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Abstract.  For a Markov process associated with a not necessarily symmetric regular
Dirichlet form, if the form satisfies the sector condition, then any semipolar sets are excep-
tional. On the other hand, in the case of the space-time Markov process associated with a
family of time dependent Dirichlet forms, there exist non-exceptional semipolar sets. The
main purpose of this paper is to show that any semipolaBsetJ x I" of the direct product
type of a subsef of time and a subsef of space is exceptional if has positive Lebesgue
measure.

1. Introduction and preliminaries. Let X be a locally compact separable metric
space and: a positive Radon measure ahwith full support. In this paper we assume that
we are given a family of (not necessardymmetric) regular Dirichlet form& E™, F)};>0
onH = L%(X; m) satisfying the following conditions:

(i) Foranyg, v € F, E® (¢, ) is a measurable function of

(i) ForanyT € [0, c0), there exist positive constarits(7) andix(7T) such that
(1) M(TVE™ (9, ¢) < E(p, 9) < 22T)E™ (¢, ¢)
forall t € [0, T]andg € F, whereE = E©.

(i) ForanyT € [0, o), there exists a positive constamitT) such that
2 E@(p,¢) >0,

3 IE (. y)| < AMET (9. )Y2ET (y, )2

foranyt € [0, T] andg, ¥ € F (see [3], [5]).
Although it is not essential to treat our problem, we consider Bt is defined for any
t € R by puttingE™ = E for r < 0. SettingZ = R! x X anddv(t, x) = drdm(x), let

H=L*RY H) = {u(r,x) | u(t,-) € H, ||ulp < o0},
where
lull3, = / lu(z, Y5 dt = / u(z, x)%dv(z, x) .
R1 V4
Let Eq (@, ¥) = E(p, ¥)+a(p, ¥), and define the norfh- || r on F by |l¢||r = E1(p, ¢)Y/2.
Using this norm, definge = L2(R?; F) similarly. Foru, v € F, let

A, v) = / . EDu(z, ), v(z, ))dr .
R

2000Mathematical Subject Classification. Primary 60J45; Secondary 60G07, 31C25.



444 Y. OSHIMA

Identifying H with its dual spaced’, we consider a¥ ¢ H = H' C F’. ThenF =
L2%(RY; F') can be defined similarly and ¢ H = H' c F'. Foru € F', du/dt is
considered as a distribution sense derivative‘e¥alued functionu(z, -). Introduce the space
WV, |- llw) and a bilinear fornt defined by

d
W:{ue}"‘—ueﬁ},

dt

du 2

2 2
u = |lu + | —
lullyy = Nullz Hdt

’

f/
d
—<£,v) +A(u,v), ueW,vekF
E,v) =
dv
(—,u)—i—.A(u,v), ueF,veW,
dt
where(du/dz, v) is the canonical coupling efu/dt € 7 andv € F. Foranyf € H, then
there exist Markovian resolven, f € W andéaf € W such that
(4) Ex(Gafiu) =Equ,Gof) = (fiu) foranyu e F

where&, = € + (-, -), (see [6], [10]).
For a family of functionsC, we denote the family of non-negative (resp. compact sup-
port) functions ofC by Kt (resp.Ko). A functionu € F is said to bex-excessive if

E,(u,v) >0 foranyv e Co(Z) N WT.

Denote byP, the family ofa-excessive functions ifF. Thenu € F* belongs toP, if and
only if BG4 pu < u v-a.e. foranyg > 0. Given a functiorh € H*, put

Ly={wueF|u=>h, v-ae}.
In particular, putCpg = Ly,. If WN L, NP, is non-empty, then there exists a unique function

e}f') € Py such tha@}l‘” < uforallu € £, NP,. Further this functioraz,(f‘) is characterized
as a minimal function of’;, N P, satisfying

(5) Ea(@®,v) = Ag(ef®, el

foranyv € W n L. In particular, puk;, = e}ll) andep = eg). If u € W, then there exists a
constanig > 0 such that

(6) A(eu, ) < Blull?y,

(see [4], [7], [8], [10]).
For a relatively compact open sétof Z, define the capacity of by

7 Cap(A) = &1(es,v), veW, v=1lv-a.e.0nA.
Itis independent of the choice ofand extended to any compact #bf Z by

(8) CapB) = inf{Cap(A) | A isopenD B}.
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Further it is also extended to any Borel sets in a usual manner. A functiercalled&-
quasi-conitinuous if there exists a decreasing sequence of opefidsgtef Z such that
lim,— o Cap(A,) = 0 andu|z\ 4, is continuous. SinceE, F) is a (non-symmetric) Dirichlet
form, the E-capacity GI") of an open sel” of X can be defined by

9 C(I) =inH{E1(p,¢) | ¢ € F,@ > Ir m-a.e}.

Also the capacity C) is extended to all Borel sets. Further, if we define the capacity C
relative to(E(™, F) similarly, then it follows from (1) that

(10) (AM(T) A1) CO(K) < C(K) < (h2(T) v 1) CD(K)
foranyt € [0, T]. The next result can be found in [6].

THEOREM 1.1. Thereexistsapair of Hunt processesM = (Z;, P.) andM = (Z;, P.)
on Z suchthat, for any f € H, their resolvents R, f and Ry f are&-g.c.modificationsof G, f
and Gy, f, respectively. Further, if we decompose as Z; = (v, X;) and Z, = (%, X,) intothe
motions 7;, 7, inRand X,, X, in X, then 7, and 7, are the uniform motion to the right and
the left respectively, thatis, t; = o+t and 7, = 7o — 1.

It is well-known that, for a Hunt procesg on X associated with a non-symmetric
Dirichletform(E, F) satisfying the conditions (2) and (3), any semipolar sét-iexceptional,
thatis, of zeraE-capacity (see [1], [2], [9]). However, since the space-time proZessoves
to the time direction by uniform motion, the set of the fofm x I with m (I") > 0 is semipo-
lar (in fact, thin) but no€-exceptional, that is, not of zero capacity relative to Cap. The main
purpose of this paper is to show the equivalence of the semipolarity @axdeptionality of
the setB of the formB = J x I" with |J| > 0, where|J| is the Lebesgue measure Hf
Different from the processg;, the first hitting distributiornpp and the first entry distribution
dp of the setB relative to the procesg; is not£-quasi-continuous. But we can see that, for
Lebesgue a.e. € R, dp(t, ) andpp(z, -) are E-quasi-continuous andiz(t, -) = pp(t, -)
E-quasi-everywhereH-q.e. in abbreviation). The proof of the main result is based upon this
property.

The author would like to thank the anonymous referee for careful reading and valuable
comments.

2. Equilibrium potentials and hitting probabilities. For a Borel seB3 of Z, define
the first entry timeDp and the first hitting timesg by Dp = inf{r > 0| Z, € B} and
op = {t > 0| Z; € B}, respectively. Using these stopping times, their distridutiyhand
pp are defined by

dg(z) = E.(e7P%) and pp(z) = E-.(e”7F),

respectively. Clearlypp = op and hencép = pp if B is open. The proof of the nextlemma
is similar to Stannat [10, Proposition 1.3.7] but we shall present it for the readers convenience.

LEMMA 2.1. For anyrelatively compact openset B of Z, limy 0o ®Gyr16p = epin
F.
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PROOF.  First note that ling_, oo G111 = u in F foranyu = G1f, f € H™. Infact,
A1(@Gyq1u —u, aGoyiu —u) = E1(aGyiiu — u, aGyi1ut — 1)
=(@Gus1f — f,aGyyiu —u) > 0, o — 00.

Since{G1f | f € H}is dense inF, by approximatingp by a functionu of the above form
relative to.A1, it suffices to show thatl(aGyep, aGyeg) < k2A(ep, eg) for some constant
k. To show this, introduce a kerng&l, defined by

Ky f(z,x) =/

0
Then it satisfieg0/97)K, f (t, x) = a Ky f (T, x) — f(r, x). In particular,wy, = aGyep —
aKyep € W.

SinceB is relatively compact, there existoo < a < b < oo such thatB C [a, b] x X.
Noting that the functiork(z, x) = e"~*I(_x0,p) (1) satisfiese™ p;h(t, x) < h(z, x), we can
see thatp A h is a 1-excessive function dominatidig. Henceep Ah = ep and, in particular,
ep(t,x) = 0 fort > b. This further implies thaG,ep(z, x) and Kyep(z, x) vanish for
T > b. Therefore, we have

o]

o0
e f(r +t,x)dt = ** / e ™ f(s,x)ds .
T

A(wou Wy) < Eq(Wa, W)
d
=aly(Gyep, Wy) — A(@Kyep, wy) — (ozKaeB - EKaeB, wa)

= —A(@Kyep, wy) < Ab)A@Kyep, aKyep) 2 A(wy, we)Y?.

This implies thatd(we, we) < A(b)2A(@Kyep, aKqep).
Since EM (g, ¢) < (Aa2(b)/11(b)E® (g, ¢) forall ¢ € F andt,s < b, by putting
ep(t) = ep(t, ), we can also see that

A(aKyep, aKyep)

o0 o0
:otZ/ dr/ dt/ dse ™" E@ (ep(t + 1), ep(s + 1))
R1 0 0
b b b
< A2 / dx / dr / dse* @I E® (05 (1), en(t)Y2ED (e5(s), ep(s))Y2
—00 T T

b b
< AB) 2B/ M (B))er / dr / AT E® (e5(s), e5(s))ds

< Ab)(ha(b)/21(b))e* Aep. ep) .
Hence

A(@Ggep, aGaep)'? < A(aKgep, aKaep)’? + Ay, wo)Y? < kA(ep, e)/?
with k = (14 A(b)) VADB)(ra(b)/11(b)) Y20/,

LEMMA 2.2. For any relatively compact openset B,dgp = ep v — a.e.

PROOFE Lethp be a measurable version @f such that:g = 1 onB. Thenphp is
uniquely determined-a.e. independently of the choice of the versign In fact, if g = 0



EXCEPTIONALITY OF SEMIPOLAR SETS 447

v-a.e., then fromv, p/|g1) = (p:1,1g1)» = O, it follows thatp,g = O v-a.e. Sincéip >
e 'p,hp v-a.e., there exists &negligible setvV such that

hp(z) > e 'php(z) foranyz¢ N and any € Q_,

whereQ |, is the family of positive rational numbers. Hencte,*th(Zt)},eQ+ is a positive
supermartingale relative t8,, z ¢ N. For a finite subsef§ of Q ,, if we putD = inf{r
S | Z; € B}, it then follows thatig(z) > E.(e”?), z ¢ N. Letting S 1 Q. it follows that
hp(z) > E.(e"P8), z ¢ N. Thereforeep > dp v-a.e.

To show the converse inequality, first note thadw/dt, h) < Ai(h, w) for any 1-
excessive functioh € F andw € WT. Sincedp is 1-excessive and dominatgs, to get that
ep < dp v-a.e., it suffices to show thatz € F. This further follows from the boundedness
of A1(@Gy+1dp, aGy41dp) relative toa. We may assume tha@ c [0, b] x X for some
b < 0. Inview ofeg > dp, we have

A1(@Gy+1dp, aGoy1dp) = E1(@Gat1dp, aGoy1dp) < E1(aGy+1dp, ep)

d
=« <E Ga+1ds, 63) + A1 (Gut1dB, eB)
< aAi(ep, Gyt1dp) + 2 A1(Gy11dB, ep)
< 2A(b)A1(@Ga11dp, aGor1dp) 2 As(ep, ep)/? .
Therefored; («Gyy1dp, G ay1dp) < 4A(b)2A1(ep, ep).

LEMMA 2.3. Let {B,} be a decreasing sequence of relatively compact open sets of
Z such that Cap(B,,) | 0. Then there exists a Lebesgue negligible subset L; of R and a
subsequence {n;} satisfying C(B,Sz)) | Oforanyt ¢ Ly, where B = {x € X | (7, x) € B}.

PrROOF By virtue of (5), (7) and Lemma 2.2, since
[ B, (5., d, . 0T = Auida, dn,) = CamB,) — 0. > oo,
R

there exist a subsequengs } and a Lebesgue negligible set such that

(11) Jlim E{”(dp, (1.).dp, (1.)) =0 foranyr ¢ L.

)1k
In view of (1), we can replacEf) by E1 in (11). Further, sincép, € F anddp, = 1v-
a.e. onB,, , we may assume thdtgnk (t,-) e F anddBnk (r,-) =1m-a.e. onB,(,z) fort ¢ L.
Then (9) implies thaC(B,(,;)) — O ask — oo foranyr ¢ Lj.

LEMMA 2.4. Let B be arelatively compact open set of Z. Then there exists a subset
L of R of zero Lebesgue measure such that dz(t, -) is E-quasi-continuousfor any t ¢ Lo.

PROOFE Inview of Lemma 2.1 and Lemma 2.2, sine®,1dp converges talp rela-
tive to 41, there exist a sequenag 1 oo and a Lebesgue negligible et such that

k”_)moo E1 (o Ry+1dp(t, ) — dp(t, ), ax Ry41dp(z, ) —dp(t,-)) =0
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forall r ¢ Lz. Then, by choosing a subsequeligg} of {o}, Bk Rg,+1dp (7, -) convergeskt-
quasi-uniformly forany ¢ L3 (see [2, Theorem 2.1.4]). The limit coincides with(z, ) be-
cause lim_ oo ¢ Ry11dp = pp = dp everywhere. Sincg, Rg, +1dp is £-quasi-continuous,
for any relatively compact open sgtof Z, there exists a sequence of relatively compact open
subsetdN,} of U such that Ca@V,) — 0 andp Rg,+1dp is continuous o/ \ N, for any

k. By virtue of Lemma 2.3, then there exist a subsequenand a Lebesgue negligible set
L4 such that, forr ¢ La, C(N,(,Z)) — 0 andpyRp,+1dp(z, -) is continuous o/ ) \ N,gf) for
anyk and¢. PuttingLy = L3 U L4, We get that/p(t, -) is E-quasi-continuous ofV (*) for
anyt ¢ Lp. SinceU is arbitrary, the assertion holds.

3. Themain result. Now we are in a position to prove the main result of this paper
that any semipolar s& of the formB = J x I" with |J| > 0 is £-exceptional. The essential
step is the following theorem.

THEOREM 3.1. For any compact set K of Z, there exists a Lebesgue negligible set L
suchthat dg (t, ) = px(t,-) E-qe.foranyt ¢ L.

PrROOFE Let {B,} be a decreasing sequence of relatively compact open sets such that
(N, B = K. Then lim,_, dp,(z) = dk(z) for all z € Z. Further, sincedy(dp,,dp,) <
Cap(By) is bounded, there exists a subsequencégfsuch that its Cesaro meafs;}
converges inF anddg € F. Then, similarly to the proof of Lemma 2.4, by choosing
a subsequence dis} if necessary, there exists a Lebesgue negligibleZ/sesuch that
iMoo up(z,-) = dg(z,-) E-quasi-uniformly for anyr ¢ Ls. In particular,dk(z,-) is
E-quasi-continuous. Sineg € F, we can see from Lemma 2.1 thaR,1dx converges to
dg in F asa — oo and hence, there exist &hesgue negligible séts and a subsequence
an 1 oo such that lim_, o an Ry, +1dx (T, -) = dik (t, ) E-g.e. for anyr ¢ Le. On the other
hand, since lim_, .o ¢ Ry +1dk (z) = pk (z), we get the assertion.

LEMMA 3.1. For anycompact set I" of X,C(I") = Oifandonlyif CapJ x I') =0
for some J C [0, co) with |J| > 0.

PROOFE Suppose that@™) = 0. Thenthere exists a sequenges F suchthap, =1
m-a.e. on arelatively compact neighbourhdgcof I and lim,— o0 E1(¢n, @) = 0. We may
assume thaf is a compact set contained in a finite open intetwab). Take a non-negative
smooth functiorgé supported by0, 7] such that = 1 on(a, b) C [0, T] for someT < oo.
Thenw, (t, x) = £(t)p,(x) € W, w, = 1v-a.e. onB, = (a, b) x I, and

lwnly < kallen I /Rl{(s’(r))Z +(@E@))dr >0, n— oo,

for some constarit;. Noting that||ep, ||§r < (14 x2(7)) Ax(es,, eB,), we have from (5) that
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Cap(B,) = Ei1(es,, wa) < lles, |7 Iwallw
<1+ 22T)Axr(ep,, en)?lwallw < V1+ r2(T)Ex(en,, wa) 2 lwallw
=14 22(T)Cap B,) 2| wa Iy -

Hence CapB,,) < (14 12(T)) |lw, ”12/\/ and which implies that
Cap(J x I') < Cap(B,) < (L4 22(T)) |wulfy — 0, n— oo.

Conversely, suppose that Gapx I') = 0 for someJ with |J| > 0. By virtue of Lemma
2.3, then there exists a decreasing sequence of relatively compact op&p sefs such that
C(I,) | 0 which implies that CI") = 0.

THEOREM 3.2. Let B = J x I forsomeJ with|J| > 0andI" C X. If B issemipolar
relativeto M, then it is £-exceptional.

PrROOFE It suffices to assume thdk is thin, / and I" are compact subsets {3, co)
and X, respectively. By virtue of Theorem 3.1, there exists a Lebesgue negligible dubset
such thatip(z, ) = pp(z,-) E-q.e. foranyr ¢ L. SinceB is thin, pg(z, x) < 1 for any
(z, x) € B. On the other hand, sineg (z, x) = 1 for (t, x) € B, it follows thatI" is of zero
E-capacity. Hence, from Lemma 3.8,is of zero£-capacity.
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