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Abstract. In this paper we classify real hypersurfaces all of whose geodesics orthogo-
nal to the characteristic vector field are plane curves in complex projective or complex hyper-
bolic spaces.

1. Introduction. Recent program of our study on submanifolds is based on the ex-
trinsic shape of geodesics on submanifolds. From this point of view, a totally umbilic subman-
ifold is considered to be the simplest one. It is well-known that a hypersuMeécm a real
space formM”*+1(c) of curvaturec, which is one of a standard sphef&t1(c), a Euclidean
spaceR"+1 and a hyperbolic spacd”™t1(c), is totally umbilic if and only if every geodesic
on this hypersurfac&f” is a plane curve in the ambient spa@é*1(c). Here, a smooth curve
on a Riemannian manifold{ is said to be @lane curveif it is locally contained on some real
2-dimensional totally geodesic submanifold df On the other hand, in am-dimensional
nonflat complex space form,, (c) of constant holomorphic sectional curvaturewhich is
either a complex projective spaG” (¢) or a complex hyperbolic spac&H" (¢), there does
not exist a real hypersurfadg?~1 all of whose geodesics are plane curves in the ambient
spaceM,, (¢). This comes from the fact that a nonflat complex space form does not admit a
totally umbilic real hypersurface. However, there exist real hypersurfacés? all of whose
geodesic®rthogonal to the characteristic vector field & of M are plane curves in a nonflat
complex space form. For example, every totgHymbilic hypersurface has this property (see
Section 2 for the definition of totally-umbilic hypersurfaces).

Motivated by this geometric property of totallyumbilic hypersurfaces, we are inter-
ested in classifying real hypersurfac&? 1 in a nonflat complex space ford,, (c) all
of whose geodesics orthogonal to the characteristic vector&ieldM are plane curves in
M, (c). The aim of this paper is to solve this problem:
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MAIN THEOREM. Let M?'~1 be a real hypersurface of a nonflat complex space form
M,(c) (n = 2). Then M islocally congruent to a totally n-umbilic hypersurface or a ruled
real hypersurfaceif and only if every geodesic y on M whoseinitial vector y (0) isorthogonal
to the characteristic vector £, ) of M isa plane curvein the ambient space M, (c).

We recall in Section 3 fundamental properties of curves of order 2 which are generaliza-
tions of plane curves. Also we review in Sien 2 basic results on real hypersurfaces.

2. Basicresultson real hypersurfaces. We shall start by summarizing some basic
results on real hypersurfaces that will be useful in the following sectionsM,ét) denote
either a complex-dimensional complex projective spa€e&” (c) of constant holomorphic
sectional curvature or a complex:-dimensional complex hyperbolic spaCé{” (¢) of con-
stant holomorphic sectional curvature Let M%*~1 be an orientable real hypersurface of
M, (c) and A a unit normal vector field ot/ in M, (c). The Riemannian connectiois of
M, (c) andV of M are related by

(2.1) VxY = VxY + (AX,Y)N and VxN = —AX,

for vector fieldsX andY tangent toM, where( , ) denotes the Riemannian metric &h

induced from the standard metric @, (c), and A is the shape operator @f in M, (c). It

is known thatM admits an almost contact metric structdge &, n, ( , )) induced from the
Kahler structure/ of M, (c). The characteristic vector fieldof M is defined ag = —JN

and this structure satisfies

PP=—1+n®E nE =1, and (¢X,¢Y) = (X,Y)—n(X)n¥),

where/ denotes the identity map of the tangent buridle of M. It follows from the equali-
ties (2.1) that

(2.2) (Vxd)Y =n(¥)AX — (AX,Y)&
and
(2.3) Vxé = pAX .

The eigenvalues and eigeagators of the shape operatérare callecorincipal curvatures
andprincipal curvature vectors, respectively. The condition that the characteristic vegter
—JN is principal is quite natural. As was shown in [NR], for a real hypersurf@é&—1 in
M,(c) (n = 2), if A& = 8¢ holds with some functiod on M thens is locally constant. In
CP", each real hypersurfagé lying on a tube of constant radiug> 0) around a complex
submanifold ofCP” satisfies this condition of. In CH", each real hypersurfadéd lying on
a tube around a complex submanifold or around a totally real submanif@d/éfsatisfies
that condition. We usually calif a Hopf hypersurface, when the characteristic vectéris
principal.

A real hypersurface/ of M, (c) (n = 2) is called aotally n-umbilic, if its shape operator
A is of the formA = ol + Bn ® & for some functions andg on M. It is known that every
totally n-umbilic hypersurface is a typical example of a Hopf hypersurface. The following
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classification theorem of totally-umbilic hypersurfaced/ shows that these two functions
andp are automatically constant ad (see [NR]):

THEOREM A. Atotally n-umbilic hypersurface M2~ of a nonflat complex space form
My(c) (n = 2) islocally congruent to one of the following:
(P) geodesic spheresof radiusr (0 < r < m/4/c) inCP"(c),
(H) i) horospheresin CH"(c),
i) geodesic spheresof radiusr (0 < r < 00) in CH"(c),
iii) tubesof radiusr (0 < r < oo) around totally geodesic complex hyperplane
CH"Y(c)inCH" (c).

It is known that every totally)-umbilic hypersurfacé/ has two distinct constant princi-
pal curvatures and satisfies the condition that the structure teéresad the shape operatar
of M in M,(c) are commutativepA = A¢.

Next we recall ruled real hypersurfaces in a nonflat complex space form, which are typ-
ical examples of non-Hopf hypersurfaces. A real hypersurfdcs called aruled real hy-
persurface of a nonflat complex space forit, (c) (n = 2) if the holomorphic distribution
70 defined byr'%(x) = {X € T, M | X_L&} for x € M is integrable and each of its integral
manifolds is a totally geodesic complex hypersurfage 1(c) of M, (c). A ruled real hyper-
surface is constructed in the following manner. Given an arbitrary regular gudefined
on an intervall in M,(c) we have at each point(r) (¢t € I) a totally geodesic complex
hypersurfaceM,i’_)l(c) that is orthogonal to the plane spanned{kt), Jy(¢)}. Then we

see thatM = |, M,ﬁf_>1<c) is a ruled real hypersurface i, (c). The following gives a
characterization of ruled real hypersurfaces in terms of the shape opérator

PROPOSITION B (see [NR]). Let M be areal hypersurfacein a nonflat complex space
form M, (c) (n = 2). Then the following conditions are equivalent:
(1) M isaruledreal hypersurface.
(2) The shape operator A of M satisfies the following equalities with a unit vector U
orthogonal to &:
AE = pgE +vU, AU =vE, AX =0,

where 1, v are differentiable functionson M with v # 0,and X isan arbitrary tangent vector
orthogonal to & and U.

(3) Theshape operator A of M satisfies (AX, Y) = 0O for any tangent vectors X, Y €
T M orthogonal to & at each point x € M.

3. Curves of order 2. A smooth curvey on a complete Riemannian manifold
parametrized by its arclength is calledwve of order 2 if it satisfies the following nonlinear
differential equation:

(3.1) IV P I3V Vi + IV 7 11P9) = (V39, Vy Vi) V9
whereV,, denotes the covariant differentiation alopgvith respect to the Riemannian con-
nectionV on M. This is a generalization of the notion of circles. We call a smooth curve
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parametrized by its arclengthcircle if it satisfiesV, v,y = —k?y with some nonnegative
constank. This condition is equivalent to the condition that there exist a nonnegative constant
k and a field of unit vector¥ along this curve that satisfy, y = kY andV,; Y = —ky. Since
k = |V, yll, we see that circles are curves of order 2. We call this conbtiuetcur vature of
y. We note that geodesics are treated as circles of null curvature. On a real spadé€f@im
circles are plane curves, but it is not true in general. For a cjrad® a complex projective
space we have an important invariant (y, JV;y)/IIV;y |, which is called thecomplex
torsion. Whent = +£1 it lies on a totally geodesic complex projective line, and whenO it
lies on a totally geodesic real projective plane. However in the £gge, +1 it does not lie
on any totally geodesic real 2-dimensional submanifold (see [AMU]). The same result holds
for a circle on a complex hyperbolic space (see [AM1]).

A smooth curvey = y(s) parametrized by its arclengshis called aFrenet curve of
proper order 2 if there exist a smooth unit vector field alongy orthogonal toy and a
smooth positive functior satisfying

(3.2) Vyy(s) =k()Y(s) and V,Y(s) = —«(s)y(s).

The functionk and the orthonormal framfg’, Y} are called itscurvature andFrenet frame,
respectively. Trivially a circle of positive curvature is a Frenet curve of proper order 2. We
call a curve &renet curve of order 2 if it is either a geodesic or a Frenet curve of proper order
2. These two notions are related as follows.

LEMMA 1. (1) Every Frenet curveof order 2isa curve of order 2.

(2) Ifacurvey of order 2 satisfies ||V y (s)|| > O for all s, then it is a Frenet curve
of proper order 2, whose curvature and Frenet frame are «(s) = [[Vyy(s)|| and {y,Y =
Vyy/IVy I}, respectively.

PROOF We can get the first assertion by direct computation. To show the second we
putk(s) = ||Vyy(s)|l. As we haveck’ = (Vyy, V; V; ), the equation (3.1) guarantees that
the vector fieldr = (1/«x)V, y satisfies

1, . ) .
VY = K—S(K VyVpy —kk'Vyy) = —ky,
which leads us to the conclusion. O

It should be noted that we allow a curyeof order 2 to have points wheRg; y vanishes.
For a curve of order 2 we call such a pointiafiection point. One can easily find that a cubic
curvey = x3 on a Euclideanry-plane has an inflection point at the origin. We have to take
care of inflection points. The following lemma tells us that the notion of curves of order 2 is
also an extension of the notion of plane curves.

LEMMA 2. Every smooth plane curve parametrized by its arclength is also a curve of
order 2.

PROOF. Lety be a smooth plane curve parametrized by its arclength. Forsgagh
have a real 2-dimensional totally geodesic submanifoland positive numbes such that
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the restrictiony | (s,—s.so+s) lies onS. We then have a local smooth unit vector fiéldalong
¥ l(so—5.50+5) that is orthogonal tg> and is tangent t&. Since|y|| = ||[V] = 1, we see
(y,V) =(V,Vv;V) = 0. SinceS is 2-dimensional and totally geodesic, we see Wiaf
is proportional tovV andV,,V is proportional toy. By differentiating(y, V) = 0, we get
Vyy =vV andV, V = —vy with a functionv. 0

However, in general, a curve of order 2 is not necessarily a plane curve (see [SMA] for
example).

4. Proof of the main theorem. We are now in a position to prove our main theorem.
We here show a bit more detailed result.

THEOREM. Let M?'~1 be a real hypersurface of a nonflat complex space form
M, (c) (n = 2). Then the following conditions are equivalent:

(1) M islocally congruent to either a totally n-umbilic hypersurface or a ruled real
hypersurface.

(2) Everygeodesic y on M whoseinitial vector y (0) isorthogonal to the characteristic
vector &, (g isa plane curvein the ambient space M, (c).

(3) Everygeodesicy on M whoseinitial vector y (0) isorthogonal to the characteristic
vector &, () isa circle in the ambient space M, (c).

(4) Everygeodesicy on M whoseinitial vector y (0) isorthogonal to the characteristic
vector &, () isa curve of order 2 in the ambient space M, (c).

PROOF. ltis trivial that the second condition implies the fourth condition and the third
condition also implies the fourth.

We first show that the first condition yields the second and the thirdM_ee a totally
n-umbilic hypersurface i1, (c). Then all tangent vectors orthogonalét@re principal cur-
vature vectors with a single principal curvature; that is, there is a constaith Au = Au
for each tangent vectar € T M orthogonal tct. The principal curvature is

(Vc/2)cot/cr/2, a geodesic spherd of radiusr in CP"(c),
(/Icl/2) cothy/]clr/2, ageodesic spherd of radiusr in CH"(c),
A =1 (V]cl/2) tanhy/[c[r/2, atubeM of radiusr around totally
geodesicCH"1(¢c) in CH"(¢),
1cl/2), a horospher@/ in CH" (c) .

Lety = y(s) be a geodesic o/ with initial vectory (0) orthogonal tc, o). By (2.3) and
the equalityp A = A¢, we see that

v(v.8) = (Vpy.8) +(v. Vi) = (v. ¢Ay) = (v, Apy) = —(pAy.y) = 0.

Therefore the tangential vectgi(s) is perpendicular to the characteristic vectaat eachs.
This, together with the equalities (2.1), impli®y = AN andV, N = —iy. Hence the
curvey is a circle of positive curvaturg in the ambient spac#f,, (¢) with complex torsion
T = (y,JN) = 0. So, wherc > 0, this curvey lies on a 2-dimensional real projective
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spaceRP2(c/4) of curvaturec/4 which is totally real totally geodesic @P" (c), and when
¢ < 0, this curvey lies on a 2-dimensional hyperbolic spalié(c/4) of curvaturec/4 that
is totally real totally geodesic i€H"(c). Thus we could check the assertion in the case of
totally n-umbilic hypersurfaces.

Next, we shall check the assertion in the case of ruled real hypersufacést y be
a geodesic o with initial vector y (0) orthogonal to&, ). Let M,_1(c) be the integral
manifold through the point = y(0) for the holomorphic distributior7®. Sincey (0) €
T M,_1(c) and M,,_1(c) is a totally geodesic complex hypersurface of the ambient space
M, (c), we see thay locally lies onM,_1(c) by the uniqueness theorem on geodesics. Hence
the geodesig is a geodesic i, (c). In particular, since the ambient spal# (c) is a rank
one symmetric space, is a plane curve i, (c).

It remains to verify that the fourth condition implies the first. Métbe a real hypersur-
face inM, (c) satisfying the fourth condition. We take an orthonormal pair of tangent vectors
u, v at an arbitrary point € M that are perpendicular o We first show

(4.2) (Au, u){Au,v) =0.

We here suppose thétu, u) # 0. Lety = y(s) be a geodesic oM with the initial condition
thaty(0) = x andy(0) = u. There exists some > 0 satisfying thatAy (s), y(s)) # 0

for eachs (—¢ < s < ¢). By the first equality in (2.1), this shows thm‘t?);;}(s)u > 0 for
eachs (—e < s < ¢). Hence Lemma 1 tells us that the curvén M, (c) restricted to the
interval —e < s < ¢ is a Frenet curve of proper order 2. Without loss of generality we may
consider the casety (s), y (s)) > O for eachs (—e < s < ¢). Then the curvature and Frenet
frame of y in M, (c) arek(s) = (Ay(s), y(s)) and{y, N}, respectively, so that it satisfies
V9 = k()N andV; N = —« (s)y. This, combined with the second equality in (2.1), shows
thatAy (s) = k(s)y(s) for eachs (—e < s < ¢), and in particular shows thatu = ku with

a positivek = (Au, u). Thus we havéAu, v) = 0, and get (4.1) for each orthonormal pair of
vectorsu, v orthogonal tcs.

Now let f : §2=3(1) (c R¥*“2) — R be the differentiable function on a subset
§2=3(1) = {u € UyM | u L &} of the unit tangent spadé, M defined byf (1) = (Au, u)?,
whereA is the shape operator @f at the pointx. If v is a vector tangent t6%*—3(1) atu
(henceuLv), we findv(f) = 4(Au, u){Au, v) = 0 by (4.1). Thusf is a constant function,
that is,

(4.2) |[(Au,u)] = k for each unit vector orthogonal tc, ,

with some nonnegative constant k(x).

Whenk(x) # 0, by virtue of the above discussion we see that= ku or Au = —ku
for eachu. Then we easily find out that eithén: = ku for all u € T, M orthogonal tc,
or Au = —ku for all u € T, M orthogonal tos,. This tells us that is ann-umbilic point
of our real hypersurfac#f of M, (c) and the functiork = k(x) is locally constant on some
sufficiently small neighborhootd of the pointx, so thatM is congruent to one of the totally
n-umbilic hypersurfaces in the neighborhdad
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Whenk(x) = 0 it follows from the continuity of the functiok = k(x) and the above
argument that there exists some neighborhpoaf x satisfyingk = 0 onV. Thus we find
that(Au, u) = O forallu € U, M orthogonal tc, at an arbitrary point on). This, together

with the fact thatA is symmetric and from Proposition B, implies that the real hypersurface

M is congruent to a ruled real hypersurfacelan ]

REMARK. By the proof of Theorem we see that each geodesic orthogorfabtoa
ruled real hypersurfac#f in M,(c) (n = 2) is a geodesic oi/,(c). WhenM is a totally
n-umbilic hypersurface iV, (c), each geodesic orthogonal 4ais a circle on the ambient
spaceMn (¢) with the following curvature:

(Vc/2)cot/cr/2, M is a geodesic sphere of radiug CP"(c) ,

(/Icl/2) cothy/|clr/2, M is a geodesic sphere of radiugh CH" (¢) ,

(/Icl/2) tanhy/|c]r/2, M is atube of radiug around totally
geodesicCH" 1(c) in CH"(¢),

WIcl/2), M is a horosphere i€H"(c) .

Finally we should remark that the following theorem is closely related to our result.

THEOREM C (see [AMY]). A real hypersurface M%*~1 in a nonflat complex space
form M, (c) (n = 2) islocally congruent to one of the totally 5-umbilic hypersurfaces if and
onlyif at each point x € M there exist orthonormal tangent vectorsvs, v, ..., v2,—2 € Ty M
orthogonal to the characteristic vector & such that all geodesics on M through x in the direc-
tionv; +v; (1 =i = j < 2n — 2) arecircles of positive curvatures in the ambient space
M, (c).

In the statement of Theorem C, if we replaceattés of positive curvatures” by “circles”,
then this theorem is no longer true. For examptaus recall ruled real hypersurfaces. Here is
anther example worth mentioning:

EXAMPLE. LetM be atube of radius /4 over totally geodesi€P*(4) (1 < k < n—2)
in CP"(4). Itis known thatT®M = V_1 @ V1, whereV_1 = {X e TM | AX = —X} and
Vi={XeTM | AX = X}, withdimV_1 = 2k and dimVy; = 2n — 2 — 2k, respectively.
Take orthonormal vectorsy, vo, . . ., v2,—2 orthogonal toé at an arbitrary poink of M in
suchaway that; € V_1forl < j < 2kandv; € Vifor2k +1 < j < 21— 2. Then
all geodesics ofi throughx in the directionv; +v; (1 £ i < j < 2n — 2) are circles
in CP"(4). However, it is needless to say that this real hypersurfdcs neither a totally
n-umbilic hypersurface nor a ruled real hypersurfac€iri’ (4). We particularly note that all
geodesics oM throughx in the directionv; +v; (1 =i =2k, 2k+1= j < 2n —2) are
also geodesics in the ambient sp&#” (4).
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