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f -STRUCTURES ON THE CLASSICAL FLAG MANIFOLD
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Abstract. We characterize the invariantf -structuresF on the classical maximal flag
manifoldF(n) which admit (1,2)-symplectic metrics. This provides a sufficient condition for
the existence ofF -harmonic maps from any cosymplectic Riemannian manifold ontoF(n).
In the special case of almost complex structures, our analysis extends and unifies two previous
approaches: a paper of Brouwer in 1980 on locally transitive digraphs, involving unpublished
work by Cameron; and work by Mo, Paredes, Negreiros, Cohen and San Martin on cone-
free digraphs. We also discuss the construction of (1,2)-symplectic metrics and calculate their
dimension. Our approach is graph theoretic.

1. Introduction. Gray [9] and Lichnerowicz [12] were among the first to observe
the relevance of (1,2)-symplectic structures,not necessarily invariant or Kähler, in Hermit-
ian geometry and harmonic maps, respectively. Originally, almost complex structures were
considered, but there is interest in studying the more general case off -structures [24], [1].

Here we consider the special case of the maximal flag manifoldF(n) associated with
sl(n, C), endowed with aninvariant f -structureF . Following Burstall and Salamon [5] and
Black [1], there is interest in analyzing the conditions under whichF admits an invariant
metric ds2 on F(n) which is (1,2)-symplectic, i.e.,(dF)(1,1) ≡ 0 (see [19] or Section 2
below). We call such a structure (1,2)-admissible. In this paper we characterize the invariant
structures of this type.

The pair(F(n),F) defines in a natural way a digraph (oriented graph)G = (V ,E),
while the metricds2 provides a weightingλe > 0, e ∈ E. The (1,2)-symplectic conditions
constitute a simple system of linear homogeneous restrictions on the weightsλe. The issue is,
therefore, finding a necessary and sufficient condition for the consistency of this system.

A special case of interest is when the invariant structureF is almost Hermitian. Here, the
digraphG is complete, i.e., a tournament digraph. It was suggested by Mo and Negreiros [13]
thatF admits (1,2)-symplectic metrics if and only ifG is cone-free, namely omits certain sub-
graphs. This has been verified in some cases by Paredes [16], [17], and demonstrated in the
general case by Cohen, Negreiros and San Martin [6], [7]. Up to permutation, the incidence
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matrix of such a digraph has a stair-shaped form, and remains so under the cyclic shift inn

indices [6], [7].
Another class of digraphs, also preserved by the cyclic shift, calledlocally transitive

digraphs, has been studied earlier in Brouwer’s paper [3]. We show that the cone-free and
locally-transitive conditions are, in fact, equivalent and define the same family of digraphs.
We thank Brendan McKay (ANU Canberra, Australia) for bringing [3] to our attention.

We extend the definition of local transitivity from complete digraphs to non-complete
digraphs, and in our main result (Theorem 5.1) we establish a one to one correspondence
betweenf -structures and digraphs, such that the (1,2)-admissible structures correspond pre-
cisely to the locally transitive digraphs. This way, given a triple(F(n),F , ds2), one can often
verify, based on the structureF alone, thatds2 is not (1,2)-symplectic. For more details see
[18].

Brouwer [3] gave a number-theoretic formula for the number of non-equivalentcomplete
locally transitive digraphs withn vertices. Using the above observation, it can be seen that the
same formula describes the number of (1,2)-admissible invariantalmost complex structures
on F(n) up to a natural equivalence. The same problem forf -structures remains open.

Another interesting problem is the description of the full set of (1,2)-symplectic metrics
associated with anf -structure. In the case of almost complex structures, this was done in [6]
and [7]. We discuss this problem for the general case off -structures onF(n) but do not solve
it completely.

It would also be interesting to connect the results obtained here with the existence and
classification of harmonic maps intoF(n).

2. Geometric flag manifolds and f -structures. Consider the classical maximal flag
manifoldF(n) = U(n)/T , with n ≥ 2, whereU(n) is the unitary group andT is a maximal
torus inU(n). We shall follow the definitions and notation of [7] and [20]. In particular,u(n)

is the Lie algebra ofU(n) andsl(n, C) is its complexification. Ifb = T stands for the origin
in F(n), the tangent space atb identifies naturally with the subspaceq ⊂ u(n) spanned by
Ajk = Ejk − Ekj andSjk = i(Ejk + Ekj ). HereEjk is the matrix with 1 in entryjk and
zeros otherwise.

By classical theory an invariant metricds2 onF(n) can be identified with an inner prod-
uct inq of the form(X, Y )Λ = −〈Λ(X), Y 〉, with Λ : q→ q positive definite with respect to
the Cartan-Killing form〈X,Y 〉 = tr(ad(X)ad(Y )) wheread(·) stands for the adjoint repre-
sentation ofu(n). The inner product(·, ·)Λ admits a natural extension to a bilinear symmetric
form onqC. We use the same notation(·, ·)Λ for this form, as well as for the correspondent
complexified formΛ. The metric(·, ·)Λ is invariant if and only ifEjk, 1 ≤ j, k ≤ n are the
eigenvectors ofΛ, that is,

Λ(Ejk) = λjkEjk ,

with λjk = λkj > 0 for 1≤ j, k ≤ n.

� �



f -STRUCTURES ON THE CLASSICAL FLAG MANIFOLD 263

For the real spaceq, the elements of the canonical basisAjk, Sjk, with 1 ≤ j < k ≤ n,
are eigenvectors for the same eigenvalueλjk. We denote byds2

Λ theU -invariant metric asso-
ciated withΛ. In what follows we will useΛ as synonymous fords2

Λ. As a special case, the
Cartan-Killing inner product〈X,Y 〉 is induced by theCartan-Killing metric corresponding to
λjk = 1 for all 1≤ j, k ≤ n.

An f -structure (see [24]) onF(n) is a sectionF of the bundle End(T F(n)) which sat-
isfiesF3 + F = 0. A U -invariantf -structure inF(n) is completely determined by an endo-
morphismF : q→ q, satisfyingF3+F = 0, which commutes with the adjoint action ofT .

F extends uniquely to an endomorphismF : qC → qC which is diagonalizable with eigen-
valuesi, 0,−i (we denote byi the complex unit

√−1). Letq+, q0, q− be the correspondent
eigenspaces, we haveqC = q+ + q0+ q− with q+ = q−.

The U -invariance ofF guarantees that the basic vectorsEjk are eigenvectors forF .
Thus F is determined uniquely by the valuesεjk ∈ {0,±1}, given byF(Ejk) = iεjkEjk,

and satisfyingεkj = −εjk. In the sequel we allow an abuse of notation and identify the
invariantf -structureF on F(n) with {εjk : 1 ≤ j, k ≤ n}. In particular an invariantf -
structure withF2 = −1 is an invariant almost complex structure. In our invariant context this
amounts toεjk �= 0 for all j, k.

We say that(F(n),F , ds2) is (1,2)-symplectic if(dF)(1,1) ≡ 0, that is,(∇F)(X, Y ) = 0
wheneverX ∈ q+ andY ∈ q−, whered is the exterior derivative. WhenF is an almost
complex structure, this definition is equivalent to(dΩ)(1,2) = 0, whereΩ is the Kähler form
[11].

We say that(F(n),F) is (1,2)-admissible if there exists a Hermitian metricds2 such that
(F(n),F , ds2) is (1,2)-symplectic.

The relevance of the study off -structures in relation to flag manifolds is highlighted by a
theorem of Black [1], which gives a sufficient condition onF so that a mapφ : (M2, g, J )→
(F(n), ds2,F) be harmonic with respect to (the given metricg and)every invariant metric
ds2. Using the Toda field equations and Black’s theorem, harmonic tori in symmetric spaces,
such as projective or Grassmannian spaces, have been studied (see for example [2], [4]).

3. Graph theoretic description of (F(n),F ,Λ). A digraph is a finite oriented
graphG = (V ,E). If v,w ∈ V, then an arrowv → w indicates thatvw ∈ E, while v ↔ w

indicates eithervw ∈ E or wv ∈ E. Furthermore, we define thev-loser andv-winner sets to
be

GL(v) = {w ∈ V ;wv ∈ E} , GW (v) = {w ∈ V ; vw ∈ E} ,
considered as subdigraphs ofG. This is analogous to the concept of neighbor set used in non-
oriented graphs. Finally, we say thatv is awinner (resp.loser) in G if GL(v) (resp.GW (v))
equals toV \ {v}.

The invariantf -structures onF(n) are in 1:1 correspondence with digraphsG = (V ,E).

The correspondence is given by associating with thef -structureF(Ejk) = iεjkEjk a digraph
G whose vertices are{1, . . . , n} and whose arrows are given by the following rules: Forj < k
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j

l l l

j j

k k k

lj lk= lk lj jk= +

FIGURE 1. 3-vertex subdigraphs associated with local transitivity.

j → k ⇐⇒ εjk = 1 ,

j ← k ⇐⇒ εjk = −1 ,

j �↔ k ⇐⇒ εjk = 0 .

Similarly, through the matrixΛ = {λjk} we may identify an invariant metricds2 on
(F(n),F) with a positive weighting on the edge setE of the digraph. Note that ifεjk = 0,

the weightλjk may be ignored, sincejk �∈ E. According to [1], the (1,2)-symplecticity
conditions imposed byε on the metricΛ amount to the following three rules:

If j → l, k→ l, j �↔ k, then λjl = λkl;(1)

If l→ j, l→ k, j �↔ k, then λlj = λlk;(2)

If l→ j, j → k, l → k, then λlk = λlj + λjk.(3)

These restrictions apply to any 3-vertex subdigraph ofG of the types given in Figure 1.
As stated in the Introduction, our main problem is the characterization off -structures

which admit (1,2)-symplectic metrics. In graph-theoretic terms, we wish to characterize the
digraphsG = (V ,E) which admit positive weightsΛ which satisfy properties (1) trough (3).
It is this version of the problem which we shall consider in the rest of the paper.

The following definitions will be crucial for our main result.

DEFINITION 3.1. A digraphG := (V ,E) is called: (i) transitive if the relation “→” is
transitive (i.e., fori, j, k ∈ V, i → j → k implies i → k), (ii) relatively connected if for all
i, j, k ∈ V i → j impliesi ↔ k or j ↔ k.

Transitivity for complete digraphs may be characterized by the absence of cycles, and
the incidence matrix of such digraphs is permutation-similar to the canonical matrixεjk = 1
(j < k) [14]. We shall be more interested in the followinglocal version of this property.

DEFINITION 3.2. We call the digraphG = (V ,E) locally transitive (in short, LT) if for
all v ∈ V each of the subdigraphsGL(v) and GW(v) is transitive and relatively connected.

The LT and non-LT 4-digraphs are given in Figures 2 and 3.
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(35)
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(33)

(1,1,2,2)  (0,1,1,3)
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(15)
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FIGURE 2. The thirty six 4-vertex digraphs which are LT.

Several remarks are in order:
(i) Local transitivity means that the digraphsGL(v) andGW (v) omit certain 3-vertex

subdigraphs, namely the ones whose edges form a non-empty subset of a 3-cycle (compare
with Figures 2 and 3).

(ii) In caseG is complete, local transitivity implies that bothGW (v) andGL(v) are
(complete and) transitive. This way we recover the original definition introduced for complete
digraphs by P. J. Cameron (unpublished) and discussed in [3].

(iii) If max{|GW (v)|, |GL(v)|} ≤ 2 for all v ∈ V thenG is LT.
(iv) All the digraphs of size≤ 3 are LT. As ton = 4, simple analysis shows that up to

digraph isomorphism there exist 42 digraphs with 4 vertices, six of which are not LT. As seen
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(37) (39) (41)

(38) (40) (42)

(1,1,1,3) (0,2,2,2) (0,1,1,3)

(0,1,2,2) (0,0,1,3) (0,1,1,2)

FIGURE 3. The six 4-vertex digraphs which are not LT.

from Figure 3, a non-LT 4-vertex digraph must have a winner or a loser, but not both. Ifv is
the winner/loser, thenVW(v) (resp.VL(v)) is a non-trivial subdigraph of a 3-cycle (see [18]).

LEMMA 3.3. Let G = (V ,E) with |V | ≥ 4. G is LT if and only if every 4-vertex
subdigraph of G is LT.

PROOF. If G is LT then any subdigraph ofG, including all the 4-vertex subdigraphs, is
LT. It remains to show the converse direction. AssumingG is not LT, we have two cases, both
leading to the existence of a non-LT 4-subdigraph, completing the proof.

Case 1. There existsv ∈ V such that one of the setsGL(v),GW (v) is not transitive.
Namely, in this set there existj, k andl such thatjk, kl ∈ E, but j l �∈ E. It can be checked
against Figure 3 that whetherlj ∈ E or not, the subdigraph ofG supported on{v, j, k, l} is
not LT.

Case 2. There existsv ∈ V such that one of the setsGL(v),GW (v) is neither trivial
nor relatively connected. Namely, in this set there existj, k and l such thatjk ∈ E, but
j l, kl, lj, lk �∈ E. Here the subdigraph supported on{v, j, k, l} is also not LT. �

The case ofalmost complex structures, which correspond tocomplete digraphs, is of
special interest. Exactly two of the six 4-vertex digraphs in Figure 3 are complete: those
which contain a winner/loser and a 3-cycle. In [13] these two digraphs were called “cones”,
and in [6], [7] a complete digraphG which omitted them was called “cone-free”. Lemma 3.3
states, therefore, thatG is LT if and only if it is cone-free. As a result, the two families of
complete digraphs studied separately in [6], [7], [13], [17] (coneless tournaments) and in [3]
(LT tournaments) are shown to be one and the same.

4. Completely non-transitive structures. An f -structureF on F(n) will be called
completely non-transitive if the Cartan-Killing metric (λij ≡ 1, for all 1 ≤ j, k ≤ n) is
(1,2)-symplectic with respect toF . Structures of this type have a simple graph theoretic
description, and all the (1,2)-symplectic metrics relative to such a structure can be described.
First we characterize the corresponding digraphs.
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f -STRUCTURES ON THE CLASSICAL FLAG MANIFOLD 267

DEFINITION 4.1. (i) A transitive triangle is a transitive digraphGt = (Vt , Et ) with
|Vt | = 3. AssumingVt = {u, v,w} andEt = {uv, vw, uw}, we shall refer touv, vw assides
and touw as abase. (ii) We shall call a digraphG′ = (V ′, E′) completely non-transitive if it
does not contain any transitive triangle.

LEMMA 4.2. An invariant f -structure F on F(n) is completely non-transitive if and
only if the associated digraph G is completely non-transitive.

PROOF. If G is completely non-transitive then, due to the absence of transitive triangles,
system (1–3) has no identities of type (3) and hence theCartan-Killing metric λ ≡ 1, which
automatically satisfies (1-2), is (1,2)-symplectic. Conversely, if the Cartan-Killing metric is
(1,2)-symplectic, then (3) cannot occur, henceG contains no transitive triangles. �

A completely non-transitive digraph is LT. Indeed, the setsG′W (v) andG′L(v) contain
no edges (also, the digraph is cone-free, since every cone contains a transitive triangle). At
the same time, the correspondingf -structure is (1,2)-admissible due to Lemma 4.2. In the
special case of complete digraphs, Lemma 4.2 implies that the Cartan-Killing metric is (1,2)-
symplectic only if|V | < 3, as observed in [6].

Define the following equivalence relation between edges inE′: e ∼ e′ if for some
v, v′, u ∈ V we have eithere = vu ande′ = v′u, or e = uv ande′ = uv′. A metric on
G′ is (1,2)-symplectic if and only if it is constant on every equivalence class inE′. Thus,
the dimension of the cone of invariant (1,2)-symplectic metrics is equal toβ, the number of
equivalence classes inE′.

How canβ be calculated fromG′ directly? We do not know the answer, but a promising
observation is thatβ is the number of connected components in a “spanning forest” forG′,
assuming every vertex in the forest is a winner or a loser.

In studying (1,2)-symplectic invariant metrics on(F(n),F ,Λ) associated to a general
LT digraphG, our approach consists in the reduction ofG to an associated completely non-
transitive subdigraphG′ with the same vertex set, based on the following “edge deletion
lemma”.

LEMMA 4.3. Let G = (V ,E) be a LT digraph which is not completely non-transitive
(see Definition 4.1). ThenE contains an edgee which is a base but not a side. In this case,
the subdigraph̃G := (V ,E \ {e}) is LT.

PROOF. LetG∗ = (V∗, E∗) be a maximal subdigraph ofG which is complete and tran-
sitive, and|V∗| ≥ 3. The assumption guarantees the existence of at least one such subdigraph.
ThenG∗ has a single basee ∈ E∗ which is not a side, namely the arrowe which connects the
winner and loser inG∗.

The edgee is therefore a base inG. We claim thate cannot be a side in some transitive
triangle inG. Assume to the contrary that such a triangleGt = (Vt , Et ) does exist. Note that
Vt �⊂ V∗, sincee is not a side inG∗. Therefore, the subdigraphG∗ of G supported onV∗ ∪ Vt

strictly containsG∗. Local transitivity ofG implies thatG∗ is again complete and transitive,
contradicting the maximality ofG∗.
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Next we show that̃G = (V ,E \ {e}) is LT. By Lemma 3.3 it suffices to show that every
4-subdigraphĜ = (V̂ , Ê) ⊂ G̃ is LT. Assume thate = uw, u,w ∈ V . If {u,w} �⊂ V̂ , then
Ĝ is a subdigraph ofG, and hence is LT by Lemma 3.3. Otherwise, if{u,w} ⊂ V̂ , suppose
thatĜ is not LT. According to a remark (i) made in Section 3,Ĝ contains a winner or a loser,
sayv. It follow from e �∈ Ê thatv �= u,w. Whetherv is a winner or a loser,e is a side in the
transitive triangle{u, v,w} in G, which is impossible by the first part of the Lemma. �

We close this section with several remarks (see [18]):
(i) The completely non-transitive digraphG′ obtained by edge deletion fromG does

not depend on the order of the edges deleted.
(ii) A completely non-transitive digraphG′ can be the outcome of a non-void

edge deletion of a LT digraph if and only if the union of all the subdigraphs ofG′ of type
{uv, vw, zw} and{wz,wv, vu} does not contain every subdigraph of type{uv, vw}.

(iii) It seems that a completely non-transitive digraph is the result of edge deletion of
a transitive digraph if and only if for all vertexv which is not a winner or a loser,|GW(v)| =
|GL(v)| = 1.

5. Characterization of (1,2)-admissible f -structures. We will now state the cen-
tral result in our paper. The proof of this result is combinatorial and relies heavily on the
results obtained in the preceding sections.

THEOREM 5.1. Let F be an invariant f -structure on F(n), n ≥ 2. (F(n),F) admits
invariant (1,2)-symplectic metrics if and only if F is LT.

We will prove the following clearly equivalent statement:

LEMMA 5.2. The digraph G = (V ,E), |V | ≥ 2 admits (1,2)-symplectic invariant
metrics if and only if it is LT.

PROOF. Forn < 4, G is always LT, and verification of the lemma is an easy exercise.
Forn = 4, verification is easy, based on the digraphs in Figure 3. So, assumen > 4.

If G admits (1,2)-symplectic invariant metrics, then by restriction every 4-vertex subdi-
graph ofG admits (1,2)-symplectic metrics, and hence (as just observed) is LT. But then by
Lemma 3.3,G is LT.

Conversely, assume thatG is LT. We argue by induction. IfG is completely non-transitive,
then the existence of (1,2)-symplectic metrics was guaranteed in the previous section. Oth-
erwise, by Lemma 4.3, we may delete an edgee from G = (V ,E), obtaining another LT
digraphG̃ = (V , Ẽ). By the induction argument,̃G has (1,2)-symplectic metrics. We extend
each such metric to a metric onG by definingλe = λe′ + λe′′ , wheree′ ande′′ are the sides
corresponding to the basee. This is the only extension for whichΛ is (1,2)-symplectic on
the triangle in question, and hence the only extension whichmight be (1,2)-symplectic for the
whole digraph. We want to show that, in fact, it is.

Step 1. We show that the extension is well-defined. Namely, assume thate = uw is
simultaneously a base for two transitive triangles, say{uv, vw, uw} and {uz, zw, uw} with
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{u, v,w, z} ⊂ V. We need to show that a priori

λuz + λzw = λuv + λvw .(4)

There are two cases to consider. Ifv ↔ z, we may assume for definiteness thatv→ z. In this
case, by (3) we have a prioriλvz = λuz−λuv andλvz = λvw−λzw, implying (4). Otherwise,
if v �↔ z, by (1-2) we have a prioriλuv = λuz λvw = λzw, again implying (4).

Step 2. We show that the extended metric is (1,2)-symplectic. Every conflict within the
constraint system (1) through (3) should involve the deleted edgee, sinceG̃ is assumed to
satisfy these restrictions. By Lemma 4.3,e is not a side inG, and hence any conflict with (3)
is of the type already discussed in Step 1.

A conflict with (1) implies thatλe �= λ′e where, say,e = uw ande′ = tw. This can occur
only if t �↔ u. Now it can be easily seen that independently of the relation betweenv andt , G
andG̃ cannot both be LT, since one of the two contains one of the non-LT digraphs of Figure
3. This is a contradiction to our assumptions.

A conflict with (2) leads to a similar contradiction, and so the proof is complete.�

Assume that the LT digraphG is reduced, via edge deletion, to a completely non-transitive
digraphG′. Theorem 5.1 shows that every (1,2)-symplectic metric onG′ extends uniquely to
a (1,2)-symplectic metric onG. Thus, the dimension of the cone of (1,2)-symplectic metrics
is equal in both digraphs (in the previous section it was denoted byβ). It is not clear how to
calculateβ directly from the original digraphG. One approach is to represent (1 through 3)
as a homogeneous linear system and calculate the dimension of its kernel.

The classification of (essentially different) (1,2)-admissible invariant structures onF(n)

is reduced, via Theorem 5.1, to the classification of (permutationally different) LT digraphs.
Brouwer [3] applied a nice counting argument in order to enumerate thecomplete LT digraphs
with n vertices. On first reading it appears that hismethod is not adequate for the enumeration
of all the LT digraphs withn vertices. One possible attack on the problem would be to enu-
merate first the completely non-transitive ones, and then to figure out how many LT digraphs
edge-delete into a given completely non-transitive digraph.

REFERENCES

[ 1 ] M. B LACK, Harmonic maps into homogeneous spaces, Pitman Research Notes in Mathematics Series 255,
Longman Scientific & Technical, Harlow, 1991.

[ 2 ] J. BOLTON AND L. M. WOODWARD, Minimal surfaces and the affine Toda field model, J. Reine Angew.
Math. 459 (1995), 119–150.

[ 3 ] A. E. BROUWER, The enumeration of locally transitive tournaments, Afdeling Zuivere Wiskunde [Department
of Pure Mathematics] 138, Mathematisch Centrum, Amsterdam, 1980.

[ 4 ] F. E. BURSTALL, D. FERUS, F. PEDIT AND U. PINKALL , Harmonic tori in symmetric spaces and commuta-
tive Hamiltonian systems on loop algebras, Ann. of Math. (2) 138 (1993), 173–212.

[ 5 ] F. E. BURSTALL AND S. SALAMON , Tournaments, flags and harmonic maps, Math Ann. 277 (1987), 249–
265.

� �



270 N. COHEN, C. NEGREIROS, M. PAREDES, S. PINZÓN AND L. SAN MARTIN

[ 6 ] N. COHEN, C. J. C. NEGREIROS ANDL. A. B. SAN MARTIN, Decription of (1,2)-symplectic metrics on flag
manifolds, Global differential geometry: the mathematiocal legacy of Alfred Gray (Bilbao, 2000), 300–304,
Contemp. Math. 288, Amer. Math. Soc., Providence, R. I., 2001.

[ 7 ] N. COHEN, C. J. C. NEGREIROS ANDL. A. B. SAN MARTIN, (1,2)-Symplectic metrics, flag manifolds and
tournaments, Bull. London Math. Soc. 34 (2002), 641–649.

[ 8 ] N. COHEN, C. J. C. NEGREIROS ANDL. A. B. SAN MARTIN, A rank-three condition for invariant (1,2)-
symplectic almost Hermitian structures on flag manifolds, Bull. Braz. Math. Soc. (N.S.) 33(1) (2002),
49–73.

[ 9 ] A. GRAY, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965), 273–287.
[10] S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Pure Appl. Math. 80, Academic

Press, Inc., New York-London, 1978.
[11] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. II, Interscience Tracts in Pure

and Applied Mathematics 15 Vol. II, Interscience Publishers, John Wiley & Sons, Inc., New York-London-
Sydney, 1969.

[12] A. L ICHNEROWICZ, Applications harmoniques et varietés kähleriennes, 1968/1969 Symposia Mathematica,
Vol. III (INDAM, Rome, 1968/69) 341–402, Academic Press, London, 1970.

[13] X. M O AND C. J. C. NEGREIROS, (1,2)-Symplectic structure on flag manifolds, Tohoku Math. J. (2) 52
(2000), 271–282.

[14] W. MOON, Topics on Tournaments, Holt, Reinhart and Winston, 1968.
[15] C. J. C. NEGREIROS, Some remarks about harmonic maps into flag manifolds, Indiana Univ. Math. J. 37

(1988), 617–636.
[16] M. PAREDES, Aspectos da geometria complexa das variedades bandeira, Ph. D. Thesis, State University of

Campinas, 2000.
[17] M. PAREDES, Families of (1,2)-symplectic metrics on flag manifolds, Int. J. Math. Sci. 29 (2002), 651–664,.
[18] S. PINZÓN, Variedades bandeira, f-structures e métricas (1,2)-simpléticas, Ph. D. Thesis, State University of

Campinas, 2003.
[19] J. H. RAWNSLEY, f -Structures,f -Twistor spaces and harmonic maps, Geometry seminar “Luigi Bianchi”

II—1984, 85–159, Lecture Notes in Math. 1164, Springer, Berlin, 1985.
[20] L. A. B. SAN MARTIN AND C. J. C. NEGREIROS, Invariant almost Hermitian structures on flag manifolds,

Adv. Math. 178 (2003), 277–310.
[21] G. WARNER, Harmonic analysis on semi-simple Lie groupsI. Grundlehren Math. Wiss. 188, Springer-Verlag,

New York-Heidelberg, 1972.
[22] J. A. WOLF AND A. GRAY, Homogeneous spaces defined by Lie group automorphisms I, J. Differential

Geom. 2 (1968), 77–114.
[23] J. A. WOLF AND A. GRAY, Homogeneous spaces defined by Lie group automorphisms II, J. Differential

Geom. 2 (1968) 115–159.
[24] K. YANO, On a structure defined by a tensor field of type (1,1) satisfyingF3 + F = 0, Tensor (N.S.) 14

(1963), 99–109.

� �



f -STRUCTURES ON THE CLASSICAL FLAG MANIFOLD 271

DEPARTMENT OFAPPLIED MATHEMATICS DEPARTMENT OFMATHEMATICS

IMECC–UNICAMP IMECC–UNICAMP
CX. POSTAL 6065, 13083–970 CX. POSTAL 6065, 13083–970
CAMPINAS–SP CAMPINAS–SP
BRAZIL BRAZIL

E-mail address: nir@ime.unicamp.br E-mail address: caione@ime.unicamp.br

ESCUELA DE MATEMÁTICAS ESCUELA DE MATEMÁTICAS

UNIVERSIDAD INDUSTRIAL DE SANTANDER UNIVERSIDAD INDUSTRIAL DE SANTANDER

APARTADO AEREO678 APARTADO AEREO678
BUCARAMANGA BUCARAMANGA

COLOMBIA COLOMBIA

E-mail address: mparedes@uis.edu.co E-mail address: sofia@matematics.uis.edu.co

DEPARTMENT OFMATHEMATICS

IMECC–UNICAMP
CX. POSTAL 6065, 13083–970
CAMPINAS–SP
BRAZIL

E-mail address: smartin@ime.unicamp.br

� �


