 ≤ i, j < q) is

(
p+i
j

)
.

Then we have

G12 = Dp(ε)A12Dq(ε
−1) , G22 = εpDq(ε)A22Dq(ε

−1) .(7.1)

Set

Y11 =
∑

0≤i<p
yi(ε)Λ

i
p

(
=

∑
0≤i<p

xiΛ
i
p

)
, Y22 =

∑
p≤i<p+q

yi(ε)Λ
i−p
q .(7.2)

Then

(Ad g(ε))Y (ε) =
(
Y11 (−Y11G12 +G12Y22)G

−1
22

0 G22Y22G
−1
22

)
.
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We first obtain limε→0G22Y22G
−1
22 . From (4.1), (4.2) and (4.3), we have

Y22 =
∑

p≤i<p+q
yi(ε)Λ

i−p
q =

∑
p≤i<p+q

∑
0≤k<p+q

(
k

i − p

)
xkε

k−i+pΛi−pq .

Then, fromε−i+pΛi−pq = Dq(ε)Λ
i−p
q Dq(ε

−1), it follows that

Y22 = Dq(ε)

[ ∑
0≤k<p+q

xkε
k(Iq +Λq)

k

]
Dq(ε

−1) .(7.3)

By (7.1) and (7.3), we have

G22Y22G
−1
22 =

∑
0≤k<m

xkε
kDq(ε)A22(Iq +Λq)

kA−1
22Dq(ε

−1) .(7.4)

Denote byA theq × q matrix whose(i, j) entry(0 ≤ i, j < q) is
(
i
j

)
. Then we notice

thatA is a lower triangular matrix with the diagonal entries 1 and its inverseA−1 is the matrix
whose(i, j) entry is (−1)i+j

(
i
j

)
(cf. [5], pp. 465–466). Notice also that, for any integer

m ≥ 0, we have the identity

A(Iq +Λq)
m =

((
i +m

j

))
0≤i,j<q

,(7.5)

which can be seen by virtue of
(
r
l

) + (
r
l−1

) = (
r+1
l

)
. In particular, we have

A22 = A(Iq +Λq)
p .(7.6)

By (7.6), we haveA22(Iq +Λq)kA−1
22 = A(Iq +Λq)kA−1. Noticing that bothA andA−1 are

lower triangular matrices with diagonal entries are 1, we see thatA22(Iq + Λq)
kA−1

22 is the
matrix whose entries of them-th upper diagonal(m > k) are all zeros and those of thek-th
diagonal are 1. It follows that

G22Y22G
−1
22 =

∑
0≤k<p+q

xk[Λkq +O(ε)] →
∑

0≤k<q
xkΛ

k
q

asε → 0.
We next compute limε→0(−Y11G12 + G12Y22)G

−1
22 . By (7.1), (7.2) and (7.3) together

with the relationΛkpDp(ε) = εkDp(ε)Λ
k
p, we have

(−Y11G12 +G12Y22)G
−1
22(7.7)

=
∑

0≤k<p+q
xkε

k−pDp(ε)[−ΛkpA12 + A12(Iq +Λq)
k]A−1

22Dq(ε
−1) .



CONFLUENCES OF GENERAL HYPERGEOMETRIC SYSTEMS 19

Let ykij andzkij , (0 ≤ i < p, 0 ≤ j < q) be the(i, j) entry ofΛkpA12 andA12(Iq + Λq)
k,

respectively. Then

ykij =



(
i + k

j

)
if i ≤ p − k − 1 ,

0 if i > p − k − 1 ,

zkij =
(
i + k

j

)
,

which yields

−ykij + zkij =




0 if i ≤ p − k − 1 ,(
i + k

j

)
if i > p − k − 1 .

(7.8)

Then, by (7.6) and (7.8), we have, fork ≤ p,

[−ΛkpA12 + A12(Iq +Λq)
k]A−1

22 =




0 . . . 0
...

...

0 . . . 0(
p
0

)
. . .

(
p
q−1

)
...

...(
p+k−1

0

)
. . .

(
p+k−1
q−1

)



(Iq +Λq)

−pA−1(7.9)

=




0 . . . 0
...

...
0 . . . 0(0
0

)
. . .

( 0
q−1

)
...

...(
k−1

0

)
. . .

(
k−1
q−1

)



A−1 ,

and, fork > p,

[−ΛkpA12 + A12(Iq +Λq)
k]A−1

22 = A12(Iq +Λq)
k(Iq +Λq)

−pA−1

=



(0
0

)
. . .

( 0
q−1

)
...

...(
p−1

0

)
. . .

(
p−1
q−1

)

 (Iq +Λq)

k−pA−1 .
(7.10)

Now, letwkij be the(i, j) entry of [−ΛkpA12 + A12(Iq + Λq)
k]A−1

22 . Then, from (7.9)

and (7.10) together with the identityAA−1 = Iq , it follows that

wkij =
{

1 if (j + p)− i = k ,

0 if (j + p)− i > k .
(7.11)
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Denote bySk thep × q matrix whose(i, j) entryskij (0 ≤ i < p, 0 ≤ j < q) satisfies

skij =
{

1 if (j + p)− i = k ,

0 otherwise .

Then, by (7.7) and (7.11), we have

(−Y11G12 +G12Y22)G
−1
22 =

∑
0≤k<p+q

xk[Sk +O(ε)] →
∑

0≤k<p+q
xkS

k

asε → 0. Thus we have completed the proof of Lemma 4.1.

8. Examples. We explain the confluences of the Gauss hypergeometric differential
equation described in the diagram (1.1) in Introduction and those of Appell’s hypergeometric
system(F1) of two independent variables in the framework of GHG systems.

First we notice that the GHG functionsu(z) for the systemI(α; hb) satisfy{
u(gz) = det(g−1)u(z) , g ∈ GL(r; C) ,

u(zh) = u(z)χb(α; h) , h ∈ H̃b
(8.1)

if the branch ofu(z) is appropriately chosen.
We recall ([18]) that the Gauss hypergeometric equation and the confluent family in the

diagram (1.1) in the Introduction are

x(1 − x)u′′ + {c− (a + b + 1)x}u′ − abu = 0 ,(Gauss)

xu′′ + (c − x)u′ − au = 0 ,(Kummer)

x2u′′ + xu′ + (x2 − ν2)u = 0 ,(Bessel)

u′′ − 2xu′ + 2νu = 0 ,(Hermite-Weber)

u′′ − xu = 0 .(Airy)

These equations will be denoted by (G), (K), (B), (H-W) and (A), respectively. The solutions
of these differential equations are expressed by the integrals

u(x) =
∫
C

(1 − xt)−b(1 − t)c−a−1ta−1dt ,(G)

u(x) =
∫
C

ext(1 − t)c−a−1ta−1dt ,(K)

u(x) =
∫
C

e(x/2)(t−1/t)t−ν−1dt ,(B)

u(x) =
∫
C

e2xt−t2t−ν−1dt ,(H-W)

u(x) =
∫
C

ext−t3/3dt ,(A)

when the paths of integrationC are appropriately chosen.
Looking at these integral representations, we see that the above equations (G), (K), (B),

(H-W) and (A) correspond to the GHG systems associated with the groupHλ with the Young
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diagrams of weight 4:λ = (1,1,1,1), (2,1,1), (2,2), (3,1) and(4), respectively, defined
on the matrix spacesXλ given by

X(1,1,1,1) =
{(

1 1 1 0
0 −x −1 1

) ∣∣∣∣ x �= 0,1

}
,

X(2,1,1) =
{(

1 0 1 0
0 x −1 1

) ∣∣∣∣ x �= 0

}
,

X(2,2) =
{(

1 0 0 x

0 x 1 0

) ∣∣∣∣ x �= 0

}
,

X(3,1) =
{(

1 0 0 0
0 1

√
2x 1

)}
,

X(4) =
{(

1 0 0 0
0 1 0 −x

)}

with the parametersαλ ∈ h∗
λ (expressed using the basis ofhλ as in (2.7)):

α(1,1,1,1) = (b − c,−b, a − 1, c − a − 1) ,

α(2,1,1) = (−c,1, a − 1, c − a − 1) ,

α(2,2) = (ν − 1,1,−ν − 1,−1) ,

α(3,1) = (ν − 1,0,1,−ν − 1) ,

α(4) = (−2,0,0,−1) .

Sometimes it is preferable to consider the GHG systems on

X′
(2,2) =

{(
1 0 0 x2/4
0 1 1 0

) ∣∣∣∣ x �= 0

}
,

X′
(3,1) =

{(
1 0 0 0
0 1 x 1

)}
,

in place of those onX(2,2) andX(3,1), respectively. Then the differential equations (B) and
(H-W) change their form to

[(ϑx + ν)2 + x2 − ν2]u = 0 , ϑx = xd/dx ,(B’)

u′′ − xu′ + νu = 0 ,(H-W’)

respectively, and the integral representations of the solutions are

u(x) =
∫
C

et−x2/(4t )t−ν−1dt ,(B’)

u(x) =
∫
C

ext−t2/2t−ν−1dt ,(H-W’)

respectively. The equation (B’) is related to (B) in the following way. In the integral repre-
sentation for (B), we make a change of integration variablet �→ s = xt/2. Then we see
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that

u(x) =
∫
C

e(x/2)(t−1/t)t−ν−1dt =
(
x

2

)ν ∫
C ′
es−x2/(4s)s−ν−1ds

and the change of unknownu �→ v defined byu = (x/2)νv transforms the equation (B)
to (B’). The equation (H-W’) is obtained from (H-W) by the simple change of independent
variablex �→ x ′ = √

2x.
8.1. Gauss→ Kummer. In the present and following subsections, we denote byx

(resp.ξ ) the independent variable of the source equation (resp. target equation) in the process
of confluence. Namely, in the present case,x is the variable of (G) andξ is the variable of
(K). We denote byx̃ andα̃ the matrix variable and parameters for the source GHG system
corresponding to the source equation, and byw andα those of the target GHG system. In the
present case,

x̃ =
(

1 1 1 0
0 −x −1 1

)
∈ X(1,1,1,1) , α̃ = (b − c,−b, a − 1, c − a − 1)

and

w =
(

1 0 1 0
0 ξ −1 1

)
∈ X(2,1,1) , α = (−c,1, a − 1, c − a − 1) .

Then the recipe of the confluence given in Theorem 5.3 is to consider the GHG system of type
(1,1,1,1) with the matrix variablez(ε) and the parametesα(ε) defined by

z(ε) = wg(ε) =
(

1 0 1 0
0 εξ −1 1

)
, g(ε) =




1 1
0 ε

1
1


 ,

α(ε) = αtg(ε)−1 = (−c − ε−1, ε−1, a − 1, c − a − 1) .

Noting thatz(ε) is obtained fromx̃ by substituting−εξ in x, we have the change of variable
and parameters (1.3), which transform the equation (G) to (1.4) and gives the Kummer’s
equation (K) in the limitε → 0.

8.2. Kummer→ Bessel. We show the confluence from (K) to (B’) instead of (K)→
(B). Let

x̃ =
(

1 0 0 1
0 x 1 −1

)
∈ X(2,1,1) , α̃ = (−c,1, a − 1, c − a − 1)

and

w =
(

1 0 0 (ξ/2)2

0 1 1 0

)
∈ X′

(2,2) , α = (ν − 1,1,−ν − 1,−1)
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be the data for the GHG systems corresponding to (K) and (B’), respectively. Then the recipe
of the confluence is to consider the GHG system of type(2,1,1) with

z(ε) = wg(ε) =
(

1 0 0 (ξ/2)2ε
0 1 1 1

)
, g(ε) =




1
0 1

1 1
ε




α(ε) = αtg(ε)−1 =
(
ν − 1,1,−ν − 1 + ε−1,−ε−1

)
and relate it to the GHG system for (K). Noting

z(ε) =
(−(ξ/2)2ε

1

)
x̃(ε)



(−(ξ/2)2ε)−1

(−(ξ/2)2ε)−1

1
−1




with x̃(ε) =
(

1 0 0 1
0 x 1 −1

)
andx = −(ξ/2)2ε,we see that the GHG functionsΦ(α̃; z(ε))

andΦ(α̃; x̃(ε)) are related asΦ(α̃; z(ε)) = −xc−1Φ(α̃; x̃(ε)) by virtue of the formula (8.1).
Therefore we make a change of unknownsu �→ v by u = x−c+1v to (K) to get

[(ϑx − x)(ϑx − c + 1)− ax]v = 0(8.2)

which corresponds toΦ(α(ε); z(ε)) after the changes of variablex = −(ξ/2)2ε and of pa-
rameters̃α = α̃(ε). Thus if we make a change of variable and parametersx = −(ξ/2)2ε and
α̃ = α̃(ε) for (8.2) and take a limitε → 0, then we get the equation (B’). Summarizing the
discussion above, we have the following.

PROPOSITION 8.1. For the equation (K), we make a change of variables and param-
eters

x = −
(
ξ

2

)2

ε , u =
(

−
(
ξ

2

)2

ε

)ν
v , a = −ν + ε−1 , c = −ν + 1 .

Then the limit ε → 0 gives the confluence (K) → (B’).

8.3. Kummer→ Hermite-Weber. To realize this limit process, it is needed to recover
a parameter in (K), which became invisiblein the course of reduction from GHG system to
Kummer’s differential equation. In order to recover it, we make a change of independent
variablex �→ x ′ by x = α1x

′ to (K). Writing x ′ asx again, we get the equation

u′′ + (c − α1x)u
′ − aα1u = 0 .(8.3)

Since the solutions of (8.3) are given by the integral

u =
∫
eα1xt (1 − t)c−a−1ta−1dt ,

it is seen that the equation (8.3) corresponds to the GHG system of type(2,1,1) with

x̃ =
(

1 0 1 0
0 x −1 1

)
, α̃ = (−c, α1, c − a − 1, a − 1) .(8.4)
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Note that the Hermite-Weber equation (H-W’) corresponds to the GHG system of type(3,1)
with

w =
(

1 0 0 0
0 1 ξ 1

)
, α = (ν − 1,0,1,−ν − 1) .(8.5)

Then the recipe of the confluence described in Theorem 5.3 guides us to consider the GHG
system of type(2,1,1) with

z(ε) = wg(ε) =
(

1 0 1 0
0 1 ε + ε2ξ 1

)
, g(ε) =




1 1
1 ε

ε2

1


 ,

α(ε) = αt g(ε)−1 = (ν − 1 − ε−2,−ε−1, ε−2,−ν − 1) .

(8.6)

Noting

z(ε) =
(

1
−(ε + ε2ξ)

)
x̃(ε)




1
1

1
−(ε + ε2ξ)−1




with

x̃(ε) =
(

1 0 1 0
0 x −1 1

)
, x = −(ε + ε2ξ)−1 ,(8.7)

we see that the GHG functionsΦ(α̃; z(ε)) andΦ(α̃; x̃(ε)) of type (2,1,1) are related as
Φ(α̃; z(ε)) = xaΦ(α̃; x̃(ε)) by virtue of the formula (8.1). Hence we make a change of
unknownu �→ v defined byu = x−av to the equation (8.3) and get

[(ϑ − a + c − 1 − α1x)(ϑ − a)− aα1x]v = 0 .(8.8)

We can check that, if we make a change of variablex �→ ξ defined by (8.7) and a change of
paramters

a = −ν , α1 = −ε−1 , c = ε−2 − ν + 1(8.9)

induced from (8.6), then we get the equation (H-W’) in the limitε → 0. We summarize the
above process as follows.

PROPOSITION 8.2. The change of variables

x = ε−1(ε + ε2ξ)−1 , u = (−ε − ε2ξ)−νv

and the change of paramters given by (8.9) for the the Kummer’s equation (K) induces the
confluence to the Hermite-Weber equation (H -W’) as ε → 0.

8.4. Bessel→ Airy. To apply the framework of confluence for GHG system to this
case, we must recover a parameter in the equation (B’) which disappeared in the course of re-
duction of GHG system of type (2,2) to the equation (B’). Explicitly, we introduce a parameter
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α1 in (B’) so that we can treat the integrals∫
eα1t−α1x

2/(4t )t−ν−1dt(8.10)

instead of those for (B’). To derive the differential equation for (8.10) from (B’), we make a
change of variablex �→ x ′ = x/α1. Writing againx ′ asx, we get

[(ϑx + ν)2 + α2
1x

2 − ν2]u = 0 .(8.11)

Viewing the integral representation (8.10) for (B”), we see that (B”) corresponds to the GHG
system with

x̃ =
(

1 0 0 x2/4
0 1 1 0

)
, α̃ = (ν − 1, α1,−ν − 1,−α1) .

Let w andα be the data for the GHG system corresponding to (A). Then the recipe of the
confluence is to consider the GHG system of type(2,2) with

z(ε) = wg(ε) =
(

1 0 1 0
0 1 ε − ε3ξ 1 − 3ε2ξ

)
, g(ε) =




1 1
1 ε 1

ε2 2ε
ε3 3ε2


 ,

α(ε) = αtg(ε)−1 = (−2 − 2ε−3, ε−2,2ε−3,−ε−2) .

To relate this GHG system to the equation (B”), we decomposez(ε) as

z(ε) =
(

1 X(ε)

1

)
x̃(ε)




1 X(ε)

1
X(ε) X′(ε)

X(ε)




−1

, x̃(ε) =
(

1 0 0 X′(ε)
0 1 1 0

)
,

where

X(ε) = (ε − ε3ξ)−1 , X′(ε) = dX(ε)

dε
= − 1 − 3ε2ξ

(ε − ε3ξ)2
.

Then we see that the GHG functionsΦ(α̃; z(ε)) andΦ(α̃; x̃(ε)) are related as

Φ(α̃; x̃(ε)) = X(ε)−ν−1eα1(X(ε)−X′(ε))Φ(α̃; z(ε))
by virtue of the formula (8.1). So if we make a change of variable, unkown and parameters

x2

4
= X′(ε) = −(1 − 3ε2ξ)(ε − ε3ξ)−2 ,

u = X(ε)2ε
−3
eε

−2(X(ε)−X′(ε))v , ν = −1 − 2ε−3, α1 = ε−2

to (B”), then we get the Airy equation (A) by lettingε → 0.
8.5. Hermite-Weber→ Airy. To derive (A) from (H-W’) by confluence, we must

recover parameters in (H-W’) which disappeared in the course of reduction from the GHG
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system of type(3,1) to (H-W’). To this end we recall that the solutions of (H-W’) has the
integral representation

u(x) =
∫
ext−t2/2t−ν−1dt,(8.12)

which is the GHG function of type(3,1) corresponding to

x̃ =
(

1 0 0 0
0 1 x 1

)
, α̃ = (α0, α1, α2, α3) = (ν − 1,0,1,−ν − 1) .(8.13)

We recover the parametersα1, α2 so that we can treat

v(x) =
∫
eα1t+α2(xt−t2/2)t−ν−1dt

instead of (8.12). To derive the equation forv(x) from (H-W’), we make a change of inde-
pendent variablex �→ x ′:

x = α1α
−1/2
2 + α

1/2
2 x ′(8.14)

to (H-W) and write againx ′ asx, we get

u′′ − (α1 + α2x)u
′ + να2u = 0 .(8.15)

On the other hand, the Airy equation (A) corresponds to the GHG system of type(4) with

w =
(

1 0 0 0
0 1 0 −ξ

)
, α = (−2,0,0,−1) .

Then the recipe of the confluence in Theorem 5.3 tells us to consider the GHG system of type
(3,1) with

z(ε) = wg(ε) =
(

1 0 0 1
0 1 0 ε − ε3ξ

)
, g(ε) =




1 1
1 ε

1 ε2

ε3


 ,

α(ε) = αtg(ε)−1 = (−2 + ε−3, ε−2, ε−1,−ε−3) .

To relate the GHG system to the equation (8.15), we decomposez(ε) as

z(ε) =
(

1 x

1

)
x̃(ε)h−1 , h =




1 x x2

1 x

1
x


 , x = (ε − ε3ξ)−1 ,

wherex̃(ε) is the matrix obtained from̃x in (8.13) by the substitutionx = (ε − ε3ξ)−1. By
virtue of the formula (8.1), the GHG functions of type(3,1) for z(ε) andx̃(ε) are related as

Φ(α̃; z(ε)) = χ(3,1)(α̃; h−1)Φ(α̃; x̃(ε)) = e−α1x−α2x
2/2x−α3Φ(α̃; x̃(ε)) .

Thus we get the change of unknownu �→ v: u = eα1x+α2x
2/2xα3v together withx = (ε −

ε3ξ)−1 andα̃ = α(ε) to get the differential equation for the GHG functionΦ(α(ε); z(ε)).
To summarize, we have the following.
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PROPOSITION 8.3. The confluence (H’)→ (A) is carried out by the following steps:
(1) the change of independent variable x �→ x ′ defined by (8.14) and that of unknown

u �→ v defined by

u = eα1x
′+α2x

′2/2x ′α3v,

(2) the second change of independent variable and that of parameters:
x ′ = (ε − ε3ξ)−1 , α1 = ε−2 , α2 = ε−1 , ν = −1 + ε−3 .

(3) to take a limit ε → 0 in the equation obtained by the steps (1) and (2).

8.6. Appell’sF1 and its confluent family. Appell’s hypergeometric functionF1 and
its classically known confluent family ([2]) are defined by the power series:



F1(a, b, b
′, c; x, y)=

∞∑
m,n=0

(a)m+n(b)m(b′)n
(c)m+nm!n! xmyn ,

Φ1(a, b, c; x, y)=
∞∑

m,n=0

(a)m+n(b)m
(c)m+nm!n! x

myn= lim
ε→0

F1(a, b,−1/ε, c; x,−εy) ,

Φ2(b, b
′, c; x, y)=

∞∑
m,n=0

(b)m(b
′)n

(c)m+nm!n!x
myn= lim

ε→0
F1(−1/ε, b, b′, c; −εx,−εy) ,

Φ3(b, c; x, y)=
∞∑

m,n=0

(b)m

(c)m+nm!n!x
myn= lim

ε→0
Φ2(b,−1/ε, c; x,−εy) ,

(8.16)

where(a)m = Γ (a +m)/Γ (a) is the Pochhammer’s symbol. The functionsF1,Φ1,Φ2 and
Φ3 satisfy the systems of partial differential equations:{

x(1 − x)uxx + y(1 − x)uxy + {c − (a + b + 1)x}ux − byuy − abu = 0 ,

y(1 − y)uyy + x(1 − y)uxy + {c− (a + b′ + 1)y}uy − b′xux − ab′u = 0 ,
(F1)

{
x(1 − x)uxx + y(1 − x)uxy + {c − (a + b + 1)x}ux − byuy − abu = 0 ,

yuyy + xuxy + (c − y)uy − xux − au = 0 ,
(Φ1)

{
xuxx + yuxy + (c − x)ux − bu = 0 ,

yuyy + xuxy + (c − y)uy − b′u = 0 ,
(Φ2)

{
xuxx + yuxy + (c − x)ux − bu = 0 ,

yuyy + xuxy + cuy − u = 0 ,
(Φ3)

respectively, where the suffixx or y in ux or uy denotes the derivation with respect tox or
y. It is known that the limit processes in (8.16) induce the confluence of the systems(F1) →
(Φ1), (F1) → (Φ2) and(Φ2) → (Φ3). We shall explain that these confluence processes can
be treated in a unified way by Theorem 5.3. To relate the systems(F1), (Φ1), (Φ2) and(Φ3) to
the GHG systems with the Young diagrams of weight 5, we recall the integral representations
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for the solutions, in which we omit the domains of integration since we don’t need them:

F1 = C1

∫
(1 − yt)−b′

ta−1(1 − t)c−a−1(1 − xt)−bdt ,

= C2

∫
(1 − xs − yt)−asb−1tb

′−1(1 − s − t)c−b−b′−1dsdt ,

Φ1 = C3

∫
eyt ta−1(1 − t)c−a−1(1 − xt)−bdt ,

Φ2 = C4

∫
e−t tb+b′−c(y + t)−b′

(x + t)−bdt

= C5

∫
exs+ytsb−1tb

′−1(1 − s − t)c−b−b′−1dsdt ,

Φ3 = C6

∫
e−t−y/t tb−c(x + t)−bdt ,

whereCk are some constants depending on the parametersa, b, b′ and c. From these 1-
dimensional integral representations, we see that(F1), (Φ1), (Φ2) and (Φ3) are the GHG
systems of type(1,1,1,1,1), (2,1,1,1), (2,1,1,1) and(2,2,1) on the space of matrices:

X(1,1,1,1,1) =
{(

1 1 0 1 1
0 −y 1 −1 −x

) ∣∣∣∣ xy(x − 1)(y − 1)(x − y) �= 0

}
,

X(2,1,1,1) =
{(

1 0 0 1 1
0 y 1 −1 −x

) ∣∣∣∣ xy(x − 1) �= 0

}
,

X′
(2,1,1,1) =

{(
1 0 0 y x

0 1 1 1 1

) ∣∣∣ xy(x − y) �= 0

}
,

X(2,2,1) =
{(

1 0 0 y x

0 1 1 0 1

) ∣∣∣∣ xy �= 0

}
,

(8.17)

respectively, with parametersαλ:

α(1,1,1,1,1) = (b + b′ − c,−b′, a − 1, c− a − 1,−b) ,
α(2,1,1,1) = (b − c,1, a − 1, c − a − 1,−b) ,
α′
(2,1,1,1) = (c − 2,−1, b + b′ − c,−b′,−b) ,
α(2,2,1) = (c − 2,−1, b − c,−1,−b) .

(8.18)

Corresponding to 2-dimensional integral representations forF1 andΦ2, we can regard
(F1) and(Φ2) as the GHG systems on the matrix spaces

Y(1,1,1,1,1) =



1 1 0 0 1

0 −x 1 0 −1
0 −y 0 1 −1



∣∣∣∣∣∣ xy(x − 1)(y − 1)(x − y) �= 0


 ,

Y(2,1,1,1) =



1 0 0 0 1

0 x 1 0 −1
0 y 0 1 −1



∣∣∣∣∣∣ xy(x − y) �= 0
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with the parameters:

α(1,1,1,1,1) = (a − c,−a, b − 1, b′ − 1, c − b − b′ − 1) ,

α(2,1,1,1) = (−c,1, b − 1, b′ − 1, c − b − b′ − 1) ,

respectively.
8.7. Confluence(F1) → (Φ1). In the present and following subsections, we denote

by x, y the independent variables for the system of source (namely(F1) in the present case)
and byξ, η the independent variables for the system of target (namely(Φ1) in the present
case) in the process of confluence. We also denote byz (resp.w) andα̃ (resp.α) the matrix
variable and parameters for the GHG system corresponding to the source (resp. target) system.
In the case(F1) → (Φ1),

z =
(

1 1 0 1 1
0 −y 1 −1 −x

)
, α̃ = (b + b′ − c,−b′, a − 1, c − a − 1,−b)(8.19)

and

w =
(

1 0 0 1 1
0 η 1 −1 −ξ

)
, α = (b − c,1, a − 1, c− a − 1,−b).(8.20)

Then the recipe of the confluence given in Theorem 5.3 is to consider the GHG system of type
(1,1,1,1,1) with

z(ε) = wg(ε) =
(

1 1 0 1 1
0 εη 1 −1 −ξ

)
, g(ε) =




1 1
ε

1
1

1


 ,

α(ε) = αtg(ε)−1 = (b − c − ε−1, ε−1, a − 1, c − a − 1,−b) .
Comparing these with (8.19), we get the change of variables and parameters:

x = ξ , y = −εη , b′ = −ε−1

for the system(F1), which induces the confluence(F1) → (Φ1) in the limit ε → 0.
8.8. Confluence(F1) → (Φ2). In this case, it is convenient to use the GHG systems

on the matrix spacesY(1,1,1,1,1) andY(2,1,1,1). Let

z =

1 1 0 0 1

0 −x 1 0 −1
0 −y 0 1 −1


 , α̃ = (a − c,−a, b − 1, b′ − 1, c − b − b′ − 1)(8.21)

and

w =

1 0 0 0 1

0 ξ 1 0 −1
0 η 0 1 −1


 , α = (−c,1, b − 1, b′ − 1, c − b − b′ − 1)(8.22)
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be the matrices and parameters for the systems(F1) and(Φ2), respectively. Then we apply
the recipe of Theorem 5.3: put

z(ε) = wg(ε) =

1 0 0 0 1

0 εξ 1 0 −1
0 εη 0 1 −1


 , g(ε) =




1 1
ε

1
1

1




α(ε) = αtg(ε)−1 = (−c − ε−1, ε−1, b − 1, b′ − 1, c − b − b′ − 1)

and consider the GHG system of type(1,1,1,1,1) with z(ε) andα(ε). Comparingz(ε) and
α(ε) with z andα in (8.21), we find the desired change of variables and parameters:

x = −εξ , y = −εη , a = −ε−1

for the system(F1), which induces the confluence(F1) → (Φ2) in the limit ε → 0.
8.9. Confluence(Φ2) → (Φ3). Let z ∈ X′

(2,1,1,1) andα̃ be the matrix and parameters
for (Φ2) and letw ∈ X(2,2,1) andα be those for(Φ3) given in (8.17) and (8.18). Then, as in
the previous case, we consider the GHG system of type(2,1,1,1) with

z(ε) = wg(ε) =
(

1 0 0 εη ξ

0 1 1 1 1

)
, g(ε) =




1
1

1 1
ε

1


 ,

α(ε) = αtg(ε)−1 = (c − 2,−1, b − c + ε−1,−ε−1,−b) .
Then puttingz = z(ε) andα̃ = α(ε), we have the change of variables and parameters

x = ξ , y = εη , b′ = ε−1 ,

which induces the confluence(Φ2) → (Φ3) whenε → 0.
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