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Abstract. Letk be a number field ankla fixed quadratic extension &f In this paper
and its companions, we find the mean value of the product of class numbers and regulators of
two quadratic extensionB, F* # k contained in the biquadratic extensionscafontainingk.

1. Introduction. This is the first part of a series of three papers. Part lll deals with
uniquely dyadic phenomena, and so is naturally a unit. We had originally intended to publish
Parts | and Il together, but reconsiddron account of their combined length.

If kis a number field, then let\, hx and Ry be the absolute discriminant (which is
an integer), the class number and the regulator, respectively. We fix a number &alti
a quadratic extensiok of k. If F # k is another quadratic extension bf let F be the
composite ofF andk. ThenF is a biquadratic extension &f and so contains precisely three
quadratic extensiong, F and, sayF* of k. We say that” and F* arepaired. In this paper
and its companions [17], [18], we shall find the mean value R 7/ g+ R g+ Or, equivalently,
the mean value df ; R with respect tgAg|.

Our main results are Theorem 7.12da@orollaries 7.17 and 7.18 in whichis an ar-
bitrary number field and” runs through quadratic extensions with given local behaviors at a
fixed finite number of places. However, for the sake of simplicity, we state our results here
assuming that = Q and thatF runs through either real or imaginary quadratic extensions of
Q without any further local conditions.

Letk = Q(+/do), wheredp # 1is a square free integer. Supposey /z | = [1, p°r@
is the prime decomposition. Note th&y(do) > 0 if and only if p is ramified inQ(/do).
Moreover, if p # 2 is ramified inQ(+/do), thens ,(do) = 1, and if p = 2, thens ,(do) = 2
whendg = 3 (4), andSp(do) = 3 whendp is an even number. Note thatdf = 1, 5 (8), then
the prime 2 is split or inert iQ(/do), respectively.
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For any prime numbep, we put

1-3p3+2p44+pS—p" if pissplitink,
E,(do) =1 1+ P HA-p2—p3+pH if pisinertink,
A—p HA+ p2—p 34 p2rdo=205,0)/2=1y f pis ramified in k,

where|$,(do)/2] is the largest integer less than or equal §¢do) /2.
We define

16 do> 0, 472 dy> 0,
c4(do) = 0 c—(do) = °
87 dp<0, 8t dp<0O,

M (do) = | Agyap| " *taivay @ | | E)(do) -
p

The following theoremsire special cases of Corollaries 7.17 and 7.18.
THEOREM 1.1. WIth either choice of sign we have

lim X2 Z hpRphpsRp« = cx(do) " *M(do) .
X—>00

[F:Ql=2,

O<+Ap<X

THEOREM 1.2. WIth either choice of sign we have

. _2 -1
Jim X720 hea Rea = £(do) o Rowag M (o)
F:Q]=2,
0[<iQA]F<X
Note that in Theorem 1.1 ilg > 0 andAr < 0, then bothF and F* are imaginary
guadratic fields, and so Theorem 1.1 states that

Qiinoo X2 Z hphps = Ele(do),
[F:Q]=2,
O<—Ap<X
which reflects the titles of this series of papers.

Theorems of this kind are calletbnsity theorems. Many density theorems are known in
number theory including, for example, the prime number theorem, the theorem of Davenport-
Heilbronn [6], [7] on the density of the number of cubic fields and the theorem of Goldfeld-
Hoffstein [9] on the density of class number times regulator of quadratic fields.

Among the three density theorems we quoted above, the prime number theorem, which
is probably the best known density theorem, is of a more multiplicative nature than the other
two theorems, and our result has more similarities to these. We would like to point out that the
Euler factor - p—2 — p—3+ p—4, which appears iE;, (do) in our result wherp is inert, also
occurred in the Goldfeld-Hoffstein theorem at every odd prime. We do not as yet understand
the significance othis coincidence.

The original proof of the Davenport-Heilbronn theorem used the “fundamental domain
method” and the original proof of the Goldfeld-Hoffstein theorem used Eisenstein series of
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half-integral weight. However, we can also prove these two theorems by using the zeta func-
tion theory of prehomogeneous vector spaces. The Davenport-Heilbronn theorem corresponds
to the space of binary cubic forms and the Goldfeld-Hoffstein theorem corresponds to the
space of binary quadratic forms. The global theory of these two cases was investigated exten-
sively by Shintani in [22], [23]. The local theory and the proof of the density theorem, which
use the global theory carried out by Shintani, were done by Datskovsky and Wright [4], [5] in
the first case and by Datskovsky [3] in the second (also correcting a minor error in the constant
appearing in the Goldfeld-Hoffstein theorem). This zeta function theory of prehomogeneous
vector spaces is the approach we take to prove Theorems 1.1 and 1.2.

We now recall the definition of prehomogeneous vector spacesGLmt a reductive
group andV a representation of; both of which are defined over an arbitrary figlcof
characteristic zero. For simplicity, we assume tias an irreducible representation 6f

DEFINITION 1.3. The pairG, V) is called aprehomogeneous vector space if

(1) there exists a Zariski opa®-orbitin V and

(2) there exists a non-constant polynomigly) € k[V] and a rational character(g)
of G such thatP(¢gx) = x(¢9)P(x) forallg € Gandx € V.

Any polynomial P(x) in the above definition is called a relative invariant polynomial.

It is known that if P(x) is the relative invariant polynomial of the lowest degree, then any
other relative invariant polynomial is a constant multiple of a poweP 6f). So, if we put
VSS= {x € V| P(x) # 0}, then this definition does not depend on the choicg ©f).

The notion of prehomogeneous vector spagas introduced by Mikio Sato in the early
1960’s. The principal partsf@lobal zeta functions for some prehomogeneous vector spaces
have been determined by Shintani [22], [23], and the second author [28], [29]. Roughly
speaking, the global zeta function is a counting function for the unnormalized Tamagawa
numbers of the stabilizers of points #f°. This interpretation of expected density theorems
for prehomogeneous vector spaces is discussed in the introduction to [26] and in Section 5
of [16], p. 342, in some cases including those we will consider in this paper. Unfortunately,
the global zeta function is not exactly this counting function, and Datskovsky and Wright
formulated in [5] what we call the filtering process to deal with this difficulty.

To explain the need for the filtering process we consider the space of binary quadratic
forms. Gauss made a conjecture in [8] on the density of class number times regulator of orders
in quadratic fields. This conjecture was proved by Lipschutz [20] in the case of imaginary
guadratic fields and by Siegel [24] in the case of real quadratic fields, and much work has
been done on the error term estimate also (see Shintani [23], pp. 44, 45 and Chamizo-lwaniec
[2], for example). However, each quadratic field has infinitely many orders, and so we must
filter out this repetition in order to obtain the density of class number times regulator for
quadratic fields.

In order to apply the filtering process it is necessary to carry out at least the following
steps:

(1) Find the principal part of the global zeta function at its rightmost pole.
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(2) Find a uniform estimate for the standard local zeta functions.

(3) Find the local densities.

Note that, despite Tauberian theory, (1) is necessary even to show the existence of the density.
The standard local zeta functions will be defined in Section 6. If we apply the filtering process
the constant in the density theorem will have an Euler product and we call the Euler factor
thelocal density. Also, we must point out that the present formulation of the filtering process
does not allow us to use the poles of the global zeta function other than the rightmost pole, as
can be done in the case of integral equivalence classes. Itis an important problem in the future
to improve the filtering process so that we can get error term estimates. However, although it
does not, in its current form, yield an error term, our approach does appear to be the only one
presently available that allows the fidido be a general number field rather than jQst

Let Aff" ben-dimensional affine space regarded as a variety over the ground fieéd
k be a fixed quadratic extension bf W the space of binang-Hermitian forms and N2, 2)
the space of % 2 matrices. We regard GR); as a group ovek. In this series of papers, we
consider the following two prehomogeneous vector spaces:

(1) G=GL(2) xGL(2) xGL(2), V =M(2,2) QAff?,

(2) G=GL2); xGLQ), V=W®RAff2

Case (2) is &-form of case (1). We gave an interpretation for the expected density
theorem for Case (2) in Section 5 of [16]. Lebe a number field and the image ofG in
GL(V). Forx € V25, let Gf; be the identity component of the stabilizer. In Case (2), the orbit
spaceG;\V® corresponds bijectively with quadratic extensionskaind, if x corresponds
to fields other thart andk, the weighting factor in the density theorem is the unnormalized
Tamagawa number afﬁj;, which is more or lesé r Rrhp«Rp+ O hz R . The principal part
at the rightmost pole of the global zeta function for this case was obtained in [27], Corollary
8.16. Therefore it remains to carry out Steps (2) and (3) of the filtering process.

In order to carry out the filtering process, we first have to express the global zeta function
as a Dirichlet series with appropriate weighting factors. This requires an extensive preparation
including the task of defining a measure tie stabilizer of each point. The main purpose of
this part is to carry out the necessary preparation to use the filtering process, to deduce the
final form of the density theorem assuming properties of the Dirichlet series in question, and
to prove a uniform estimate for the standard local zeta functions. We shall compute the local
densities in Parts Il and IlI.

Let v be a finite place of a number fieldandk, its completion at. The local zeta
functions we consider are certain integrals oy -orbits in Vks;s. The analogous integral
over the sevks;s is called thelgusa zeta function. Igusa has made significant contributions to
the computation of this type of integral (see [10], [11], [12] [13], [14], [15]), and the explicit
form of the Igusa zeta function is known in many cases. However, we need information on
integrals over orbits and we cannot deduce a uniform estimate from the present knowledge
of Igusa zeta functions. Datskovsky and Wright [4] and Datskovsky [3] accomplished the
uniform estimate for the standard local zeta functions by explicitly computing them at all
finite places. However, as the rank of the group grows, it becomes increasingly difficult to



MEAN VALUE THEOREM 517

compute the explicit forms of the standdatal zeta functions, especially at special places
such as dyadic places, and we have to be ahistesnvith our labor. So we shall only prove a
uniform estimate for the standard local zeta fiimrts at all but finitely many places, without
finding their explicit forms.

We follow Datskovsky’s approach in [3] (which can also be seen implicitly in [7]) to
find the local densities. We must consider biquadratic extensions and consequently the dyadic
places ofk are difficult and technical to handle, given the possible appearance of wild rami-
fication. We devote Part 1l [18] to consideration of biquadratic extensions generated by two
ramified quadratic extensions over a dyadic field. However, the reader should be able to find
all the main ingredients for proving Theorems 1.1 and 1.2 in this part and Part 11 [17].

For the rest of this introduction we discuss the organization of this paper. Throughout,
except in Section 3 is a fixed number field and is a fixed quadratic extension &f In
Section 3k is an arbitrary field of characteristic zero ahés a quadratic extension of it. In
Section 2 we describe notation we use throughout the paper. In Section 3 we review from [16]
the interpretation of the orbit spacg \ V;>*for the prehomogeneous vector spaces (1) and (2)
above and fix parametrizations of the stabilizers of certain poinmIn Section 4 we fix
various normalizations regarding the invariant measure of23toth locally and globally. In
Section 5 we define a measure on the stabilizer of each poifitSboth locally and globally,
that is in some sense canonical and prove that the volun@ gf G° , is the unnormalized
Tamagawa number m%;. As we mentioned above, this volume is the weighting factor in
the density theorem. We also introduce the local zeta functions. In Section 6 we first define
and review the analytic properties of the global zeta function. Then we define the standard
local zeta functions and express the global zeta function in terms of them, thus making it more
or less a counting function fdrr Rph g+ Rp«. The final and most important purpose of this
section is to review the filtering process and to identify the conditions under which it works.
Assuming these conditions, we then deduce a preliminary density theorem involving certain
as yet unevaluated constants. In Section 7 we list the values of those constants from later parts
and state the final form of the density theorem. Therefore, Sections 6 and 7 are the heart of
this series of papers. After finishing thesetimts, the reader should understand the outline
of the proof of our result. Later sections and Parts Il and Ill are devoted to verifying the
conditions mentioned above and to evaluating the constants involved. In Section 8 we define
the notion of omega sets, and prove that the omega sets exist for most orbits at finite places.
In Section 9 we prove a uniform estimate for the standard local zeta functions.

2. Notation. This section is confined to establishing our basic notational conventions.
Additional notation requiredchroughout the paper will be introduced and explained in the next
three sections. More specialized notation will be introduced in the section where it is required.

If X is a finite set, then ¥ will denote its cardinality. The standard symb@sR, C
andZ will denote respectively the set of rational, real and complex numbers and the rational
integers. Ifa € R, then the largest integersuch that < a is denoteda| and the smallest
integerz such that > a by [a]. The set of positive real numbers is denoed If R is any
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ring, thenR* is the set of invertible elements & and if V is a variety defined oveR, then
Vg denotes itR-points. If G is an algebraic group, the&° denotes its identity component.

Both k andk are number fields, and so each number-theoretic object we introduke for
has its counterpart fdr. Generally the notation for theobject will be derived from that of
thek object by adding a tilde. Lebt, My, Wit, Mgy, Mg andMNic denote respectively the
set of all places of, all infinite places, all finite places, all dyadic places (those dividing the
place ofQ at 2), all real places and all complex places. (Correspondingly weshased so
on.) LetMm, Min andMNisp be the sets of places bfwhich are respectively ramified, inert
and split on extension tb. Recall that a real place @fwhich lies under a complex place of
k is regarded as ramified.

Let O be the ring of integers df. If v € 9, thenk, denotes the completion éfat v
and| |, denotes the normalized absolute valuegnlf v € 95, thenO, denotes the ring of
integers ofk,, m, a uniformizer inO,, p, the maximal ideal o®, andg, the cardinality of
Oy /py. If a € ky and(a) = p’l'), then we write org| (@) = i. If i is a fractional ideal ik, and
a — b e i, thenwe writer = b (i) ora = b (¢) if ¢ generates.

If k1/ k2 is a finite extension either of local fields or of number fields, then we shall write
Ak, /i, Tor the relative discriminant of the extension; it is an ideal in the ring of integeks. of
The symbolAy, will stand for Ay, /q, or Ay, /q according as the situation is local or global.
To ease the notational burden we shall use the same sympgolfor the classical absolute
discriminant ofk, overQ. Since this number generates the idagl, the resulting notational
identification is harmless. ffis a fractional ideal in the number field andv is a finite place
of k1, then we write, for the closure of in k1,,. Itis a fractional ideal irk1 ,. If i is integral,
then we putV'(i) = #(O, /). Note that\V'(i) = [], N, (i,), where the product is over all
finite places oky and\, (p%) = ¢ for a € Z. This formula serves to extend the domain of
N to all fractional ideals irk1. We shall use the notation Iy, and N, /, for the trace and
the norm in the extensiaky / ;.

Returning tok, we letry, r2, by, R andey be, respectively, the number of real places, the
number of complex places, the class number, the regulator and the number of roots of unity
contained irk. It will be convenient to set

(2.2) € = 2(2m)" 2hy Ree .

We assume that the reader is familiar with the basic definitions and facts concerning
adéles and idéles. These may be found in [ZHje ring of adeéles, the group of idéles and
the adélic absolute value éfare denoted by, A* and| |, respectively. When we have to
show the number field or the local field on which we consider the absolute value, we may
use notation such ds|r. There is a natural inclusioA — A, under which an adéléz,),
corresponds to the ad&{g,,),, such that, = a, if wjv. LetAl = {r € A* | |¢] = 1}.

Using the identificatior ®; A = A , the norm map N, can be extended to a map froNrto
A. Itis known (see [25], p. 139) thaN,;/k(t)| =|t|zfort e A. Supposék : Q] = n. Then
[k : Q] = 2n. Forx € Ry, A € A* is the idéle whose component at any infinite placelig
and whose component at any finite place is 1. Alsa A~ is the idéle whose component
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at any infinite place i$./2" and whose component at any finite place is 1. Cleary A2.
Since|A| = A and|£|A~ = 1 we conclude thaA| ; = A2. When we have to show the number
field on which we considex, we use the notation such ag.

If V is a vector space ovérwe let Vp be its adélization an#f,, and Vs its infinite and
finite parts. LetS(Va), S(Vxo), S(V5) andS(Vg,) be the spaces of Schwartz-Bruhat functions
on each of the indicated domains.

We choose a Haar measute onA so that[A/k dx = 1. Foranyv € 91, we choose a
Haar measuréx, onk, so thathv dx, = 1. We use the ordinary Lebesgue measlrgfor
v real, andix, A dx, for vimaginary. Thenix = |A¢|~Y2]], dx, (see [25], p. 91).

We define a Haar measuié r* on A® so thatf,1 .« 1! = 1. Using this measure, we
choose a Haar measwér on A* so that

/ f(t)dxtzfoo/ FouhHd*ad*et,
A* 0o JAl

whered*1 = A~1dr. For anyv € 9%, we choose a Haar measut&r, on k) so that

Jor d*t = 1. Letd"1,(x) = x|, dx, if vis real, andd*1,(x) = |x|;dx, A dx, if vis
imaginary. Then/*t = (t,jl [T, d*t, (see [25], p. 95). We later have to compare the global
measure and the product of local measures, and for that purpose it is convenient to denote the
product of local measures @i A* as follows:

2.2) dprx = l_[dxv, dpet = l_[dxtv .
Let ¢x(s) be the Dedekind zeta function bf We define
_ s/2 —s5/2 i n 1-s rp
23) Zus) = 142 (721 () (@0 T @) 206) -

This definition differs from that in [25], p. 129 by the inclusion of tla |*/2 factor and from

that in [28] by a factor of2)"2. It is adopted here as the most convenient for our purposes.
We note that it was the quotietdt; (s)/Zx (s + 1) rather thanZ,(s) itself which played a
significant role in [28] and this quotient is unchanged here. It is known ([25], p. 129) that

(2.4) Res—1k(s) = |Ax|"Y%¢;, and so Res.1 Zi(s) = €.

Finally, we introduce the following notation:

(2.5) alty, 1) = (’6 Z) Con) = C 2) .

3. A review of the orbit space. This section is devoted to defining the prehomo-
geneous vector spaces which are at the heart of this work and reviewing their fundamental
properties. Arithmetic plays no role here, so in this sectiomay be any field of characteris-
tic zero andk any quadratic extension @f We denote the non-identity element of Galk)
byo.
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A matrix x € M(2, 2); is said to beHermitian if 'x = x°. The set of all Hermitian
matrices in M2, 2); forms ak-vector space which we shall denote Wy The elements o
are also referred to as binary Hermitian forms.

We define and discuss the two spaces we require in parallel as far as possible; they will
be distinguished as Cas€ly and(2). Let

M(2,2) ® Aff?2 in Case (1),

(3.1 V= { W ® Aff2 in Case (2),

where Aff" is then-dimensional affine space regarded as a variety bveet

o [BL@ x GL@ x GL2) inCase (1),
o {GL(Z),; x GL(2) in Case (2),

where GL(2); is regarded as an algebraic group okéay restriction of scalars. I§ € G,

then we shall writey = (g1, g2, g3) in Case (1) and = (g4, go) in Case (2). It will be
convenient to identifg = (x1, x2) € V with the 2x 2-matrix M, (v) = v1x1 + vox2 of linear
forms in the variables; andv,, which we collect into the row vectar= (v, v2). With this
identification, we define a rational action@fon V via

(3.2)

B g1My(vg3)'g, inCase (1),
(3.3 Mg"(v)_{glMx(vgz)’g({ in Case (2).

In both cases we defing, (v) = — detM, (v). Then

detg,detg,F,(vg3) inCase (1),

(3.4 Fgx(v) = {Ni/k(detgl)Fx(ng) in Case (2).

We let P(x) be the discriminant of the binary quadratic fodp(v). ThenP(x) € k[V] and
P(gx) = x(g)P(x), where

(detg, detg, detg3)? in Case (1),

(3.5 x(9) = { (N,;/k(detgl) detgz)? inCase (2).

A calculation shows thak (x) is not identically zero, and so it is a relatively invariant polyno-
mial for (G, V) in each case. We lét5%denote the complement of the hypersurface defined
by P(x) =0inV.

We definel’ = ker(G — GL(V)); in Case (1)

(3.6) T = (112, 1212, 1312) | 11, 12, t3 € GL(L), ntpt3 = 1}
and in Case (2)
3.7 T = {(t1l2, t212) | t1 € GL(1);, 2 € GL(D), Ni (12 =1} .

It will be convenient to introduce standard coordinatesioandV. Elements ofG have the
formg = (g1, 92, g3) Or g = (91, g2). In either case we shall write

gi11 9Yi12
(38) = ( )
9 9i21 Yi22
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for eachi. Elements ofV are vectorsc = (x1, x2). We shall put
(3.9) = (x,'n xi12>

' P w21 xiz2
in Case (1) and

Xio  Xi1
3.10 ="
(510 i (xfl xiZ)
in Case (2).
In the language of Galois descent, Case (2)idarm of Case (1); they become isomor-

phic on extension of scalars frolto k. Indeed, it is well known that, dsvarieties,

(3.1 G x k= GL(2) x GL(2) x GL(2)
and

(312 W x k=M(2,2)

so that

(3.13 V x k=M(2,2) @ Aff2,

and a calculation shows that the induced actio@ afk on V x k is that of Case (1). The Galois
automorphisny induces a&-automorphism of thé-varietiesG andV which we denote by
i(0). If (91,9293 € G, theni(o)(g1. 92,93 = (95.97.93) and ifx € Wz, then
i(0)x = x?, whereo as a superscript denotes the entry-by-entry actiom.ah particular,
Gy is embedded iiG; = (G x k); viathe map(gy, 92) - (91, 95, 92)-

We are now ready to recall the description of the space of non-singular orbits in

DEFINITION 3.14. Let€r, be the set of isomorphism classes of extensions of
degree at most two.

It is proved in [26], pp. 305-310 and [16], p. 324 th@¢\V;>® corresponds bijectively
with &r,. Moreover, ifx € V, then the corresponding field is generated by the roots of
F, (v) = 0. We denote this field bk(x).

Suppose thap(z) = 72 + a1z + a» € k[z] has distinct roots; andas. We collect these
into a selx = {1, a2} since the numbering is arbitrary. Defing € Vi by

0 1\ (1 a '
319 Wr = <<1 a1> ' (al a%—az)) ’

a computation shows tha,,(z, 1) = p(z), and sow, € V¥ andk(w,) = k(a) is the
splitting field of p. Let

610 =96 9)

(3.17) hy =< 1 _1>

-1 2



522 A. KABLE AND A. YUKIE
and then defing , € Gr(w,) by

@15 (ha, (a2 — a1)"thy) otherwise..

With these definitions it is easy to check thgt = ¢ ,,,,..

We close this section with a detailed description of tkrational points of the stabilizer
Gu,. Similar descriptions were derived in [16] and [26] and, although we are using different
orbital representatives here, the arguments are so similar that they will only be sketched. The
method is as follows: We begin with a description®f as ak-variety; this is given in Section
3 of [26] for Case (1) and in Section 2 of [16] for Case (2). Then we find, by direct calculation,
thek-rational points ing ,G, k(wp)g;l and this gives U, «-

g, = { (has ha, (@2 —a1)"Yhy) in Case (1) or wheh(w)) = k,
b=

If we let
(319 P {(a(tll, 112), a(tz21, 122), a(131, 132)) in Case (1),
(a(t11, t12), a(tz21, 122)) in Case (2),
then
. {t|t;; €k, t1jto;13; = Lforalli, j} in Case (1),
320 wk = {{t | 11 € kX, 12j € k*,Np  (r1)i2j = Lforall j} inCase (2),

and soG° , = GL(1)} in Case (1) and;°,, = GL(l)]% in Case (2). If we let

0 1
(3.22) T = (1 0) ,
then the class ofz, 7, 7) in Case (1) or ofz, 7) in Case (2) generates, /G5, .
Now let
(a(t11, t12), a(ta, 122)) in Case (2) whew(w,) # k,
(3.22 t= ,
(a(t11, 112), a(tz1, 122), a(t31, 32))  otherwise.

We assume that(w,)/k is quadratic, since ik(w,) = k, thenGwpk is conjugate taG , x
overk. Letv be the non-trivial element of Gal(w,)/k), which may also be thought of as
an element of Gak(w,)/k) whenk(w,) # k. Herek(w,) denotes the composite bfand
k(wp).

In Case (1)Gz)pk is

(3.23 {g,tg,t | tij € k(wp)*, i1 = t}y, t1t2jt3; = 1 for all i, j} ,
and soG;, | = GL((w,) X GL(Lj(w,)- In Case (2) whek(w,) =k, G, , is
(3.24) {gptg | tij € KX 19y = ta1, 1]y = toa. tajtzjt3; = 1 forall i, j},

and soGS, , = GL(1); x GL(1);. In Case (2) whei(w)) # &, Gy, i

wpk —
-1 g

(3.25) |
NE o) k) (111)12) = Lfor all j}
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and soG;}pk = GL(l),;(wp). In every instancet,, k/GZ;,,k is generated by (7, 7, r)g;l
or g ,(t. 7)g,* as the case may be.
It will be convenient to have an explicit description of hmpk is embedded G in
each case. To this end, define
(3.26) Ap(e.d) = ( c ) and 7, = <_1 g) .

axd ¢ —ayd —a

It is easy to check that any matrix which has bath — «1) and’(1 — ay) as eigenvectors
must equald , (c, d) for somec andd. Consequently, the set of all such matrices is closed
under multiplication, any two such matrices commute and if such a matrix is invertible, then
its inverse lies in the same set.

LEMMA 3.27. InCase(l), GZ},,k consists of elements of Gy, of the form

(3.28 (Ap(cr,dr), Ap(ca, d2), Ap(cs, ds)),

wherec;, d; € k, det(A,(c;, d;)) # Ofori = 1,2 and (c3, d3) isrelated to (c1, d1, c2, d2) by
the equation

(329 Ap(ca, d3) = Ap(c1,d1) TAp(ca, d2) ™t

Moreover [Gu, k = Gy, ;1 =2 and Gu,k/ Gy k is generated by the class of (7, 7, 7),).

PROOF  Suppose first that(w,) = k. ThenG;pk = ng;)kg;,l and, by (3.20),
the elements o0&, may be characterized as thagg, g5, g3) € Gk such that(1 0) and
(0 —1) are both eigenvectors for eaghandg 9,93 = I>. Sincehy,’'(1 0) =(1 — a1)
andi,'(0 —1) ='(1 — ap), the first claim follows. Ifk(w,) # k, then calculation gives
hqa(t, t”)h,;l = Ap(c,d) wheretr = ¢ + da1 € k(wp). With this observation, the first
claim follows in this case from (3.23). Finallyiuth,1 = 7, and the second claim is
established. O

LEMMA 3.30. InCase(2), G;)pk consists of elements of G, of the form
(3.31) (Ap(cr, dr), Ap(ca, d2)),
where c1,dq € lg, co2,do €k, det(A,,(cl, d1)) # 0and (c2, d2) isrelated to (c1, d1) by the
equation
(332 Ap(ca,d2) = Ap(c1,d1) T Ap(c],d]) "
Moreover, [Gu,« : G}, 1= 2and Gu,k/ Gy is generated by the class of (7, ).
PrROOF.  If k(w),) = k, then, by (3.20)G? , may be characterized as the setof, g,)
in Gy suchthat(1 0) and’(0 — 1) are eigenvectors af; andg199 g, = I2. SinceGZ)pk =
9GS, andhg = hg, the claim follows. Ifk(w,) # k. k, thenh$, = h, and a similar
argument works on setting, (c1, d1) = hqa(t11, tlvl)h;l in the notation of (3.25).

This leaves the case whetew,) = k. We use the notation of (3.24). If we s¢f =
hqa(t11, tlz)h(;l = Ap(c1,dy) for somecy, dy € k, then, using the equatidrf, = —hqt, we
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haveg] = hea(t5, 1{)hy Y, and sog, = g7 917 is hea((1tfy) ™2, (15,120~ HhyL. Thus
(91,92 € G;j)pk. Finally, we haver, = harhojl and the last claim follows from this. O

4. Aninvariant measure on GL(2). Assume now thak is a number field. In this
section we choose an invariant measure oriZ3in both the local and adélic situations.

LetT C GL(2) be the set of diagonal matrices aNd< GL(2) the set of lower triangular
matrices whose diagonal entries are 1. Thea= T N is a Borel subgroup of G2). Let
Ty = {x =a(k,Xy) | 21,22 € RyyandK = [[,con Kv, Wherek, = O(2) if v € Mg,
Ky, =U@Q) if v € Mc andK, = GL(2)p, if v € Ms. The group Gl2)4 has the Iwasawa
decomposition GI2)p = KTaNa, and so any element € GL(2)5 can be expressed as
g =k (g)t(g)n(u(g)), wherex(g) € K,t(g) = a(t1(g), t2(g)) andu(g) € A.

The measurdu on A defined in Section 2 induces an invariant measur&/gn Since
K is compact we can choose an invariant measuren it so that the total volume & is 1.
OnTa we putd*t = d*t1d*tp fort = a(r1, t2), whered *¢; is the measure oA* defined in
Section 2. Thedb = |t1t2‘1|*1dxt du defines an invariant measure 8 anddg = dk db
defines an invariant measure on @la.

We make parallel definitions of invariant measures on®y,, Ky, Bx,, Ni, andTy,,
which we denote bylg,, dky, db,, du, andd*t,, respectively. As in Section 2, we denote
the product of local measures 6 as

v

Then (see Section 2) we have

42) du= M [duy, d*t=¢P][[d*n andso dg = |A ¢ 2dprg -
v v

Let GL(2)Q = {g € GL(2)a | | det(g)| = 1}. If, for & € Ry, we definec(r) = a(a, A),
then any element of G2), may be written uniquely ag = ¢(1)¢° with ¢° € GL(2)%. We
choose a Haar measure on @)% so thatdg = 2d* 1 dg¢°. Itis well-known that the volume
of GL(2)%/GL(2); with respect tal¢° is

(4.3) Vi = 1/ ReS—1(Zi(5)/ Zi(s + 1) = € Zi(2) .

As in Section 2, we note that all these definitions apply equally well to the number field
k and yield a measure on @2); and so on. Having chosen an invariant measure oL
both locally and adélically, we also detal and adélic invariant measures@rby taking the
relevant product measures in each case.

5. The canonical measure on the stabilizer. In this section we shall define a mea-
sure onG?¢ , forx € V°which is canonical (in a sense made precise by Proposition 5.16) and
compute the volume of;§ A/TAG;k under this measure. We also make a canonical choice
of measure on the stabilizer quotiefih/ G , and define constants; , which will play an
essential role in what follows.
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Letv € Mandx € VE= If v ¢ Msp, thenv extends uniquely to a place biwhich we

also denote by. In this caset, = k, @ k. We denote by, (x) the composite of, and
ky(x).

Before we begin this task it will be convenient for bookkeeping purposes to attach to
each orbit indSUS, wherev € 9, an index which records the arithmetic properties ahd of
the extension ok, corresponding to the orbit. The orbit corresponding.titself will have
index (sp), (in) or (rm) according asis in Misp, Min or Niym. The orbit corresponding to the
unique unramified quadratic extensionigfwill have index (sp ur), (in ur) and (rm ur) for
v € Msp, v € Min andv € NMiym, respectively. An orbit corresponding to a ramified quadratic
extension ok, will have index (sp rm) ifv € Mspand (in rm) ifv € Min. If v € My, then
the orbits corresponding to ramified quadratic extensiots afe subdivided into three types;
the one corresponding fg has index (rm rm)*, those corresponding to quadratic extensions
ky(x)/ky such that,(x) # k, andk,(x)/k, is unramified have index (rm rm ur) and those
corresponding to quadratic extensi@pér)/ k, such thak, (x) # k, andk, (x) /k, is ramified
have index (rm rm rm). This last index can occur only i€ Mgy.

From Section 3 we know that the grody;, may be determined up to isomorphism
solely from the index of the orbit of. In fact, if we define

(ky)* (sp).
X\2
(5.1) Hyp, = (]fv(xz) ) (Sp ur), (Sp rm),
(k) (i), (rm), (in ur), (rm rm)*,
ke (x)* otherwise,

for each of the various indices, thér} k = H,yy, in all cases. We may regatd, , as the
ky-points of an algebraic groufd, defined ovel®, and we shall do so below.

As in Section 3, ifk,(x)/k, is quadratic, then we shall write for the generator of
Gal(ky(x)/ky). If ky(x) # kv, thenv may also be regarded as the generator ofGat) /k,).
Also thetypeof x € V,fvswill be the index attached to the orltit, x.

We wish to introduce parameterizations for the elements of the stabilizer in the various
cases. Ifv is a point of type (sp), we write

(5.2 s (ty) = (a(t11, 112), altz1, 122), a((t1at21) 3, (11212207 1))

wheret, = (t11,...,122) € (kvx)“. Letsy1(ty), sx2(ty), sx3(ty) be the three components of
sx (tx). If x is a point of type (sp ur) or (sp rm), we write

(5.3) s (1) = (a(t1n, t]y), altan, thy), a((t1at2) 2, (3413 ™)

wheret, = (111, 121) € (k(x)j)z. We use the notation1(#,) et cetera in this case also.Af
is a point of type (in) or (rm), then we write

(5.4) sx(t) = (a(tis, 1), a(Ng (1779, N (135))
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wheret, = (111, t12) € (IEUX)Z. We use the notatios1(z,) et cetera in this case also.Afis a
point of type (in ur) or (rm rm)*, then we write

(5.5) s (te) = (a(t1n, 112), a(tfy, 1), a((t1ty) L, (5112 7Y)

wherer, = (t11, f12) € (IEUX)Z. We use the notatiosy1(z,) et cetera in this case also. Finally,
if x is a point of type (in rm), (rm ur), (rm rm ur) or (rm rm rm), then we write

(5.6) se(te) = (a(tin, (1D, aNE (oo 115 NE (o (1120 )

wherer, = t11 € ky(x)*. We use the notation1(7,) et cetera in this case also. @h i, we
define an invariant measude, , as follows:

d* 111y d™ t12y d™ t21, d* 122, (sp),

d*t11y d* t210 (spur), (sprm),
(5.7) dty y = . .
' d*t11y d* t12y (in), (rm), (in ur), (rm rm)*,
d*t11 otherwise.

We note that ifv € 9%, then the volume ofi, o, under this measure is 1 in every case.

Suppose that € VksvS corresponds to a quadratic extensiorkgf Then it is possible to
choose an elemept, € Gy, () such thatc = g, w. Consider the following condition on such
an element.

CONDITION 5.8. g;lgY = (=1, —1,7) Or (-1, 7).

It is possible to findg , satisfying this condition for any. Indeed,x = 9xw,Wp for
someg ,,, € Gi, and some choice gb. Thenx = g,,, g,w andg, = g.y,,9, € Gi,(x)
satisfies the condition.

PROPOSITION 5.9. If ¢, satisfies Condition 5.8, then

(5.10) Sk = 9xlsx(t0) | € Heg gt

PROOF.  We havek, (x) = k,(w)) for somep. Sinceg, andg , both satisfy Condition
5.8,9,9," € Gx, and if we puth = g,g,*, thenhw, = x, and soG3, = thUpkvh—l.
From Section 3,

(5.11) Gk, = 9plse (@) | 1x € Heg }g ),

and the conclusion follows. O

If x = g, w with g, € Gy,, then we need not impose any conditiongn

Suppose now that, € G, ), x = g, w andg, satisfies Condition 5.8 i, (x) # k.
Then we can define an isomorphigiy : G} k, = Hek, by settingdy (g,sx (tx)g;l) = 1.
If g1 andg,, are two such elements, then let= gng;f. From the condition, we see that
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h € Gyg,. Also

09.,(9) =57 (91991
(5.12) =519 hgh™ g,
=0y,,(hgh™),

and s, , andd, , differ by the automorphism hgh~1 of Gy, SinceG?$ ky is abelian
andGyy,/G; k has order two, the automorphism— hgh~1 depends only on the class/of

in G, k! Gy, and either is the identity (& € G} kv) or squares to the identity (if ¢ G? kv).

In either case, this automorphism is measure preserving and hence we may make the following
definition without ambiguity.

DEFINITION 5.13. Letdg/ , = ng(dtx,v) for any choice ofg, € Gy, () such that
g,w = x andg, satisfies Condition 5.8 &, (x) # k,.

This establishes a choice of invariant measur&gnp for eachx € V2*
We have

v

(5.14) 7 k2 2l (r1t2)" 1)} incase (1),
{(l2, Ng (t)~1))  incase (2),

and sofy, = (k)2 in case (1) and}, = kX in case (2). We use the measure

(5.15) d*i, =|d><tlvd><t2v in case (1),

d*t1y in case (2),

~// ~1/

on this group. We let/ g, , be the measure oG} kv/fkv suchthatg) , =dg) ,d*1,.

It is to achieve the following result that we have taken such pains with the definition of
the measures.

PROPOSITION 5.16. Supposethatx, y € V®andthat y = g,,x for some g, € Gg,.
Letig, : G5, — Gy, betheisomorphismiy (g) = g;ylggxy. Then

(5.17) dgy, =iy (dgy,) and dgy,=ig (dg},).

PROOF.  Letg, be chosen as above and gyt= g,,9,. Theng, € Gy, ) = G, (x)»
gyw =y and ifk,(y) # k, theng1g? = g71g7, so thatg,, satisfies Condition 5.8 in this
case. It follows that

i;xy (dg;/,v) = i;”e;x (dtx,v)

= (egx igx),)*(dtx,v)

(5.18)
= 9;‘}, (dty )
= dgg)v
becaused,y, = Hyk, anddt, , = dt, ,. This establishes the first claim and the second then

follows from the observation thay |ka is the identity map. O
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We choose a left invariant measutg) , onGy, /Gy, so thatif@ € S(Vg,), then

Gy x

(5.19) / |P(g @ (g X)), = f P2 (y)dy,

Giy/Gp, k
wheredy is the Haar measure such that the volumeVgf is one ifv € 9, Lebesgue
measure ifv € Mg and B times Lebesgue measurevife Mc. This is possible because
|P(y)|v_2dy is aGy, -invariant measure ovr,fvs and each of the orbit§, x is an open set in

Vksvs. Note that

[ @ okew i,
Gy /G i
(5.20) T
= IP(X)IJS/ |P (g 5@ (g5 ,2)dyg,
G,/ G},

and so, from (5.19), this integral converges absolutely at least when Re2. If g, €
Gy, satisfiesy = g,,x andigxy is the inner automorphism +— g;ylggxy of Gg,, then
ig,,(GS) = G5y, and soig induces a mag, = : Gi,/Gj, — Gi,/G3y, . Since
the integral on the right hand side of (5.19) depends only on the orhit tffollows that
*

iy, (g ) =dg) .

DEFINITION 5.21. Forv € 9t andx € Vksvswe letby., > O be the constant verifying
dg, =bxydgl ,dg) ,, wheredg, is the measure oGy, chosen at the end of Section 4.

x,v?

DEFINITION 5.22. For® € S(V,) ands € C we define

Zea(®,5) = by / X0 DB 1)y
Gkv/szU

b PGS / PO 2B (dy .

Gy x

PrROPOSITION 5.23. Ifx,y ¢ Vksvsand Gi,x = Gr,y. thenby , = by .
PROOF  Since the groufy, is unimodulari;xyvdgv =dg,. SO
dg,=bydg', dg’
= byoiy dgl.iy, dgl, = b},,vb;ii;wdgv
= by b rdg, .
Thereforeb, , = by ». O
Letdprgy = [1,dgY . dpedy =T1,4d3% , anddpi = ], d*1,, whered*i, is defined
in (5.15).
PROPOSITION 5.24. Suppose x € VS and k(x) # k, k. Then, with respect to the
measure dprg y, thevolume of G o/ TaG? . is 2¢;,,/€;.
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PROOF.  Identifying T with GL(1); andG¢ with GL(D),, we definel} (resp.G°L)
to be the set of idéles df (resp. (x)) with absolute value one. Leti* anddpg//* be the
measures ol andG?Y,, such thatlprg!, = d* Adprg/(t, i = d* rdg;i* for

X
9% = hpat. T=kit

Note that if A € Ry, then the absolute value af as an idele ofc(x) is A2. Therefore,
dprg !} = 2d* Adprgt for g = Argllt. Sincedprg! = dpyidpeg?, this implies that 2prg [t =
dyitdpeg’y. SO

2/ ) dp,g;gl:/ . ~ldprg;gfl _dyit
GYa/ Gy GIa/ Gk Th Ta/ Tk
:vol(G;lA/TjG;k)/~ _dyit
T/ Tk

Since

~/11 21
/ . dprg; = Q:lz(x) and /~1 B dgrt = Q:]z
Gia/ Gk Tx/ Tk

this proves the proposition. O

For the rest of this paper we consider Case (2) in both the global and the local situations
and Case (1) only in the local situation, whéfrarises as a localization of Case (2).

6. A preliminary mean value theorem and the formulation of its proof. In this
section we introduce the global zeta function of the prehomogeneous vector(space
and recall from [27] its most basic analytic properties. The zeta function is approximately
the Dirichlet generating series for the sequence{@pk/TAG;k). If it were exactly this
generating series, then our work would be almost complete, since Tauberian theory would
allow us to extract the mean value of the coefiitefrom the analytic behavior of the series.
Unfortunately, the actual zeta function contains an additional factor in each term and we
proceed to explain the filtering process by which this difficulty may be surmounted. This
leads us, on the basis of a number of assumptions, to a preliminary form of the mean value
theorem that is our goal. The validity of these assumptions is demonstrated in later sections.
The final form of the theorem, which differs from the preliminary form mostly in being more
explicit, is given in the next section.

We putG; = GL(2); andG2 = GL(2). Let Ga = Gia x Gop, letdg, anddy,
be the measures dafi;a and Goa which were defined in Section 4 and ply = dg,dg»
for g = (g1, g); this is a Haar measure dfia. Write G = G/T, so thatV is a faithful
representation of;. Sincel = GL(1); as groups ovet, the first Galois cohomology group
of T is trivial, and it follows thatG = G /T for any fieldF 2 k. ThusGa = Ga/Ta and
Ga/Gr = Ga/TaGk. Letdpxrt~ be the measure ofi, defined immediately before Proposition

5.24. Thend*f = Qtlz‘ldpxrfis the measure ofiy compatible under the isomorphishy = A~

with the measure defined o~ in Section 2. We choose the measudi@ on Ga which



530 A. KABLE AND A. YUKIE

satisfies/g = d§ d*i. Similarly, we choose the measuté, on G, which satisfies/g, =
dj,d*t,. Letdyg =[],d§,. From (4.2), we obtain

(6.1) dj = |AkA;|*1/2¢;2¢;1dprg .

DEFINITION 6.2. LetLo = {x € V3| k(x) # k,k}. For® e S(Va) ands € Cwe
define

Z(®,5) = / x@E S @G0d;.
Ga/TaGy Z

xeLlo

The integralZ (&, s) is called theglobal zeta function of (G, V). It was proved in [27]
that the integral converges (absolutely and uniformly on compacta) () Re sufficiently
large. However, a slightly different formulation was used in [27] and it is necessary to say a
few words about the translation from that paper to this.

The definition of the zeta function used in [27] is stated in Definition (2.10) of that
paper. For our purposes we shall always take the chara@ppearing there to be the trivial
character. The domain of integration used in [27Ris x G /Gy, whereGS = G9, x G5,
is the set of elements @ o both of whose entries have determinant of idéle norm 1. We have
(R4 x GQ)/T} = Ga via the map which sends the classbf g°) to the class of1, c¢(1)) g°.
In[27], Ry x GR is made to act oW by requiring tha(, 1) acts by multiplication by. and
the above isomorphism is compatible with this.

We must compare the measutg on G with the measuré*x d ¢° which was used in
[27]. We haveGa = (RZ x GR)/(R; x T3) whereRy x T4 is included inR2 x G via
O, 1) > (A, A7 1) andR2 x G maps ontaGa via (A1, 2, ¢%) > (c(k1), c(A))g° - Ta
(recall thatk, e A andA, € A). In this quotient we have chosen the measigeto be
compatible with the measured#i, d* 12 d g° onR3 x G andd* . d** onRy. x T}, where
the volume offAl/Tk underd*i* is 1 (as in Section 2). From this it follows that the measures
4d*).d g° andd* i* are compatible with the measut§ in the quotientRy x G%) /T3 = Ga.

Furthermore|x (1, c(1))| = A4, and so ifZ*(®, s) denotes the zeta function studied in
[27], then we haveZ (@, s) = 4Z*(P, 4s). In [27], Corollary 8.16 it is shown tha* (&, s)
has a meromorphic continuation to the regionske> 6 with a simple pole at = 8 with
residue B @ (0). Thus we arrive at:

THEOREM 6.3. The zeta function Z (@, s) has a meromor phic continuation to the re-
gion Re(s) > 3/2with asimple poleat s = 2 with residue T, 0; @ (0).

Note thaté(0) is the Fourier transform ob evaluated at the origin, and so is simply
the integral of® over theVa. We defineX (@) = @(0) for @ € S(Va). Forv € M and
@, € S(Vi,) we can define the local version of the distributibii®) by

(6.4) 2y (Py) :/v Py (y)dy .
:

v
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Since the coordinate system Bfconsists of four coordinates inand two coordinates i,
if & =Q, Py, then

(6.5) 2(@) = Al Al [ 2u @)

This completes our review of the analytic properties of the global zeta function. Before
we can rewriteZ (&, s) in a form which makes this analytic information bear on the problem
at hand we must return briefly to the local situation.

Letv € M;. If F/k, is a quadratic extension, théhis generated ovek, by either of the
roots of some irreducible polynomiakz) = z2 + a1z + az € ky[z]. In fact, this polynomial
may always be chosen to satisfy the more stringent conditionftpas generated ove?, by
either of the roots 0p(z). If this condition is satisfied, then the discriminanydt) generates
the idealA r/,. We wish to recall how this may be achieved in each case.

Recall thatp(z) € ky[z] is called arEisenstein polynomial if a1 € p, andaz € p, \pﬁ.

If F/k, is a ramified extension, then there is always an Eisenstein polynomial whose roots
generateF’ overk, and any such polynomial will satisfy the stronger condition stated above.
For eachv € 9, k, has a unique unramified quadratic extension¥ I this extension and

v ¢ Mqy, then we may satisfy the stronger condition simply by taksrig) with a; = 0 and

—ap any non-square unit ik,. If v € Maqy, then we must instead taksz) to be anArtin-
Schreier polynomial, which means, by definition, that(z) is irreducible ink,[z], a1 = —1

andazy is a unit. Note thap stays irreducible modulp, in this case by Hensel's lemma.

For eachy € 9 we choose a list of representatives, . . ., wy, n,, one for each of the

Gy, -orbits invks;s, in such away thaP (w, ;) generates the idealy(y, ,)/x, fori = 1,..., Ny.
This is possible, in light of the previous paragraph, if we take eagh to equalw, for

a suitablep(z) € ky[z]. In the special case whekgw, ;) = k, we takew,; = w, for
p(z) = z° — z. Forv € My, we require instead thalP (wy i)y = 1fori = 1,..., Ny,
which is clearly possible. In both cas we assume for convenience that, represents
the orbit corresponding té, itself. This done, ifF/k is a quadratic extension, then let
wy,i,(F) represent the orbit corresponding &g/ k, (with i, (F) = 1 if v splits in F). Then
we have

6.6) Np) =[] M@rrn) ™t =[] 1Pl = ] 1Pl
veMN; veM; veM

Forx € Loand® = QR &, € S(Va) we define theorbital zeta function of x to be
Zo(®,5) = [lyem Zx,o(@y, s). If x lies in the orbit ofw, ; in VSUS, then we shall write
Eyp(Py,s) = Zwv,i,v(gpv’ s)andEy (D, s) = 1_[1)657)? Ey,v(Dy, 5). We Ca“Ex,v(gpv’ s) the
standard local zeta function and =, (®,, s) thestandard orbital zeta function.

PROPOSITION 6.7. Forx € Loand @ = Q) &, € S(Va) we have

Z(@,5) = N(Dky0) " Ex(@,5) .
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PROOF  For eachy € Mt leti,(x) be such that € Gy, wy ;, (). Then, from (5.22),

Zyw(Dy, $) :bx,v|P(x)|;S/ |P(.V)|f;72q§v(y)dy

Gy x

_ [P (wy,i,x)y ) bwv,iv(x)vv
O PWE Pl
Py i)y
O PWE

_ |P(wv,iv(x))|f;
PR
where we have used Proposition 5.23 in passing from the first line to the second. Applying
(6.6) to F = k(x), we find that[ ], .on [P (Wy,i,x)IS = N(Akey)~*. Sincex € V25,

P(x) € k*, and so the Artin product formula implies that, .oy | P(x)|, = 1. Now taking

the product over alb € 9t on both sides of (6.8) proves the identity. O

f |P(3)I572®,(y)dy
(6.8) Gy Wo,iy (x)

: Zwv’,-v(x),v(évs s)

: Ex,v(gpv’ s),

For convenience, we introduce the abbreviation

(6.9) R1= |Ak|’l/2|A,;|’l/2€,:2€]§2.

PROPOSITION 6.10. If & = Q@ &, € S(Va), then we have

Z@,5)=R1 Y NArwm) "y Be(@,5).
xeGi\Lg

PROOFE From Definition 6.2 we have

zo9= Y [ w@r ¥ oGrod

xeGr\Log A/TAGk v€Gr/Gyi

- > [ x@reand
XEGk\Lo GA/TAka

1 YR ~ ~ ; o
=5 2 | Ix@F®@ndg since (G : G5yl =2
xeGp\Lo Y OA/TAGY,

1 o
R ¥ [ k@PeGndad by (6.
xeGp\Lg Y OA/TAGY

1
=SRaC ) (be,v) fG @@ ) dpg

xeGr\Log v A/G3a

/ i dprg” by Definition 5.21
G A/TAGY

1 o s o -
= SR » [[Zeo(®0.5) ) - vOl(GS o/ TaGS,) by Definition 5.22
xeGr\Lg v
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=TR1 Z Zx(cb,s)@,;(x) by Proposition 5.24
xeGy\Log

=R1 Y N Akwm) €y Ee(®,s) by Proposition 6.7.
xeGi\Lo
O

We are now ready to describe the filteringgess. This process was originally used in
[5] and is described in a general setting in [28], 80.5. Our discussion will follow this latter
reference, but with simplifications arising from the fact that we know the residue of the global
zeta function explicitly (by Theorem 6.3).

We setSy = Moo U Mim U Mgy and fix a finite seS > S of places ok. For each finite
subsef O S of 9t we considef-tupleswr = (wy)yer Where eaclw, is one of the standard
orbital representativesy, ;, for the orbits indSvS chosen above. If € V*andx € Gy, w,,
then we writex ~ w, and ifx ~ w, for all v € T, then we writex ~ wr.

For later purposes, it is convenient to make the following definition.

DEFINITION 6.11. Foranyw € 9, @, o is the characteristic function 6fp, .

Let Zy () = Exv(Py0,5) and &y r(s) = ]’[U¢T Ey »(s). From the integral defin-
ing & ,(s) it follows that for v ¢ So this function may be expressed & ,(s) =
Yo o ax,v,nq, ™ for certain numerical coefficients, , ,. In Section 8 we shall establish
the following condition.

CONDITION 6.12. Forallv ¢ Sp and allx € V,f;swe havea, ,, = 0forn < O,
ax.y,0 =1 anday , , > 0 foralln.

Suppose that we have Dirichlet seriggs) = an"zl Limm—Sfori =21,2. Ifl1,m <lom
forallm > 1, thenwe shall writd.1(s) < L2(s). In Section 9 we shall establish that for every
v ¢ So there exists a Dirichlet serids,(s) = Z;’;O ly,ng, " which satisfies the following
condition.

CONDITION 6.13. (1) Foralb ¢ Spandx € Vksvs, Erv(s) < Ly(s).

(2) The series defining, (s) converges to a holomorphic function in the regionfe-
1 and the producﬂvﬂ0 L,(s) converges absolutely and locally uniformly in the region
Re(s) > 3/2.

(3) Forallv ¢ So, 0= 1andl,, > 0 foralln.

For anyT 2 S we defineLr(s) = ]_[vﬂ L,(s). Both E 7(s) and Lz (s) are Dirichlet
series and if we let

(e.¢] (e.¢]
(6.14) Evr(s)=Y aip,m* and Lr@s)=)Y Ij,m™",
m=1 m=1
thenay ;. ,, (resp. 7 ) is the sum of the term§[, .1 ax.v.n, (r€Sp. [[,¢r lv,n,) Over all

possible factorizations: = [, g,". Since only finitely-many places, of k can havey,
equal to a power of a particular prime, the number of such factorizations is finite. Also, in
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any such factorization;,, = 0 for all but finitely-manyv, and so this sum is well-defined. It
follows from Conditions 6.12 and 6.13 thatOa} ; ,, <[}, anda} ; ; = 1forallx € V5,

allT > Sandallm > 1. We shall use these observations in the proof of Theorem 6.22 below.
We define

(6.15 Er() = Y Nwm) iy Ear(s)
xeG\Lo,x~wr

and

(6.16) Eos7() = Y Nkl " Bar(s),
xe€Gy\Lo,x~wg

which is the sum ok, (s) over allwor = (wy)ver Which extend the fixed-tuple ws. In
order to determine the analytic properties of these Dirichlet series we require the following
result.

LEMMA 6.17. Letv e M, x € V,fvs and r € C. Then there exists @, € S(V,)
such that the support of @, is contained in Gy, x, Zx ,(®y, s) is an entire function and
Zx,v(gpv’ r) # 0.

PROOF  The setGy, x is open andy +— |P(y)|{f2 is a continuous function on it. We
may therefore find an open sétcontainingx, having compact closuré < Gy, x and such
that

1
(6.18) PO = PO < SIP@I2

for y € U. We can then choos®, € S(Vi,) in such a way that sup@,) < U and

fU @,(y)dy = 1. Now (6.18) implies thatP(y)|, does not vanish o/ and hence it is
bounded both above and below by positive constants on this compactumZJThs,, s) is

entire. The inequality (6.18) also implies that

1
|Ze (@, 1) — by | P(O)];2] < be,vw(xn;z

and hence&Z, ,(®,,r) # 0. O

PROPOSITION 6.19. Let T 2 S bea finite set of places of k and wr bea T-tuple, as
above. The Dirichlet series &,, (s) has a meromorphic continuation to the region Re(s) >
3/2. Itsonly possible singularity in thisregion isa simple pole at s = 2 with residue

Rz [ [ bl IP@)3,

veT

where
R2 = Res=1(s) - Res=1¢3(s) - Zr(2)Z;(2) /| Akl -

PROOF  For eachw € T we choosep, € S(Vg,) such that sup@,) € Gi,w,. Let
D =Qyer Pv® ®U¢T @0 € S(Va). Forv € T we haveZ, ,(P,, s) = 0 unlessy ~ w,
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and hence
Z(®,5) = Rl( []Z00(@0, s)) > N k) €y Err(s)
veT x€Gi\Lo,x~wTr
= Rl( [] 5000, s))ém (5)
veT

by Proposition 6.10. By Lemma 6.17 and Theorem 6.3, this formula implies the first state-
ment.

Now choose®, for v € T so that&,, ,(P,,2) # 0. It follows directly from the
definition thatZz,, ,(®,, 2) = bwv,le(wv)IJZEU(q?v) forall v € T, and so the residue of
Eop(s)ats =2is

-1
Rf( I1 bw},vw(wm%) ( I1 zv(cbv)) Res—2Z(®.s).

veT veT

We haveX, (®,,0) = 1forv ¢ T and hence
Res—2 Z(®,5) = Bu Bl Acl 214517 [ | Zo(@0).

veT

Combining the last two equations shows that the residgg,ofs) ats = 2 is

Rllmkm,;muzm,;H( I1 bw},vw(wv)ﬁ) :
veT
and using the definition 0R1 and the values ol andJ; (see the end of Section 4) gives
the second claim. O
COROLLARY 6.20. TheDirichlet series &, 7(s) has a meromorphic continuation to
the region Re(s) > 3/2. Its only possible singularity in thisregionisa simple poleat s = 2
with residue

R2< [Teatu1P@ni)- [T D (bx_%IP(x)ﬁ) ,
ves veT\S x
where the sumis over the complete set, {x}, of standard orbit representatives for Gy, \ V2

PROOF  We have,, r(s) = ZwT &, (s) where the sum is over &ll-tupleswr which
extend theS-tuplewg. The claim follows immediately. O

We letE, = Y, by 3| P(x)|? for v ¢ So, where the sum is over all standard represen-
tatives, x, for orbits in Gkv\vksvs. In Section 7 we shall prove that the following condition
holds.

CONDITION 6.21. The producf],s, Ev converges to a positive number.

We are now ready to state and prove, subject to Conditions 6.12, 6.13 and 6.21, the
theorem which is the goal of this section.
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THEOREM 6.22. LetS D Sgbeafiniteset of placesof k and wgs an S-tuple of standard
orbital representatives. Then

. _ 1 _

Jm XY G =R ][Ol P@I - [ ] £
xeG\Lo,x~ws ves V¢S

N Ay <X

ProOOF In the following, sums ovex will be understood to include the conditions
x € Gi\Lo andx =~ wg as well as any further conditions which may be explicitly imposed.
We havet,, 7(s) = Y g cum~* Where

— . *
Cm = Z o, T -
x.n N (Agy)n=m

Applying the Tauberian theorem ([21], p. 464, Theorem 340 7 (s), we obtain, in light of
Corollary 6.20,

1
o . 2
AT, X > ¢z<x>a1‘,r,n=57€z<| Ibwl,,vw(wmv). I1 .

x,n,./\/’(Ak(x)/k)nfx veS veT\S

We shall denote the right hand side of this equatiorfhy Note thatl = limy_ 90 L7 is the
right hand side of the equation in the statement. Sirfcg, > O for alln anda; ; ; = 1 we
obtain

limsupx~2 Y &, <Lr
X—eo N Ay =X
forall T,and solimsup_, ., X2 ZN(Ak(stx € vy = L. Itfollows that there is a constant

C such that)" x4, 0 <x Sy = CX? forall X > 0 (note that ifx < 1, then the sum is
0). Furthermore,

Z €1$(x) = Z Ql?(x)a:,r,n - Z le(x)a}k,T,n

N (A0 <X N Ak n<X N Ay n<X.n>2
* *
z Y Gw@ira > Ceolr.n
N (A n<X N (A n<X,n>2
o0
* *
= Z Ceeoe 1 — le Z S
N Ak n<X n=2 N Ay 0<X/n

o0

2 -2

= Z € —CX Zl;n”
N Ak n<X n=2

= Z €0 T — CX*(Lr(2-1).
N (A n<X
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It follows that, for allT © S,

liminf X723 €y = Lr = CLr (D - 1)
N (A 0)<X

and lettingT — 90t we obtain
. . 72 5
Il)gn_) |£10f X Z Qk(x) > L
N (A0 <X

since limy_ o L7(2) = 1. O

The remainder of this paper and its compmans [17], [18] are devoted to verifying the
conditions enunciated in this section and to evaluating the constants which appear in Theorem
6.22. In the next section we make use of the results of this work to state the theorem in a more
explicit form.

7. Themean valuetheorem. In this section we shall derive a more explicit and con-
venient mean value theorem from Theorem 6.22. Througtowil] be a number field and
a fixed quadratic extension &f If F; and F; are distinct quadratic extensions/gfneither
equal tok, then we shall say thafi; and F» arepaired (with respect tok) if F» € Fy - k.
Since this condition uniquely determinés from F;, we may writeF; = FJ if F; andF
are paired. Our first result will be used below to expr(e;@) in terms of; ) and€y )« for
x € Lo.

PROPOSITION 7.1. Supposethat L/k isa biquadratic extension of number fields and
that k1, k2 and k3 are the quadratic extensions of k containedin L. Then¢;, = €;2€k1€k2€k3.

PROOFE This identity is perhaps the simplest instance of what is known as a Brauer
relation (see [1], p. 162, for instance). For the reader’s convenience we sketch the proof from
the theory of the Dedekind zeta function. Using Theorem 1.1, Chapter XlI of [19], p. 230 we
have the factorization

Sr(s) = C(s)L(s, x1)L(s, x2)L(s, x3) ,
wherey ; is the idéle class characterio€orresponding by class field theoryia Multiplying
both sides of this identity by (s)2 we obtain
(7.2) L) 8k(9)7 = 8y (9) ko () ks () -
Since Res_1 ¢r(s) = € /| Ar|Y/2, it follows that
CLCFAL AT = €y €y Cg| Aty Ay Akl T2
Recall that we have a functional equation

p(s/z)rl(F)p(S)rz(F)

F 7 SF(s),
r((L— )/ (L - s)zh

wherery(F) denotes the number of real placesfoandrz(F) the number of complex places
of F. Itis easy to check thdiL : Q] + 2[k : Q] = Y_3_3[k; : Ql andri(L) + 2r; (k) =

§F(1 —5) = (z_hZ(F)n_[F:Q]|AF|)S—1/2
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Z?:l ri(kj) fori = 1, 2. Comparing the factors in the functional equation on both sides of
(7.2) now shows thatALA2| = | Ay, Ak, Aks| @nd the identity follows. O

For notational compactness we shallggt) = b7 1| P(x)|? forall v € 9 andx € VSS
These constants are related to the quantities calculated in later parts by the foIIowmg result.

LEMMA 7.3. LetveMiandx e Vkss. Then
gy(x) = vol(K, N Gok Wol(Kyx),

where the first volume is evaluated with respect to the canonical measuredg’ , on G° vk, and
the second with respect to the measure on V, under which V, has volume 1.

PROOE We have

1:/ dg,
sz,v/

= by WOI(K, N G;kv)/ P12 dy
Kyx

by (5.19) withs = 0 and® the characteristic function &, x. But|P(y)|, = | P(x)|, for all
y € Kyx, and s0 1= b, ,Vvol(K, N G )| P(x)], 2vol(K,x). O

gl - / dg', by Definition 5.21
/G T JKNGY, '

xkv x ky

Using this formula foe, (x) and the results of Sections 3 and 4 in [17], we may determine
the values ot, (x) for all v ¢ Mgy U M, and all standard orbital representatives V,ff.
We record the results in Table 1.

The first column displays the index of the orbit and the secend;), wherex is the
standard representative for the orbit. The values of&pin G k) which we use here are
contained in Propositions 3.2, 3.35&nd 3.6 in [17] and the values of yél, x) in Proposi-
tions 4.14, 4.15 and 4.26 in [17].

The infinite and dyadic places éfboth require special treatment. We shall begin with
the infinite places as the easier of the two. We extend a classical notatifam the number
of real places and, for the number of complex places) by letting be the number of real
places ofk which split ink andr;2 the number of real places bfwhich ramify in.

PROPOSITION 7.4. For any S-tuple ws we have
l_[ £y (wy) = 222 Mg 31t 212+3rs
veMoo
In particular, the product does not depend on ws.

PrRooOF For the standard orbital representativesat the infinite places we have re-
quired tha P(x)|, = 1, and se,(x) = b, L. If v is a real place of which splits ink, then
V,fvS is the union of two orbits with indices (sp) and (sp rm), respectively. From Propositions
5.2 and 5.6 [17] we see that(w,) = 73/2 for both these orbits. In the product, the total con-
tribution from these places is thus’2:7 %11, If v is a real place of which ramifies ink, then
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TABLE 1. &y (x) for v finite and non-dyadic.

Index ey (x)
(sp) 1/2) 1+ g, HA - ¢;2)2
(in) 1/2)(1— g HL— gy
(rm) 1/2)(1 - ;%2
(sp ur) 121 -¢;H31-4¢,2
(sp rm) 1/2)g, A - gy HA - ¢, 23
(inun /21 -g;Hd - gy
(in rm) 1/2¢; 11— gy HA— ;DA - g%
(rm ur) 1/2(1-¢;H%1-¢,2
(rm rm)* (1/2¢,%(1 - g, %)?
(rm rm ur) 1/2)g, 21— g, H%A— ¢,

Vksvsis the union of two orbits with indices (rm) and (rm rm)*, respectively. From Propositions
5.4 and 5.7 in [17] we see that(w,) = 72 for both these orbits. In the product, the total
contribution from these places is thug"12. Finally, if v is a complex place of, then VksvS
consists of a single orbit with index (sp) and, from Proposition 5.2 in [d.(}y,) = 43 for

this orbit. The total contribution to the product from the complex placédsisthus 2272

and the formula follows. O

Whenv e Mgy we shall not calculate the constang$x) individually in all cases. Rather
we shall sometimes calculate the sum of4hex) over a set of orbits with similar arithmetical
properties. This is becauseiife Mgy, then it is difficult to deal with the ramified quadratic
extensions ok, individually. This leads to a final version of Theorem 6.22 which contains
no unevaluated constants, but which employs an equivalence relation, dencteddsrser
than the relatior=. Our next task is to define this relation.

Recall that, forx, y € V25 we writex ~ y if ky(x) = ky(y) (we have previously used
this notation only whery was a standard orbital representative, but the extension is convenient
here). Ifv ¢ Mqy or if v € May butk,(x)/k, is unramified (including the casg(x) = k,),
thenx < y will have the same meaning as~ y. Suppose now that € 94y and that
ky(x)/ky is ramified. If the type ofx is (sp rm) or (in rm), then we shall write < y if
Aoy /ky = Aky()/ky- If the type ofx is (rm rm)* or (rm rm ur), then we writer <
if y has the same type as Finally, if x has type (rm rm rm), then we write =< y if
Ay)/ke = Ak /ky NAAL () 1 = Ap () z,- This defines an equivalence relation 6f?
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for all placesv of k. If wg is anS-tuple of standard orbital representatives and Lo, then
we writex =< ws to mean that =< w, forall v € S.

The grouping of dyadic orbits is differently expressed in [18] and we must explain the
connection between the two formulations. For any Mgy we shall put 2, = py*. If x €

~5x,v

ka)s, then letAg, (v /k, = pf} and, ifv ¢ Msp, also IetA,;v/kv = pd andA,;v(x)/,;U =P,
Itis well-known that ifk, (x)/ k, is ramified and is dyadic, therd, , takes one of the values
2,4,...,2m,, 2m, + 1. In[18] we introduce a natural number (&y, k»), thelevel of k1 and

k2, which is defined whenevéq andk; are ramified quadratic extensions of a local field. Let
us write, , = lev(k,(x), k,) whenv € Mm N Mqy andk, (x)/k, is ramified. Ifs, , # &y,
then

. 1 1.
(75) )\x,v =min { \‘E(ax,v + 1)J s \‘E((Sv + 1)J} s

butif §,, = Sy, theni, , may take any value from this minimum up dg,. We have the
relation
(76) Sx,v = 2(5x,v - )\x,v) P
and so, withAy, (), fixed, A,;v(x)/,;v and levk,(x), k,) determine one another. Thus the
grouping of dyadic orbits with index (rm rm rm) in [18], by discriminant and level with
coincides with the grouping defined here.

If x is a standard orbital representativewgsfor anyv € 91, then let us write

B(x) = e(y).
y=x

where the sum is over standard orbital representatives that satisfy. Thuse,(x) = &, (x)
unlessy € Mgy andk, (x)/k, is ramified. Alsoy < x implies thatr andy have the same type
and since there is only one orbit correspamgtio each of the indices (rm rm)* and (rm rm ur),

£, (x) = gy (x) if x is the standard representative for either of these orbits. In Table 2 we collect
the values of the constarig(x) for those dyadic orbits having,(x) = ¢,(x) and in Table 3

we collect the values of the constanbtgx) for the remaining dyadic orbits.

The values of valK,x) and volK, N G¢ k) used to determine the entries in the two
tables were drawn from Propositions 3.2, 3%, 4.14, 4.25 of [17] and Propositions 4.2,
5.11, 5.14 and Corollary 5.15 of [18]. In Table 3, the second column records the conditions
onsé, ., 8, andx, , under which the entry is valid. From (7.5) and the observations made in
the previous paragraph it is easy to see that the available conditions are exhaustive.

It will be convenient to extend the notation of Section 6 by writing

Ey=) &)

for all v € M, where the sum is taken over all standard representatiyesf orbits in
G, \ VS We callE, thelocal density at the place.
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TABLE 2. ¢&y(x) for ungrouped dyadic orbits.
Index &y (x)
(sp) 1/2) 1+ g, HA - ¢;2)2
(in) 1/2)(1— g HL— gy
(rm) 1/2)(1 - ;%2
(sp ur) 121 -¢;H31-4¢,2
(in ur) /21 -g;Hd -y
(rm ur) 1/2(1-¢;H%20-¢;2
(rm rm)* (1/2)gy B 200/2 (1 _ 422
mmu) | g2 - 1/2g, a2 - g2
TABLE 3. &y (x) for grouped dyadic orbits.
Index Conditions &y (x)
(sp rm) Sx.v < 2my 7 21— gy H21 - g8
(sprm) S, =2my + 1 g ™Y1 gy Ha - ¢y D3
(in rm) by < 2my R T P Te
(in rm) Bx.v = 2my +1 0 " A g HL- gD - g
(rm rm rm) B # B0, By < 2my gy OrFR (@ gm12(1 - g2)2
(mrmrm) | Sy # 8y, Sxp = 2my +1 g "D (4 g1y 1 - g2)2
(mmm) | Sep =80 < 2my, hxo = U258, | gy 25 (L — gy HL— 20, DA - g5 )2
(rmrmm) | 8yv =38y < 2my, Ay > (1/2)8, 7 2 A= gy 2 - g2
(rm rm rm) Svv =38y =2my +1 7 2 A= gy 2 - gy2)2

PROPOSITION 7.7. Letv € My. Then E, = (1 — ¢, %) E),, where

E, =

1-3¢;3+ 29,4+ q,;° - q;°

A+9,9A-q,2—q,3+q;%
1-g;hA+q;2-q;3+¢q

—25,-218,/2]-1
v

if ve msp,
if ve min ,
) if ve mrm.

541
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PROOF  First suppose that ¢ Mtgy. Then every index corresponds to a single orbit,
with the exception of (sp rm) and (in rm),hich correspond to two orbits each. Using this
and the values of, (x) given in Table 1 it is routine to check the given expressions.

Now suppose that € Mtqy. We haveE, = ) &,(x), where the sum now runs over a
complete set of representatives for theequivalence classes. The valuegpfx) are given
in Tables 2 and 3 and using them one can easily establish the claimwh&R,y,. We carry
out the case € My explicitly, since it is rather more elaborate.

First suppose tha, = 2/ with 1 < [ < m,. The indices which are possible with our
assumptions are (rm), (rm ur), (rm rm)* and (rm rm ur), corresponding to one orbit each, and
(rm rm rm), which corresponds to many orbits. By Table 2, the contributiai,térom the
first four of these indices is

1
2

1 & _ a 1 5 _ _
+ E('Iv Bl(l_qU 2)2+qv4l(1_ 54 21)(1_('11) 1)2(1_qU 2)~

(1—q;9%+ %(1 R ¢ )
(7.9)

Recall that the orbits with index (rm rm rm) have been grouped urdey 8, , if 8,., # 5,
and by level ifs, , = 8,. If 8, , # &,, then eithe®, , = 2/ with [ # [ or 8, , = 2m, + 1.
Using Table 3 and (7.5), we see that the contribution from these equivalence classes is

-1 my
D et e Gl R L S I R L R o
1=1 I=+1
+ qv—(mv+i+1)(1 _ qv—l)(l _ qv—z)z
710 = (g, 7;25)(1 —aha-g?
+ (g, @Y — g DA — g H (A - g2
+ q;(mv+l”+1)(1 _ q;l)(l . q;2)2
Rt R ) 6 ) B e T € R
+ay @A - g HL - ¢;22.

If 8,., = &,, then the levely, ., runs from/ up tos, —1. By (7.6), the value , = &, = 8, ,,
although possible, corresponds to the orbit with index (rm rm ur), and so is excluded here. The
contribution from the equivalence classes with, = 3, is thus
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7,21 —q;H(A—2g,H1 - q;%)?

2[-1
+ > g, (M- g, H% A - g, 93
i=I+1
= ¢, 21— g, H(A— 29,1~ ;%2
+ gy @ — g1 - g7 H2A - g

(7.11)

Let us now collect all the terms from (7.10) and (7.11) which h@,yg as a visible factor.
The result is

il I T R AP T R (6 R R
+(1-g; A -29,H1— g9+ ¢, 2L — ¢, H*(L - ¢, 2]
=42 g7HA - g7)-A—g7H + 4, A - g7
+(1=24, (1~ ¢, + ¢, 21— g; )]
=0
on expanding the factor in the square brackets. It remains to add (7.9), the first term of (7.10)

and the term—qu“i(l — g7 H?%(1 — g;?) from (7.11) to obtairE,. This is easily done. The
situation wheré, = 2m, + 1 is similar, but simpler, and we leave it to the reader. O

In particular, this proposition verifies Coitidn 6.21 subject to the results of Sections 3
and 4 of [17].

If F/k is a quadratic extension distinct frokyik, thenF = k(x) for somex € Lo and
we shall writeF ~ wg if x % wg andF = wg if x =< wg.

THEOREM 7.12. Let § D 9, be a finite set of places of k and wg an S-tuple of
standard orbital representatives. Then

li -2 *
Xinoo X Z Q:FQ:F

[F:k]1=2, F<ws

N(Ap)<X
exists and has the value

A AP 2 [ A—a0d (@) - [ ] EL
veS\ Moo vES
where &,(x) isgiven by Tables 1, 2 and 3 and E/, by (7.8).
PrROOFE By Proposition 7.1 we hav@,;(x) = C,:Z(’:,;QFQF* if F = k(x). Recall, from
Proposition 6.19 and (24), that
Ra = | Al 728 A 7H2¢; - (2232 /1 A
= G AP AL TP 242 2 (2)
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and, from (2.3), that
Zi(2) = 2727 D | A5 (2)
23 = 272~ 4712

where7; is the number of real places bfand7, the number of complex places of this field.
Thus

(7.13 Rp = 270242 g =zt A/ A V2 €0 (205 ()
LetT = S U Sp and choose &-tuple,w’ = (). According to Theorem 6.22,
(7.14) x'i"oo > e
[F:k)=2, F~w)
N Ap)<X

exists and equals

1.,
561%% Ra[[ev@y) - [ Ev-
veT vgT

By (7.13) and Proposition 7.4 this quantity equals

2r2—r11—72—1n3r11+2rlz+2r2—r1—71—f2|A]€/Ak|1/2¢2§k(2)§12(2) l_[ ey(@)) - 1_[ E,.
vel\Mx ve¢T

But7y = 2r11, 72 = r12+ 2rp andry = r11 + r12. Thus
ro—ri—rm—1=rmn—-—r1—ro2—2rn-1
=—(r2+rm+rz2+1l) =—-(1+r2+1)
and

r1+2r24+2rp—r —F1—r2=3r11+2r12+2r2 —r11 —ri2 — 2ri1 — ri2 — 2r2

=0
and we have evaluated (7.14) as
(7.15) A AP0 2 [] ev@l) - [ Eo-
veT\ Moo vegT

Now

[Te.=]la-a> []E

vgT ve¢T vgT

=@t [] a-4> " []E
veT\ M vgT

and so (7.15) equals

(7.16) 2D Ay AP ] A-a,) @) - [ By
veT\ Moo vgT
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Now we sum (7.14) and (7.16) over dlttuplesw) = () which satisfyw; < w, for all
v € S to obtain the statement of the theorem. O

Note that in Theorem 7.13, does not have to contaify.
Given anS-tuple,ws, with S © 9, let us define
Nyt =#v e MR | v e Mgpandky(wy) = ky},
ny— =#v e M | v e Mgpandk, (wy) # ky},
n_y =#veMr|veMmandk,(w,) =k},
n__ =#veMr|veMmandk,(wy) # ky}.
If Fis a quadratic extension éfandF < wg, then we denote the composite Bfandk by
F (which corresponds té in Proposition 7.1). Then it is easy to see that
r(F)=2nyy +n_y), re(F)=n__+ny_+2r2,
r1(F*) = 2(n++ +I’l__), VZ(F*) =Nn4y— +I’l_+ +2r2,
ri(F) =4nyy ra(F) = 2(nq— +n_t +n__) +4rz,
and sor(F), ri(F*), ri(F), ra(F), ra(F*), andro(F) depend only upoms. This allows us
to define
c(ws) = 2r1(F)+r1(F*)(Zﬂ)rz(F)Jrrz(F*) ,
f(ws) =210 2m)2D,
whereF # k is any quadratic extension fsatisfyingF =< ws.

COROLLARY 7.17. Let S D 9 be afinite set of places of k and wg an S-tuple of
standard orbital representatives. Then

lim X2 Z hrRphpsRpx

X—00

[F:k]=2, F<ws
N(Ap)<X
exists and equals
27t D e(wg) TLef| Ap ) Ak Y2 ¢ (2) l_[ (1— g, ) (@) - l_[ E,.
veS\ Moo vES

PROOF Let F/k be a quadratic extension and suppose fhabntains a primitive:™
root of unity, ¢,, for somen. Since[Q(¢,) : Q] = ¢(n), it follows thate(n) < [F : Q] =
2[k : Q]. But it is well-known thaip(n) — oo asn — oo, and so there is some constant
independent of’, such that: < N. We conclude thatr = ep+ = ¢, for all but finitely-many
guadratic extension’ of k. This finite list of exceptions may be ignored in the limit. Since

Cr = 21 (27T)r2(F)/’lF RFe;l ,

the corollary is now an immediate consequence of the theorem and the definitiGospf
O
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COROLLARY 7.18. With the same assumptionsasin Corollary 7.17,

lim x—2 hzR:

X—o00 Z F™°F
[F:k]=2,F=<wgs
N(Ar)<X

existsand equals
o—(r1+ra+1) 2r1(12) (zn)rz(];)f(a)s)illﬂlz/Ak|l/2¢khI€Rl§§lz(2)

< [] @-a,9 @) []E,.
veS\ Moo vES

PROOF By Proposition 7.1¢ ; = €, 2¢rCr¢;. So
hpRz = 27;’1(15) (271’)7;’2(13)6];@];
= Hws) e C 2 pCRC;
=21k (Zﬂ)rZ(k)E(a)s)71C(a)5)6136‘];_1€;l€;3'h12R];Q:I:thRFhF*RF* .

As in the proof of Corollary 7.17%r = er+ = e, ande = e except for a finite number of
quadratic extensionk. Therefore Corollary 7.18 follows from Corollary 7.17. O

We now specialize to the cake= Q andS = Mi... Supposé = Q(+/do) Wheredy # 1
is a square-free integer. Then=1,r, = 0, hy = 1, ¢, = 2 and&; = 1. Itis easy to verify
that 2-"1+724D ¢ (wg)~Le? = ¢(ws)~t and 2- (147241 2110 (27)2(0 g (19) 1 both coincide
with ¢4 (dp)~1 as defined in the introduction. Theoeé Theorems 1.1 and 1.2 are special
cases of Corollaries 7.17 and 7.18.

8. Theomegasetsandtheir properties. The main purpose of this section is to verify
Condition 6.12. Let € M; andx € ka)s. The functionZ, , (s) is defined as an integral
overGy, /G2, and our strategy is to replace this by an integral over a carefully chosen set
¢y € Gy, called the omega set. We impose on the omegas3et,, several conditions
derived from an analysis of Datskovsky’s calculations of standard local zeta functions in [3].
Once we show that these conditions can be satisfied, Condition 6.12 is an almost immediate
consequence. Thus the bulk of the work in this section is devoted to finding the omega sets
and verifying their properties.

For the sake of Condition 6.12, it is enough to assume that 9t \ So. However,
verifying Condition 6.12 will not be our only application of the existence of omega sets. We
shall also require them in certain proofs in Section 4 of [17] and, for this, greater generality
will be needed. Thus we shall allowto be any finite place of and consider orbits of types
other than three types (rm rm)*, (rrm ur), and (rm rm rm) at dyadic placess Miqy.

Before we begin, we shall record as a lemma a simple observation which will be useful
both later in this section and in the next.

LEMMA 8.1. Supposethatv € I, x € Vksvsandy € Gr,x. If [P(X)]y = |P(Y)]v,
then Zy (P, 5) = Zy (@, s) for all & € S(Vy,).
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PrROOF Examining the second equation in Definition 5.22 we see, in light of Proposi-
tion 5.23 and the hypotheses, that every factor in the definition of the local orbital zeta function
remains unchanged when we repladay y. O

For eachr € V°we choose an element € Gy, ) such thay,w = x andg, satisfies
Condition 5.8 ifk,(x) # k,. From this choice we obtain an isomorphigi : G;kv —
Hy,, whereH, , is defined by (5.1).

DEFINITION 8.2. Aset2,, € Gy, is called aromega set for x if it has the following
properties:

(1) 2:¢0x = (Gr,x) N Vo,.

(2) Kvgx,vggxl(Hx (91,) = -Qx,v-

(3) Ifg1.92 € 20, h €G3,y andgy = goh, thenh € 6, (H, 0,).

(4) If g € 2., then|x(g)ly < 1with equality only ifg € K,.

Below we give omega sets for representatives of each of the orbit types that we require.
These include the six orbit types possible under the restrictiomthatSo, as well as the
orbits of type (rm) and (rm ur). For the orbits of type (sp), (in) and (rm) it will be convenient
to usex = w as the orbital representative instead of the standgrdThis is permissible for
the purpose at hand by Lemma 8.1. For the orbits of types (sp ur), (sp rm), (in ur), (in rm) and
(rm ur) we shall use the standard representatives.

If p(z) = z%2 + a1z + a2 € ky[z], then we shall letx = {1, a2} be the set of roots of

p and writee(o) = (1 — a1) (a column vector irkv(w,,)z). If I =1y Ip) is any such
column vector, then we sét|| = maxX{|/ilk,(w,), [2lk,w, }- Lets be asin (3.19) for the field
ky andn(u) = (n(u1), n(uz), n(us)) for u = (u1, uz, uz) € k3 orn(u) = (n(u1), n(uz))
foru = (u1,uz) € ky x ky. Let g = kn(u) be the lwasawa decomposition gfe Gy, -
In Section 6 we described the form of the polynonp&t) for each of the standard orbital
representatives. It will be convenient here to add the assumptionthatO whenevew is
not dyadic, as we may.

For the index (sp) with orbital representative= w we define

(8.3 ¢ =1{g =«tn() | t;j =1fori, j =1 2andgx € Vp, }.
For the indices (in) and (rm) with orbital representative- w we define
(8.4) ¢ =1{g9g =«tn(u) | t11=1t12=1andgx € Vp,}.
For the index (sp ur) with orbital representative= w, we define

¢ =19 = (91,92 g3 |1detgy], = Lorg,*,

(8.5)
|det(gp)| =1orgy,, gx € Vo,}.

For the index (sp rm) with orbital representative= w, we define

(8.6) 2v0=1{9=(91,92 93 |Idetig)]y =1fori =1,2, gx € Vp,}.
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For the index (in ur) with orbital representative= w, we define

(8.7) 2x0 ={9 = (91,92 I1detg)l; =1 llgre@) =1, gx € Vo }.
For the index (in rm) with orbital representative= w, we define
(8.8) 2:0=1{9 = (91,92 |1detg)l; =1, gx € Vo,}.

Finally, for the index (rm ur) with orbital representative= w, we define

(8.9) Q20 =19 = (91, 92) |1detgp)lz, = Lorg, ", gx € Vo,}.

In every case we shall write

(8.10 2, =19 € vl lx(@h =1).

PROPOSITION 8.11. The sets defined by (8.3)—(8.9)have properties (1), (2) and (3)
of Definition 8.2.

PROOFE If k € Ky, thenkVp, = Vp,, |detik)|, = 1 and|xe|| = |le]| for any vector
e. This makes it clear thak, 2, = £, in all cases. The rest of the argument will be case
by case, but we make two observations which will be used repeatedly. First, it follows at once
from the definition in every case th&, ,x € Gy,x N Vp,, and so to establish (1) we need
only prove the reverse inclusion. This will be done if we can show that gjvenGy, with
gx € Vo, we can findh e Gy, such thatgh € £2,,. Secondly, any: € Gy, may be
expressed as = g s (1;)¢; ", in the notation of (5.2)—(5.6), aride 6, *(H, ©,) if and only
if all the components of, are units.

Consider the cases (sp), (in) and (rm). We may assume, for simplicityy {Hads been
chosen to be the identity. Take e G, with gx € Vp, and letg = «(g)t(g)n(u(g)) be
its Iwasawa decomposition. Let(r,) be as in (5.2) or (5.4). By choosing = (t11(g) %,
112(9) "L, 121(9) 7L, 122(9) 1) in the first case and = (r11(¢g) L, r12(¢) 1) in the second, we
may arrange thags, (t,) € £2, ,. This proves Property (1). Moreovergfe 2, , and all the
components of, are units, then commuting (z,) past thel}, andN, factors in the lwasawa
decomposition and absorbing it into tl&g, factor shows thays,(zx) € £2.,, also, which
proves Property (2). For Property (3), observe that in the lwasawa decompositidfy, the
factor is unique up to multiplication of its diagonal elements by units. Thys,ifj, € 2,
andgq, = goh with b = 5, (t,), thens, (tx) € H, 0,. This proves Property (3).

We next turn to case (sp ur). Let(z,) be asin (5.3) ang € Gy, with gx € V,. Note
that

| detsxl(tx)|v = | Nkv(x)/kv(tll)lv

and sincek, (x)/k, is unramified, this may be any even powergf The same holds for

| detsy2(7x )|, and the determinants of the componentggfx(tx)g;l are the same as those

of the corresponding componentssgfz, ). It follows that we can arrang@(gxsx (tx)g;l) €

2, , for a suitable choice of, and this proves (1). W, (t,) € H, o,, then the determinants of

each of its components are units and this makes (2) obvious. Also, this argument shows that
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if 91,92 € 250, h = gysx(tx)g;t andg, = goh, thenrny andrp; are units, which implies
thats, (t,) € H, o0,; hence (3).

The case (sp rm) is very similar, with the one difference that stp¢e)/ k, is ramified,
| detsy; (:)], can be any integer power gf.

Next we treat (in ur). Ley = (g1, g2) € Gy, With gx € Vp, ands, (,) be as in (5.5).
Note thate(«) is an eigenvector for the first component/of= gxsx(tx)g;1 with eigen-
valuery1. So if h = (ha, h2), then|lghie(@)|l = |11l llg1e(@)ll. Also, |detlgih1)l; =
| det(gq)| 4 | t11112| % We are free to choose the péif1, t11712) € 123 arbitrarily, and so there
existsh € G, with gh € 2, ,, proving (1). Ifg € 2, andh € Hgfxl(Hx 0,), thenty1 and
t12 are units, and stighe(a)|| = |lge(a)| and| de1(gh)|,;v = |det(g)|,;v, which proves (2).
Also, if g1, g2 € 2y, h = g sx(t)g7rtandgy = goh, then| nilg, = |naalg, = 1, which
implies thath € 6, (H, 0,) and (3) follows.

Finally, Cases (in rm) and (rm ur) are very similar to Cases (sp rm) and (sp ur). Note that
if 5:(12) is as in (5.6), themdets,1 () 1z = INg (/i (10, In Case (in rm)ky (x) /ky is
ramified, and so this takes every valug i |;. . In Case (rm urk, (x)/k, is unramified, and
So| detsxl(tx)|,;v takes every value it(l?vx)2|,;v. The rest of the argument is identical to that
in the cases already mentioned. O

Using only Parts (1), (2) and (3) of Definition 8.2 we can prove the following.
PROPOSITION 8.12. Let ¥, , bethe characteristic function of £2, ,. Then

Zea(Pu, $) =/ XD o (g)d g,

Gy

PROOE Since
dgv =d§vd><t~v, dgf\f,y =d§;,vdxt~u, dgv be,vdg:c,vdg;,va

dj, = bydyg’. ,dg’ . So the right hand side of the above identity is

(8.13 bx,v/ Ix(g;,wl‘i;(/
Gkv/GZkv Gy

Wx,v(g;,vgﬁé,v)dgié,v)dg;,v :
k

By (2) and (3) of Definition 8.2, ,(g% ,9%.,) is non-zero if and only iy, , € 2.,
andg? , € egxl(Hx 0,). Since we chose the measutg; , so that the volume of this set is

one,

/ Wx,v(g;,vg;c/,v)dg;c/,v
qu

is the characteristic function @2, ,G? /G, = Gr,xNVo,. Therefore, (8.13) is

b / X0 D Poolgl g .
Gkv/Go

xky

which is the definition oZ, ,(®y 0, s). O
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Before we verify Part (4) of Definition 8.2 it will be convenient to prove three lemmas.
First note that we may let GR),, act on the space of quadratic polynomialskifiz] by
regarding such polynomials as the inhomogeneous forms of binary quadratic forms. With this
convention, ifp(z) = z2 + a1z + az € ky[z] andg = a(t1, t2)n(u), then

gp() = 22% + 1112(2u + a1z + 13 (u? + agu + az) .

LEMMA 8.14. Supposethat p(z) is an Eisenstein polynomial. Letr € k), u € ky,

i = 0or 1and suppose that 7r/a(t, t ", n(u) p(z) € Oylz]. Thent € OF andu € O,.
Moreover, ifi = 1,thenu € p,.

PrROOE We haveyrf)t2 € Oy, which implies that € O, sincei = 0 or 1. Since
t’znv*" U2+ aw +az) € Oy, (% +awu+a) € t27t1’;(’)v. In particular,u2 +aju+apz € Oy,
and sou(u + a1) € O,. If u ¢ O,, then ordu + a1) = ord(u) and we reach a contradiction.
Henceu € O,. The order ofi? + a1u + ao is either 0 (ifu € O)orl(ifu epy). Ifi =0,
this forcest € O and ifi = 1 it forces firstt € O and theru € p,.

LEMMA 8.15. Supposethat p(z) = z2 + az with —az € O\ (0)?, if v ¢ May, Or
that p(z) is an Artin-Schreier polynomial, if v € Mqy. Letr € kS, u € ky, i = —=1,00r 1
and supposethat w/a(z, t 1 n(u) p(z) € Oylz]. Theni = 0,1 € OX andu € O,.

PROOFE The conditions imply thaztrl’;t2 andt*zn;"p(u) are integral. Since-1 <i <
1,t € O,. Thusp() € 7, 10,, which implies thatu(u + a1) € 7,10, If u ¢ O,,
then ordu) = ord(u + a1), and so or¢u(u + a1)) is a negative, even integer. This is a
contradiction, and se € O,. The reduction of the polynomiai(z) has no roots irO, /p,
and thusp(u) € O forallu € O,. It follows thatr?z! € OX. This gives = 0 andr € OX,
as required. O

LEMMA 8.16. Letx bea standard orbital representative and suppose that y € Vo,
liesin the orbit of x under Gg,. Then |P(y)]y < |P(x)ly.

PROOF.  If ky(x) = ky, then|P(x)|, = 1andP(y) € O, sincey € Vp,. The statement
follows in this case. We now assume thatr) # k,. Let F) (v1, v2) = bov§+b1v1v2+b2v§
and consider the polynomialz) = z2 + b1z + bob>. Sincey € Vo, bo, b1, b2 € Oy, and so
r(z) € Oy[z]. The discriminant of (z) is equal to the discriminant @f,, and so ifg is a root
of r(z), thenB € ky,(y) = ky(x). It follows thatO,[B] € Ok, () and hence thak (y)O, <
Ak, (x)/k, - But the standard orbital representative was chosen se\fhat x, = P(x)O, and
the statement follows in this case also. O

PROPOSITION 8.17. The sets defined by (8.3)—(8.9)have property (4) of Definition
8.2. Consequently, they are omega sets.

PROOF If g € £2,,,thengx € Vp,,and sdP(gx)|, < |P(x)|, by Lemma8.16. But

|P(gx)lv = [x(9)]o| P(x)|» and it follows that x (¢)|, < 1. This establishes the first part of
(4) in Definition 8.2.
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We now have to show that if € 2!, theng € K,. The orbital representatives
have already been fixed in (8.3)—(8.9) and tia¢gation introduced there will be used without
comment below.

We begin with the Cases (sp), (in) and (rm). et Q)})v; we have to show that € K.
By (2) of Definition 8.2,9},1) is left K,-invariant, and so we may assume that tn(u).
Sinceg € £2,, we havery = 112 = f21 = t22 = 1 in Case (sp) and1 = 112 = 1 in Cases
(in) and (rm). The assumption thpt(g)|, = 1 implies that| r31¢32/, = 1 in Case (sp) and

that| r21¢22|, = 1 in Cases (in) and (rm). In Case (sp) we have

. 1 Uz u3 uau3
(818) gw = <t31 <ul ulu2> 132 (M1M3 1 + uiuu3 ’

and in Cases (in) and (rm) we have

o ua uus
(8.19 gw—(tzl(ul Niv/kv(ul)>’t22<“1”3 14+ Ng g, wduz) )

Leta = ord, (r31) or ordk, (t21). Then, by assumption, ofd#sp) = —a or ord, (t22) = —a.
Consider Case (sp). Lat = nju; fori = 1,2, anduz = 7, “u3z. Thengw € Vp, if and
only if

Ty, Uy, up, U3, w ‘uyip, wo %uiuz, w Yupuz, w, (14w Yigious)

are integral. Sa > 0. We assume > 0 and deduce a contradiction. Suppagés not a
unit. Then

m, ‘itz = (mwy “uzuz)iiy = 0 (py) .
Then 147 “uqiouz is a unit. This impliesr, 1+, “uguzu3) ¢ O,, which is a contradic-
tion. Souy is a unitand similarlyz, 3 are units also. Then the orderof“ (1+m, “u1iou3)
is —2a, which is a contradiction. This implies= 0. Thenu; € O, fori = 1, 2, 3. Cases (in)
and (rm) are similar usinga, u§, uz in the places ofi1, u2, uz above. The only difference is
that we consider elements @, .

Next we treat the Case (sp rm). Suppgse: (g1, 92, g3) € 21 ,. Then|detg;|, = 1
fori = 1,2, 3. We may assume that, g,, g3 are lower triangular; Note thdt,,(z,1) =
p(z). S0Fgy,(z,1) = (detgy detg,)g3p(2) is integral. Since det,, detg, € O, we have
g3 € GL(2)p, by Lemma 8.14.

In this case, we can regatd as Af? ® Aff? ® Aff2. Instead of the third factor, we can
use the first and the second factors to make equivariant maps simitar ithen because of
the symmetry of our element,, we havegq, g, € GL(2)p, by Lemma 8.14 again. This
concludes the verification in this case.

Now we consider the Case (sp ur). Let= (g1, 92, 93) € 2y @and|x(g)ly = 1. In
this case there are four possibilities as follows:

(A) |detgq|, = |detgyy =1,

(B) Idetgyly =1, |detgaly =g,

(C) Idetgsly =g, ", |detgaly = 1,

(D) |detgaly =g, ", |detgaly = qu.
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In these casesdetgs|, = 1, qv, qv, 1, respectively. The argument in Case (A) is similar to
that used in Case (sp rm). In Case (B}, (z, 1) = myg3p(z), and deyz = 7, L. Since
Fguw,(z, 1) is integral, this corresponds to the case- 1 in Lemma 8.15. Therefore this
cannot happen. Cases (C), (D) are similar toe0@) because of the symmetry (considering
an equivariant map using the second®Afictor in Case (D)).

Now we consider the case (in ur). Suppose that (g1, go) € Q)},U. This implies that
|det(gq)l;, = |det(gp)], = 1. We have

Fgx(z,1) = N;;v/kv (detg1)gop(2)

and, since Wv/kv(detgl) is a unit by assumptiory, € GL(2)p, by Lemma 8.15. Since
2,y is left K,-invariant we may assume thap = 1 and thatg, is lower triangular, say
g1 = a(t11, t12)n(u1). Note that

(8.20 gle«x):( 1 )

t12(ug — or1)

and this is a primitive integral vector. Computation gives, Hw, = (M1, M>2), where

M= (.0 11117
tT 11112 N/zv/ku (112) [Tr/zv/kv (u1) +ail )’

(8.21)
My — Nz, k, (t11) natf(ug + a1)
fit12(ur +a1)  Np o (112)m(uy, p)

with
m(ui, p) = af —az+a1Try (1) +Np (1)
and both these matrices must be integral. kLet= u; — @1. Then Tiv/kv (1) +a1 =
Tr, Jk, (1) and
mug, p) = N (1) —Trp . (eaity)
and soM1 andM> are integral if and only if
n, ur, Ng o @2)Trg o (i), Np o (12 [N (1) = Trg o (agin)]

are integral. Sincery € O,, it follows thatu; € @,. Alson1 € O, and it remains to
show thatt11 andr12 are units. From the definition &2, ,, we know that]t11t12|,;v = 1. Let
ord,;v (t11) = i; we assume that> 0 and deduce a contradiction. We have,;g(rqz) = —
and, from (8.20), we conclude that gvrdzl) = i. Thus we may writé; = 715 (11 + u1201),
whereit11, it12 € O, andiing + 1201 € OF. Then

- 2i(-2 o 2
Ni,/x, (11) = 73" [i]y — aaigis2 + azitfy] |
Tre, i, (1) = my[2i11 — agiga]

Trp y, (@1iin) = m[—aiin + (af — 2ap)ii1z]
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and, since org(N,;v/kv(tlz)) = —2i, it follows that

©.22) —ayitng + (a? — 2ap)it12 =0 (P;) ,
211 —agi12=0(p;) .

Regarding this as a linear system fan1, i112), the determinant of the coefficient matrix is
—af+4a2 = —P(x). Thisis a unit by the choice af, and so (8.22) implies th&fi11, i112) =
(0, 0) (py). This contradictsi11+ 1001 € @5, and sa = 0. This completes the case (in ur).

Next we must deal with the case (in rm). Suppose that (g1, 92) € Q)}’v. By
arguments similar to those in the previous case, using Lemma 8.14 in place of Lemma 8.15,
we see thay, € GL(2)p,. Hence we may assume thgt = 1 and thayy; = a(f11, t12)n (1)
is lower triangular. Therig,, Dw, = (M1, M2), whereM1 and M, are given by (8.21).
Sincert, € (5;, Mj andM> are integral if and only if

(8.23 n1, wur, Ng o @[T o (u1) +ail,  Np o (t12ym(u, p)

are integral. Let orpv (111) = i; we shall again assume that- 0 and derive a contradiction.
We have orgv (t12) = —i, so that OFQU(N,;U/kU(tlz)) = —2i{. Thus T;;U/kv u1) = —a1 (pﬁi)
and, sincep(z) is an Eisenstein polynomial, it follows that,;‘[/rkv (u1) = 0 (py). Also,
m(u1, p) = 0 (p?') and, using our conclusion aboutTr, (u1) together with the fact that
p(z) is an Eisenstein polynomial, we deduce th%/lk!) (u1) = az (pﬁ). But ord,, (a2) = 1
and ordU(N,;v/kv (uy)) = ZOr% (u1) is always even, so this last congruence is impossible.
This contradiction completes the case (in rm).

Finally we must deal with the case (rm ur). Suppose that (g4, go) € Q)},U. There
are apparently two possibilities: eith|allet(gl)|,;v = |det(gy)], =1 or|de1(gl)|,;v =gt
and|det(g,)|, = ¢g,. However, Lemma 8.15 shows that the second possibility cannot occur
and, moreover, that, € GL(2)p,. Thus we may assume, as usual, ihat= a(t11, t12)n(u1)
andg, = 1. The matrices//; and M> given by (8.21) must be integral and, singgy, is
a unit, this happens if and only if the quantities enumerated in (8.23) are all integral. Again
assume that ogd(r11) = i and thati > 0. Then Tg , (u1) +a1 =0 (p}). If vis dyadic,
thena1 = —1, and so this congruence force%ﬂv (u1) to be a unit. However, sindé,/kv
is ramified,u§ = u1 (p,), and so T;gv/kv(ul) = 2u1 = 0 (py), which implies that T,;rv/kv(ul)
is not a unit. This contradiction completes that proof in the dyadic case. Now assumesthat
not dyadic. Them1 = 0, and so T,{U/kv (11) is not a unit. We can writey = u11 + u12/my
with u11, u12 € O, and a suitable choice of uniformizer,. Since T;v/kv (1) = 2u11,
we conclude thati11 is not a unit and hence that is not a unit. Howeverm(u1, p) =
—az + N,;v/kv (1) =0 (p’l')) anday is a unit. This contradiction completes the proof in the
non-dyadic case. O

Having completed the verification th&#, , is an omega set in every case, we can now
quickly achieve the aim of this section.

COROLLARY 8.24. Condition 6.12holds. Moreover, ay ., = 0if n isodd.
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PROOF Letv € M\ Sp andy € V% From Lemma 8.1, Proposition 8.12 and the
choices made above we have

(8.25 Byu(s) = Zuo(@o0,5) = / X (@I dg, .

2xv

wherex is the representative we have chosen here to represent the oybitetV; = {g €
20 11x(9)]y = ¢v ). From (8.25) we obtain

oo
Eyu(s)= Y vol(Vj)g, 7*.

j=—00

However, we havé/; = ¢ if j < 0 from (4) in the definition of an omega set. Thus the sum
really only extends from O teo anda, ,, = vol(V,) forn > 0. This makes it clear that
ayv,n > 0foralln. Sincey is the square of a rational character, we héye= ¢ if n is odd,
and this gives the last statement. Finally, again by (4) of the definiipe; .Q)}’v = K,, and
S0ay 0 = VOI(Ky) = 1. O

9. The estimate of the local zeta functions. The purpose of this section is to verify
Condition 6.13. So we assume that 9t \ Sp andx € Vksvs. Our method will be to estimate
E »(s) by expressing it as an integral over a domdif, adapted to the purposes of this
section as the omega sets were to those of Section 8. Throughout this sefiargnfd 72
are distributions depending anand 7,1 = C, Ty> for some constant, # 0, then we shall
write Ty1 o Ty2. After working with such proportionality statements, we shall appeal to the
results of Section 8 to strengthen them to inequalities. Thus the results of this section depend
logically on those of the last.

We introduce the following objectg (> 0 in the last equation).

Y= (a1, t)n(u1), a(l, 2)n(u2), n(uz)a(ts, ta)) v € Mgp,
(a(l, t)n(u1), n(uz)a(tz, t3)) v ¢ Msp,
dy = d*td* tad* t3d* taduidusdusz v € Msp,
d*t1d* trd* radurdusr v ¢ Mgp,
9.1
1—1 _ {V |tlv t2: t31 t4€k;<7 ui, uz, u3€kv} Uemsps
’ (y lnekX to,t3€ kX, us €hky,uz €ky} v Msp,
ri |y e Dlintaly =7y veMe,
’ {y € IV [INg /4, ()t213]y =q,’} v¢Msp.

In the above definitiond* 71, du1, etc., are the standard measureskpnk <, k,, or k,, and
dy is thus a measure af, right invariant with respect to the last entry and left invariant with
respect to the other entries.
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LEMMA 9.2. Ifx e Vksvsisaaandard orbital representative, then

/ (g, 0)dgl 0</ fyx)dy
Gi,/GS

x ky Iy

for every f € L1(Gy,x) which isinvariant on the Ieft by the action of elements of the form
(1, 1,1)or (1,«)withk € GL(2)p,.

PROOF.  We begin with the case € Misp. Define

7 = (a1, t)n(ur), a(l, t2)n(uz), g3) } _

t,tp € k), ug,up € ky

(9.3 r,= {;7 € Gy,

Suppose that = w,, wherep(z) = 72 + a1z + ax (recall that all the standard orbital
representatives have this form). We claim tian G, = {1 and that

NGy, =1(91.92.93) | 971+ a19:119i12 + azg2, # 0, i = 1,2}

The elements of the grou@}, have the form described in Lemma 3.27. If an element
a(l, Hn(u) is of the formA , (c, d) in (3.26) then

1 0\ (¢ —d
tu t) \axd c—ad)]

Therefore,c = 1 andd = 0. This implies that', N GYy, = {1k Since the last entry in
elements of, is unrestricted, we need only to show that the equation

1 0\ (mu1 mi2\ [ c —d
@4 (u’ t) <m21 mzz) - <a2d c— a1d>
is always solvable for # 0, u’ andc andd satisfyingc? — aicd + a»d? # 0 provided that

m3, + aymiimiz + azm?, # 0 and the matrixm;;) is non-singular.
If (9.4) holds, we must take = m11 andd = —m12 and then the equation is equivalent

(mll m21) (u’> _ ( —azmi )
mi2 mop2) \t ) \mir+aimiz)’
which is solvable for andu’ since the coefficient matrix is non-singular by hypothesis. If
t = 0, then we have/m11 = —aom12 andu’mi2 = mi11 + armi2. Multiplying the first
equation byn12, the second by:11 and subtracting, we obtajm§l+a1m11m12+a2m§2 =0,
contrary to hypothesis. This proves the second claim.

Let diy = d*t1d*todurduzdgs. Thend;y is a left Haar measure on the (non-

unimodular) group’,. From what we have just shown, it follows th@t, \ I, - G5, always
has measure zero. Thus we have

/ flgh ,dg, = / flgh,x)dg,
Gry /Gy, Iy-GSy, /Gl

o« | flyx)diy
I

to

(9.5)
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forall f € LY(Gk,x). Now if ¢ € LY(GL(2),) is left invariant under G2)¢,, then the
Iwasawa decomposition implies that

/ w(h)dhCX/w(b)drb,
GL(2), B

whereB = {n(u3z)a(ts, 14) | t3,14 € k*,u3 € k} andd,b denotes the right Haar measure
on the groupB. It is easy to check that.b = d*t3d*t4duz, and applying this in (9.5) we
obtain the conclusion.

Finally, almost identical arguments apply in the case wliég, Vi,) is not split and
we shall not repeat them. O

PROPOSITION 9.6. If p(z) = z2 — z, then we have

Euyw(s) = (1— g, @)1 — g, @2)71,

ProoF.  Our work will be simplified if we compute with the elememt = now,
with np = (1,1,'n(1)) or (1,’n(1)) instead of with the element,. By Lemma 8.1,
Zw, v(Dv,0,5) = Zx v(Pv,0, ), and so this is permissible.

Suppose that € Msp. Then, by Lemma 3.27, elements@f, have the form

€11 C11—C12) (cC21 C21—C22
(5 0 (5 ™))

wherex is determined by the other two entries. Note that the conjugatiomplgoes not
change the first two components. Let

= (n(uy), n(uz), a(t1, 12)n(u3)),
(9.8) dp = |17 1] yd* nd* todurduzdus ,

S={ultr,2eky, ut,uz,us € ky}.

From (9.7) and the Iwasawa decomposition it follows thatSG?, = Gk, anddg
dkdpdg’ . Sinced, o is Ky-invariant,
Ex,v(s) = bx,v/ |X(g;,v)hv)(pv,O(g;,vx)dg;,v
kv/G;kU

Cx/SIx(u)lf@v,o(/Lx)du-
Computation gives

_ t1 O ; uz —u1—ux+uur2+1 wup—1
rr=1\o o) up — 1 1 :

Introducing the variables

up=trw1—1), ur=to(up—1), uz=rto(uz—uy—uz+uiup+1)
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we havediiy dit ditz = | t2|3dusduzdusz. So

- — - n 0\ [(us u _
Bras) o / |0l Y ral? Z‘Pu,o( (3 0>,(ﬁ2 t;>>dxtldxt2du1duzdu3

= / | 1|27 )2 2 d* 11d " 1
[t1]v,lt2lv <1

= 1—gy @)t - gy @)1,

But we know from Condition 6.12 that the constant tern&ip, (s) is 1, and sa=, ,(s) has
the stated value. Whemn € 9, the calculation is a simple variation on the above and we
shall not reproduce it here. O

PROPOSITION 9.9. Letv € Mspand suppose that x isthe standard orbital represen-
tative for an orbit with k, (x) # k. If

Ly(s) = 1481 — ;279 g 2070 (4 = 3¢, 2070 4 g 7H07Y)
then & v (s) <X Ly(s).

PROOF The standard orbital representativeris= w, for some quadratic polynomial
p(z) = z%+a» which is irreducible ovek, (we may assume thai = 0 sincev ¢ May). Let
v.dy, Iy andI} be asin (9.1). By Definition 5.22 and Lemma 9.2,

Eyu(s) = Zy v(Py,0, s) = Cx/ |X(V)|f;¢v,0(7/x)dy
Iy

for some constar®’, # 0. Sincel’, = ]_[j FJ,

o

Een() =Cr Y g, / Dyo(yx)dy
0 rj
]_

]

which implies that

(9.10 Ax,v,2j = Cx/j Py0(yx)dy
I,

v

forall j > 0. (Recall that, ., , = O'if n is odd by Corollary 8.24.)
Computing, we find thatx = (M1, M2), where

M — 0 tot3
Y= \us nn@r+u) )

, = i4 12(t4u2 + t3u3s)
t1(tauy + t3u3) m(t, u)
with
m(t, u) = t1t213(u1 + u2)ugz + t1t21a(uiu — az) .
If we makers, ..., 74 units anduy, . . ., uz integers, thervx € Vp, and the volume of the set

{y 1tj € OF,uj € Oy} underdy is 1, and so it follows from this, Condition 6.12 and (9.10)
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that

1= dx v,0= Cy / o ‘Pv,o()/x) dy > Cy.

v

Therefore, from (9.10) again,

(9.11 ax,,2j = /]. ¢v,0(7/x) dy
I

forall j > 0.
We introduce new variables defined by

MN=ts, r=t3, 3=113, [4=1"1120304.

Then

nh= fflfglf4 , = t_flt_glﬁl , 3= t_lltzf3t_471 , t=1n.
Note thatr, ..., 74 are monomials ofy, .. ., 4. So they correspond to a latticeZrf. Since
the correspondence between ... , 14) and(f, . . . , 14) is bijective, this lattice must be uni-

modular. This implies that
(9.12 d*nd*tod*13d*ta = d*11d ™ tod* t3d* t4 .

Suppose thagx € Vp,. Thenty, 12, 13 € O,. Since|P(x)|, is the maximum of P(y)|, for
y € Gi,x NVo,, [Py = |[P(yx)ly = |t_4|§|P(x)|v, which implies thaty € O,. The

conditions that th€2, 2) entry in M, and the(2, 1) and(1, 2) entries inM> are integers may
be expressed a¥’(u1, uz, us) € OE where

hiots titats O il it 0
N=| nus 0 ne3 | = t_z_lt_4 0 13
0 rot4 toa3 0 n'u n

This matrix factors asV = D;'CD,, where we have seb; = diagn, 72, 73), Dz =
diag(zs, 14, 1213) and

1 1 0
C=1|1 0 1
01 1
Let
ui u1
u2 | =CD2 | u2
us us

Then the three conditions are equivalent@, i, u3) € Dloﬁ, which in turn is equivalent
to the conditions

(9.13 i1 € 10, , iy € 120, , i3 € 130, .
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By computation,

_71 - — -
ui ty (U1 +uz — u3)

1 & ntmre— o
up| =5 | iy (01 —iz+ig)
U3 iyttt (—iiy + 2 + it3)
and
(9.14) durduzduz = | ipisis|; tdirdipdiig .

The remaining condition fopx € Vo, is thatm(z, u) € O,. Expressingn(t, u) in terms of
the coordinate$r, 2, 13, ta, i1, 2, ii3) we find that

m(t,u) = (1/&)i; ', iy - Qi iz, it3) — 43az] ,
where Q(iiy, it ii3) = @2 + 5 + i3 — 2(idiz + i1ii3 + iiziz). Sincev ¢ Mgy and
P(x) = —4ap, we haven(t, u) € O, if and only if
(9.15) O(ity, itz, it3) — 12 P (x) € f1i2i30, .

We claim that at least one 0f1|,, | 73], and| 72|, must be greater than or equal|ta|,.
SUppOSG to the contrary th|a_ﬁ.|v: |t_2|vv |t_3|v < |t_4|v- Thenmllvs liez]y, lu3ly < |t_4|v also,
by (9.13), and S0Q (i1, it2, it3)|, < | a2, . Furthermore, since € O,,

- - - -3 .3 -2 -2
| tatatsly < |talyq, ™ < |talyq, <,

and it follows from (9.15) thatis|?| P (x)|, < | fa|2¢; 2, and sq P(x)|, < g, 2. However, by
the choice of the standard orbital representativ@éy)|, > qv_l and we have a contradiction.
This establishes our claim.

Next we claim that 1]y, | 72|y, | 73], > |fa|2¢; . Suppose to the contrary that one of
these quantities is less tham|2¢, L. In light of the symmetry between the roles of the
pairs (11, it1), (12, i) and (3, u3) we may suppose without loss of generality that, is
the greatest off1,, | 72|, and| 3|, and that| 71|, < |7l|2¢; . By the previous paragraph,
| #3ly > | ialy. Dividing (9.15) through byZ we obtain

O(f3 tia, 13 Mo, 73 Vi) — (i3 "a) 2P (x) € 13 '01520, C 13110, .
We haveiiy /13 € (11/13)O,, and so we may drop the terms involviag/z3 to obtain
(9.16) (73 Mz — 13)? — (55 ' 1a)* P (x) € B3RO, .
Now
G5 i ? Py = 173,21 ial5qy ™ > 173l 2 il = 173l Yl
and hencer; *(ii2 — it3)|2 = | (73 “1a)? P(x)|,. Thisimplies that 7, *(i2—it3)|2 = | P(x)]y >
g, and so org| (7, *(iiz — ii3)) < 0. By (9.16),
(75 iz — #2))% — P(x) € i; 30, C i °hO, S p5.
These last two facts allow us to apply Hensel's lemma to concludePthat (kvx)z, which

contradicts the assumption thai(x) # k,. Thus| 1]y, | 22|y, | 3]y = |f4|§q;1, as claimed.
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Changing variables ta1, 2, 13, 14, it1, 2, i3) in (9.11) and using (9.12), (9.14), we ob-

tain
ax,p,2j < /|fzt_gt_glljldxt_ldxt_zdxfgdxt_4dﬁ1dﬁ2dﬁ3
=q% / | 2ot3); Yd > 11d ™ tod ™ taditadiiodins
where, on the domain of integratiofi; |, < ||, and 1> ||, > |f4|§q;1 = qv_zf_l for

i = 1,2, 3. Note that 74|, = ¢,/ on I/ . Carrying out the integration with respectitg, ii»
andus we get

ax,v,2j = qgj/|t_l|vdxt_ldxt_2dxt_3
< qff'(l—qv—l)—lf o, d nRds
lZ|f3‘vs‘t2‘v2(Iv /
<292 (2j +2)?
=8¢%(j +1)2.

Note that the volume of the sey™/ 3 ' 710 is 2j + 2 and(1 — ¢; 1)~ < 2. PutB; (v) =
842 (j + 1). Using the formulas

[’}
qu—Js — qv_s(l_ qU—S)—l’
j=1

o0
(9.17) gy =g, A-q,72,
j=1

o0
3 %47 = 4 A - )7,
j=1

valid for Re(s) > 0, we obtain
o
Y BjWa, Y =Ly(s) - 1,
j=1

valid for Re(s) > 1, whereL,(s) is given in the statement of the proposition. This completes
the proof. O

PROPOSITION 9.18. Letv € Mj, and suppose that x isthe standard orbital represen-
tative for an orbit with k, (x) # k. If

Ly(s) = 1+ 41 — g, 267724 267D (2 — g 726Dy
then & y(s) <X Ly(s).

PrROOFE The structure of this proof will be very similar to that of the proof of Propo-
sition 9.9, and so we shall abbreviate somewhat. We have w, for some irreducible
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quadratic polynomiap(z) = z2 + az € ky[z]. Lety, dy, I, andij be as in (9.1). Arguing
as in the previous proposition we obtain the inequality

©.19) arazi = [ Protyndy
Iy

forall j > 0.
Calculation givey'x = (M1, M>), where

Me = 0 tfl‘z
Yo\ N 0T ) )

My = 13 15 (t3u + touz)
t1(t3u1 + t2uz) m(t, u)
with
m(t,u) = Ng (1) Trg o uuz +13Ng o (1)[Ng (1) —az].
We introduce new variables defined by

n=nt, f2=t3, f3="1t3Np , (11).

Then
1= fi“fglfg, to = t_zt_glN];U/kv(t_l) , I3=1.

Since we are dealing with coordinates in two different fiekdsandk,, a small digression is
required to calculate the relationship betwekftid*i,d 3 andd*r1d* tod *t3. Let us fix

an elemenp e kX which satisfiess® = —p. Foru € k,, we defineu™ = u + u® and

u™ = (u—u’)/B. Bothut andu~ lie in k, and sincex = (1/2)(ut + pu~), u™ and

u~ serve as, coordinates fok,. We use this notation replacing by other letters. The
measure corresponding #b;" dt; is invariant under addition and hence there is a constant
C,, depending only o®, k andv, such that

difdt;

d*t1=Cp—m——.
"ING, i ()l

We also have N ,, (1) = (/D)% — B2(1;)?] and a calculation gives

A, 1y 12, 13)

— =|6N; (D,
At 17 12, 13) ko k2T

v

so thawt; di; d* t,d*13/| Nz, /i, (1o = dtfdi] d*tad*t3 /| Nz, /&, (0D ]o- Multiplying both
sides byC, we obtain

(9.20 d*t1d*trd*t3 = d™ t1d ™ tod *t3.
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Suppose thagx € Vp,. Theni; € O, andz, € O,. Also7z € O, by Lemma 8.16. If
we set

iy = Np  (fuz + tau1
iz = 13Trg . (u1),
then the(2, 2) entry in My is fglﬁz and the(2, 1) entry inM> is 7; ° ii1, and it follows that

uj € t_fov and i € 00O, .

We have
u1 = (1/2)73 iy — g + ii2) ,
up = (1/2Ng . () i1 + it — ii2) ,
and so
uf = t_glﬁz,
uy =iy iy

uz = (1/2Ng . ()~ (@] —ii2) .
Hencedu duy duz = | i3], 2| N Tk (i)l Yt diy ditp, which implies that
(9.21) durduz = | i3], 2N ()], diiadiiy .
The remaining condition foyx € Vp, is thatm(s,u) € O,. In the coordinates

(f1, 12, 13, 11, u2) we have

m(t, u) = (/A5 'Np . (70) =0, iiz) + 5P ()],
where

Q(ity, itp) = it% + it + (@9)? — 2(iait + it itz + igiif) .
Thusm(t, u) € O, if and only if
(9.22) Qi1 itz) — i5P(x) € 2N ()0, .

Note that for anyz € k, we have|a|,;v = |al?. We claim that eithef 7|, > | 73|, Or

|71, = |3l3g, *. Suppose to the contrary thab|, < |7lug, * and|il; < |7l3g, 2 S0
that | 72|; < |73|2g, 2. Thenlislg ,li2l;, < 7312 ¢,2 and so|Q (i1, i2)l;, < |7alig, .

Also
- - =2 2\ 24 —4 = 4 4
Itle}v/kv(tl)|%v S It3|qu |t3|qu < It3|qu *

So, from (9.22)] P (x)I;, < lialgg, * Thus|P(x)|, < g, 2, which is a contradiction. The
claim follows.

Next we claim tha{ 1]z > |7alig, 2. Suppose to the contrary thigh|; < |73l7q, .
Then, from the previous paragraph|; > |7l3. Dividing (9.22) byis we obtain

Oty Yitp, 1y tit) — (75 173)%P(x) € fz—lN,;v 11, O, S 5110, .
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Sinceity /12, i /12 € (f1/12)O,, this inclusion implies that
(9.23) (ty ti2)? — (1,1 73)?P(x) € 1y 710, .
Now
|7 12 PO, = 17207 2 sl 2 > 122l 21y, = 7ol Tl
Hence
|y Ya2)?l;, = 1G5 7)? POy, -
This implies thatiiz/73|2 = | P(x)|, > ¢, * and so org, (iiz/73) < 0. By (9.23),
(3 i2)? — P(x) € 13201120, C 13210, .
Thus|(ii2/73)> — P(x)I;, < |71/, < q, > and s0(ii2/3)% — P(x)], < g, 2. We may now

apply Hensel's lemma to conclude thagx) € (kvx)z, which contradicts the assumption that
ky(x) # ky. Thus| a1lp > |73l9g, 2.

v

Changing variables t¢1, 2, 73, i11, i12) in (9.19) and using (9.20), (9.21), we obtain
Ay ,2j < / | 73152 Ni,/k, ()|, rd* hd* fod* Tadinr dii
= qu / | N];U/kv (t_1)|;ldxt_1dxt_2dﬁ1dﬁ2,

where, on the domain of integratioiz|, < | 2]y, li1l, < |71l = INg , (D], [72] <1
and| t‘3|§qu—2 < |t_1|];v < 1. Carrying out the integration with respectitpandiiz, we get

ax,v,2j = qgj/|52|dxfldeZ
<P grH / i
12|71l >qs 217313
<292 (2j +2),

sincek, /k, is unramified. SeB; (v) = 4¢% (j + 1). Using (9.17), we obtain
o
Y BjWay Y = Ly(s) — 1,
j=1

valid for Re(s) > 1, whereL,(s) is given in the statement of the proposition. O
We define

14 29%72(571) _ 2161;4(.;»1) n 7%76(571)
(25— —2(s—
L—qy @A — g2 D)4

[N S] msp,
(9.24) Ly(s) = _ s
1+6q,°" Y 3¢, """

R e (R Pk

Uemin.
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PROPOSITION 9.25. Let L,(s) beasdefined by (9.24) . Then Z, ,(s) < Ly(s) for all
ve M\ Spandall x € V. The product [, con, s, Lv(s) converges absolutely and locally
uniformly in the region Re(s) > 3/2. Moreover, if L,(s) = Y ;2 olv.nq, ™, thenl, o = 1,
ly,.n = Ofor all n and the seriesis convergent in theregion Re(s) > 1. Thus Condition 6.13is
satisfied.

PROOFE Suppose we have two series

o
Liv(s)=1+) Bi (g, 7", i=12,
j=1

with B; ;(v) > Ofor alli andj. Then

o0
L1y()L2,() =14 Cj(v)g, 7"

j=1
with

j-1

Cj(v) = Bj(v) + B2, j(0) + D BLm(@) Bz j-m (v),

m=1
andsoifweseL,(s) = L1,,(s)L2,y(s), thenLy ,(s) < Ly(s), L2,v(s) < Ly(s) andCj(v) >
O forall .

We have shown that if € Misp, then

Een(@y0,8) = (1 — g, @ D) H1 - g @271
If kU(-x) = kv, and
Ex,v((pv,o, 5 < (1- qv—2(s—1))—3[1+ 29{]1)_2(5_1) — 2]_qv_4(s_1) + 7qv—6(5—1)]

if ky(x) # ky (the right hand side comes from writirig, (s) in Proposition 9.9 over a common
denominator). Multiplying these two gives the valuelgf(s) recorded in (9.24). The case
v € Mjp, is similar.

From their construction, the series o5 (s) in (9.24) have non-negative coefficients and
constant term 1. It follows by inspection that these series converge whgh Rel. The
discussion in the first paragraph shows tBat, (s) < L, (s) forall v € 9t \ Sp andx € Vksvs.
Finally, it is well-known that the serie}_, oy g, ¢, is absolutely and locally uniformly
convergent in the region R® > 1. The usual convergence test for products now shows that
[Tyeom s, Lv(s) has the stated convergence properties. O
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