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Abstract. The aim of this paper is to give, for any real cyclotomic field, elements of
the group ring of the Galois group which annihilate the ideal class group. Our annihilators
are constructed by using the prime decomposition of an element which is an analogy of the
Gaussian sum. This method is essentially due to Thaine.

1. Introduction. For a positive integerN , we putζN = exp(2π
√−1/N) . In this

paper, we fix a positive integerm and a cyclotomic fieldk = Q(ζm). We assume thatm is the
conductor ofk. LetE be the group of units ofk and letG = Gal(k/Q). Let∆ = ∆m be the
subgroup ofk× generated by{1 − ζ am | 0 < a < m, a ∈ Z} . We letD = ∆ · E ⊂ k×. For
anyu ∈ Hom(D,Z) and an integert which is not divisible bym, we setε(t) = ζ tm − 1 and
defineθ(u, ε(t)) ∈ Z[G] by

θ(u, ε(t)) =
∑
σ∈G

u(ε(t)σ )σ−1 .

By a simple computation, we can show thatθ(u, ε(t)) is an element of(1+ j)Z[G], wherej
is the complex conjugation inG. Moreover, we can prove the following theorem.

THEOREM 1.1. 2θ(u, ε(t)) annihilates the ideal class group of Q(ζm).

θ(u, ε(t)) is constructed by using some cyclotomic units. This remarkable method was
initiated by Thaine ([T]). It was proved in [T] that for an ideal classc, there is an annihilator
θc of c. Moreover, we prove that 2θc annihilates all elements ofthe ideal class group (see
Proposition 3.2 and Theorem 3.7). Hence, the assumption that the order of an ideal class is
prime to[Q(ζm) : Q] is not neccesary for our proof of Theorem 1.1 (see [T], §4).

Let f > 1 be a divisor ofm andχ a Dirichlet character of conductorf . We set

u(χ) =
f−1∑
a=1

u(ζ af − 1)χ(a) .

Let {εi} be a system of fundamental units ink+ = Q(ζm + ζ−1
m ) and letG+ = Gal(k+/Q).

We define

Ru = det
σ,i
(u(εσi )) ,

whereσ ∈ G+ − {1} and 0< i < [k+ : Q]. In Section 4, we prove the following class
number formula.
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THEOREM 1.2. If Ru �= 0, then

h+Ru = ±
∏

χ(−1)=1,χ �=1

1

2
u(χ) ,

where h+ is the class number of k+ and the product is taken over the nontrivial Dirichlet
characters χ that are even.

Essentially, this formula is deduced from the classical class number formula. However,
we note that all factors of the formula are algebraic integers.

In Section 5, we study the index[R+ : S(∆)], whereR+ = (1 + j)Z[G] andS(∆) is
theG-submodule ofR+ generated by{θu(η) | u ∈ Hom(D,Z), η ∈ ∆}.

2. 1-cocycle of a unit group. We denote byOF the ring of integers of a number field
F and byEF the group of units ofOF . Let k be a finite extension ofQ, andK a finite
Galois extension field overk. Let Γ = Gal(K/k) and letz = {zσ | σ ∈ Γ } be a 1-cocycle
with values inEK . The linear independence of automorphisms inΓ implies that there exists
λ ∈ K× with

g(z, λ) =
∑
σ∈Γ

zσ λ
σ �= 0 .

Sinceg(z, λ)τ = z−1
τ g(z, λ) for τ ∈ Γ , we have the following decomposition of ideals:

(g(z, λ)) = A(k)

r∏
i=1

P
si
i ,

whereA(k) is the lift of an ideal ofk , Pi (1 ≤ i ≤ r) is a prime ofK which is ramified over
k andsi is the exponent ofPi in the decomposition of(g(z, λ)). LetT be the inertia group of
P = P1 overk. Sincezστ ≡ zσ zτ modP for σ, τ ∈ T , the mapσ �→ zσ modP is an element
of Hom(T , (OK/P)×). Letp be the characteristic ofOK/P ande = e0p

r ((e0, p) = 1) the
ramification index ofP overk∩P. Letπ be an element of order one atP, andχπ denote the
mapσ (∈ T ) �→ πσ−1 modP. It is not difficult to show that Hom(T , (OK/P)×) is a cyclic
group generated byχπ and its order ise0 ([Se]). Hence there is an integern such that

zσ ≡ χ−n
π (σ ) modP

for anyσ ∈ T . Furthermore, we can show the following

PROPOSITION 2.1. Let n be an integer satisfying

zσ ≡ χ−n
π (σ ) modP

for any σ ∈ T . Then

ord�g(z, λ) ≡ n mode0 .

PROOF. Suppose ord�g(z, λ) = m. Then there is an elementv in K× prime toP such
thatg(z, λ) = πmv. Forσ ∈ T , we have

g(z, λ)σ−1 = (πσ−1)mvσ−1 ≡ χmπ (σ) modP .
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Sinceg(z, λ)σ = z−1
σ g(z, λ), we haveχmπ ≡ χnπ . Hencem ≡ n mode0. �

For the rest of this section, we assume thatp is an odd prime and splits completely ink.
Moreover, we letK = k(ζ ), whereζ is a primitivep-th root of unity. As is well-known, there
is a unique elementω ∈ Hom(Γ, (OK/P)×) such thatζ σ = ζω(σ). Sinceω is a generator of
Hom(Γ, (OK/P)×), there is an integern such that

zσ ≡ ω−n(σ ) modP

for z ∈ Z1(Γ,EK). The next proposition is essentially due to Thaine ([T]).

PROPOSITION 2.2. Let n be an integer satisfying

zσ ≡ ω−n(σ ) modP

for any σ ∈ Γ . Then

ord�g(z, λ) ≡ n modp − 1 .

PROOF. Sincep is unramified ink, ord�(ζ − 1) = 1. Letm be an integer such that
ω(σ) ≡ m modP. Then

(ζ − 1)σ

ζ − 1
= ((ζ − 1)+ 1)m − 1

ζ − 1
= 1 + (

m
1

)
(ζ − 1)+ (

m
2

)
(ζ − 1)2 + · · · − 1

ζ − 1
≡ m modP ≡ ω(σ) modP .

Therefore, Proposition 2.2 is an easy consequence of Proposition 2.1. �

From Proposition 2.2 , we have the following decomposition

(g(z, λ)) = A(k)
∏
�|p

Pn(�) ,

where for each prime ofP lying above p, n(P) is an integer satisfying zσ ≡
ω−n(�)(σ ) modP andA(k) is an ideal ink.

3. Cyclotomic units. Let m be a positive integer andζm a primitivem-th root of
unity. We assume thatm is the conductor ofk = Q(ζm). Let p be a prime number and
assume thatm dividesp − 1. As in § 2, letζ be a primitivep-th root of unity,K = k(ζ ) and
Γ = Gal(K/k). Let γ be a generator ofΓ and lett be an integer witht �≡ 0 modm. For a
positive integern we define an elementzγ n as follows:

zγ n = (ζ tmζ − 1)1+γ+γ 2+···+γ n−1
.

Sincet is not divisible bym, zγ n is an element ofEK . Moreover,

NK/k(ζ tmζ − 1) = ζ
tp
m − 1

ζ tm − 1
= 1 .

Hence, by Hilbert’s Theorem 90, there is an elementα ofK such tahtζ tmζ − 1 = αγ−1. This
implies thatzγ n = αγ

n−1. Thereforez = {zσ | σ ∈ Γ } is an element ofZ1(Γ,EK).
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Let P be a prime ideal ofK overp, and letε(t) = ζ tm − 1. Then we have

zγ n ≡ ε(t)n modP .

As in §2, letω be the element in Hom(Γ, (Z/p)×) satisfyingζ ρ = ζω(ρ) for ρ ∈ Γ . SinceP
is of absolute degree 1, for an elementτ ∈ Gal(K/Q) there is an integersτ such that

ε(t) ≡ ω−sτ (γ ) modPτ .

Let λ be an element ofK satisfyingg(z, λ) �= 0. By Proposition 2.2, we have the following
decomposition of principal ideal(NK/kg(z, λ)):

(NK/kg(z, λ)) = A(k)p−1
∏
σ∈G

pσsσ ,

whereA(k) is an ideal ink, p = P ∩ k andG = Gal(k/Q). Let

Θ(z, ε(t)) =
∑
σ∈G

σsσ ∈ Z[G] ,

wheresσ is an integer satisfyingε(t) ≡ ω−sσ (γ ) modPσ for eachσ ∈ G . Then we have
the following

PROPOSITION 3.1. With the notation being as above, suppose that p−1 is divided by
the class number of k. Then pΘ(z,ε(t)) is a principal ideal.

LetN be an integer and suppose thatN ≡ 0 modmh , whereh is the class number ofk.
Let∆ be the subgroup ofk× generated by{1 − ζ am | 0 < a < m}. We letD = ∆Ek and, for
brevity, writeZ(N) = Z/NZ. For an elementv ∈ Hom(D,Z(N)) andε ∈ D, we define

η(v, ε) =
∑
σ∈G

v(εσ )σ−1 ∈ Z(N)[G] .

Let l be a prime number such thatl ≡ 1 modN andl a prime ideal ink over l. Let r = r(l)

be a primitive root modulol. Sincel is of absolute degree 1, there is an elementu� = u(r, l) ∈
Hom(D,Z(N)) such thatδ(l−1)/N ≡ r(l−1)u�(δ)/N mod l for any elementδ ∈ D. Let r0 be
another primitive root modulol and letu0 = u(r0, l). Then there is an integers prime tol− 1
such that

r0 ≡ rs mod l .

Hence we have

η(u�, δ) = sη(u0, δ) .

By means of Proposition 3.1, we now prove

PROPOSITION 3.2. η(u�, ζ
t
m − 1) ∈ Z(N)[G] annihilates the ideal class of l.
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PROOF. Let γl be a generator of Gal(k(ζl)/k) and, as above,ωl ∈ Hom(Gal(k(ζl)/k),
(Z/l)×) satisfyngζ τl = ζ

ωl(τ )
l for τ ∈ Gal(k(ζl)/k). By Proposition 3.1,

∑
σ∈G σsσ annihi-

lates the ideal class ofl. Here,sσ is an integer satisfying

ζ tm − 1 ≡ ω−sσ (γl) modlσ .

Let rl be a primitive root modulol such thatrl ≡ ωl(γl) modl. Then

(ζ tm − 1)(l−1)/N ≡ r
−(l−1)sσ /N
l modlσ .

Hence there is an integers prime tol − 1 such that

sσ ≡ su�((ζ
t
m − 1)σ

−1
) modN .

Therefore, we have ∑
σ∈G

σsσ ≡ sη(u�, ζ
t
m − 1) modN ,

which proves Proposition 3.2.

Given an ideal classc of k, we definePN(c) as the set of prime idealsl in c lying above
rational primes≡ 1 modN . Letk+ = Q(ζm+ζ−1

m ) andO+
k = k+∩Ok. For each elementl of

PN(c) we select a primitive rootr = r(l)modulol (lZ = l ∩ Z). LetLN(c) be the subgroup
of Hom(D+,Z(N)) generated by{u(r, l)|D+ | l ∈ PN(c)}, whereD+ = {α ∈ D∩k+ | α > 0}.
Then we have

PROPOSITION 3.3. If ϕ is an element of Hom(D+,Z(N)), then 2ϕ ∈ LN(c).
For the proof of this proposition, we need the following lemmas.

LEMMA 3.4. PN(c) is an infinite set.

PROOF. Let ζN be a primitiveN-th root of unity and letF = Q(ζN). We assume
thatN is the conductor ofF . It is well-known that there are infinitely many prime ideals
of absolute degree 1 in any ideal class ofF , and a rational primel splits completely inF if
and only if l ≡ 1 modN([L]). Let N/m = ∏s

i=1p
ei
i be the prime factorization ofN/m.

Definem0 = m andmi = mi−1p
ei
i (i = 1, . . . , s) . LetFi = Q(ζmi ) and letCi be the ideal

class group inFi . Since a prime ideal ofFi overpi is totally ramified overFi−1, the norm
mapNi : Ci → Ci−1 is surjective ([L2]). Therefore, there is an ideal classd in F such that
NF/k(d) = c. This implies thatPN(c) is an infinite set. IfN is not the conductor ofF , we let
M = 2N andF = Q(ζM). SincePM(c) is infinite andPM(c) ⊂ PN(c), PN(c) is an infinite
set. This proves Lemma 3.4.

The following lemma is due to Thaine ([T], Proposition 4 of §2).

LEMMA 3.5. Let γ be a positive element of O+
k . Suppose that for all, except possibly

a finite set, prime ideals l ∈ PN(c) there exists β� ∈ Ok such that γ ≡ βN
�

mod l. Then
γ 2 = βN for some β ∈ O+

k .
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PROOF(Proof of Proposition 3.3). LetV = D+. SinceV/V N is a finite abelian group,
we have a dual paring

V/VN × Hom(V ,Z(N)) → Z(N) .

If LN(c) �= Hom(V ,Z(N)), then there is an elementε of V −V N such thatv(ε) = 0 for any
v ∈ LN(c). Let u = u(r, l) ∈ LN(c). Then

ε(l−1)/N ≡ r(l−1)u(ε)/N ≡ 1 modl .

If s is an integer such thatε ≡ rs mod l, then

ε(l−1)/N ≡ r(l−1)s/N ≡ 1 modl .

Hences is a multiple ofN . By Lemma 3.5,ε2 = βN for someβ ∈ O+
k . Sinceε is an element

of D = ∆Ek, we have

ε = ε0

∏
q|m
(ζqi − 1)aq ,

whereε0 is a unit ofk, q ranges over the prime divisors ofm andi = i(q) denotes the maxi-
mum integer such thatqi | m. Let q be a prime ideal aboveq in k. Then 2aq = Nord�β ≡
0 modN . Hence, if we writebq = ord�β, then(

β∏
l (ζqi − 1)bq

)N
= ε2

0 .

Thereforeβ is an element ofD. If N is odd, thenβ > 0, otherwiseε2 = βN = (−β)N .
Hence we conclude thatε2 is an element ofV N . By the duality we have 2 Hom(V ,Z(N)) ⊂
LN(c). �

LEMMA 3.6. Suppose that N is divisible by 4mh. Let j be the complex conjugation,
and let δ ∈ ∆ and v ∈ Hom(D, Z(N)). Then there is an element α in Z(N)[G] such that

η(v, δj ) = η(v, δ)+ 2hα .

PROOF. Since(ζm − 1)j = −ζ−1
m (ζm − 1), there is a root of unityζ0 in k such that

δj = δζ0. Hence we have

η(v, δj ) = η(v, δ)+ η(v, ζ0) ,

which implies that

η(v, δj )− η(v, δ) ∈ N

2m
Z(N)[G] ,

because 2mv(ζ0) = 0. By our assumption, we haveN/2m ≡ 0 mod 2h. This completes the
proof of Lemma 3.6.

Now, we can show the main theorem in this section. For anyu ∈ Hom(D,Z) andε ∈ D,
we define

θ(u, ε) =
∑
σ∈G

u(εσ )σ−1 ∈ Z[G] .
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THEOREM 3.7. Let u be an element of Hom(D,Z) . Then for each δ ∈ ∆, 2θ(u, δ)
annihilates the ideal class group of k.

PROOF. We assume thatN is divisible by 4mh. For anyε ∈ D, we definev ∈
Hom(D,Z(N)) by v(ε) ≡ u(ε) modN . Here we notev(−ε) = v(ε). Let κ be an element in
∆ ∩D+. Then

η(v, κ) =
∑
σ∈G

v(κσ )σ−1 =
∑
κσ>0

v(κσ )σ−1 +
∑
κτ<0

v(−κτ )τ−1 .

Let c be an ideal class. By Proposition 3.3, there are prime idealsli (i = 1,2, . . . , s) in PN(c),
ui = u(ri , li ) ∈ Hom(D,Z(N)) andai ∈ Z(N) such that

2v(γ ) =
∑
i

aiui(γ )

for anyγ ∈ D+. Hence we have

2η(v, κ) =
∑
κσ>0

∑
i

aiui(κ
σ )σ−1 +

∑
κτ<0

∑
i

aiui(−κτ )τ−1

=
∑
σ∈G

∑
i

aiui(κ
σ )σ−1 +

∑
κτ<0

τ−1
∑
i

aiui(−1) .

Since 2ui(−1) = ui(1) = 0 , we have

2η(v, κ) =
∑
i

∑
σ∈G

aiui(κ
σ )σ−1 + N

2
α0 ,

whereα0 ∈ Z(N)[G].
Let t be an integer not divisible bym. Then

u((ζ tm − 1)j ) = u(−ζ−t
m (ζ tm − 1)) = u(ζ tm − 1) ,

which implies thatv(δj ) = v(δ) for anyδ ∈ ∆. Hence, by Lemma 3.6, there is an elementα

in Z(N)[G] such that

4η(v, δ) = 2η(u, δ1+j ) =
∑
i

aiη(ui, δ
1+j ) =

∑
i

aiη(ui, δ
2)+ 2hα

= 2
∑
i

aiη(ui, δ)+ 2hα .

Therefore, there exists an elementβ ∈ Z(N)[G] such that

2η(v, δ) =
∑
i

aiη(ui , δ)+ hα + N

2
β .

Hence, by Proposition 3.2, we conclude that 2η(v, δ) annihilatesc. This completes the proof
of Theorem 3.7.
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4. Class number formula. As in Section 3, we letk = Q(ζm) andG = Gal(k/Q).
For an elementc ∈ Z(m)×, we defineσc ∈ G by

σc : ζm �→ ζ cm.

Let Ĝ = Hom(G,C×) be the character group ofG. For a characterχ ∈ Ĝ, there is a unique
primitive Dirichlet characterχd such thatχ(σc) = χd(c). Foru ∈ Hom(D,Z) and non-trivial
characterχ , we defineu(χ) by

u(χ) =
f−1∑
a=1

u(ζ af − 1)χd(a) ,

wheref = fχ is the conductor ofχd . We setu(1) = 1 for the unit character 1= 1χ ∈ Ĝ. In
the rest of this section, for a characterψ ∈ Ĝ, we use the symbolψd to denote the associated
primitive Dirichlet character. Sinceu(ζ−a

f − 1) = u(ζ af − 1), we haveu(χ) = 0 whenever

χd is odd. Letk+ = Q(ζm + ζ−1
m ) andG+ = Gal(k+/Q). Let {εi} be a free base of the unit

group ofk+. We define

Ru = det
τ∈G+,i

(u(ετi )) , τ �= 1 .

Our aim in this section is to prove the following

THEOREM 4.1. For an element u ∈ Hom(D,Z), we have

h+Ru = ±
∏

χd(−1)=1

1

2
u(χ) ,

where h+ is the class number of k+.

We prove first that there exists an elementu ∈ Hom(D,Z) satisfyingRu �= 0. For
α ∈ D andu ∈ Hom(D,Z), we defineθu(α) by

θu(α) =
∑
σ∈G

u(ασ )σ−1 .

Let T be aG-submodule ofD, then the correspondenceθ : u �→ θu induces a map:
Hom(T ,Z) → Hom(T ,Z[G]). It is easy to see thatθ is an injective homomorphism. More-
over, we have

LEMMA 4.2. Imθ = HomG(T ,Z[G]) .

PROOF. Form ∈ T andφ ∈ Hom(T ,Z[G]), there are elementsφσ ∈ Hom(T ,Z) such
that

φ(m) =
∑
σ∈G

φσ (m)σ
−1.

Hence, for an elementρ ∈ G, the equalityρφ(m) = φ(mρ) is equivalent toφρσ (m) =
φσ (m

ρ) for anyσ ∈ G. Let e be the unit element ofG. Then we haveφσ (m) = φe(m
σ ). If

we setu = φe, then we haveθu = φ. This implies that Imθ ⊃ HomG(T ,Z[G]). It is easy to
show the inverse inclusion. This completes the lemma.
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LEMMA 4.3. There is an element u ∈ Hom(E,Z) such that Ker θu = µk, where µk
is the group of roots of unity in k.

PROOF. There is a unitη such thatEη = {ηα | α ∈ Z[G]} is a subgroup of finite index
in E. Hence the homomorphism :α �→ ηα induces the following homomorphismφ:

Q[G] = Z[G] ⊗ Q
φ−→ E ⊗ Q = Eη ⊗ Q .

SinceQ[G] is completely reducible by Maschke’s theorem, there is aG-submoduleM of
Q[G] such thatQ[G] = Kerφ ⊕ M. Moreover, the surjectivity ofφ implies thatM is
isomorphic toE ⊗ Q. Hence there is an injective homomorphism:

E ⊗ Q → Q[G] ,
which yields the sequence

E → E ⊗ Q → Q[G] ,
where the first arrow is the canonical homomorphism. Letf be the composition of the above
homomorphisms. Then there is an integert such thattf (E) ⊂ Z[G]. It is obvious that the
kernel oftf isµk. Hence, this lemma is derived from Lemma 4.2. �

LEMMA 4.4. For an element u of Hom(E,Z), there is an element v of Hom(D,Z)
such that v(ε) = u(ε) for any ε ∈ E.

PROOF. SinceD/E is torsion-free,D/E is a free abelian group. Therefore,u can be
extended onD. This completes the proof.

We define the subsetH ⊂ Hom(D,Z) by

H = {v ∈ Hom(D,Z) | v|E = u and Kerθu = µk}.
Then, by Lemmas 4.2 and 4.3,H is nonempty. LetC = Ck = ∆ ∩ E be the group of
cyclotomic units, and letv ∈ H andu = v|E . Sinceµk ⊂ C, θu induces the following
isomorphism:

E/C ∼= θu(E)/θu(C) .

Let s be the number of distinct primes dividingm. The groupE/C is finite and the order is
given by the following

THEOREM 4.5 (Sinnott [Si]). [E : C] = 2bh+. Here b is an integer defined as follows:

b =
{

2s−2 − 1 − s , s > 1 ,

0 , s = 1 .

Let R = Z[G] ande1 = 1/|G| ∑σ∈G σ . For any idealI ⊂ R, we setI0 = {α ∈
I | e1α = 0}. Let j = σ−1, andJ = {1, j } ⊂ G. Let {τi | i = 1, . . . , |G|/2} be a complete set
of representatives ofG/J , and{εi} a free base ofE. We defineRu(E) by

Ru(E) = det
i,j

{u(ετij )} , i �= |G|/2 .
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Sinceu(Nk/Q(ε)) = 0 andu(εσj ) = u(εσ ), it is easy to showθu(E) ⊂ (1 + j)R0.
Moreover, we have

LEMMA 4.6. Let u ∈ Hom(E,Z). Then Ru(E) �= 0 if and only if Ker θu = µk . If
Ru �= 0, then θu(E) has finite index in (1 + j)R0 and the index is given by

[(1 + j)R0 : θu(E)] = |Ru(E)| .
PROOF. Since dimE ⊗ Q = dim(1 + j)R0 ⊗ Q, it is easy to show thatθu(E) has

finite index in(1 + j)R0 if and only if Ker θu = µk. Let T = θu(E) + (1 + j)Z. Since
(1 + j)R0 + (1 + j)Z = (1 + j)R, we have the following isomorphism

(1 + j)R/T ∼= (1 + j)R0/θu(E) .

We select{(1 + j)τ−1
i } as a base of(1 + j)R. Sinceu(εσj ) = u(εσ ), we have

θu(ε) =
∑
i

u(ετi )(1 + j)τ−1
i .

Hence we obtain that ifRu(E) �= 0, then[(1 + j)R : T ] = |Ru(E)|. This proves the lemma.

In the rest of this section, we compute the index[(1 + j)R0 : θu(C)]. The techniques
here are due to Iwasawa and Sinnott [Si].

Let V be a finite dimensionalQ-vector space, andL,N finitely generated subgroup in
V such thatL⊗ Q = N ⊗ Q = V . Then there is a nonsingular linear mapA : V → V such
thatA(L) = N . We define

(L : N) = | det(A)| .
Note that(L : N) does not depend on the choice ofA. We use the following properties. Let
M be a finitely generated subgroup inV . If (L : M), (L : N) and(M : N) are defined, then
(L : M)(M : N) = (L : N) . If N is a subgroup of finite index inL, then(L : N) is defined
and(L : N) = [L : N].

For a characterχ ∈ Ĝ, we define the idempotenteχ in C[G] by

eχ = 1

|G|
∑
σ∈G

χ(σ)σ−1 .

Let f be a divisor ofm . Then we defineHf ⊂ G by

Hf = {σt ∈ G | t ≡ 1 modf, (t,m) = 1} ,
and lets(Hf ) denote the sum inC[G] of the elements ofHf . For a prime numberp, let

σ̄p =
∑
χ

χ̄d(p)eχ ,

whereχ̄d denotes the complex conjugate of the primitive Dirichlet characterχd associated to
χ ∈ Ĝ. Forv ∈ H , let

ω = ω(v) =
∑
χ �=1

v(χ̄ )eχ ,
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the sum taken over the nontrivial charactersχ of G. The following proposition is due to
Sinnott [Si].

PROPOSITION 4.7.

(1 − e1)θv(∆) = ω · U ,
where e1 is the idempotent associated to the trivial chatacter of G, and U is the R-module
generated in C[G] by the elements of{

s(Hf )
∏
p|f
(1 − σ̄p)

∣∣f |m
}
.

PROOF. Forr ∈ (1/m)Z − Z, let

w(r) = v(e2π
√−1r − 1) .

Then we havew(r + 1) = w(r). Let l be a divisor ofm and satisfyingrl �∈ Z. Then
l∑

a=1

w

(
r + a

l

)
= w(lr) .

Hence, Proposition 4.7 follows from Sinnott’s Proposition 2.1 ([Si]). �

COROLLARY 4.8. Let u = v|E ∈ Hom(E, Z). Then Ru = 0 if and only if∏
χd(−1)=1 v(χ) = 0.

PROOF. Forη ∈ C, we have

e1θv(η) = 1

|G|θv(η
s(G)) = 0 .

Hence,θv(C) = (1 − e1)θv(C) is a submodule of(1 − e1)θv(∆). Since

|G|(1 − e1)θv(∆) ⊂ θv(C)

and

(1 − e1)θv(∆) ⊃ (1 − e1)θv(C) = θv(C) ,

we have

dimθv(E)⊗ Q = dim(1 − e1)θv(∆)⊗ Q .

Therefore, by Proposition 4.7, we obtainRu = 0 if and only if dimωU ⊗ Q < |G|/2− 1. In
order to prove this corollary, we may notice that

U ⊗ Q = Q[G]
as stated in [Si, Proposition 2.2]. This proves the corollary.

If v is an elementH , by Lemma 4.6,[(1 + j)R0 : θv(E)] is finite. Hence,[(1 + j)R0 :
θv(C)] is also finite. Here we write, formally,

[(1 + j)R0 : θv(C)]
= ((1 + j)R0 : (1 + j)U0)((1 + j)U0 : (1 − e1)θv(∆))((1 − e1)θv(∆) : θv(C)) .
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The number((1+j)R0 : (1+j)U0) does not depend on the choice ofv ∈ H , and is computed
by Sinnott. Moreover, the computation of((1+ j)U0 : (1− e1)θv(∆)) is essencially the same
as in [Si]. Hence we have

((1 + j)U0 : (1 − e1)θv(∆)) = ((1 + j)U0 : ωU) =
∣∣∣∣

∏
χ(j)=1

1

2
v(χ)

∣∣∣∣ ,
where the product is taken over the nontrivial charactersχ of G satisfyingχ(j) = 1.

The following lemma completes our theorem.

LEMMA 4.9. If s is the number of distinct primes dividing m, then

[(1 − e1)θv(∆) : θv(C)] = |G|2−s .

PROOF. Let m = ∏s
i=1p

ei
i be the primary decomposition ofm andπi = ζ

p
ei
i

− 1.

Since∆/C is a free abelian group generated by{πiC}, we have

θv(∆) =
s∑
i=1

Zθv(πi)θv(C) .

Let Ti be the inertia group inG of a prime ideal overpi . Then it is well-known thatG is
the internel direct product ofTi . LetZi = ∏

j �=i Tj . Then we haves(G) = s(Zi)s(Ti) and
|G| = |Zi ||Ti |. Hence,

e1θv(πi) = s(Zi)

|Zi ||Ti |θv(π
s(Ti)
i ) = 1

|Ti|θv(pi) .

Let η be an element of∆. Then we have

θv(η) = θv(ε)+
∑
i

αiθv(πi) ,

whereε ∈ C andαi ∈ R. Moreover, we writeαi = ∑
σ αi(σ )σ (αi(σ ) ∈ Z) andαi(0) =∑

σ αi(σ ). Since

e1θv(η) =
∑
i

e1αiθv(πi) =
∑
i

αi(0)
1

|Ti |θv(pi) ,

we have

(1 − e1)θv(η) ≡
∑
i

αi(0)

(
θv(πi)− 1

|Ti |θv(pi)
)

modθv(C)

≡
∑
i

αi(0)

|Ti| θv
(
π

|Ti |
i

pi

)
,

which implies that(1 − e1)θv(∆)/θv(C) is generated by
{

1

|Ti |θv
(
π

|Ti |
i

pi

)
θv(C)

}
.
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Suppose that there exist{ri} ⊂ Z andδ ∈ C satisfying
s∑
i=1

ri

|Ti |θv
(
π

|Ti |
i

pi

)
= θv(δ) .

Letu = v|E . We note thatπ |Ti |
i /pi is a unit ink and, by our assumption, Kerθu = µk. Hence

there is an elementζ0 of µk satisfying

∏
i

(
π

|Ti |
i

pi

)ri |Zi |
= ζ0δ

|G| .

Letp1/|Ti |
i be the unique positive root of the following equation:

X|Ti | = pi .

Then there is a root of unityξ satisfying

∏
i

(
πi

p
1/|Ti |
i

)ri
= ξδ .

Let

β =
∏
i

p
ri/|Ti |
i .

Since β ∈ Q(ζm, ξ), Q(β) is a real abelian extension overQ. Hence for anyσ ∈
Gal(Qab/Q), βσ−1 is real and a root of unity. Therefore we conclude thatβ2 is an inte-
ger. This impliesri ≡ 0 mod|Ti|/2 for all i.

On the other hand, we have

|Ti |
2
(1 − e1)θv(πi) = 1

2
θv

(
π

|Ti |
i

pi

)
= 1

2
θv(π

|Ti |−s(Ti)
i ) = 1

2

∑
σ∈Ti

θv(π
1−σ
i ) .

We note that{σ |Q(πi) | σ ∈ Ti} = Gal(Q(πi)/Q). Hence there is an elementρ ∈ Ti such
thatρ = j |Q(πi). Therefore, forσ ∈ Ti , we have

π
ρσ
i = −ζ−σ

p
ei
i

πσi ,

which implies that

θv(π
1−ρσ
i ) = θv(π

1−σ
i ) .

Let Jρ = {1, ρ} and let{τl} ⊂ Ti be a representative ofTi/Jρ . Then we obtain

1

2

∑
σ∈Ti

θv(π
1−σ
i ) =

∑
l

θv(π
1−τl
i ) .

Hence,

|Ti |
2
(1 − e1)θv(πi) ∈ θv(C) .
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We then conclude that

[(1 − e1)θv(∆) : θv(C)] =
∏
i

|Ti |
2

= |G| · 2−s .

This completes the proof of Lemma 4.9.

Hence we have

[θv(E) : θv(C)] = ± 1

|Rv(E)| ((1 + j)R0 : (1 + j)U0)|G|2−s ∏
χ(j)=1,χ �=1

1

2
v(χ) .

We now use the following formula:

THEOREM 4.10 (Sinnott [Si]).

[E : C] = h+(e+R0 : e+U0)|G|Q2−s ,

where Q = [E : µkE+] and e+ = (1 + j)/2.

Consequently, we have

|Rv(E)|Qh+ = ±
∏

χ(j)=1,χ �=1

1

2
v(χ) .

Let {ηi} be a free base ofE+. As in §1, we define

Rv = det
i,j

{v(ητij )}, i �= |G|/2 .

Then we haveRv = ±QRv(E). This proves Theorem 4.1.

5. The ideal of annihilators. Let k = Q(ζm) andG = Gal(k/Q) as in §3. Let
j ∈ G be the complex conjugation and letR = Z[G]. We assume that the conductorm is an
odd prime powerpt . In this section we discuss the index[R+ : S], whereR+ = (1+ j)Z[G]
andS is the ideal ofR generated by elements

θ(u, δ) =
∑
σ∈G

u(δσ )σ−1

for all δ ∈ ∆ andu ∈ Hom(D,Z). The fact thatS ⊂ R+ is easily derived from the following
lemma.

LEMMA 5.1. D1−j = ∆1−j = µ where µ is the group of roots of unity in k.

PROOF. It is easy to show that∆1−j = µ, andE1−j ⊂ µ. Henceµ = ∆1−j ⊂
E1−j∆1−j = µ. �

SinceZ is torsion-free,u(ζ ) = 0 for anyu ∈ Hom(D,Z) andζ ∈ µ. By Lemma 5.1 we
have

u(δσj ) = u(δσ ) ,

which implies thatS ⊂ R+.
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Let D̄ = D/µ and∆̄ = ∆/µ. ThenD̄ is a free abelian group. Letk+ = Q(ζm + ζ−1
m )

andG+ = Gal(k+/Q). It follows from Lemma 5.1 thatj acts trivially onD̄, and hence∆̄ is
aZ[G+]-module. Furthermore, we can prove the following lemma.

LEMMA 5.2. ∆̄ is isomorphic to Z[G+] as a Z[G+]-module.

PROOF. We note that for any integert prime tom, there is an elementσ ofG such that
(ζm − 1)σ = ζ tm − 1. LetGpi be the unique subgroup ofG of orderpi (i < r), andF the
fixed field ofGpi in k. Then we have

∏
ρ∈G

pi

(ζm − 1)ρ = Nk/F (ζm − 1) = ζ
pi

m − 1 .

Therefore, for any elementδ ∈ ∆, there is an elementα ∈ R such thatδ = (ζm−1)α. Let ι be
the canonical homomorphismι : D → D̄ andκ = ι(ζm − 1). We define the homomorphism
ψ : Z[G+] → ∆̄ by ψ(α) = κα. Since∆̄ is generated byκ as aZ[G+]-module,ψ is
surjective. We note that∆ ∩ E is the group of cyclotomic units ink. By the class number
formula of cyclotomic fields,∆ ∩ E is a subgroup ofE of finite index. Hence∆ is also of
finite index inD. Therefore, by Dirichlet’s unit theorem, the rank of∆̄ is equal to the order
of G+. This proves Lemma 5.2 .

Forv ∈ Hom(D̄,Z) andγ ∈ ∆̄, we defineφ(v, γ ) ∈ Z[G+] as follows:

φ(v, γ ) =
∑
σ∈G+

v(γ σ )σ−1 .

Let S(∆̄) denote the ideal ofZ[G+] generated by the elementsφ(v, γ ) with γ ∈ ∆̄ and
v ∈ Hom(D̄,Z). The following proposition is essential in this section.

PROPOSITION 5.3. (Z[G+] : S(∆̄)) = (D : ∆).
PROOF. Let r = [k+ : Q]. SinceD̄ is a free abelian group of rankr, Hom(D̄,Z) is

also a free abelian group of rankr. Let {ui | i = 1, . . . , r} be a base of Hom(D̄,Z). We first
prove thatS(∆̄) is generated by{φ(ui, κ)} as an abelian group, whereκ is the same as in the
proof of Lemma 5.2. Letu ∈ Hom(D̄,Z) andδ ∈ ∆̄. Then there are integersai , bσ such
thatu = ∑r

i=1 aiui andδ = ∏
σ∈G+ κσbσ . Hence we have

φ(u, δ) =
∑
i,σ

aibσ φ(ui, κ
σ ) .

For eachσ ∈ G+ andu ∈ Hom(D̄,Z), we defineuσ as follows:

uσ (δ) = u(δσ ) .

It is clear thatuσ is an element of Hom(D̄,Z). Hence, for eachi andσ , there are integers
cij (σ ) such that

φ(ui, κ
σ ) = φ(uσi , κ) =

∑
j

cij (σ )φ(uj , κ) .
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This proves thatS(∆̄) is generated by{φ(ui, κ)}. To prove Proposition 5.3 it suffices to show
the following equality:

det
i,σ
(ui(κ

σ )) = ±(D̄ : ∆̄) .

Since{κσ } is a base of∆̄, it is easy to show that the absolute value of det{ui(κσ )} is equal to
(D̄ : ∆̄). This proves the proposition.

THEOREM 5.4. Let R+ = (1 + j)Z[G] and S the ideal of Z[G] generated by
{θ(u, δ) | u ∈ Hom(D,Z), δ ∈ ∆}. Then (R+ : S) = h+, where h+ is the class number
of k+.

PROOF. The exact sequence 0→ µ → D → D̄ → 0 yields the following exact
sequence:

Hom(D̄,Z) → Hom(D,Z) → Hom(µ,Z) = 0 .

Furthermore, Hom(D̄,Z) and Hom(D,Z) have the same rank. Therefore Hom(D,Z) can be
identified with Hom(D̄,Z).

Let J = {1, j } ⊂ G. For eachτ ∈ G the following map:

(1 + j)τ �→ J τ

induces an isomorphism

(1 + j)Z[G] → Z[G/J ] = Z[G+] .
For each cosetτ ∈ G/J we let τ̄ be a coset representative. Then we have

θ(u, δ) =
∑
τ∈G+

u(δτ̄ )τ̄−1 +
∑
τ∈G+

u(δτ̄j )τ̄−1j = (1 + j)
∑
τ∈G+

u(δτ̄ )τ̄−1 ,

which implies that

Z[G+]/S(∆̄) � R+/S .

By Proposition 5.3 we have(R+ : S) = (D̄ : ∆̄). Sinceµ ⊂ ∆ by Lemma 5.1, we have

(D̄ : ∆̄) = (D : ∆) .
Hence we have

(R+ : S) = (E∆ : ∆) = (E : E ∩∆) .
We note thatE ∩∆ is the group of cyclotomic units. Theorem 5.4 is then immediate from the
class number formula ([L2]). �
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