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THE DISCRETE INTEGRAL MAXIMUM PRINCIPLE
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Abstract. We prove an integral maximum principle for random walks on graphs, and
give several applications to pointwise estimates of their transition probabilities, including the
time-dependent case.

1. Introduction. Consider the heat equatidhu = Au, whereu = u(t,x) is a
function onR; x R" and A is the Laplace operator iR". It is well-known that, for all
p € [1, +o00], the L”-norm of a solution(¢, -) is a non-increasing function of In the case
p = +o0, this statement is a particular case of the classical parabolic maximum principle. In
the casep < 400, we will refer to it as anntegral maximum principle. It admits the follow-
ing generalization for weighted norms. Let a smooth funcéionx) defined orR; x R" be
such that

(1.1) a,s+%|va2 <0.

Then the weighted integral
(1.2) / u?(t, x)et " dx
Rn

is a non-increasing function of For example, the functiofz, x) = d?(x)/2r satisfies (1.1)
provided|Vd| < 1.

The fact that the weighted irgeal (1.2) decreases in time raims true if the Laplace op-
erator is replaced by a more general second-order elliptic operator in divergence form (under
accordingly modified condition (1.1)). This was observed by Aronson and was used by him in
[1] for obtaining two-sided estimates of the fundamental solutions of the corresponding heat
equation. Similar results for the heat equation on a Riemannian manifold were obtained by
the second author in [15], [14], [16]. Note that such results are universal, in the sense that they
do not depend on the geometry on the manifold, and that they are instrumental in obtaining
basic heat kernel estimates.
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The purpose of this paper is to prove an analogue of the latter integral maximum principle
in the setting of discrete heat equation on a graph. This will enable us to answer some basic
guestions about estimates of discrete heat kernels, which were left open in [9]. We should
mention that the proof in the above continuous setting is quite easy, at leastnifl its
derivatives decay fast enough as— oo. Indeed, differentiating (1.2) im and applying
integration by parts we obtain

d

—/ ulefdx = (QAuuet + u28t§eg)dx
d[ R" R"

= | (—2Vu-V@ue®) + ud,£¢f)dx
Rll

2/ (=2|Vul?e® —2Vu - VE ue® + u?0,6¢5)dx
Rn
1
5/ (—2|W|2+ <2|W|2+ > |vs|2u2> +uzats)efdx
Rﬂ

1
=/ (5 vER + ag)uzefdx,
Rﬂ

which is non-positive by (1.1). However, if one tries to mimic this proof in the discrete setting,
it does not work, due to additional terms that come from the discreteness of time. Before we
can discuss this in details, let us introduce the necessary definitions and notation.

Let I be a (non-oriented) countable graph, that is, a countable (we do not exclude the
finite case) set ofertices, some of which are connected bgges. We writex ~ y if x andy
are connected by an edge (in this case we say that thexigiteors), and denote this edge by
xy. We shall assume throughout thais locally finite, that is, each € I" has a finite number
of neighbors. A path of length betweenx andy in I is a sequence;, 0 = 1,...,n such
thatxg = x, x, = y andx; ~ x;4+1,i = 0, ...,n — 1. We shall assume thdt is connected,
i.e., there exists a path between any two points of.etd be the graph metric of ; d(x, y)
is the minimal length of a path betweerandy. Denote byB(x,r) = {y € I ; d(x, y) < r}
the closed ball of radius > 0 centered at € I".

Let .y = uy. be a non-negative symmetric weight defined fowaly € I" and vanish-
ing on all pairsy, y that are not neighbors (so that, is a function on the edge set). Assume
w is non-degenerate in the sense that foramyI” there existy € I" such thajt,, > 0. The
couple(I', u) is called aweighted graph. Any graphl” admits the standard weight.,, = 1
forall x ~ y.

A weight  induces a positive weight on vertices defined by

m(x) = Z Mxy s
y~x

which extends to a measure éhby

12l=m@)=> m),

xes
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for 2 c I'. Next, define akerngb(x, y)onI" x I" by

Mxy
m(x)

plx,y) =
Note thatp is a Markov kernel, meaning that, forall y € I,
(1.3) px,y) =0 and ) p(x,2)=1,
zel’

andp is reversible with respect to measure, that is,

(1.4) p(x, yym(x) = p(y, x)m(y) .

Conversely, given a Markov kerngl reversible with respect to a positive measurethe
weightu is uniquely determined by, = p(x, y)m(x).
Let P be theMarkov operator acting on functions o™ as follows
Pu(x) := Z px, Vu(y) = Z hx,Yu(y)m(y), xel.
yel’ yel’
The (discrete).aplace operator A of (I, 1) is defined byA = P — Id, that is,
Au(x) =Yy ple, »)(u(y) — u(x)).
yel’

Let nowu = u(k, x) be a function orN x I" where we regard the variableas a (discrete)
time. It will be convenient to writery, = u(k, -). Letu satisfy the (discretef)eat equation,
that is,

(1.5 Uyl — Uk = Aug,

which is equivalent tai; 1 = Pug. Let f be a non-negative function dvh x ", which will
play the role of a weight. Consider the following weighte#norm ofu:

I o=y uf(x) fi(x)m(x) .

xel’

Our main result, Theorem 2.2, says thatis a non-increasing function @f provided there
existsa > 0 such that

() px,x)>a forallxerl
and f satisfies the inequality

4ot fr+1

<0

(1.6) Jev1 — fi +
where

IVFIZ(x) =D (f) = f0))Pp(x,y).

yel’
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Note that in the continuous settingy.{) implies that the functioyf = ¢¢ satisfies the inequal-
ity

2
of + 'VZJ;' <o,
which matches (1.6).
Condition («) has no analogue in the manifold setting. In the graph setting, it appears
in [11] and [13]. At first sight it seems very restrictive; indeed, the simplest gfabkith
the standard weight does not satisfy it. However, for most applications of the integral
maximum principle, it is possible to get rid ¢&) by considering a new graph, called
the iterated graph, that has the same set of verticds last x andy are related by an edge
in I'" if d(x, y) < 2 in I". Respectively, one considers dhthe Markov kernelp(x, y) =
p2(x, ¥), which is reversible with respect to the same measupe). The associated weight
is denoted byi. The weighted graphf, 1) satisfies Conditiofiw) provided(I”, u) satisfies
the following condition

8 m(B(x, 1) = m(y) < fm(x), xel
y~x

for a constant8 (see Lemma 3.2). It is frequently possible to prove certain results about
pr(x, y) onI" by having proved them first off for px(x, y) using(«) and then transferring
them back ta”. This way of using«) was introduced by Delmotte [13] and later was applied
also in [9]. Note that the construction of iterated graphs may serve another purpose, namely,
extend our results from Markov chains with range one to Markov chains with bounded range.

All our applications of the integral maximum principle relate to estimates ohéae
kernel on (I, w). Let pr(x, v), k € N, be thek-th iterate power op(x, y), that is,

_s 0. x#y,
pO(xv)’)—ax,y = {1’ x=y,
and
(1.7 pr(x, ) =Y peoalx, Dp,y), k=1

zel’
The functionpg (x, y) is thek-th step transition function of the random walk defined by the
transition probabilitiep (x, y). Define thetransition density or theheat kernel of this random
walk by

(x, y)

he(r, y) = 22220
m(y)

Note that unlikepg (x, y), the functioni (x, y) is symmetric inx, y. It follows from (1.7)

thath; satisfies the identity

(1.8) hiyi(x,y) = th(x, 2Dhi(z, y)m(z) ,
zell

for anyk,l € N andx,y € I'. Note thatx — hi(x, y) is a solution of the discrete heat
equation for any € I'. For various aspects of heat kernel estimates on graphs, we refer the
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reader to the book [26], to the surveys [7]0[1[22] and to the references therein. Some of
the lecture courses contained in [3] are also relevant.

Our purpose here is to provide with the integral maximum principle a basic and universal
tool for the study of pointwise estimates of transition probabilities of random walks of graphs.
As such, it does not use specific geometric properties of the graph, such as the volume growth
or the Poincaré inequalities. On the other hand, it is very stable, so that it might prove useful
for instance in the study of random walks in random environment.

In Section 2 we prove the integral maximum principle for graphs satisfying Condition
(o). In Section 3 we discuss the relation between Conditi@)sand (8). In subsequent
sections, we present a selection of three applications of the integral maximum principle for
graphs satisfyinga) or (8).

Corollary 4.2 says that, for all finite subsetsandB in I",

d*(A, B
1.9 DY) hlx, yymxm(y) < C exp( - c(T))\/m(A)mw) :

xe€AyeB

whered(A, B) := inf{d(x,y);x € A, y € B} is the distance betwee# and B, andC, ¢

are positive constants. The inequality (1.9) is not new. An analogue of (1.9) for heat kernels
on Riemannian manifolds was proved by Davies [12, Theorem 2] (see also [19] for an earlier
version and [17] for alternative proofs). In the graph case, whemd B are single points,

the inequality (1.9) yields

/ d?(x,
pi(x,y) < Cexp %(—c (i y)>.

A weaker version of this estimate is due to Varopoulos [24], and the proof in full generality is
due to Carne [5]. Moreover, Carne’s method allows to prove (1.9) for arbitranAsétawith-

out assumingw) or (8). Another proof of (1.9) was obtained in [9, Lemma 5.1] using a result
of Hebisch and Saloff-Coste [18] for an alixry random walk with continuous time. By the
way, in the statement of the Davies-Gaffney inequality in [9, Lemma 5.1], one hypothesis is
missing. Namely, one has to assume that

Mxy
1.10 sup ————
(1.10) o M) =

)

in order to be able to apply [18, Lemma 2.4]. In Section 4, we deduce (1.9) from the integral
maximum principle to illustrate the strength of the latter. We also deduce another, apparently
new, generalization to arbitrary sets of the Carne-Varopoulos estimate, namely,

d?(A, B)

YD i yme)my) < cexp( —e—

x€AyeB

) min(card(A), card(B)) .

Another application of the integral maximum principle enables one to obtain off-diagonal
estimates of the heat kernel from on-diagonal ones. Assume that for two fixedpoings’”
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and allk € N the following estimates hold:

1 1
hox(x,x) < —— and hxy(y,y) < —

J k) glk)’
where f andg are some increasing regular enough functions. Then, féralN,
c d?(x, y)
hor(x, y) < 7exp<—c )
v [ (nk) g(nk) k

for some positive constan€ c,  (see Theorem 5.2). An analogous result for manifolds was
proved in [16]. Let us emphasize that unlike other methods for obtaining Gaussian upper
bounds (see for example [9] and [18]), we need information on the heat kernel only at fixed
pointsx, y, which provides a lot of flexibility for potential applications.

The integral maximum principle also enables one to obtdgwar bound of heat kernel
from an upper bound, similarly to a result of, [Bheorem 7.2] for the manifolds setting.
Assume that for a fixed point € I" the following two conditions hold:

V(x,2r) <CV(x,r) forall r >0,

whereV (x,r) := m(B(x, r)), and

C
hig(x,x) < —————, forall k eN.
‘ V(x, V)
Then, by Theorem 6.1, there exists a constantO such that
c
hg(x,x) > ———— forall k e N.
V(x, V)

In Section 7 we observe that our results can be carried over to time-dependent random
walks, and in Section 8 we give an application of Theorem 5.2 to random walks on percolation
clusters.

We thank Pierre Mathieu for discussions on random walks on percolation clusters.

2. The discrete integral maximum principle.  We start with the following simple
observation, which will not be used, but which gives some flavor of what follows.

ProOPOSITION 2.1. Let (I, u) be a weighted graph and let u be a solution of the
discrete heat equation on (I, 1). Let f be a non-negative functionon N x I" such that

Pfiy1 < fi forall k e N.
Then, for any g € [1, +o0), the quantity

L =3 a0l fioom(x)

xel’
isnon-increasing in k, that is, Jk(i)l < Jk(”) for all k € N.
PROOF Since
w1 (x) = (Pu)(x) = Y px, »ur(y),

yel’
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we obtain, using the Holder inequality, (1.3), and (1.4),

K=

q
> ply, y)uk(y)‘ fera(xym(x)

xel’ ' yel
qg—1
<> ( > px, y>) ( > px, y>|uk(y>|q>fk+1(x>m<x>
xel’ ~yel’ yel’
=3 pO. O frya ()m(y)
yel' xel’
= D kM (Pfir) (m(y)
yel’
< I feym(y) = IO D
yel’

As a simple consequence, by takifig= 1, we see that th& (I", m)-norm of a solution
of the discrete heat equation is non-increasing. This is of course also true #oo. From
now on, we will consider only the cage= 2.

Let us introduce the following notation: given a functigron N we write

f = fir1— fr-
Itis easy to see that
(2.1) o (f9) = Ok f)gr+1+ fe(kg)
W(f?) = 2fide f + e f)2.
Similarly, if f is a function on” andx, y are two vertices i, let us set
Vi f = f) — fx)

and observe that the following product rules take place:
Viy(f9) = fF(x)(Vxyg) + (Viy fg(y)
Viy(f2) = 2f () Vay f + (Viy )?.
Let us defindV f| as a function o™ by
(2.3) IVFI2G) =Y (Ve )Pp(x, ).

yel’
Note that the Laplace operator ¢A, 1) can be rewritten in the form

Af() =" px, NV f.

yel’
One can easily check the following integration by parts formula: if one of the funcfions
on I" has a finite support then

1
(2.4) D AF@g@mE) = =3 37 (Vey ) (Vey 9ty

xel” x,yel’

(2.2)
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(the factor ¥2 appears because each edge is counted twice in the sum).
Givena € N andb € NU {+o0}, a < b, define the intervals
l[a,b) ={keN;a<k<b} and p,b]={keN;a<k<b}.
Letn € NU {+00}. We say that a function satisfies the heat equation[@® n) x I' if u is
defined in[0, n] x I" and
(2.5) oru = Auy forallk € [0,n).
The next theorem is the main result of this section.

THEOREM 2.2. Let (I', 1) be a weighted graph satisfying Condition (@) and let f be
a strictly positive function on [0, n] x I" such that, for all x € I" and k € [0, n),

IV feqal?
(2.6) O f (x) + m(x) <0.

Then, for any solution u of the heat equation in [0, n) x I', the quantity
Je = Je(u) ==Y ug(x) fi(x)m(x)
xel’
isnon-increasing in k, that is, Jy+1 < Ji for any k € [0, n).
PROOF. Assume first that sugpo) is a finite set, which implies that su@g) is also

finite for anyk € [0, n) and which will ensure finiteness of all the sums in the argument below.
By (2.1), we have

R W f) = h(®) figr + ulh f = 2ug (Ogut) fir1 + (D) fryr + uldi f

whence
O () =) 0 (? ) (x)m(x)
xel”
2.7 =23 k() RU) frra1(Im ) + Y (Bu()? froy1 (x)m(x)
xel’ xel’
+ D up)d f ()m(x) .
xel’

Using (2.5), (2.4), and (2.2) let us observe that the first sum in (2.7) is equal to
2 ur () Aug (x) fip 1 (x)m(x)

xel’

== Z (vxyuk)v)c)'(ukfk-i-l)ﬂxy

2.8) el ,
== > (Vou)? ittty — Y (Vaun)ux(0)(Vay fir1) thay
x,yel’ x,yel’

=— Y (Vou) firt@ ey — Y (Vayut) g (6) (Vay fip Dby »

x,yel’ x,yel’
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where in the last sum in (2.8), in order to replagéy) by uy(x), one switches andy in the
notation usingvy, = —V,, anduyy = yy.

To handle the second term in (2.7), we will argue as in [13, 81.5] and [9, Lemma 4.6]
using Condition(«). Indeed, we have

(u(x))? = (Aug(x))?

2
=< > (vxyuwp(x,y))

yvel\{x}

2.9) 5( > p(x,y>)(2(vxyuk)2p(x,y>)

yer\{x} yerl

= (1= p(x, ) Y (Veyur)?p(x, y)

yel’

<(1—a) ) (Vur)®p(x,y),

yel’

whence, using (x, y)m(x) = fiyy,

(210) D @u))frrr(Imx) < L —a) Y (Vayur)? fra1 () pty -

xel’ x,yel’

Hence, substituting (2.8) and (2.10) into (2.7) and using (2.3) we obtain

) < —a Y (Vg fir1 ity = Y (Vayut)ur () (Vay fis 1) by
x,yel’ x,yel’

+ ) U f (om ()

xel’

_ T ug (x)
= x’yzer( xyUk afir1(x) + ———— ZW xyfk+l> Mxy

1
+;uk( )<401f+ o )Ika+1| (X)+3kf(X)>m(X)
By the hypothesis (2.6), the expression in the brackets in the last sum is non-positive, whence
oJ <0.

Let nowug be an arbitrary function of™. Without loss of generality, we can assume
that Jo(u) < oo. Indeed, as long a#. (1) = +oo there is nothing to prove, andf is the
minimum integer such thak, (1) < +oo, then we can shift the time as follows:—~ k — ko.

Let us take an increasing sequence of finite subjgétscn such than;og Ii=rTand
define the initial stateag) := 1r.up. Alongside the functiom; = P*uq consider also the
following functions:

! = Phud). o = PRl uci= PMluol .
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Wheni — oo we have, for any € I andk € N,
u,((i)(x) — ur(x) and v,(ci)(x) o (x).
By the monotone convergence theorem, we conclude
J@D) 1 T ).

Sincev® is a solution with finite supportj; (v\")) is monotone decreasing inwhence we
see that so idi (v). In particular, we have

Jr(v) < Jo(v) = Jo(u) < 00.

Since|u,((i)| < v,(f) < vk, we obtain by the dominated convergence theorem

Sy > Je(u).
Since J; (u'") is monotone decreasing i) we conclude that so ig («), which completes
the proof. m]

In the next statement we shall give a first example of a non-trivial wefgsatisfying
(2.6). This weight will be used in Section 4. We say that a functiam I" is 1-Lipschitz if
|Viyp| < 1 whenever ~ y. For example, if¥/ is any subset of” andp(x) is a distance to
M, thatis,p(x) := d(x, M), thenp is 1-Lipschitz.

PROPOSITION 2.3. Let (I, u) be a weighted graph satisfying Condition («) and let
p(x) bea 1-Lipschitzfunctionon I'. Let a and b be two real numbers satisfying

(el —1)?
2.11 b > 14+ —|.
(211) > log (1+
Then, for any solution u of the heat equation in [0, n) x I", the quantity
(2.12) Je = Je() =Y uf(x)e” " hm(x)
xel’

isnon-increasingin k € [0, n).
PROOF. By Theorem 2.2, it suffices to prove that the functifi(x) := @) —bk
satisfies (2.6). We have
U fx)= (" =D fi(x),
and, for allx, y € I" such thatc ~ y,
[Viy fir1 ()] < (N = 1) firya(x) .
Therefore
2 a
IV firalP) = Y [Vay fir1@)|" plx.y) < (= D224 (x)
{ysy~x}
and
|V fier1(0)?

< (@ = )?fria1(x) = e - D fr(x) .
Jir1(x)
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Finally,
IV fir1(0)|? b (el — 1)2
3kf(x)+m =< |:€ <1+ T) —1i| Je(x),
and (2.6) follows from (2.11). O

REMARK 2.4. Observe that there is a positive constdny such that, for alk € R,

lal _ 1)2
log <1+ %) < c(oz)az.

Hence, (2.11) is satisfied by any coupleb with b = ¢(«)a?. The relationh = ca? between

a andb is important in applications of Theorem 2.3; in those applications, one chadses
be a small positive number. Without Conditian) one cannot ensure the existence of such a
constant that the quantity (2.12) decays for any couple related byb = ca?.

Another family of weight functions satisfying (2.6) is given by the following proposition.
This weight will be used in Sections 5 and 6.

PROPOSITION 2.5. Let (I', 1) be aweighted graph satisfying Condition («) and let p
be a 1-Lipschitz function on I" such that inf p > 1. There exists a positive number D, such
that, for any D > D, the weight function

2
D L _ pe(x)

(2.13) Je@x) = fi7 (x) = exp( Dntl—h k))

satisfies (2.6) for all x € I and k € [0, n). Hence, for any solution u of the heat equation in

[0, n) x I, the quantity Ji := > . u,f(x)fk(x)m(x) isnon-increasingin k € [0, n).

PROOF A simple calculation shows that

2
_ p=(x)
=0 f(x) = (eXP(D(n NIy k)) - 1)fk+1(x)

2
pe(x)
> <exp(m> - 1>fk+l(x)

2 2 2

yiy~x

2 2 2
Z pe(x) — p=(y)
e, poso (o505 ) -1)

y~x

(2.14)

and

By the Lipschitz condition and the hypothegiér) > 1 we obtain
102(0) = P2 = 1px) = pWMIIpX) + PN < 2p(x) +1 = 3p(x) .
Next we use the following elementary inequalityizif < s then

‘e’—l‘fes—l.
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Combining together the previous lines, we obtain

3p(x) 2
(2.15) IV fer1(x)[? < fk2+1(x)(exp(%) - 1) :

Next let us use another elementary fact: for @y 0 there exist8 > 0 such that, for
allt > 0,

(¢ —1)2 < AP’ — 1.
Settingr = 3p(x)/D(n — k) andA = 4a we obtain that, for som8 = B(«a),
1 3p(x) 2 Bp?(x)

2.16 — — -1 —— | -1.
(2.16) M(exp(Dm—k)) ) SE"X'O<Dz(n—k)2
Hence, ifD > D, := 2B, then the right hand side of (2.16) is bounded from above by

2
pe(x)
—— 7 )-1
eXp(ZD(n - k)z)
Combining with (2.14) and (2.15), we obtain
v 2 2
IV fer1i®IT _ fierr () (exp( 3p(x) ) _ 1)

dafir1(x) T Ao D(n — k)
2
< fk+l(x)(eXp(#(f)k)2) — 1) <000,
which was to be proved. m]

3. lterated graph. Recall that with any weighted graghf”, 1) there associates an
iterated graphI” whose set of vertices is the same as thaf@indx ~ y in I"if d(x, y) < 2
in I". The graphl™ is equipped with a weighi defined by
Py = p2(x, y)m(x) .

In other words, the Markov kerngl(x, y) on I" is given by 5(x, y) = pa(x, y), and the
corresponding measure coincides withm. The heat kernels andh respectively o™ and
I" are related as follows.

LEMMA 3.1. Forallk e N*andx,y € I, we have
hok(x, y) = hi(x, y)

and
hor1(x, y) < max h(x,z).
zeB(y,1)

PrROOFE Indeed, we have

hax(x, y) = ”2;(();’)” = ”fn(fy)y) = i (x, y)
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and

hapa(x,y) = Y ha(x, 2)p(y.2) £ Max x(x.2) Y p(y.2) = max hi(x,z).
2eBO1) zeB(y,1) r zeB(y,1)
O

Most of our results in the next sections use the following lemma.

LEmMA 3.2 ([9, §4.2]). If (I', n) satisfies Condition (8), then (I, j1) satisfies Condi-
tion (), witha = 1/8.

PROOF. By the Cauchy-Schwarz inequality, for any I,
ha(x,x) = Y h%(x,y)m(y)

yeB(x,1)
1 2 1
> h(x, = ——,
= m(B(x,l))(yeBX(il) x y)m(y)) m(B(x, 1))
that is,
. m(x)
p(x,x) = p2(x, x) = ho(x, x)m(x) > m )
whence the claim follows. O

Using Lemmas 3.1 and 3.2, one can easily formulate some versions of Propositions 2.3
and 2.5 adapted to graphs satisfying Conditighinstead of(«); here the conclusion is that
the expressiong; decay separately for even and odd times. We leave details to the reader.

A couple of comments are in order about Conditign. First it is obviously equivalent
to the conjunction of the following two properties:

- Sup.c; Ny < +o0o, whereN; is the number of neighbors af, that is, the graplf” is
locally uniformly finite.

- there exists a positive constafit such thatn(y)/C < m(x) < Cm(y) if x,y are
neighbors.

Note that, in the case of the simple random walklonthe second condition follows
from the first one.

On the other hand, it is easy to see that either of the following conditiond on)
implies Condition(8):

- infy~y p(x,y) > 0.
- (I', ) is invariant under guasi-transitive group action, that is, there exists a group,
acting on the grapli™ with finitely many orbits, such that is G-invariant.

Note finally that neither of Condition&), (8) implies the other one for the same graph.

4. The Davies-Gaffney estimate of the heat kernel. The aim of this section is to
derive the following statement from the discrete integrated maximum principle. Heye
denotes the inner producti(I”, m), and|| - |2 is the corresponding norm.
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THEOREM 4.1. Let (I, u) be a weighted graph satisfying either Condition («) or
Condition (B). There exist positive constants C, ¢ depending only on « or 8, such that, for
anytwosubsets A, B C I', for all f € [2(A), g € [2(B), and all k € N*, we have

d%(A, B)

(4.1) (P, 9)] < CexP( i

>||f||2||g||2,

whered(A, B) :=inf{d(x,y);x € A,y € B}.

PrROOF. We first prove the statement wheR, ) satisfies Conditiofix). Settinguy :=
Pk f we have

(4.2) (PEf )l = | Y uk()g(m(y)

yeB

1/2
< (Zu,%(y)m(y)) lgllz-

yeB

Then consider the quantity
Jii= ) uf(e !N (y)
yel’
with a > 0 andb = c(a)a? as in Remark 2.4, and record the following three facts:
- Sinceug = f is supported iM andd(-, A) =0onA,
Jo="Y ugm) =£I5.
yeA
- By Proposition 2.3 and Remark 2.4, < Jo.
- Sinced(y, A) > d(A, B) foranyy € B,
Ji z ADTEN TR m ()
yeB
Therefore
> uf(yym(y) < e ABR 2
yeB

whence, by choosing = Ad(A, B)/k, wherea is any positive number smaller thapcla),

d?(A, B)
(4.3) Y up(m(y) < exp( - CT) 1£115-
yeB
Substituting into (4.2), we obtain (4.1).
Assume now thatl", 1) satisfies Conditiorig). Then, by Lemma 3.2, the iterated graph
(I, iu) satisfies Conditiorier). By the first part of this proof, we conclude that

d%(A, B)

I(PXf, )| < Cexp< —e—

>||f||2||g||2,
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whereP is the Markov operator ofV™, /i) associated withp, andd is the graph distance on
I'. SinceP* = P% andd = [d/2] > d/2 (where[y] is the smallest integer larger than or
equal toy), we obtain

d?(A, B)

(4.4) (P £, 9)] SCexp(—%T)Ifllzllgllz-

Finally, noticing that the support a?f is in the 1-neighborhood’ of A, we obtain from
(4.4) applied toPf instead off:

cd?(A', B)
(P2HLE, )] < Cexp( - ZT>||Pf||z||g||z.
d?(A, B)
<’ eXp( - C/T) I fllzllgllz,
where we have also uséd®f |2 < || f]l. o

COROLLARY 4.2. Let (I', 1) be a weighted graph satisfying either Condition («) or
Condition (8). There exist positive constants C, ¢ depending only on « or g, such that, for
any two subsets A, B C I" with finite measure and for any k € N*, we have

d*(A, B
45) DY b ym@m(y) < C exp( - c¥)¢m(A)m(B>

k
xeAyeB

and

2
4.6 h2(x, y)m(x)m(y) < C ex <—cm>mincardA,cardB .
()ggk(yu)(y) p p (card(A), card(B))

PROOF. By taking f = 14, ¢ = 1p in (4.1) we obtain (4.5). To prove (4.6), we use
(4.3) with £ (y) = 8x,y/m(x) with a fixedx € I". Thenux(y) = P* f(y) = hi(x, y), and
(4.3) yields

th( ym(y) < ex (—-dz(x’B)> =
s y)m(y) < p C X m(x).

yeB
Multiplying by m(x), summing inx € A, and noticing that/(x, B) > d(A, B), we obtain
d%(A, B
D2 M ymGom(y) < exp( - c%) cardA).
xeAyeB

Hence, (4.6) follows by symmetry betwedrandB. O

5. From on-diagonal to off-diagonal upper estimates. Let us first recall the notion
of regular function introduced in [16].

DEFINITION 5.1. We say that a functiogi : (0, +00) — (0, +00) is regular if f is
monotonically increasing and if there exibt> 1 andy > 1 such that for all O< s < ¢ we
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have
fys) < RAL '
f(s) Q)
Here are two (opposite) sufficient conditions for regularity:
(1) Let f(¢) satisfythe doubling condition, that is, for somed > 1 and allz > 0

(5.2) f@) <Af@.
Thenf is regular withy = 2 because

f@) o, fe
fs)y = 7 f@®
(2) Let f(r) haveat least polynomial growth in the sense that, for some > 1, the
function f (y1)/f (¢) is increasing irt. Thenf is regular withA = 1.
Consider a function() := log f (¢f) wheret € (—oo, +00). If f is differentiable then
regularity is implied by either of the following two conditions:
(1) 7 isuniformly bounded (for example, this is the case whefir) = tV or f(1) =
log" (1 + 1) whereN > 0);
(2) 1" ismonotoneincreasing (for example,f (t) = exp(tV)).
On the other hand, regularity failsiif = exp(—£) (that is, unbounded and decreasing),
which corresponds t¢@ (r) = exp(—¢~1). Also, regularity may fail if/’ is oscillating.
We can now state the main result of this section.

(5.1)

THEOREM 5.2. Let (I', u) be a weighted graph satisfying Condition («). Let x, y be
two fixed verticesin I", and assume that there are two regular functions f, ¢ (satisfying (5.1)
with the same constants y, A) such that, for all kK € N*,

1
hzk(xv-x) E ms

1
ho(y,y) < —

g(k)
Then, for all k € N*,

2
(5.3) hi(x,y) < _d (x’y)>,

Co
NGOOIT) eXp( Dok
wheren = n(y) > 0, Dg = Do(a, y) > 0and Co = Co(A, a, y).

If (I", u) satisfies Condition (B) instead of («) then the conclusion (5.3) still holds but
only for even k, and Co, Do depend on 8 instead of «.

To prove the above result, we shall follow closely the strategy of [16]For 0,x € I,
consider the following quantity:
d?(x, z)

(5.4) Ep(k, x) ::Zezrh,%(x,z) exp(7>m(z),
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where
di(x, z) == max{d(x, z), 1} .
Note thatEp (k, x) — hor(x, x) asD — oo.

PrROPOSITION 5.3. Let (I, u) beaweighted graph. For all x, y € I', k € N*, and all
D >0,

d?(x, y))
4Dk )

(5.5) hak(x,y) < Ep(k, x)Ep(k, y)eXp<—

PROOF. By the Cauchy-Schwarz inequality, sing&(x, y) < 2(d2(x, z) + d2(y, 2)),
we have

2 2¢y _ g2 n
hoi(x, y) < th(x’ Dby, 2)edt06:D/2Dk gdE(.2)/2Dk y—dF (x.)/ADk (-
zell

<VEpk, x)Ep(k, y)e*dlz(x>y>/4Dk '

Sinced1(x, y) > d(x, y), the claim is proved. O

Observe that, a® — 400, equation (5.5) becomes the well-known estimigigx, y) <
Vha (c, x)har(y, y).

Proposition 5.3 enables one to obtain an upper boundzidx, y) from an upper bound
for Ep(k, y). More precisely, Theorem 5.2 is an obvious consequence of (5.5) and the fol-
lowing statement.

PROPOSITION 5.4. Let (I, 1) be aweighted graph satisfying Condition («). Let x be
afixed vertexin I", and assume that there exists a regular function f such that, for all kK € N*,

1
(5.6) hok(x, x) < m
Then, for all k € N*,

Co
(5.7) Epy(k,x) < 700

where n = n(y) > 0, Do = Do(a,y) > 0,and Co = Co(A, «, y) (here y, A are the
constants from (5.1)).

The same statement is true if (I, u) satisfies Condition (8) instead of («), with the
constants Do and Co depending on 8 instead of «.

PROOF OFTHEOREM5.2. Using (5.5) withD = Dg and applying Proposition 5.4, we
obtain

d?(x, y)
4Dk

hox(x,y) <V Ep(k, x)Ep(k, y) exp(—
(5.8)

Co ( d2<x,y))
< —————exp| - ,
 f (k) g(nk) 4Dk

which yields (5.3) for even times.
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If (I', u) satisfies Conditiorie), then we write
ha(x,y) = Y ha1(x,2)p(y, 2) = ha1(x, Y)p(y, y) = ahai1(x, y),
zeB(y,1)

whence

hor-1(x,y) < @ Tha(x, y).
Substituting the estimate (5.8), we obtain (5.3) for odd times. |

PrROOF OFPROPOSITIONS.4. Let us first assume thaf, 1) satisfies Conditiori«).
Fix x € I" and, foranyR > 0 andk € N, define

I(R,k) = I(k,x,R) := Z h2(x, 2)m(z) .
z¢B(x,R)

We will estimatel (R, k) by iteration, and the iterative step is contained in the following
estimate: for alk, k € N such that: > k and all real numberg > r > 0,

(R—r)?
2Dy (n — k)
whereD,, is the constant from Proposition 2.5. Denote|l®/ the integer part oR. Define

(5.9) I(R,n) < <hzk(x, x) eXp( ) + 1(r, k)) exp(1/Dy) .

() = d(z, B(x,R))+1=|R] —d(x,2)+2, if ze€ B(x,R),
PR=11, otherwise.
Note thatp satisfies the assumptions of Proposition 2.5. Let
2
p(x)
F, = ——— ), k=0,...,n.
(x) eXp( Da(n+1—k)> "

SinceF;(z) > exp(—1/Dy) for z ¢ B(x, R), we can write

I(R.n)= Y h3(x.2)m(z) < expl/Dy) Y ha(x,2)Fy(2)m(2) .
7¢B(x,R) zel
Then, we know from Proposition 2.5 that
D hA(x. D) Fa(@m(z) < Y hE(x, ) Fe(m(z) .
zell zell

If z € B(x,r),thenp(z) > |R] —r +2> R —r, whence
Yo )FR@m@ = Y k. )FR@m@+ Y hix, ) F@m)

zell z€B(x,r) Z¢B(x,r)
2 _R-1?
< ( > hk(x,z)m(z)) exp( Dot +1_k)) +1(r. k)
zeB(x,r)
<h ( )ex (_M)_’_[( k)
=12k OO = b=y ) T
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thatis, (5.9). Using the hypothesis (5.6), we obtain from (5.9)

Y

exp(1/Dy) exp( _ (R-1)
fk) 2Dy (n — k)

Now let us prove that there exist positive numbBgs= Ro(y) andd = 6(y) such that,

forall R > Rg andk € N*,
Co < Rz)
exp| —0— ).
fk/y) k

The result is trivial ifR > k (since then/ (R, k) = 0), hence we can suppoke> R. Given
any finite decreasing sequentg; }f" , of real numbers and any finite strictly decreasing

(5.10)  I(R,n) < ) + I(r, k) eXp(1/Dy) -

(5.11) I(R,k) <

sequencek }’0 ; of natural numbers such th&f = R, k1 = k and/ (R}, kj,) = 0, we can
iterate (5.10) and obtain

expj/Da) (Rj — Rjy1)?
(5.12) I(R.k) < ,21 Fmn) p(_ m)

Let us now build such sequenc{agj}-;:o:l and {k; 50:1- Recall thaty > 1. TakeR > Ry,
where '

Ro = Ro(y) :=2y/(y - 1) + 2,
and
Rj:==R/2+R/(j+1), tj:=k/y/™" kj:=1].

Let jo := min{j; R; > k;} (note thatjo > 1 sincek > R). By construction, one has
I(Rjy, kj,) = 0. Also, for all j < jo we havek; > R; > R/2, whence

1 1 1
t —tj+1=tj<1— —) > (kj—l)(l— —> > (R/2—1)(1— —) > 1,
1% Y Y

which means that; > k;,1. Moreover,
kj =k <k/y' T —k/y +1=k(y = D/y) + 1< 2k = D/y7

where in the last inequality we used the fact that y/ /(y —1) which follows fromk; > R/2
and the choice oR. Using the estimate fdr; — k ;1 and the identity

RZ

(R; = Ris0* = G e
we obtain
(Rj — Rj+1)? R?
2Dulk; ko) kD
where
J
0 =0(a,y) =

min — 3 5 >0
4Dy(y =1 =21 (j+D3(j +2)
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Therefore (5.12) yields

o7l j R?
I(R, k) < — —60—(+1).
(R, k) < ; o exp( b 0% U ))

By the regularity off, we have
() _ S (rtj+1) <Af(tl) —A S (k)
fiv)  f@iv) — f(2) Fk/y)’

whence

fo) _ f) f)  f@) <A &) )"
ftjr)  f@) f()  f@j) — \ fk/y))
Thus, setting. := log(Af &)/ f(k/y)),

Lo D e = —exp(iL).
f@jv) — f@) f k)

and

1 R2 jO*l . R2 1
I(R, k) < mexp<—97> Z exp(—]<97 —L— D_a))

j=1
We consider two cases:

CASE1: Let
R? 1
0— — L — — >log2.
k D,

In this case we have
jo—1

1 R2 Jo » 1 R2
I(R,K) = meXp<—97> ZZ /< mexp(—ey).

Jj=1
CASE 2: Let
R? 1
f— —L— — <log2.
k Dy

In this case we estimatg R, k) differently:

1
IR k) <Y h2(x, 2)m(z) = hox(x,x) < ——
2 G

2 < 1 R2> 2A exp(1/Dy) ( RZ)
<—exp|lL+—-0—)|=——"exp| 06— ).
f (k) Dy k fk/y) k
In both cases we have
2
I(R’ k) < w exp< — GR_>
fk/y) k

forall R > Ro(y), whichis (5.11).
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Finally, let us prove (5.7). Define, fgre N,

AR ._|{zelidi(x.2) < R}, j=0,
i {ZGF;2j71R<d1(x,Z)§2jR}, ji>1,

and

Ep(k, x) = Z Y ki, Z)eXp< i ’Z)) @)

Jj= Oze.A_R
For anyD > 0, the first term of this sum admits the estimate

2(x, 2) R? 1 R?
(5.13) 2,4: h2(x, )exp( L Dk )m(z)<h2k(x x)exp( > B xp(E).
zZ€ 0

Now for the remaining terms we have, assumihg 1,

Z h2(x, )exp( P ’Z)) (z )<exp(4“]i >I(2/ 1R k).

ze AR
AssumingR > Ro(y), we obtain by (5.11)

Co 4/-1R?
127 1R, k <—9 )
( )= Fam o p

whence

47 2 4jfl 2
IS exp( o )>’"(Z) 8 exp( ot )f(i?w exp(_e 2 )

(5.14) A7
< Co exp( — 4le2)
- fk/y) Dk )’

providedD > 5/6.
Take
(5.15) Do = Do(a, y) := max(i R—c2]> .
6 log2
Then by (5.13) and (5.14) we obtain, for aRy> Ry,

1 R2 Co & 4/-1R?
(5.16)  Epok.x) < o Xp(D—c)lc)+f(k/V)j§eXp(_ Dok )

Givenk € N* chooser so thatR?/(Dok) = log 2. Since by (5.15R > R, we conclude

2 Co & _4-1 _ 2+ Co
k, > 2 = L5 N
“O=TH Tam &t = T

which was to be proved.

Ep,
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Now let us consider the case whéeig w) satisfies Conditiorig). The hypothesis (5.6)
means that for the heat kerrigl on the iterated grapti”, i) we have

~ 1
5.17 he(x,x) < ——.
(5.17) k(x, x) ®
Since(I", 1) satisfies Conditiorie), the above proof yields, for an§ > Dy,
- Co
5.18 Epk,x) < )
(5.18) p(k, x) ROD
where

72
Ep(k,x) =) h{(x.2) exp(dl(x’ Z)>m<z>.

zell Dk
Clearly,
~ d?(x, 7)
Epk.x) = ) h3(x.2) exp(lélTk)m(z) = Eap(2k,x),
zel’
which together with (5.18) yields
Co
5.19 E4qp(2k, x) < .
(5.19) 4p(2k, x) &)

To treat oddk, we start with the inequality

hopq(x.2) £ Max hy(x,y) < Y h(x.y).
veB(z D)
veBEY

Since Condition(8) implies thatm(z) < gm(y) forall y ~ z andN, < g2forally e I', we
can write

2
Egp(k+1x) <y Y hgk(x,y)exp<d1(x’1))m(z)

zel’ yeB(z,1) 8Dk

d?(x,y)+1
<Y Y h%k(x,wexp(%)m(y)

zel yeB(z,D
d3(x, y)
< By N h%k(x,y)exp< iDi )m(y)
yel zeB(y,1)
= Be'/*P Ny Eap(2k, x) < p3e"/*P Eap(2k, x)

whence by (5.19)
C(B, D)Co
fk/y)

Combining (5.19) and (5.20) and changing appropriately the constant®g, we obtain
(5.7) again. a

(5.20) Egp(2k +1,x) <
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6. From on-diagonal upper to on-diagonal lower estimates. The aim of this sec-
tion is to prove the following theorem.

THEOREM 6.1. Let (I, u) be a weighted graph which satisfies Condition («) and
x € I' afixed vertex. Let v be a non-decreasing function on (0, 4+o00) such that

(6.1) m(B(x,r)) <v(r), r>0

and, for some A > 0,

(6.2) v(2r) < Av(r), r>0.
If there exists a constant C > 0 such that
C
(6.3) hp(x,x) < ——=, keN*,
v(Vk)
then
C
(6.4) hp(x,x) > ——=—, keN*,
v(Vk)

for somec = c(A, C,a) > 0.
If (I", u) satisfies Condition (8) instead of («) then the conclusion (6.4) still holds but
only for even k, and ¢ depends on g instead of «.

We note that under Conditior8] alone we cannot hope to extend the estimate (6.4) to
odd values of time since it may happen thgt,1(x, x) = 0.

We start with a lemma, which is well-known in the context of continuous-time heat
kernels (see for example [23]).

LEMMA 6.2. Let (I, u) beaweighted graph and x € I" be afixed vertex. Let 2 bea
non-empty subset of I". If, for somees > Oand k € N*,

D e, ym(y) <,
yel'\Q2
then
(1—¢)?
m(§2)
PROOF Indeed, using (1.8) and the Cauchy-Schwarz inequality, one has

ha(e.x) = Y h2(x () > —— 3 )m()z—(l_e)2 0
yeES2 yeSR

hor(x, x) >

Sincehy(x,y) = 0if y & B(x, k), this lemma implies immediately the following uni-
versal on-diagonal lower bound for the heat kernel

hor(x, x) > mBa)
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PrROOFE. Let us fixk € N* and recall the definition

dlz(x, y)

Epy(k, x) := h,%(x,y)exp(—)m(w,
0 ; Dok

where Dg is as in Proposition 5.4. Given ariy > 0 we have, using the Cauchy-Schwarz
inequality and? < dj,

( > G )m()>2<E kv Y ex (—dz(x’y)>m()
k(x, y)m(y = L pylk, p Dok y

(6.5) YEI'\B(x,R) yel'\B(x,R)
= Ep,(k,x)S(k, x, R),
where
d?(x, y)
(6.6) S(k,x, R) := Z exp( — Tok>m(y).

yel\B(x,R)

Our aim is to find some& > 0 such that the expression in (6.5) is smaller than, sg¥ ahd
then we shall apply Lemma 6.2.

The functions — v(4/7) is clearly regular with constanis = 4 andA. Assuming that
(I, ) satisfies(«) or (B), Proposition 5.4 yields

(6.7) Ep,(k, x) < - f/oz) .
Let us estimateS (k, x, R) as follows, using the notatioR; := 2/R:
Stk,x,R) < +ioexp(— R—]Z)m(B(x Ri+1) \ B(x, R}))
> As = o Dok » Nj+1 »

2

+oo R2
<y exp( - D—(fk)’"(B(x’ Rj+1)
j=0

+00 R2
< Z exp( - D—c:k + IOQ(U(R,'+1))) ,

j=0
where in the last inequality we used (6.1). From (6.2) we haveut®j,1) < AITLy(R),
and since 4> j + 1 forany;j e N, we have

+00 ) R2
4 i
Sk, x, R) < ;exp< 4 b+ log(v(R)) + (j + 1) log A)

+00 R2
<u(R) Zexp( - j(D—ok - IogA)) .

j=1



DISCRETE INTEGRAL MAXIMUM PRINCIPLE 583

Finally we takeR = a+/Dok with a® > 2logA, obtaining

a_Z) v(R)

+00
(6.8) S(k.x, R) < v(R) Zexp< )T emay =1

j=1
Hence (6.5), (6.7) and (6.8) yield
2 log,(a~/Dg)+1
Co v(R) CoA'0%(
( > hk(x,y>m<y>) < Vo a1 expaZD 1

yel'\B(x,R)

where we used repeatedly (6.2) to obtain

VR) _ logyayDo)+1
v(Wk) T

There exists large enougl such that

CoAl0%(a0vDo)+1 1
- @@@00O0O0O0O0OOo< —.,
expa3/2)—1 ~ 4
Then Lemma 6.2 implies
1/4 1/4 ¢
hog(x, x) > > > ;
m(B(x, aoy/Dok)) ~ v(aov/Dok) ~ v(v/2k)
where
1/4
(6.9) /

€= logao Do+
This finishes the proof of (6.4) for evén If (I", 1) satisfieq«) then by (1.8) and«) one has

ac ac
hop1(x, x) = hox(x, 2)p(x,2) = hox(x, x)p(x, x) > > ’
ze;;,l) v(v2k)  v(v2k+1)
which was to be proved. 0

7. Time-dependent random walks. Our results apply, with minor modifications, to
non-autonomous heat equations, in other words to time-dependent random walks. Here the
weight, depends on time, that is, we consider a sequéntie), .+ of weights such that the
total weight at each vertex is constant:

m(x)=2u§ky), keN*, xerl.
yel’

In other words, we consider a time-dependent Markov chain, reversible with respect to a fixed
measuren, with transition probability

at timek. We shall call(I", u) = (I, (u®),cn+) a time-dependent weighted graph.
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The associated time-dependent discrete heat equation is given by
(7.1) o = A®
where

APu(x) =" pWx, @) —u).
yel’
The unique solution of this equation, given the initial staje= ¢, is given by
w(x) =Y pr(x,y)o)
yel’
wherep (x, y) is defined recursively by

po(x, y) :=5x,y
pr(x,y) =Y pratx, 9pP y) .
zel’
One defines accordingly the heat kerhglx, y) := pr(x, y)/m(y).

Note that

1/2
VO £lx) = (Z(f(y) — F?pPx, y))
yel’
is also time-dependent.
The proof of Theorem 2.2 extends verbatim to this setting, by adding supers€iipts
the proper places. As a consequencé[ifu) = (I, (u®),cn+) Satisfies

PP, x) > >0, keN*,

then the condition

k+1 2
3kf(x)+m(x) <0, xerl', ke[O,n),
Aot fiet1
implies thatJy+1 < Ji foranyk € [0, n), whereJ; := )
solution of (7.1) in[0, n).
If we generalize Conditiol) by saying that a time-dependdiit, 1) satisfies it if
(7.2) inf inf p®X(x,x)=a >0,
keN* xeI”
then the statements of Propositions 2.3 and 2.5 also extend verbatim.
One can also extend the construction in Section 3. Giem) = (I, (1®)en®),
define(F, i) = (I, (iP)ren+), in the following way: I is as in Section 3 ang), =
PO (x, y)m(x), wherep™® is the Markov kernel defined fdr e N* by

=3 pP @ 2p® P .
zel’

xel sz(x)fk(x)m(x) andu is a

Of course the measure associated to the Wei@f@sis still independent ot and equal ton.
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Then one defineg; and i from 5% in a way similar to the way and i, were
defined fromp™®. A trivial adaptation of Lemma 3.1 shows th@t, i) satisfies Condition
(B) if (I', u) satisfieqw) in the above sense.

Theorems 5.2 and 6.1 generalize easily to the time-dependent setting.

As an application, one can for instance prove a result that was conjectured in [18, p. 680].
We shall say that the time-dependent weighted grdphu) satisfies uniformly a Sobolev
inequality of dimensiorV > 2 if there existsC > 0 such that

2/q
(Zrwmw) < ¥ e - ronul,

xel’ x,yel’
for every functionf on I" with finite support and alt € N*, whereq = 2N /(N — 2).

THEOREM 7.1. Let (I', u) be a time-dependent weighted graph satisfying Condition
() or Condition (8). Assume that (1", n) satisfies uniformly a Sobolev inequality of dimen-
sion N > 2. Then

d?(x,
hor(x,y) < Ck_N/Zexp( —c ()]i y)

), forall x,yer, keN*

and
hox(x,x) > ck~ N2, forall x eI, keN*.
PROOF According to [25, chap. VII],
hoe(x,x) < Ck~ N2, forall xer.

Then one applies Theorem 5.2 to obtain the first assertion. The second one follows from 6.1
or directly from the first one as in [9, Theorem 6.1]. |

One can generalize the above statemen¥to- O by considering Nash inequalities
instead of Sobolev inequalities.

An interesting direction for future work would be to devise time-dependent versions of
[9] and [2], in order to obtain non-uniform upper estimates

C d?(x, y)>
ho(x,y) < ————exp| — ¢ ,
2 (x, y) Vo IR |0< ?
as well as the matching off-diagonal lower bounds.

8. Random walks on percolation clusters. A percolation cluster is an infinite con-
nected graphI", 1), which is a subgraph o2V (with the standard weight) obtained by a
certain random procedure. We do not go much into the details of the construction. Our aim
is just to point out how certain known results on random walk on such graphs can be self-
improved using Theorem 5.2. It is known that, under certain hypotheses, the heat kernel on
a percolation cluster satisfies the following estimate: forary I" there exist positive con-
stantsC, andK, such that

(8.1) hox(x, x) < Cok N2 forall k> K,
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(see [20] and also [21] for a continuous time analogue, and [4] for full Gaussian upper and
lower bounds for a continuous time random walk on percolation clusters). First note that
(I, u) being a connected subgraph®f satisfies Conditiodg) with 8 = B(N). Let us also
recall the well-known result (see for example [6]) that

(8.2) how(x,x) < Bk™Y? forall x e I', k e N*,
with a universal constam® > 0. Fixx € I" and set

TN > K,
fX(t)_{B_ltl/z, t < K,.

so that we obtain from (8.1) and (8.2)

(8.3) hoe(x,x) < forall x e I', k € N*.
Sx (k)
Clearly, there exist positive constamtsandc, such that
e <Ct, be<BY, o kYP=bkYP
Set
. cxtN2, 1>K

4 — X k] - X 9

(8.4) Jx () {bxtl/z, t <K,

so thatf, is a regular function with the regularity constapts= 2 andA = A(N). Since
Sfx < fx, (8.3) implies

1 *
hor(x,x) < — P forallx e I', k e N*.
X

Finally, applying Theorem 5.2 we conclude, forally € I andk € N*,
d?(x, y))

SE——
V e (k) fy (k)
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