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ON THE EXCEPTIONALITY OF SOME SEMIPOLAR SETS OF TIME
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Abstract. For a Markov process associated with a not necessarily symmetric regular
Dirichlet form, if the form satisfies the sector condition, then any semipolar sets are excep-
tional. On the other hand, in the case of the space-time Markov process associated with a
family of time dependent Dirichlet forms, there exist non-exceptional semipolar sets. The
main purpose of this paper is to show that any semipolar setB = J × Γ of the direct product
type of a subsetJ of time and a subsetΓ of space is exceptional ifJ has positive Lebesgue
measure.

1. Introduction and preliminaries. Let X be a locally compact separable metric
space andm a positive Radon measure onX with full support. In this paper we assume that
we are given a family of (not necessarilysymmetric) regular Dirichlet forms{(E(τ), F )}τ≥0

onH = L2(X;m) satisfying the following conditions:
(i) For anyϕ,ψ ∈ F , E(τ)(ϕ,ψ) is a measurable function ofτ .
(ii) For anyT ∈ [0,∞), there exist positive constantsλ1(T ) andλ2(T ) such that

λ1(T )E
(τ)(ϕ, ϕ) ≤ E(ϕ, ϕ) ≤ λ2(T )E

(τ)(ϕ, ϕ)(1)

for all τ ∈ [0, T ] andϕ ∈ F , whereE = E(0).
(iii ) For anyT ∈ [0,∞), there exists a positive constantΛ(T ) such that

E(τ)(ϕ, ϕ) ≥ 0 ,(2)

|E(τ)(ϕ,ψ)| ≤ Λ(T )E(τ)(ϕ, ϕ)1/2E(τ)(ψ,ψ)1/2(3)

for anyτ ∈ [0, T ] andϕ,ψ ∈ F (see [3], [5]).
Although it is not essential to treat our problem, we consider thatE(τ) is defined for any

τ ∈ R 1 by puttingE(τ) = E for τ < 0. SettingZ = R 1 ×X anddν(τ, x) = dτdm(x), let

H = L2(R 1;H) = {u(τ, x) | u(τ, ·) ∈ H, ‖u‖H < ∞} ,
where

‖u‖2
H =

∫
R 1

‖u(τ, ·)‖2
H dτ =

∫
Z

u(τ, x)2dν(τ, x) .

LetEα(ϕ,ψ) = E(ϕ,ψ)+α(ϕ,ψ)m and define the norn‖·‖F onF by‖ϕ‖F = E1(ϕ, ϕ)
1/2.

Using this norm, defineF = L2(R 1;F) similarly. Foru, v ∈ F , let

A(u, v) =
∫

R 1
E(τ)(u(τ, ·), v(τ, ·))dτ .
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Identifying H with its dual spaceH ′, we consider asF ⊂ H = H ′ ⊂ F ′. ThenF ′ =
L2(R 1;F ′) can be defined similarly andF ⊂ H = H′ ⊂ F ′. For u ∈ F ′, du/dτ is
considered as a distribution sense derivative ofF ′-valued functionu(τ, ·). Introduce the space
(W, ‖ ·‖W ) and a bilinear formE defined by

W =
{
u ∈ F

∣∣∣∣ dudτ ∈ F ′
}
,

‖u‖2
W = ‖u‖2

F +
∥∥∥∥dudτ

∥∥∥∥
2

F ′
,

E(u, v)=




−
(
du

dτ
, v

)
+ A(u, v) , u ∈ W, v ∈ F

(
dv

dτ
, u

)
+ A(u, v) , u ∈ F , v ∈ W ,

where(du/dτ, v) is the canonical coupling ofdu/dτ ∈ F ′ andv ∈ F . For anyf ∈ H, then
there exist Markovian resolventsGαf ∈ W andĜαf ∈ W such that

Eα(Gαf, u) = Eα(u, Ĝαf ) = (f, u) for anyu ∈ F(4)

whereEα = E + α(·, ·)ν (see [6], [10]).
For a family of functionsK, we denote the family of non-negative (resp. compact sup-

port) functions ofK byK+ (resp.K0). A functionu ∈ F is said to beα-excessive if

Eα(u, v) ≥ 0 for anyv ∈ C0(Z) ∩ W+ .

Denote byPα the family ofα-excessive functions inF . Thenu ∈ F+ belongs toPα if and
only if βGα+βu ≤ u ν-a.e. for anyβ > 0. Given a functionh ∈ H+, put

Lh = {u ∈ F | u ≥ h, ν-a.e.} .
In particular, putLB = LIB . If W ∩Lh∩Pα is non-empty, then there exists a unique function

e
(α)
h ∈ Pα such thate(α)h ≤ u for all u ∈ Lh ∩ Pα . Further this functione(α)h is characterized

as a minimal function ofLh ∩ Pα satisfying

Eα(e(α)h , v) ≥ Aα(e
(α)
h , e

(α)
h )(5)

for anyv ∈ W ∩ Lh. In particular, puteh = e
(1)
h andeB = e

(1)
IB

. If u ∈ W , then there exists a
constantβ > 0 such that

A1(eu, eu) ≤ β‖u‖2
W(6)

(see [4], [7], [8], [10]).
For a relatively compact open setA of Z, define the capacity ofA by

Cap(A) = E1(eA, v), v ∈ W, v = 1ν-a.e. onA .(7)

It is independent of the choice ofv and extended to any compact setB of Z by

Cap(B) = inf{Cap(A) | A is open⊃ B} .(8)
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Further it is also extended to any Borel sets in a usual manner. A functionu is calledE-
quasi-conitinuous if there exists a decreasing sequence of open sets{An} of Z such that
limn→∞ Cap(An) = 0 andu|Z\An is continuous. Since(E, F ) is a (non-symmetric) Dirichlet
form, theE-capacity C(Γ ) of an open setΓ of X can be defined by

C(Γ ) = inf{E1(ϕ, ϕ) | ϕ ∈ F, ϕ ≥ IΓ m-a.e.} .(9)

Also the capacity C(·) is extended to all Borel sets. Further, if we define the capacity C(τ )

relative to(E(τ), F ) similarly, then it follows from (1) that

(λ1(T ) ∧ 1)C(τ )(K) ≤ C(K) ≤ (λ2(T ) ∨ 1)C(τ )(K)(10)

for anyτ ∈ [0, T ]. The next result can be found in [6].

THEOREM 1.1. There exists a pair of Hunt processes M = (Zt , Pz) and M̂ = (Ẑt , P̂z)

onZ such that, for any f ∈ H, their resolventsRαf and R̂αf are E-q.c.modifications ofGαf
and Ĝαf, respectively. Further, if we decompose as Zt = (τt , Xt ) and Ẑt = (τ̂t , X̂t ) into the
motions τt , τ̂t in R 1 and Xt , X̂t in X, then τt and τ̂t are the uniform motion to the right and
the left respectively, that is, τt = τ0 + t and τ̂t = τ̂0 − t .

It is well-known that, for a Hunt processYt on X associated with a non-symmetric
Dirichlet form(E, F ) satisfying the conditions (2) and (3), any semipolar set isE-exceptional,
that is, of zeroE-capacity (see [1], [2], [9]). However, since the space-time processZt moves
to the time direction by uniform motion, the set of the form{τ }×Γ withm(Γ ) > 0 is semipo-
lar (in fact, thin) but notE-exceptional, that is, not of zero capacity relative to Cap. The main
purpose of this paper is to show the equivalence of the semipolarity andE-exceptionality of
the setB of the formB = J × Γ with |J | > 0, where|J | is the Lebesgue measure ofJ .
Different from the processYt , the first hitting distributionpB and the first entry distribution
dB of the setB relative to the processZt is notE-quasi-continuous. But we can see that, for
Lebesgue a.e.τ ∈ R 1, dB(τ, ·) andpB(τ, ·) areE-quasi-continuous anddB(τ, ·) = pB(τ, ·)
E-quasi-everywhere (E-q.e. in abbreviation). The proof of the main result is based upon this
property.

The author would like to thank the anonymous referee for careful reading and valuable
comments.

2. Equilibrium potentials and hitting probabilities. For a Borel setB of Z, define
the first entry timeDB and the first hitting timeσB by DB = inf{t ≥ 0 | Zt ∈ B} and
σB = {t > 0 | Zt ∈ B}, respectively. Using these stopping times, their distridutionsdB and
pB are defined by

dB(z) = Ez(e
−DB ) and pB(z) = Ez(e

−σB ) ,

respectively. Clearly,DB = σB and hencedB = pB if B is open. The proof of the next lemma
is similar to Stannat [10, Proposition I.3.7] but we shall present it for the readers convenience.

LEMMA 2.1. For any relatively compact open set B of Z, limα→∞ αGα+1eB = eB in
F .
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PROOF. First note that limα→∞Gα+1u = u in F for anyu = G1f, f ∈ H+. In fact,

A1(αGα+1u− u, αGα+1u− u) = E1(αGα+1u− u, αGα+1u− u)

= (αGα+1f − f, αGα+1u− u) → 0 , α → ∞ .

Since{G1f | f ∈ H} is dense inF , by approximatingeB by a functionu of the above form
relative toA1, it suffices to show thatA(αGαeB, αGαeB) ≤ k2A(eB, eB) for some constant
k. To show this, introduce a kernelKα defined by

Kαf (τ, x) =
∫ ∞

0
e−αtf (τ + t, x)dt = eατ

∫ ∞

τ

e−αsf (s, x)ds .

Then it satisfies(∂/∂τ)Kαf (τ, x) = αKαf (τ, x) − f (τ, x). In particular,wα ≡ αGαeB −
αKαeB ∈ W .

SinceB is relatively compact, there exist−∞ ≤ a < b < ∞ such thatB ⊂ [a, b] ×X.
Noting that the functionh(τ, x) = eτ−aI(−∞,b](τ ) satisfiese−tpth(τ, x) ≤ h(τ, x), we can
see thateB ∧h is a 1-excessive function dominatingIB . HenceeB ∧h = eB and, in particular,
eB(τ, x) = 0 for τ > b. This further implies thatGαeB(τ, x) andKαeB(τ, x) vanish for
τ > b. Therefore, we have

A(wα,wα)≤ Eα(wα,wα)
= αEα(GαeB,wα)− A(αKαeB,wα)− α

(
αKαeB − ∂

∂τ
KαeB,wα

)

= −A(αKαeB,wα) ≤ Λ(b)A(αKαeB, αKαeB)1/2A(wα,wα)1/2 .
This implies thatA(wα,wα) ≤ Λ(b)2A(αKαeB, αKαeB).

SinceE(τ)(ϕ, ϕ) ≤ (λ2(b)/λ1(b))E
(s)(ϕ, ϕ) for all ϕ ∈ F andτ, s ≤ b, by putting

eB(t) = eB(t, ·), we can also see that

A(αKαeB, αKαeB)

= α2
∫

R 1
dτ

∫ ∞

0
dt

∫ ∞

0
dse−αt−αsE(τ)(eB(t + τ ), eB(s + τ ))

≤ Λ(b)α2
∫ b

−∞
dτ

∫ b

τ

dt

∫ b

τ

dseα(2τ−t−s)E(τ)(eB(t), eB(t))1/2E(τ)(eB(s), eB(s))1/2

≤ Λ(b)(λ2(b)/λ1(b))α

∫ b

−∞
dτ

∫ b

τ

eα(τ−s)E(s)(eB(s), eB(s))ds

≤ Λ(b)(λ2(b)/λ1(b))e
αbA(eB, eB) .

Hence

A(αGαeB, αGαeB)1/2 ≤ A(αKαeB, αKαeB)1/2 + A(wα,wα)1/2 ≤ kA(eB, eB)1/2
with k = (1 +Λ(b))

√
Λ(b)(λ2(b)/λ1(b))

1/2eαb/2.

LEMMA 2.2. For any relatively compact open set B, dB = eB ν − a.e.

PROOF. Let hB be a measurable version ofeB such thathB = 1 onB. ThenpthB is
uniquely determinedν-a.e. independently of the choice of the versionhB . In fact, if g = 0
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ν-a.e., then from〈ν, pt |g |〉 = 〈p̂t1, |g |〉ν = 0, it follows thatptg = 0 ν-a.e. SincehB ≥
e−tpthB ν-a.e., there exists aν-negligible setN such that

hB(z) ≥ e−tpthB(z) for any z /∈ N and anyt ∈ Q + ,

whereQ + is the family of positive rational numbers. Hence,{e−thB(Zt )}t∈Q + is a positive
supermartingale relative toPz, z /∈ N . For a finite subsetS of Q +, if we putD = inf{t ∈
S | Zt ∈ B}, it then follows thathB(z) ≥ Ez(e

−D), z /∈ N . LettingS ↑ Q +, it follows that
hB(z) ≥ Ez(e

−DB ), z /∈ N . ThereforeeB ≥ dB ν-a.e.
To show the converse inequality, first note that−(dw/dτ , h) ≤ A1(h,w) for any 1-

excessive functionh ∈ F andw ∈ W+. SincedB is 1-excessive and dominatesIB , to get that
eB ≤ dB ν-a.e., it suffices to show thatdB ∈ F . This further follows from the boundedness
of A1(αGα+1dB, αGα+1dB) relative toα. We may assume thatB ⊂ [0, b] × X for some
b < ∞. In view of eB ≥ dB , we have

A1(αGα+1dB, αGα+1dB) = E1(αGα+1dB, αGα+1dB) ≤ E1(αGα+1dB, eB)

= −α
(
d

dτ
Gα+1dB, eB

)
+ αA1 (Gα+1dB, eB)

≤ αA1(eB,Gα+1dB)+ αA1(Gα+1dB, eB)

≤ 2Λ(b)A1(αGα+1dB, αGα+1dB)
1/2A1(eB, eB)

1/2 .

ThereforeA1(αGα+1dB, αGα+1dB) ≤ 4Λ(b)2A1(eB, eB).

LEMMA 2.3. Let {Bn} be a decreasing sequence of relatively compact open sets of
Z such that Cap(Bn) ↓ 0. Then there exists a Lebesgue negligible subset L1 of R 1 and a
subsequence {nk} satisfying C(B(τ)nk ) ↓ 0 for any τ /∈ L1, where B(τ) = {x ∈ X | (τ, x) ∈ B}.

PROOF. By virtue of (5), (7) and Lemma 2.2, since∫
R 1
E
(τ)
1 (dBn(τ, ·), dBn(τ, ·))dτ = A1(dBn, dBn) ≤ Cap(Bn) → 0, n → ∞ ,

there exist a subsequence{nk} and a Lebesgue negligible setL1 such that

lim
k→∞E

(τ)
1 (dBnk (τ, ·), dBnk (τ, ·)) = 0 for any τ /∈ L1 .(11)

In view of (1), we can replaceE(τ)1 byE1 in (11). Further, sincedBnk ∈ F anddBnk = 1 ν-

a.e. onBnk , we may assume thatdBnk (τ, ·) ∈ F anddBnk (τ, ·) = 1m-a.e. onB(τ)nk for τ /∈ L1.

Then (9) implies thatC(B(τ)nk ) → 0 ask → ∞ for anyτ /∈ L1.

LEMMA 2.4. Let B be a relatively compact open set of Z. Then there exists a subset
L2 of R 1 of zero Lebesgue measure such that dB(τ, ·) is E-quasi-continuous for any τ /∈ L2.

PROOF. In view of Lemma 2.1 and Lemma 2.2, sinceαRα+1dB converges todB rela-
tive toA1, there exist a sequenceαk ↑ ∞ and a Lebesgue negligible setL3 such that

lim
k→∞E1

(
αkRαk+1dB(τ, ·)− dB(τ, ·), αkRαk+1dB(τ, ·)− dB(τ, ·)

) = 0
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for all τ /∈ L3. Then, by choosing a subsequence{βk} of {αk}, βkRβk+1dB(τ, ·) convergesE-
quasi-uniformly for anyτ /∈ L3 (see [2, Theorem 2.1.4]). The limit coincides withdB(τ, ·) be-
cause limα→∞ αRα+1dB = pB = dB everywhere. SinceβkRβk+1dB is E-quasi-continuous,
for any relatively compact open setU ofZ, there exists a sequence of relatively compact open
subsets{Nn} of U such that Cap(Nn) → 0 andβkRβk+1dB is continuous onU \ Nn for any
k. By virtue of Lemma 2.3, then there exist a subsequencen� and a Lebesgue negligible set
L4 such that, forτ /∈ L4, C(N(τ)n� ) → 0 andβkRβk+1dB(τ, ·) is continuous onU(τ) \N(τ)n� for
anyk and�. PuttingL2 = L3 ∪ L4, we get thatdB(τ, ·) is E-quasi-continuous onU(τ) for
anyτ /∈ L2. SinceU is arbitrary, the assertion holds.

3. The main result. Now we are in a position to prove the main result of this paper
that any semipolar setB of the formB = J × Γ with |J | > 0 isE-exceptional. The essential
step is the following theorem.

THEOREM 3.1. For any compact set K of Z, there exists a Lebesgue negligible set L
such that dK(τ, ·) = pK(τ, ·) E-q.e. for any τ /∈ L.

PROOF. Let {Bn} be a decreasing sequence of relatively compact open sets such that⋂
n Bn = K. Then limn→∞ dBn(z) = dK(z) for all z ∈ Z. Further, sinceA1(dBn, dBn) ≤

Cap(Bn) is bounded, there exists a subsequence ofdBn such that its Cesàro means{uk}
converges inF and dK ∈ F . Then, similarly to the proof of Lemma 2.4, by choosing
a subsequence of{uk} if necessary, there exists a Lebesgue negligible setL5 such that
limk→∞ uk(τ, ·) = dK(τ, ·) E-quasi-uniformly for anyτ /∈ L5. In particular,dK(τ, ·) is
E-quasi-continuous. SincedK ∈ F , we can see from Lemma 2.1 thatαRα+1dK converges to
dK in F asα → ∞ and hence, there exist a Lebesgue negligible setL6 and a subsequence
αn ↑ ∞ such that limn→∞ αnRαn+1dK(τ, ·) = dK(τ, ·) E-q.e. for anyτ /∈ L6. On the other
hand, since limα→∞ αRα+1dK(z) = pK(z), we get the assertion.

LEMMA 3.1. For any compact set Γ of X,C(Γ ) = 0 if and only if Cap(J × Γ ) = 0
for some J ⊂ [0,∞) with |J | > 0.

PROOF. Suppose that C(Γ ) = 0. Then there exists a sequenceϕn ∈ F such thatϕn = 1
m-a.e. on a relatively compact neighbourhoodΓn of Γ and limn→∞ E1(ϕn, ϕn) = 0. We may
assume thatJ is a compact set contained in a finite open interval(a, b). Take a non-negative
smooth functionξ supported by[0, T ] such thatξ = 1 on(a, b) ⊂ [0, T ] for someT < ∞.
Thenwn(τ, x) = ξ(τ )ϕn(x) ∈ W ,wn = 1 ν-a.e. onBn = (a, b)× Γn and

‖wn‖2
W ≤ k1‖ϕn‖2

F

∫
R 1

{(ξ ′(τ ))2 + (ξ(τ ))2}dτ → 0 , n → ∞ ,

for some constantk1. Noting that‖eBn‖2
F ≤ (1 + λ2(T ))A1(eBn, eBn), we have from (5) that
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Cap(Bn)= E1(eBn,wn) ≤ ‖eBn‖F‖wn‖W
≤ √

1 + λ2(T )A1(eBn, eBn)
1/2‖wn‖W ≤ √

1 + λ2(T )E1(eBn,wn)
1/2‖wn‖W

= √
1 + λ2(T )Cap(Bn)1/2‖wn‖W .

Hence Cap(Bn) ≤ (1 + λ2(T )) ‖wn‖2
W and which implies that

Cap(J × Γ ) ≤ Cap(Bn) ≤ (1 + λ2(T )) ‖wn‖2
W → 0 , n → ∞ .

Conversely, suppose that Cap(J × Γ ) = 0 for someJ with |J | > 0. By virtue of Lemma
2.3, then there exists a decreasing sequence of relatively compact open setsΓn ⊃ Γ such that
C(Γn) ↓ 0 which implies that C(Γ ) = 0.

THEOREM 3.2. LetB = J×Γ for some J with |J | > 0 and Γ ⊂ X. IfB is semipolar
relative to M, then it is E-exceptional.

PROOF. It suffices to assume thatB is thin, J andΓ are compact subsets of[0,∞)

andX, respectively. By virtue of Theorem 3.1, there exists a Lebesgue negligible subsetL

such thatdB(τ, ·) = pB(τ, ·) E-q.e. for anyτ /∈ L. SinceB is thin,pB(τ, x) < 1 for any
(τ, x) ∈ B. On the other hand, sincedB(τ, x) = 1 for (τ, x) ∈ B, it follows thatΓ is of zero
E-capacity. Hence, from Lemma 3.1,B is of zeroE-capacity.
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