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Abstract. In this paper we prove the existence of families of complete mean curvature
one surfaces in the hyperbolic three-space. We show that for each Costa-Hoffman-Meeks
embedded minimal surface of positive genus in Euclidean three-space, we can produce, by
cousin correspondence, a family of complete mean curvature one surfaces in the hyperbolic
three-space. These surfaces have positive genus, three ends and the same group of symmetry
of the original minimal surfaces. Furthermore, two of the ends approach the same point in the
ideal boundary of hyperbolic three-space and the third end is asymptotic to a horosphere. The
method we use to produce these results weveldped in a recent paper by W. Rossman, M.
Umehara and K. Yamada.

1. Introduction. Surfaces of constant mean curvature (CMC) 1 in hyperbolic 3-space
H 3 share many properties with minimal surfaces in Euclidean 3-sR&dbe most important
being that both types of surfaces possess a “We#ass representation” in terms of holomor-
phic data [B]. This representation enables us to describe a great number of examples of CMC
1 surfaces irH 3, which may have branch points. (By® we mean the unique complete
simply-connected 3-manifold with constant sectional curvattte

In [RUY], a method is given for constructing examples without branch points. More pre-
cisely, it is proved that for each complete symmetric finite-total-curvature minimal surface in
R2 with a non-degenerate period problem, there exists a corresponding one-parameter family
of complete CMC 1 immersions iH 3. This provides many examples of CMC 1 surfaces
in H3, many of which are described in [RUY]. However, as was explained in [RUY, p. 471],
the method does not apply directly to showe tixistence of CMC 1 surfaces corresponding
to the original Costa surfaces R?. The goal of this paper is to define good variations of
the Weierstrass representation of the mirli@asta-Hoffman-Meeks surfaces and to choose
fundamental disks of these surfaces so thantiethod of [RUY] can be applied, thus showing
that corresponding cousin surfaces existifi See Theorem 4.1.

By “Costa-Hoffman-Meeks cousin” we mean a CMC 1 surfackl fhof positive genus
with three ends. The ends asymptotically approach only two points in the ideal boundary at
infinity of H3. The surfaces in this family are duals (in the sense of [RUY] and [UY3]) of
the image under the Lawson correspondence of the original minimal Costa-Hoffman-Meeks
surfaces. The Costa-Hoffman-Meeks surface®in which we will call M; [HKM], are
complete minimal surfaces with genisand k + 1 vertical planes of symmetry, and two
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catenoid ends and one flat end. The first exanyplewas found by Celso Costa [C1] in
1982. Although the\; are embedded, their CMC 1 dual cousingdif are never embedded,
see Figure 4.3. In fact, there is no general relationship between embeddedness of minimal
surfaces irR3 and their dual cousin surfaces h®. The catenoid is embedded R?, but
the catenoid cousin can be either embedded or non-embedd¢d; ithe minimal trinoid
cousins inR® are never embedded, but their CMC 1 dual cousins can be either embedded or
non-embedded inl 3. See [RUY] for more on this point.

A part of this work was contained in the doctoral thesis of the second author at Universi-
dade Federal do Ceara (see [N]). He would like to thank Levi Lima and Wayne Rossman for
their helpful conversations and guidance.

2. Complete minimal immersionsin R3. We begin by stating the Weierstrass rep-
resentation theorem (see [O] or [L]). This representation is the primary tool for describing
complete minimal surfaces R>.

THEOREM 2.1. Let M be a Riemann surface, n a holomorphic one-formon M, and
g: M — CU {oo} ameromorphic function. Consider the vector valued one-form

(2.2) @ = (¢1, b2, ¢3) := (L — ¢, i(L+ ¢P)n, 2g1) .
Then

P
(2.2) X(p) = Re/ @

pPo

defines a conformal minimal mapping of some covering of M into R3. This mapping is well-
defined on M if and only if X hasno nonzero real period on M, that is, if and only if

2.3) Period,(®) := Rey{ & =0

o
for all closed curves o« on M. This mapping is regular provided the poles of g coincide with
the zeros of 1, and, whenever ¢ has a pole of order /, n has a zero of order 2/. Moreover, g
is stereographic projection of the Gauss map N : M — 2 of X. Conversely, every regular
conformal minimal immersion X : M — R3 can be expressed in the form (2.2) for some
meromor phic function g and holomor phic one-form ».

The metric induced oM by X can be expressed as
ds® = (1+191%%n -7,
where- means the symmetric product, and the Gauss curvafweéX is
_ 4dg.dyg
A+ 19
Typically, when one wishes to have the Weierstrass representatiomedl-defined on
M, there are parameters in the Weierstrass f#tag, n} that one adjusts until (2.3) holds for

all closed curves inM. This is referred to as the solving the period problem. In the case of
finite total curvaturef,, KdA > —oo, we have the following theorem:
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THEOREM 2.2 (Osserman-Huber, [L], [O]).Let X : M — R2 be a complete confor-
mal minimal immersion with finite total curvature. Then the following hold.
(i) M isconformally diffeomorphic to My \ {e1, ..., e-}, where M, isa closed Rie-
mann surface of genusk and ey, . .. , e, arepointsin My, r > 1.

(i) TheGaussmap N : M — S2, whichismeromorphicon M, extendsto a meromor-
phic function on M. The one-form 5, which is holomorphic on M, extendsto a meromorphic
one-formon Mjy.

(i) Thetotal curvatureisan integer multiple of 47 and satisfies

/ KdA < —4nk+r —1),
M

where k and r are the integers defined in statement (i).

If D; C My is a punctured neighborhood ef, then the imagex (D) of D; is anend
of M, which we denote b¥ ;. E; is an embedded end if and onlyjthas a pole of order two
ate; [JM]. Sinceg is the stereographic projection of the Gauss iVapf X, we can suppose,
after a rotation off in R® if necessary, thaj(e;) = 0. If the endE; is embedded, then, near
e;, we have the local expression

b
9(2) = anz" + 02", a, #0,n>1 and n(z) = 5 +o,b#0.

We say that an embedded ehg is acatenoid end if » = 1 and is dlat end of ordern — 1 if
n > 1. It holds that:
1. All of the ends of\f are embedded if and only if the equality holds in (iii) of Theorem
2.2.
2. If no two ends off intersect, then, after a rotation Bf, the Gauss mayy satisfies
N(ej) = (0,0, £ forall j =1,...,r.
It is clear that ifX : M — R®is an embedding, then the above two conditions must hold.
However, these conditions are not sufficient to imply tRais an embedding. One can see
examples and a discussion on this in [W1], [W2], [HK]. However, witiis embedded and
complete and has finite total curvature, it follows that outside of a sufficiently large compact
set of R3, M is asymptotic to a finite number of half-catenoids and planes, which may be
assumed to have vertical normals.

The Schwarz reflection principle for minahsurfaces is also central to the arguments
that we will be making. Before stating it, wecall some relevant facts. A curve on any
surface inR® is a straight line if and only if both the geodesic curvature and the normal
curvature vanish. A principal curve on a sacé that is not a straight line has the property
that it is a geodesic if and only if it lies in a plane orthogonal to the surface. For the surface
X (M), expressing the shape operatoe= DX - DN in terms ofg andn := fdz for some
holomorphic functionf and holomorphic coordinate we conclude that a curveon X (M)
is

asymptotice== ¢ f(dz(c (1)))? € iR, and principak=> ¢ f(dz(c (1)))? € R.
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THEOREM 2.3 (Schwarz reflection principle).If a minimal surface is bounded by a
line segment ¢, it may be extended by rotation by angle = about ¢ to a smooth minimal surface
containing ¢ in itsinterior. If a minimal surface with boundary contains a planar geodesic ¢
inits boundary, then this surface can be extended smoothly across ¢ by reflecting through the
plane containing c.

3. Costasurfacesin R3. In this section we briefly review the construction and some
properties of the surfacedy, k € N. Each of the surface¥, is conformally equivalent to
a Riemann surface of genkgpunctured at three points. The surfadéshave two catenoid
ends and one flat end. The example with= 1 was found by Costa, who constructed it
using the classical Weierstragsfunction. He also proved that this surface satisfies all known
necessary conditions for embeddedness. Hoffman and Meeks were able to proe that
embedded and highly symmetric (see [HM1] ko 1 and [HMZ2] for generak).

We will use the Weierstrass Representation Theorem 2.1, for which we need a Riemann
surface, a meromorphic map, and a holomormme-form. We start by describing the com-
plex structure of\f;. Consider, for each € N, the compact Riemann surfagg, associated
to the irreducible polynomial

Pz,w)=uw*t - X+ -1).

Let po = (0,0), p_1 = (-1, 0), py+1 = (1, 0), andpe, = (00, o) be the singular points of
P(z,w). Then

(3.4) My = {(z, w) € (CU{c0})?| P(z, w) = 0}

is the compact Riemann surface associate# ta w). One can see thal/; is a (k + 1)-
sheeted ramified covering of the Riemann splt&te{oco}, with genusk. Now, consider

(3.5 My = My — {p-1, P11, Poo} »

the Riemann surface obtained by puncturig in three points. (Note that, for simplicity
of notation, we are now referring to both theeRiann surface in the Weierstrass data and
the actual minimal surface iR® by the same notatio;.) The next theorem defines the
conformal minimal immersion oz, into R3.

THEOREM 3.1 (Hoffman and Meeks [HM]). Let M, and M be the Riemann surfaces
given by (3.4)and (3.5), and let
w a

Nk
(3.6) n <w> dz (z+1)(z—1)dz’ g=—. acR",

be a meromor phic one-form and a meromor phic function on M. Consider the vector-valued
one-form @ asin (2.1). Thenthereexistsauniquea > Osuchthat X (p) = Reflf; @D My —
R? is a complete properly-embedded conformal minimal immersion with finite total curvature
of My into R3.

After suitable rotations and translationsRy?, the surfaceV; has the following proper-
ties:
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1) The total curvature oty is —4n (k + 2).

2) M; has one flat end between its top and bottom catenoids ends. The flat end is
asymptotic to théx, x2)-plane.

3) M intersects théxy, x2)-plane ink + 1 straight lines, which meets at equal angles
at the origin.

4) The symmetry group a¥f; is the dihedral group with@ + 1) elements generated
by reflection ink+ 1 vertical planes of symmetry meeting in theaxis, and rotation
about one of the lines in (3).

5) M; may be decomposed int@/+ 1) congruent pieces, each of which is a graph.

6) My is the unique properly-embedded minimal surface of génwsth three ends,
finite total curvature, and a symmetry group containigg-# 1) or more elements.

The symmetry of the surface is used to show that there is only one period condition. The

value of the constant in Theorem 3.1 for which the period problem is solved is

1
2/ tk/(k+l)(1 _ t2)fk/(k+l)dt
0

1
0

(3.7)

Q
|

4. Costatype surfacesin H3. In this section we will study the period problem for
the surfaced4;. By using the symmetry of the complex structureif, and extending the
fundamental domains of these surfao@e will show directly that all surface¥; have non-
degenerate period problems in the sense of [RUY]. So, we achieve that favgdbbre exist
a one-parameter family of cousin surfacesfif. We will need the following definition.

DEFINITION 4.1. A complete minimal immersiofi : S — RS is symmetric if there
is a subregionD C f(S) that is a disk bounded by non-straight planar geodesics and the
interior of D does not contain any non-straight planar geodesics.

Note that if f is symmetric with subdislo, then by the Schwartz reflection principle,
generates the entire surface by reflections across planes containing boundary planar geodesics.

4.1. The surfacesf;. An important property of the surfaces : M; — RS is that
a fundamental pieces of the surfacds are bounded by two planar geodesics and a single
straight ray. A such fundaméal pieces generates the entire surface by the action of the
dihedral group. Consider the didk; that is the union of this fundamental piece and its
rotation by angler about the boundary ray. With respect to this di3k the immersionX of
Theorem 3.1 is symmetric, see Definition 4.1 and Figure 4.1.

In order to apply the results of [RUYP; must be boundednly by nonstraight planar
geodesics. Hence we must use the union offimdamental pieces with a common boundary
ray, and to add extra reals parameterands to the Weierstrass data af.

With the introduction of these parameters, the period problem in the sense of [RUY]
becomes two-dimensional. As before, Mt be the compact Riemann surface given by
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My = {(z,w) € (CU {oo})? | wk+! = ¥(z2 — 1)} and
My = My \ {p+1, P-1, Poo} »

wherepi1 = (£1, 0), ps = (00, 00), and now let the Weierstrass data be given by

w06z
9= )

(4.8 n= m Z, w

wherer = (u, 8), |u —a| < ¢, |8] < &, for some fixeck > 0. Herea > 0 is as given in
(3.7).

Let My be the universal cover diff;. We have the following lemma:

LEMMA 4.1. Consider X, (p) = Ref;():(o,m @, : My — R3, where @;, ¢, and n
are defined by the equation (2.1). Let S; be a sheet of My over {z € C| Imz > O)\{1, —1},
where (1/2, ¢™/*+D(1/2)) € S; issuch that w(1/2) > 0. Then, restricting the paths of
integration to lie in this sheet, we have the curves

) S11(M) = X,([0,1) C Py

= {(XL x2,x3) € R® |~x2005(k i D + x18in @ 1 5= 0},

i) S12(1) := Xa((—o00, —1)) C P1(})
o 3 s . T _
=11, x2,x3) €R IxchS(k+ m + x1sin D" cl(A)},

i) S21(0) == X3((=1,0]) C Pz := {(x1, %2, x3) € R®|x2 = 0},
V) $2200) := X5((1,00)) C Po(2) := {(x1, x2, x3) € R®|x2 = c2(M)}.
The constants c¢; and ¢, depend only A. Moreover, the curves S; ; (1) are planar geodesics.

PROOF We identifyR3 ~ C x R. S0,X, = (X1 +iX>, X3); and
. p 14 2
4.9 (X1+iX2).(p) =/ n—/ 9N .
Po Po

So, if B1(t) = (¢, &/ *tD (1)) € Sk, wherew(r) > 0, and 0< 7 < 1, we obtain

B , [T e/ D (n)dr t (u + 8t)2dt
yit) = (X1 + i X2 (B1(1) = /o 71 - /o (2= D/ g0

_ pmin/ (kD) /t (ﬁ)(z) _ (u~+8t)2> dr
0 v ) (2 =1

This last expression shows that(?) lies in P1 N {x3 = 0} and proves (i).
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On the other hand, legx(r) = (t, —¢'™/*t D@ (r)) € Sk, where—oo < t < —1 and
w(r) > 0. Thenifp* = (=2, —e™/® D (1)) € S, w(r) > 0, we obtain

y2(t) = (X4+iX2)1(B2(2))

e/ D G (1) /’ (u + 8t)2dt
2-1 o (12 — Dein/ K+ i (r)

t
=(X1+iX2)n(p*) — /2

t 2
o —im/(k+D) - (n+én > dt
ST /4 (w(t) o ) @1

S0,y,(t) € P1 N {x3 = 0} for every—oo < t < —1 and this proves (ii).

The proof of (iii) and (iv) is very similar to that of (i) and (ii). It is sufficient to ob-
serve tha(—1/2, —w(—1/2)) and (2, w(2)) are the points of; overz = —1/2 andz = 2,
respectively, wher&(—1/2) > 0 andw(2) > 0.

Finally, we observe that if(tr) = (¢, w(t)) € S with r # %1, then, by using; =
f(@dz, g, = g,(z) as alocal representation pfandg, , (z, w) € Sk, we arrive at

8§ (n+dnk+ 2)12 — k]
-1 (k+ Dr (2 — 1)2

g, f(dz(c (1))? = {tz } (dz(c'(1))? € R.

This implies that theS;; (1) are principal curves, and hence they are planar geodesics]

By Lemma 4.1, the boundary of the digk () = X, (Sx) is composed of four planar
geodesics. Moreover, we know from [HM2] thatig = (a, 0), with a as defined in (3.7),
then the period problem in the sense of the formula (2.3) is solved. In this situation, the plane
P; coincides with the plan®y (1o), and P> coincides withP, (o) (see Figure 4.1), and by the
Schwarz reflection principleDy (o) generates the entire minimal surfalde.

Now, let

D1(2) :={oriented distance between the plarfgsand Pi(L)}).
D, (1) := {oriented distance between the plarfesand P>(1)}.

DefiningD : R2 — RZ2by D(1) = (D1(}), D2())), we can then say that the period problem
with respect to the dis®y (1) is non-degenerate if D(1g) = 0 and the Jacobian @ at g

is not null. (This definition is sufficient for our considerations, and is a special case of a more
general definition in [RUY]).

In order to prove that the period problem for th&io) is non-degenerate, we will con-
sideray(r), a2(r) € My curves in the sheef; chosen in Lemma 4.1 such that their pro-
jections to thez-coordinate are-1 + ¢’ and 1+ ¢//,0 < ¢t < m, respectively. Observe
that Ny = (sin(w/(k + 1)), cos(z/(k + 1)), 0) is a normal vector ofP1. Then, with the
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FIGURE 4.1. The pertubed disRy (1).

identificationR3 = C x R, N1 = ie~"/®+D and we conclude that

D1(d) = —Rel(X1 + in))L((Xl(n))iei”/(k"'l)]

(4.10) B —— .
— Re / l'e—m/(k+1)77 + / ietIr/(k-i—l)g)\Z;7 )
o1 a1

In the same way we find that

(4.11) Da(3) = Re / i+ g2

o2

On the other hand, it is easy to compute that:

D e/ kD g dD i d
(4.12) —l(a,0)=2aRe/ L= 200 =2Re[ ———,
ou a @ —Dw ou a (@*—Dw
dD o™/ kD7 q dD izd
4.13 —l(a,0)=2aRe/ Lo 2% 220G 0=2Re| .
35 v (@2 Dw 35 w, (22— Dw

With these expressions for the partial derivative of the rfapve will prove the following
Lemma.

LEMMA 4.2. TheJacobian of the map D = (D1, D2) isnon-null at the point Ag.
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PROOF We observe that : My —> M; defined by (z, w) = (—z, —e/™/*+Dp) is
an anticonformal diffeomorphism such th@s;) = S, whereS; is the fixed sheet aft;, over
{z € C|Imz > 0}\{—1, 1}. To see this, observe that w(i)) = (i, eT*k+2/2k+D 5 )) €
Sk, w(i) > 0, is afixed point for . Furthermore («1) = —a2. Then,
iet™/ K+l gy —idz D2
————— =2 / — =

[07

=—(a,0).
(cap (2% —Dw , @ —Lw @9

D
@19 Py =2 Re/

Also, in the same way, we find that
aD i zd oD
(4.15) 4. 0)=—2aRe | —=2  __ 2724, 0).
98 w, (22— Dw 98
Then, to conclude the proof of Lemma, it suffices to prove the following assertion:

Assertion: Foreveryk € Z, k > 0, I1 > 0 andl> < 0, where

. j,]_d
Ij=2Re/ Z= 0 j=12.
a (Z - 1)w
In order to prove this assertion, we define for eAgh € Z the meromorphic functions
B ZlJrlprrl
(pl,p - ZZ _ 1 .
Then
I+1 1(,2 1+2
z I+Dz'(zc—1) — 22 1
doip = 1 rd PHdz.
vLp=(p+ )zz—lw w+ 212 w b4
As
(k+Duwrdw = k¥ 71(2% — 1) + 25z,
we find

p+1 - 2Zk+l+2 4 (l+1)Zl 2Z1+2 41
do, =272 (& 2 ) wrta . Py
Plp k+1(Z T ) Rt o) w

The last expression implies that

2dz dz
4.1 k+Ddo_jr— — =,
(4.16) (k+Ddo—ix l+(12—1)w »
and

2zdz kzdz
(4.17) k+Ddo—k+1k-1+ — = .

(z¢ — Dw w

Observe that,

Ok k—1(02(0) = @_f g—1(02()) = @k 11k-1(@2(0)) = @_gy1,k-1(ax2(r)) = 0.
Then, by (4.16) and (4.17), we get that

I = —Re/ Laz L= kRe/ .
ay W ap W
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Sincedz/w andzdz/w are analytic differentials oM, , we can collapse the path
over the interval0, 2] (see Figure 4.2), to find that

J 1 je—in/Gk+D) gy
I =Re —dz =Re
' /[0,2] w /o (tk (1 — 12)) Y/ (k+D)

_ 1 dt
= sin(m/(k + 1))Re/0 k(1 — 12))1/&+D >0,

and

/1 —kite~im/k+D) gy
0

—kit
I> =Re ——dt =Re
i /[0,2] (tk(1 — 12))L/(k+D)

w
_ 1 —ktdt
= sin(m/(k + 1))Re/0 k(1 — 12))L/&+D <0,

<<
y /o Bt
0 1 2
FIGURE 4.2.

FIGURE 4.3. The surface correspondingX@My) in H 3 with the Poincaré model,
and slices in the1x3-plane androx3-plane.
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This concludes the proof of the Assertion and completes the proof of the Lemnia.
Now we can prove the following Theorem:

THEOREM 4.1. Foreachk € Z, k > 1, there exists a corresponding one-parameter
family of CMC 1 Costa type surfacesin H 3. Each member of the family is complete, with three
regular embedded ends, and of finite total curvature and genus k. Two of the ends approach
the same point in the ideal boundary of H 3, and are asymptotic to catenoid cousin ends. The
third end is asymptotic to a horosphere.

PROOFE The first two affirmations of this Theorem are an immediate consequence of
Lemmas 4.1 and 4.2, and Theorem 5.10 in [RUY]. To prove the last two sentences, we observe
that the Hopf differentialp := dgn of the Costa-Hoffman-Meeks cousin is the same as for
the original minimal surface&f;. Furthermore( has a pole of order2 at the two catenoid
cousin ends, and a pole of order 1 at the third end. Then one can apply the following
result that appears in the appendix of [LR]: an embedded end with finite total curvature is
asymptotic to a catenoid cousin end if and only if the orde@d$ —2, and is asymptotic to
a horosphere if and only if the order ¢f is greater than or equal tel. This completes the
proof of the Theorem. O
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