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Abstract. In this paper we prove the existence of families of complete mean curvature
one surfaces in the hyperbolic three-space. We show that for each Costa-Hoffman-Meeks
embedded minimal surface of positive genus in Euclidean three-space, we can produce, by
cousin correspondence, a family of complete mean curvature one surfaces in the hyperbolic
three-space. These surfaces have positive genus, three ends and the same group of symmetry
of the original minimal surfaces. Furthermore, two of the ends approach the same point in the
ideal boundary of hyperbolic three-space and the third end is asymptotic to a horosphere. The
method we use to produce these results were developed in a recent paper by W. Rossman, M.
Umehara and K. Yamada.

1. Introduction. Surfaces of constant mean curvature (CMC) 1 in hyperbolic 3-space
H3 share many properties with minimal surfaces in Euclidean 3-spaceR3, the most important
being that both types of surfaces possess a “Weierstrass representation” in terms of holomor-
phic data [B]. This representation enables us to describe a great number of examples of CMC
1 surfaces inH3, which may have branch points. (ByH3 we mean the unique complete
simply-connected 3-manifold with constant sectional curvature−1.)

In [RUY], a method is given for constructing examples without branch points. More pre-
cisely, it is proved that for each complete symmetric finite-total-curvature minimal surface in
R3 with a non-degenerate period problem, there exists a corresponding one-parameter family
of complete CMC 1 immersions inH3. This provides many examples of CMC 1 surfaces
in H3, many of which are described in [RUY]. However, as was explained in [RUY, p. 471],
the method does not apply directly to show the existence of CMC 1 surfaces corresponding
to the original Costa surfaces inR3. The goal of this paper is to define good variations of
the Weierstrass representation of the minimal Costa-Hoffman-Meeks surfaces and to choose
fundamental disks of these surfaces so that the method of [RUY] can be applied, thus showing
that corresponding cousin surfaces exist inH3. See Theorem 4.1.

By “Costa-Hoffman-Meeks cousin” we mean a CMC 1 surface inH3 of positive genus
with three ends. The ends asymptotically approach only two points in the ideal boundary at
infinity of H3. The surfaces in this family are duals (in the sense of [RUY] and [UY3]) of
the image under the Lawson correspondence of the original minimal Costa-Hoffman-Meeks
surfaces. The Costa-Hoffman-Meeks surfaces inR3, which we will call Mk [HKM], are
complete minimal surfaces with genusk and k + 1 vertical planes of symmetry, and two
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catenoid ends and one flat end. The first exampleM1 was found by Celso Costa [C1] in
1982. Although theMk are embedded, their CMC 1 dual cousins inH3 are never embedded,
see Figure 4.3. In fact, there is no general relationship between embeddedness of minimal
surfaces inR3 and their dual cousin surfaces inH3. The catenoid is embedded inR3, but
the catenoid cousin can be either embedded or non-embedded inH3; the minimal trinoid
cousins inR3 are never embedded, but their CMC 1 dual cousins can be either embedded or
non-embedded inH3. See [RUY] for more on this point.

A part of this work was contained in the doctoral thesis of the second author at Universi-
dade Federal do Ceará (see [N]). He would like to thank Levi Lima and Wayne Rossman for
their helpful conversations and guidance.

2. Complete minimal immersions in R3. We begin by stating the Weierstrass rep-
resentation theorem (see [O] or [L]). This representation is the primary tool for describing
complete minimal surfaces inR3.

THEOREM 2.1. Let M be a Riemann surface, η a holomorphic one-form on M, and
g : M → C ∪ {∞} a meromorphic function. Consider the vector valued one-form

(2.1) Φ = (φ1, φ2, φ3) := ((1 − g2)η, i((1 + g2)η, 2gη) .

Then

(2.2) X(p) = Re
∫ p

p0

Φ

defines a conformal minimal mapping of some covering of M into R3. This mapping is well-
defined on M if and only if X has no nonzero real period on M, that is, if and only if

(2.3) Periodα(Φ) := Re
∮

α

Φ = �0
for all closed curves α on M . This mapping is regular provided the poles of g coincide with
the zeros of η, and, whenever g has a pole of order l, η has a zero of order 2l. Moreover, g
is stereographic projection of the Gauss map N : M → S2 of X. Conversely, every regular
conformal minimal immersion X : M → R3 can be expressed in the form (2.2) for some
meromorphic function g and holomorphic one-form η.

The metric induced onM by X can be expressed as

ds2 = (1 + |g|2)2η · η̄ ,

where· means the symmetric product, and the Gauss curvatureK of X is

K = − 4dg.d̄g
(1 + |g|2)4η · η̄

.

Typically, when one wishes to have the Weierstrass representation ofX well-defined on
M, there are parameters in the Weierstrass data{M, g, η} that one adjusts until (2.3) holds for
all closed curves inM. This is referred to as the solving the period problem. In the case of
finite total curvature

∫
M

KdA > −∞, we have the following theorem:
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THEOREM 2.2 (Osserman-Huber, [L], [O]). Let X : M → R3 be a complete confor-
mal minimal immersion with finite total curvature. Then the following hold.

(i) M is conformally diffeomorphic to Mk \ {e1, . . . , er }, where Mk is a closed Rie-
mann surface of genus k and e1, . . . , er are points in Mk, r ≥ 1.

(ii) The Gauss map N : M → S2, which is meromorphic on M, extends to a meromor-
phic function on Mk . The one-form η, which is holomorphic on M, extends to a meromorphic
one-form on Mk .

(iii) The total curvature is an integer multiple of 4π and satisfies∫
M

KdA ≤ −4π(k + r − 1) ,

where k and r are the integers defined in statement (i).

If Dj ⊂ Mk is a punctured neighborhood ofej , then the imageX(Dj ) of Dj is anend
of M, which we denote byEj . Ej is an embedded end if and only ifη has a pole of order two
atej [JM]. Sinceg is the stereographic projection of the Gauss mapN of X, we can suppose,
after a rotation ofX in R3 if necessary, thatg(ej ) = 0. If the endEj is embedded, then, near
ej , we have the local expression

g(z) = anz
n + o(zn+1) , an �= 0, n ≥ 1 and η(z) = b

z2 + o(1), b �= 0 .

We say that an embedded endEj is acatenoid end if n = 1 and is aflat end of ordern − 1 if
n > 1. It holds that:

1. All of the ends ofM are embedded if and only if the equality holds in (iii) of Theorem
2.2.

2. If no two ends ofM intersect, then, after a rotation ofR3, the Gauss mapN satisfies
N(ej ) = (0, 0,±1) for all j = 1, . . . , r.

It is clear that ifX : M → R3 is an embedding, then the above two conditions must hold.
However, these conditions are not sufficient to imply thatX is an embedding. One can see
examples and a discussion on this in [W1], [W2], [HK]. However, whenM is embedded and
complete and has finite total curvature, it follows that outside of a sufficiently large compact
set ofR3, M is asymptotic to a finite number of half-catenoids and planes, which may be
assumed to have vertical normals.

The Schwarz reflection principle for minimal surfaces is also central to the arguments
that we will be making. Before stating it, werecall some relevant facts. A curve on any
surface inR3 is a straight line if and only if both the geodesic curvature and the normal
curvature vanish. A principal curve on a surface that is not a straight line has the property
that it is a geodesic if and only if it lies in a plane orthogonal to the surface. For the surface
X(M), expressing the shape operatorS = DX · DN in terms ofg andη := f dz for some
holomorphic functionf and holomorphic coordinatez, we conclude that a curvec onX(M)

is

asymptotic⇐⇒ g′f (dz(c
′
(t)))2 ∈ iR, and principal⇐⇒ g′f (dz(c

′
(t)))2 ∈ R .
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THEOREM 2.3 (Schwarz reflection principle).If a minimal surface is bounded by a
line segment �, it may be extended by rotation by angle π about � to a smooth minimal surface
containing � in its interior. If a minimal surface with boundary contains a planar geodesic c

in its boundary, then this surface can be extended smoothly across c by reflecting through the
plane containing c.

3. Costa surfaces in R3. In this section we briefly review the construction and some
properties of the surfacesMk, k ∈ N. Each of the surfacesMk is conformally equivalent to
a Riemann surface of genusk punctured at three points. The surfacesMk have two catenoid
ends and one flat end. The example withk = 1 was found by Costa, who constructed it
using the classical Weierstrass℘-function. He also proved that this surface satisfies all known
necessary conditions for embeddedness. Hoffman and Meeks were able to prove thatMk is
embedded and highly symmetric (see [HM1] fork = 1 and [HM2] for generalk).

We will use the Weierstrass Representation Theorem 2.1, for which we need a Riemann
surface, a meromorphic map, and a holomorphicone-form. We start by describing the com-
plex structure ofMk. Consider, for eachk ∈ N, the compact Riemann surfaceMk associated
to the irreducible polynomial

P(z,w) = wk+1 − zk(z + 1)(z − 1) .

Let p0 = (0, 0), p−1 = (−1, 0), p+1 = (1, 0), andp∞ = (∞,∞) be the singular points of
P(z,w). Then

(3.4) Mk = {(z,w) ∈ (C ∪ {∞})2 | P(z,w) = 0}
is the compact Riemann surface associated toP(z,w). One can see thatMk is a (k + 1)-
sheeted ramified covering of the Riemann sphereC ∪ {∞}, with genusk. Now, consider

(3.5) Mk = Mk − {p−1, p+1, p∞} ,

the Riemann surface obtained by puncturingMk in three points. (Note that, for simplicity
of notation, we are now referring to both the Riemann surface in the Weierstrass data and
the actual minimal surface inR3 by the same notationMk.) The next theorem defines the
conformal minimal immersion ofMk into R3.

THEOREM 3.1 (Hoffman and Meeks [HM]). Let Mk and Mk be the Riemann surfaces
given by (3.4)and (3.5), and let

(3.6) η =
( z

w

)k

dz = w

(z + 1)(z − 1)
dz, g = a

w
, a ∈ R+ ,

be a meromorphic one-form and a meromorphic function on Mk . Consider the vector-valued
one-form Φ as in (2.1). Then there exists a unique a > 0 such that X(p) = Re

∫ p

p0
Φ : Mk →

R3 is a complete properly-embedded conformal minimal immersion with finite total curvature
of Mk into R3.

After suitable rotations and translations ofR3, the surfaceMk has the following proper-
ties:
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1) The total curvature ofMk is −4π(k + 2).
2) Mk has one flat end between its top and bottom catenoids ends. The flat end is

asymptotic to the(x1, x2)-plane.
3) Mk intersects the(x1, x2)-plane ink + 1 straight lines, which meets at equal angles

at the origin.
4) The symmetry group ofMk is the dihedral group with 4(k + 1) elements generated

by reflection ink+1 vertical planes of symmetry meeting in thex3-axis, and rotation
about one of the lines in (3).

5) Mk may be decomposed into 4(k + 1) congruent pieces, each of which is a graph.
6) Mk is the unique properly-embedded minimal surface of genusk with three ends,

finite total curvature, and a symmetry group containing 4(k + 1) or more elements.
The symmetry of the surface is used to show that there is only one period condition. The

value of the constanta in Theorem 3.1 for which the period problem is solved is

(3.7) a =

√√√√√√√√
2

∫ 1

0
tk/(k+1)(1 − t2)−k/(k+1)dt∫ 1

0
(tk(1 − t2))−1/(k+1)dt

.

4. Costa type surfaces in H3. In this section we will study the period problem for
the surfacesMk. By using the symmetry of the complex structure ofMk, and extending the
fundamental domains of these surfaces, we will show directly that all surfacesMk have non-
degenerate period problems in the sense of [RUY]. So, we achieve that for eachMk there exist
a one-parameter family of cousin surfaces inH3. We will need the following definition.

DEFINITION 4.1. A complete minimal immersionf : S → R3 is symmetric if there
is a subregionD ⊂ f (S) that is a disk bounded by non-straight planar geodesics and the
interior ofD does not contain any non-straight planar geodesics.

Note that iff is symmetric with subdiskD, then by the Schwartz reflection principle,D

generates the entire surface by reflections across planes containing boundary planar geodesics.

4.1. The surfacesMk. An important property of the surfacesX : Mk → R3 is that
a fundamental pieces of the surfacesMk are bounded by two planar geodesics and a single
straight ray. A such fundamental pieces generates the entire surface by the action of the
dihedral group. Consider the diskDk that is the union of this fundamental piece and its
rotation by angleπ about the boundary ray. With respect to this diskDk, the immersionX of
Theorem 3.1 is symmetric, see Definition 4.1 and Figure 4.1.

In order to apply the results of [RUY],Dk must be boundedonly by nonstraight planar
geodesics. Hence we must use the union of two fundamental pieces with a common boundary
ray, and to add extra reals parametersµ andδ to the Weierstrass data ofX.

With the introduction of these parameters, the period problem in the sense of [RUY]
becomes two-dimensional. As before, letMk be the compact Riemann surface given by
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Mk = {(z,w) ∈ (C ∪ {∞})2 | wk+1 = zk(z2 − 1)} and

Mk = Mk \ {p+1, p−1, p∞} ,

wherep±1 = (±1, 0), p∞ = (∞,∞), and now let the Weierstrass data be given by

(4.8) η = w

(z2 − 1)
dz, gλ = µ + δz

w
,

whereλ = (µ, δ), |µ − a| < ε, |δ| < ε, for some fixedε > 0. Herea > 0 is as given in
(3.7).

Let M̃k be the universal cover ofMk. We have the following lemma:

LEMMA 4.1. Consider Xλ(p) = Re
∫ p

p0=(0,0) Φλ : M̃k → R3, where Φλ, gλ and η

are defined by the equation (2.1). Let Sk be a sheet of M̃k over {z ∈ C| Im z ≥ 0}\{1,−1},
where (1/2, eiπ/(k+1)w̃(1/2)) ∈ Sk is such that w̃(1/2) > 0. Then, restricting the paths of
integration to lie in this sheet, we have the curves

i) S1,1(λ) := Xλ([0, 1)) ⊂ P1

:=
{
(x1, x2, x3) ∈ R3 | x2 cos

π

(k + 1)
+ x1 sin

π

(k + 1)
= 0

}
,

ii) S1,2(λ) := Xλ((−∞,−1)) ⊂ P̃1(λ)

:=
{
(x1, x2, x3) ∈ R3 | x2 cos

π

(k + 1)
+ x1 sin

π

(k + 1)
= c1(λ)

}
,

iii) S2,1(λ) := Xλ((−1, 0]) ⊂ P2 := {(x1, x2, x3) ∈ R3 | x2 = 0},
iv) S2,2(λ) := Xλ((1,∞)) ⊂ P̃2(λ) := {(x1, x2, x3) ∈ R3 | x2 = c2(λ)}.

The constants c1 and c2 depend only λ. Moreover, the curves Si,j (λ) are planar geodesics.

PROOF. We identifyR3 
 C × R. So,Xλ = (X1 + iX2,X3)λ and

(4.9) (X1 + iX2)λ(p) =
∫ p

p0

η −
∫ p

p0

gλ
2η .

So, if β1(t) = (t, eiπ/(k+1)w̃(t)) ∈ Sk, wherew̃(t) > 0, and 0≤ t < 1, we obtain

γ1(t) = (X1 + iX2)λ(β1(t)) =
∫ t

0

eiπ/(k+1)w̃(t)dt

t2 − 1
−

∫ t

0

(µ + δt)2dt

(t2 − 1)eiπ/(k+1)w̃(t)

= e−iπ/(k+1)

∫ t

0

(
w̃(t) − (µ + δt)2

w̃(t)

)
dt

(t2 − 1)
.

This last expression shows thatγ1(t) lies inP1 ∩ {x3 = 0} and proves (i).
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On the other hand, letβ2(t) = (t,−eiπ/(k+1)w̃(t)) ∈ Sk, where−∞ < t < −1 and
w̃(t) > 0. Then ifp∗ = (−2,−eiπ/(k+1)w̃(t)) ∈ Sk, w̃(t) > 0, we obtain

γ2(t) = (X+iX2)λ(β2(t))

= (X1 + iX2)λ(p
∗) −

∫ t

−2

eiπ/(k+1)w̃(t)

t2 − 1
+

∫ t

−2

(µ + δt)2dt

(t2 − 1)eiπ/(k+1)w̃(t)

= c1 − e−iπ/(k+1)

∫ t

−2

(
w̃(t) − (µ + δt)2

w̃(t)

)
dt

(t2 − 1)
.

So,γ ′
2(t) ∈ P1 ∩ {x3 = 0} for every−∞ < t < −1 and this proves (ii).
The proof of (iii) and (iv) is very similar to that of (i) and (ii). It is sufficient to ob-

serve that(−1/2,−w̃(−1/2)) and(2, w̃(2)) are the points ofSk overz = −1/2 andz = 2,
respectively, wherẽw(−1/2) > 0 andw̃(2) > 0.

Finally, we observe that ifc(t) = (t, w(t)) ∈ Sk with t �= ±1, then, by usingη =
f (z)dz, gλ = gλ(z) as a local representation ofη andgλ, (z,w) ∈ Sk, we arrive at

g′
λf (dz(c′(t)))2 =

{
δ

t2 − 1
− (µ + δt)[(k + 2)t2 − k]

(k + 1)t (t2 − 1)2

}
(dz(c′(t)))2 ∈ R .

This implies that theSij (λ) are principal curves, and hence they are planar geodesics.�
By Lemma 4.1, the boundary of the diskDk(λ) = Xλ(Sk) is composed of four planar

geodesics. Moreover, we know from [HM2] that ifλ0 = (a, 0), with a as defined in (3.7),
then the period problem in the sense of the formula (2.3) is solved. In this situation, the plane
P1 coincides with the planẽP1(λ0), andP2 coincides withP̃2(λ0) (see Figure 4.1), and by the
Schwarz reflection principle,Dk(λ0) generates the entire minimal surfaceMk.

Now, let

D1(λ) := {oriented distance between the planesP1 andP̃1(λ)}.
D2(λ) := {oriented distance between the planesP2 andP̃2(λ)}.

DefiningD : R2 → R2 by D(λ) = (D1(λ),D2(λ)), we can then say that the period problem
with respect to the discDk(λ0) is non-degenerate if D(λ0) = 0 and the Jacobian ofD at λ0

is not null. (This definition is sufficient for our considerations, and is a special case of a more
general definition in [RUY]).

In order to prove that the period problem for theD(λ0) is non-degenerate, we will con-
siderα1(t), α2(t) ⊆ M̃k curves in the sheetSk chosen in Lemma 4.1 such that their pro-
jections to thez-coordinate are−1 + eit and 1+ eit , 0 ≤ t ≤ π , respectively. Observe
that N1 = (sin(π/(k + 1)) , cos(π/(k + 1)) , 0) is a normal vector ofP1. Then, with the
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FIGURE 4.1. The pertubed diskDk(λ).

identificationR3 ∼= C × R, N1 = ie−iπ/(k+1), and we conclude that

D1(λ) = −Re[(X1 + iX2)λ(α1(π))ieiπ/(k+1)]
(4.10)

= Re

[∫
α1

ie−iπ/(k+1)η +
∫

α1

ieiπ/(k+1)gλ
2η

]
.

In the same way we find that

(4.11) D2(λ) = Re
∫

α2

i(1 + gλ
2)η .

On the other hand, it is easy to compute that:

(4.12)
∂D1

∂µ
(a, 0) = 2a Re

∫
α1

ieiπ/(k+1)dz

(z2 − 1)w
,

∂D2

∂µ
(a, 0) = 2a Re

∫
α2

i dz

(z2 − 1)w
,

(4.13)
∂D1

∂δ
(a, 0) = 2a Re

∫
α1

ieiπ/(k+1)z dz

(z2 − 1)w
,

∂D2

∂δ
(a, 0) = 2a Re

∫
α2

iz dz

(z2 − 1)w
.

With these expressions for the partial derivative of the mapD, we will prove the following
Lemma.

LEMMA 4.2. The Jacobian of the map D = (D1,D2) is non-null at the point λ0.
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PROOF. We observe thatζ : Mk −→ Mk defined byζ(z,w) = (−z,−eiπ/(k+1)w) is
an anticonformal diffeomorphism such thatζ(Sk) = Sk, whereSk is the fixed sheet of̃Mk over
{z ∈ C | Im z ≥ 0}\{−1, 1}. To see this, observe that(i, w(i)) = (i, eiπ(k+2)/2(k+1)w̃(i)) ∈
Sk, w̃(i) > 0, is a fixed point forζ . Furthermoreζ(α1) = −α2. Then,

(4.14)
∂D1

∂µ
(a, 0) = 2a Re

∫
ζ(−α2)

ieiπ/(k+1)dz

(z2 − 1)w
= 2a Re

∫
α2

−i dz

(z2 − 1)w
= ∂D2

∂µ
(a, 0) .

Also, in the same way, we find that

(4.15)
∂D1

∂δ
(a, 0) = −2a Re

∫
α2

izdz

(z2 − 1)w
= −∂D2

∂δ
(a, 0) .

Then, to conclude the proof of Lemma, it suffices to prove the following assertion:

Assertion: For everyk ∈ Z, k > 0, I1 > 0 andI2 < 0, where

Ij = 2Re
∫

α2

izj−1 dz

(z2 − 1)w
, j = 1, 2 .

In order to prove this assertion, we define for eachl, p ∈ Z the meromorphic functions

ϕl,p = zl+1wp+1

z2 − 1
.

Then

dϕl,p = (p + 1)
zl+1

z2 − 1
wpdw + (l + 1)zl(z2 − 1) − 2zl+2

(z2 − 1)2 wp+1dz .

As

(k + 1)wkdw = (kzk−1(z2 − 1) + 2zk+1)dz ,

we find

dϕl,p = p + 1

k + 1

(
kzk+l + 2zk+l+2

z2 − 1

)
wp−kdz +

(
(l + 1)zl

z2 − 1
− 2zl+2

(z2 − 1)2

)
wp+1dz .

The last expression implies that

(4.16) (k + 1)dϕ−k,k−1 + 2dz

(z2 − 1)w
= −dz

w
,

and

(4.17) (k + 1)dϕ−k+1,k−1 + 2zdz

(z2 − 1)w
= kzdz

w
.

Observe that,

ϕ−k,k−1(α2(0)) = ϕ−k,k−1(α2(π)) = ϕ−k+1,k−1(α2(0)) = ϕ−k+1,k−1(α2(π)) = 0 .

Then, by (4.16) and (4.17), we get that

I1 = −Re
∫

α2

i

w
dz, I2 = kRe

∫
α2

iz

w
dz.
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Sincedz/w andzdz/w are analytic differentials onMk , we can collapse the pathα2

over the interval[0, 2] (see Figure 4.2), to find that

I1 = Re
∫

[0,2]
i

w
dz = Re

∫ 1

0

ie−iπ/(k+1)dt

(tk(1 − t2))1/(k+1)

= sin(π/(k + 1))Re
∫ 1

0

dt

(tk(1 − t2))1/(k+1)
> 0 ,

and

I2 = Re
∫

[0,2]
−kit

w
dt = Re

∫ 1

0

−kite−iπ/(k+1)dt

(tk(1 − t2))1/(k+1)

= sin(π/(k + 1))Re
∫ 1

0

−ktdt

(tk(1 − t2))1/(k+1)
< 0 ,

FIGURE 4.2.

FIGURE 4.3. The surface corresponding toX(M1) in H 3 with the Poincaré model,
and slices in thex1x3-plane andx2x3-plane.
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This concludes the proof of the Assertion and completes the proof of the Lemma.�
Now we can prove the following Theorem:

THEOREM 4.1. For each k ∈ Z, k ≥ 1, there exists a corresponding one-parameter
family of CMC 1 Costa type surfaces in H3. Each member of the family is complete, with three
regular embedded ends, and of finite total curvature and genus k. Two of the ends approach
the same point in the ideal boundary of H3, and are asymptotic to catenoid cousin ends. The
third end is asymptotic to a horosphere.

PROOF. The first two affirmations of this Theorem are an immediate consequence of
Lemmas 4.1 and 4.2, and Theorem 5.10 in [RUY]. To prove the last two sentences, we observe
that the Hopf differentialQ := dgη of the Costa-Hoffman-Meeks cousin is the same as for
the original minimal surfacesMk. Furthermore,Q has a pole of order−2 at the two catenoid
cousin ends, and a pole of orderk − 1 at the third end. Then one can apply the following
result that appears in the appendix of [LR]: an embedded end with finite total curvature is
asymptotic to a catenoid cousin end if and only if the order ofQ is −2, and is asymptotic to
a horosphere if and only if the order ofQ is greater than or equal to−1. This completes the
proof of the Theorem. �

REFERENCES

[B] R. BRYANT, Surfaces of mean curvature one in hyperbolic space, Astérisque No. 154–155 (1987), 321–347.
[C1] C. COSTA, Imersões mínimas completas emR3 de gênero um e curvatura total finita, Ph. D. Thesis, IMPA,

Rio de Janeiro, Brasil, 1982.
[C2] C. COSTA, Example of a complete immersion inR3 of genus one and three embedded ends Bol. Soc.

Brasil. Mat. 15 (1984), 47–54.
[JM] L. P. JORGE ANDW. MEEKS, The topology of complete minimal surfaces of finite total Gaussian curvature,

Topology 22 (1983), 203–221.
[LR] L. L. L IMA AND W. ROSSMAN, On the index of constant mean curvature 1 surfaces in hyperbolis space,

Indiana Univ. Math. J. 47 (1998), 685–723.
[N] V. F. S. NETO, Costa type surfaces in hyperbolic space, An. Acad. Brasil. Ciênc. 71 (1999), 333–338.
[O] R. OSSERMAN, A Survey of Minimal Surfaces, Dover Publications, New York, 2nd edition, 1986.
[RUY] W. ROSSMAN, M. UMEHARA AND K. YAMADA , Irreducible constant mean curvature 1 surfaces in hyper-

bolic space with positive genus, Tôhoku Math. J. 49 (1997), 449–484.
[ST] R. SA EARP AND E. TOUBIANA, On the geometry of constant mean curvature one surfaces in hyperbolic

space, preprint.
[UY1] M. U MEHARA AND K. YAMADA , Complete surfaces of constant mean curvature 1 in the hyperbolic 3-

space, Ann. of Math. 137 (1993), 611–638.
[UY2] M. U MEHARA AND K. YAMADA , A parametrization of the Weierstrass formulae and perturbation of some

minimal surfaces inR3 into the hyperbolic 3-space, J. Reine Angew. Math. 432 (1992), 93–116.
[UY3] M. U MEHARA AND K. YAMADA , A duality on CMC-1 surfaces in the hyperbolic space and hyperbolic

analogue of the Osserman inequality, Tsukuba J. Math. 21 (1997), 229–237.
[W1] WOHLGEMUTH, Higher genus minimal surfaces by growinghandles out of a catenoid, Manuscripta Math.

70 (1991), 397–428.
[W2] WOHLGEMUTH, Vollstandige Minimalflachen hoheren Geschlechts und endlicher Totalkümmung, Ph. D.

Thesis, University of Bonn, Bonn, 1993.



628 C. COSTA AND V. SOUSA NETO

RUA DO PARQUE 36, APTO. 304 UNIVERSIDADE CATÓLICA DE PERNAMBUCO

CEP 20940-050 DEPARTAMENTO DEMATEMÁTICA

RIO DE JANEIRO RUA DO PRÍNCIPE, 526 - BOA VISTA, CEP 50500-900
BRASIL RECIFE-PE

E-mail address: costa@mat.uff.br BRASIL

E-mail address: vicente@unicap.br


