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BOUNDEDNESS OF SOLUTIONSFOR A CLASS OF
NONLINEAR PLANAR SYSTEMS
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Abstract. We establish various new boundedness results for a class of nonlinear pla-
nar systems including some generalized Liérequations. These results represent significant
improvement and generalization of many existing ones in the literature. Our sufficient condi-
tions are sharp in the sense that for some special but quite general cases, they coincide with
the necessary conditions. Three illustrative examples are given.

1. Introduction. The purpose of this paper is to obtain sharp conditions for the bound-
edness of all solutions and conditions for the existence of unbounded solutions of the follow-
ing nonlinear differential systems,

_ a
a = VYO —ew),
(1.1) dy n
& = OF@ = Y P i) = g (k)

i=1

where and throughout this paperandg are ratios of positive odd integers with> 8, v,
o, h, f,9,k, fiandp; (i =1, 2,..., n) are continuous real value functions definedRyn
¥(y) > 0,h(y) > 0andk(y) > O forall y € R. Moreover, we assume the existence and
uniqueness of the solution of the Cauchy initial value problem of (1.1).

The boundedness of solutions for some special cases of (1.1) has been extensively studied
in the literature. We refer to [1-18] and the references therein for existing results for the well-
known Liénard system
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or its equivalent

d_x:y_ F(x), with F(x) =/xf(u)du,
dr 0
(1.3
&__ ()
a7

and for some of their generalized forms. In particular, as pointed in the papers [5-9, 15], the
condition

(1.4 f(x)>0 forall xeR
or
(1.5 g(x)F(x)>0 forall x eR

and the signuncondition
(1.6) xg(x) >0 forall x € R(orfor|x| > Xo with someXp > 0)

have been assumed for a long time and have been considered as fundamental for the consid-
ered boundedness problem (see, e.g., [1-4, 10-18]). Sugie [15] studied the boundedness of
solutions of the following generalized Liénard system,

dv
a Y,
dy
P —yh(y) f(x) — g(Ok(y),
whereh(y) > 0andk(y) > Oforally € R, and improved the results of [1-4] by relaxing (1.6)
but still requiring the assumption (1.4). Sugie’s results were later improved and generalized
in Huang [5, 7] where condition (1.4) was weakened.
System (1.1) clearly includes (1.2), (1&)d (1.7) as special cases. On the other hand,
for the well-known Liénard equation
2
(1.8) (;TZJrf*(x)z—):Jrg*(x):O,
if there exists a continuous functigh: R — R and a differentiable functiop : R — R such
that

(1.9 frx) = f)+
then, by setting

1.7

do (x)
dx

dx
(1.10 Y= +o(x) and gx)=g%x)— f(xX)p(x),
we can transform (1.8) into the following system
& (x)
- =Y o),
(1.11) dr
dy

G —yf(x) —g(x),
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which is a special case of (1.1) with= 8 = 1, ¢ (y) = h(y) = k(y) = 1forally e Rand
fix)=0forallx e Randi =1, 2,...,n.

As will be illustrated, our boundedness results for the system (1.1) represent significant
improvement and generalization of aforementioned existing results. In particular, we also
show that some of our sufficient conditions are necessary to ensure boundedness of all solu-
tions. Applying our results to the Liénard type systems (1.2), (1.3) and (1.7) in Section 4, we
show that our results generalize those in [1-5, 7, 15]. Furthermore, we give two examples to
illustrate that, for some Liénard equations of form (1.8), our results provide some new bound-
edness criteria which can not be derived by using the traditional equivalent system (1.2) or
(1.3) and the existing results.

The remaining part of this paper is organized as follows. In Section 2, we formulate var-
ious assumptions to be used in our main results and we derive several technical lemmas. The
main results are presented in Section 3. Their applications to Liénard systems and illustrative
examples are provided in Section 4.

2. Assumptions and technical lemmas. For the simplicity of presentation, we start
with the introduction of some notations and assumptions to be used in the remaining part of
this paper.

F(x):/xf(u)du; F,-(x):/xf,-(u)du (i=12,...,n);
0 0
G(x)=/o g (u)du ; F‘p(x)=/0 fw)e)du ;
_ [ C[Pu Py w
K(}’)—/c; k() du ; H()’)—/O Wdu,

Vi, Y)=Ky)+Gx)+ F?x).

Some of the standing assumptions are formulated below:

() Let P(4o00) denote the limit of a functio® (x) asx — Fo0.

- B - . k(y)
(i) K (do0) = 00, H(+00) = +00 andyl'inw o) 0

(i)  y*y(y) is strictly increasing ofR and Iirin Yy (y) = to0.
y—>x0o0o

(I)  There exists a constap > 0 such that
() f(x)=0for|x| > Xo;
(i)  g(x)e(x) = 0for|x| > Xo;
(i) ficx)=0for|x| > Xpandi =1, 2,...,n.
(Il)  There exist constantX§ > 0 andYp > 0 such that
() G(x)+ F?(x) <limsupG(z) + F?(z)] forx > X¢;

(i) Gx)+ F?(x) < Ii?g]ﬂG(z) + F?(z)] forx < —Xg;

(i) G(&x)+ F?(x) = —Yoforallx e R.

(IV) Foralli=1,2,...,n,ypi(y) >0fory e Rand Ilim pi(y) =
y—>+o00 yﬂh(y)
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(V) Wheng(x) # 00nR, % > y*Piorall y e R.

(V1) lim iUD(IF(x)I + @(x) sgnx + G(x) + F¥(x)) = oo.

(VIl) There exist constants > 0 andb > 0 such thatF'(b) — F(—a) > Oandf(x) > 0
forx ¢ (—a, b).
Note that (I) (ii) implies that there exists an inverse functionr 6t y*v(y) onR. We
denote this inverse by = ¥ —1(z).
We now establish several technical lemmas which will be very useful in the proofs of the
main results in Section 3.

LEmMMA 2.1. Suppose that (I) and (IV) hold. Then, for any constants g1 < g2 and
C > 0, there exists a constant D > C such that for all » > D the positive semi-trajectory
(x(1), y()) of (1.1) satisfying (x (t0), y(t0)) = (g1, r) must intersect theline x = ¢» at some
timety > roand y(t) > C for all ¢ € [1o, 11].

PROOE Let
M =maxX|f )], |g)], e [fi) g1 <x <q2,i =1,2, ... ,n}.
Choose a constant
E > maxl, v~ i(Mm),C}.
By (1) and (IV), it is easy to see that there exists a consihsuch that

max{ pi(y) ‘ k(y) ;yzC} < M*.

YPh(y) || yPh(y)

Again by (1), it is clear that there exists a constént- E such that, for all > D, we have
1+ (@m+DHM*

2.1 H H(E ME*y(E — _— .

(2.1) (r) > H(E) + V(E) (g2 ql)Eal//(E)—M

Assume, by way of contradiction, that the conclusion in the lemma is false. Then there exists
anrg > r such that for the positive semi-trajectam(z), y(z)) of (1.1) starting from the point
(g1, ro) at timerg, one of the following two cases must occur:

(i) there exists a* > g such thatc(t*) € (g1, g2], y(t*) = E andy(¢) > E for all
t € (to, t*);

(i) x() € [q1,92) andy(r) > E for all t+ € (to, T), where[tg, T) (T may beoo)
represents the right-maximal interval of existence of the positive semi-trajeat@yy y(¢)).

Let y = y(x) be the solution satisfying(x(f0)) = y(to) (i.e., y(q1) = ro) for the
equation

dy _ YPhO)f@) + 30y pi0) i) + g (DK()
dx VY (y) — p(x) '
We write this equation in the following form:

YY) g FO+ EialpiO/Y WL + g DRG],

2.2 =
@2 oy @ 1= 0@)/D*y ()]
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If Case (i) occurs, then, by integrating (2.2) fram(ro), y(t0)) to (x(t*), y(¢t*)) along the
trajectoryy = y(x), we obtain

Ey Py
H(E)—H = —7d
(E) — H(ro) fro oy
Oy Py (y)
vy RO
_ /W*) £+ SIalpi ) ) + 9RO @RG N
A 1= o)/ OV ()]
ME®y (E) /42 | piy@) ‘ k(y(x)) ‘
_— 1 d
= By E) - M, [ * 2 |Famew | [P |*

1+m+1HM*
E*Y(E)— M

v

—ME*Y/(E)(g2 — q1)

That is
1+m+1M*
H H(E ME“Yy(E — —_—
(ro) = H(E) + V(E)(q2 — q1) Eoy(E) — M °
which contradicts (2.1) angh > r > D.

We now assume Case (ii) occurs. Since there are no equilibrium points of (1.1) in the
region{(x,y):q1 < x < g2,y > E}, which follows from d/dr = y*¢(y) — ¢(x) >
E“Yy(E) — M > Ofory > E andx € [g1, g2], we have limsup, ; y(t) = co. On the other
hand, by integrating (2.2) along the trajectory= y(x) with y(q1) = ro, fort > 9, we have

y(@®) =P

Y P (y)
H(y(@)) — H(ro) = AR 4°
@) (ro) /ro o)

_ /"(’)f(x) + 30 4l fi(x) + g k(Y N1/[yP () h(y(x))] &
Ja 1— o)/ @)¥ ()]

- M[1+ (n+1DHM*]
= 1-M/[E*y(E)]

<ME®Y(E)(q2 — q1)

(x (1) — q1)

1+m+ 1M

EYy(E)—M

This, together with (1) (i), implies that limsyp ; y(tf) < co. But this contradicts the fact
that lim sup_,  y(¢) = oco. This completes the proof of Lemma 2.1.

In a similar fashion, we can show the following:

LEMMA 2.2. Supposethat (I) and (IV) hold. Then, for any constants g1 < g2 and
C > 0, there exists a constant D > C such that for all » > D the positive semi-trajectory
(x(@), y()) of (1.1)satisfying (x(t0), y(t0)) = (g2, —r) must intersect thelinex = ¢1 at some
timety > rnand y(t) < —C for all ¢ € [1o, 11].
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LEMMA 2.3. Suppose that (I)—(VI) hold. Then, for each (xg, yo) € {(x,y);x >
0, y*¥ (y) > ¢(x)}, the positive semi-trajectory of (1.1) passing through (xo, yo) €ither inter-
sects the curve y* v (y) = ¢(x) or tendsto some point (x*, y*) € {(x, y); x > 0, y*yr(y) =
@), YPh(y) f(x) + 21y pi(9) fi(x) + g (x)k(y) = O}.

PROOF Suppose, by way of contradiction, that there exists some g®ityo) €
{(x,y);x > 0,y*¥(y) > ¢(x)} such that the positive semi-trajectofy" of (1.1) start-
ing from the point(xo, yo) at timery neither intersects the cury&y,(y) = ¢(x) nor tends
to any point(x*, y*) € {(x, y): x > 0, y*¥(y) = (x), YPh(y) f(x) + Yig pi(y) fi(x) +
g(x)k(y) = 0}. Let[zg, T) be the right-maximal interval of existence bf (T may beoo),
and(x (1), y(¢)) be the coordinates df+ at timet. Then we have

Y)Y (y()) > ex()) and %x(t) >0 forall relt,T).

Therefore, either

(2.3 lim x(#) <oo and limsupy () = oo
=T t—T
or
(2.4 lim x(¢) = oo
t—T

By Lemma 2.1, it is easy to see that Case (2.3) is impossible.

We now assume Case (2.4). Then there exis{s>a o such thate(r1) > maxXo, X3}
andx(r) > maxXo, Xg} forall t € (t1, T). It follows from (II) and (IV) that for|x| > Xo
we have

dvgct, ¥) (l.l)_ a+ﬂzgy;l/f(y)f( )_Zy I/f]g)fz(y)ﬁ(x)
29 Y (0) f (9 () - f(x)qoz(x) — 9(®pP(x)
—%Wf(ﬂ + YY) f@P() — f@)PP(x) .
Therefore, again by (Il) and (V), fare [#1, T) alongL™ we have
T ) S —%Wf(x) YO @) — f@eP0).

which implies that

_atB
(2.6) ey TR OY ) VO 1) i wx) =0 onR,
dr gy k(y)
and
dv (x, 1 2 3 .
(2.7 ij Y) < —f(X)[yal//(y) - —w(x)i| — S f(x)¢%(x) if o(x)#0 onR.
t @1 2 4
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It follows from (2.6) and (2.7) that

dv(x,y)
dr

(2.8) <0 forte[n,T),

(1.1)

wherex = x(¢) andy = y(z). Therefore,
Vx(@),y®) = V(x(r), y(r1)) for r e, T).
That is,
(2.9 KO®) +Gx@®) + F(x(®) < K(y(t) + G(x(t1) + F¥(x(t1))
fort € [11, T). Noting thatK (y) > O for all y # 0, we obtain from (2.9) that

lim sup(G (x) + F¥(x)) = limsup(G (x (1)) + F?(x(t))) < oo,

X—>00 t—>T

which, together with (VI1), implies that

limsup|F(x)| =00 or limsupp(x)=occ.

X—>00 X—00
We first consider the case where limsup, |F(x)| = oco. By (ll) (i), it is easy to see that
limy_ o F(x) =limsup,_, ., |F(x)| = oo. Let
m = limsup(G(x) + F¥(x))

X—>0Q
and
V() =Ky®) +Gx@®) + F(x(®)) .

We next show thav' (t) > m for all t € [r1, T). Suppose to the contrary. Then there
exists ansy € [t1, T) such thatV(s1) < m. By limy_ F(x) = lim;—7 F(x(t)) = o0
and (1) (i), it is clear that there exists an increasing sequéngesuch thatr, € [s1, T),
liM,;—co 7 = T andf (x(z,)) > Oforn = 1,2, ... .0Onthe otherhand, sing& (t)y (y(t)) >
@(x(n) forall t € [to, T), it is obvious thaty? (z,)¥2(y(1,)) + ¢2(x(1,)) # 0 forn =
1,2,....Consequently, in view of (2.6), (2.7) and (Il), we have

=y Y (y (Tn)h(y(Th))
k(y(ta))

if p(x)=0 onR,
dv (o) - 1 2 4
dr |~ —f(x(fn))[ya(fn)iﬁ(y(fn)) - E(p(x(rn))} - Zf(x(fn))wz(x(fn))

if p(x) 20 onR,

<0,
which, together with (2.8), implies that there existssa (s1, 7) such that

V(@) <V(s2) <V(sp) <m forall t €[s2, T).
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It follows that
m > V(s2)> limsupV () = limsup(K (y(t)) + G(x(1)) + F?(x(1)))

t—T t—T

> limsup(G(x (1)) + F?(x(¢)))

t—T
= limsup(G(x) + F?(x)).
X—>00
But, this contradicts: = limsup,_, ..(G(x) + F?(x)). HenceV(¢) > mforallt € [t1, T).
Again from (2.9) and (I) and (ll1) (iii), it is easy to see thiat(z)| is bounded for <
[t1, T), and so there exist constamts> 0,2 > 0 ands > 0 such that, foty| < sup(|y(®)] :
t € [t1, T)}, we have

@> and M<8.

2.1 , > =
(2.10) vy =o 0) 0)

Thus, alongL.™ we obtain

(1) Lo /(1)
211) K@) = /} Mkl//(u)du < 5/) u“du =
0 (u) 0

On the other hand, according to (Ill) (i), we have

)0, reln D).

Ko@) =V®-Gux®) —Fx)=2VH)—-m>0, telnT),

which, together with (2.10), implies that

1/(1+a)
} >0 fortre[nT).

1
2.12 ()| = [%(vm —m)

We claim that (I1) (i), (I1) (i) and (111) (i) imply that there exists an increasing sequeinge
satisfying lim,—, o x;7 = oo such thatp(x;F) > 0fori = 1, 2,... . In fact, if this is not true,
then there exists a constakif* > 0 such thatp(x) < O for all x > X§*, which combined
with (1) (i) implies that g (x) < O for allx > maxXo, X§*}. Thus, according to (I1)(i) and
the definitions ofG (x) and F¥ (x), we have

d
(2.13 . [G(x)+ F?(x)]=g(x) + f(X)e(x) < f(x)ex) <0

X
for all x > max{Xo, X3, X§*}. Furthermore, by lim.,» F(x) = oo and using an argument
similar as that above, we can choose an increasing seqyeficsuch thatr, € [, T),
iMoot = T, liMy 00 x(74) = 00, x(7,) > MaX{Xo, X3, X§5*} and f (x(z,)) > 0O for
n=12,....Thus, we have

d
(2.149 E[G(x) + F20O)] lx=x(o) = f(@))e(x(ta)) <0, n=12,....
Itis easy to see that (2.13) and (2.14) imply that

G(x)+ F?(x) > limsup(G(z) + F?(2)) = Zimoo(G(z) + F?(2))

Z—>00
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for x > max{Xo, X§, X§*}, which contradicts (lll) (i). Therefore, by the facts limz x (1) =
oo andy* @)y (y()) > ¢(x(¢)) forall ¢ € [r1, T), itis clear that (2.12) implies that

i|1/(1+a)

(2.15) y() > [pg—“(va) —m) ~0 forallteln,T).

Notice that d"(x(¢))/dt = f(x@))[Y*(O)¥(y(@)) — e(x(2))]. It follows from (2.6), (2.7),
(2.10) and (1) that, for alt € [t1, T),

—V*POhGO)Y (1)

fx@®) if p(x)=0 onR,

dv) _ k(y())
de = | =y OY2O @) @) + Y O () fFx(@))e(x(D)
—fx@)?(x(1)) if p(x)#0 onR,
_ [P O GO) f @) if p(x)=0 onR,

—oy* @) fx@O)Y*OY (@) —ex@)] if ¢(x)#0 onR,

—)\yﬂ(t)%F(x(t)) if p(x)=0 onR,

—Oy“(t)%F(X(t)) if ¢(x)#0 onR,
which, together with (2.12), implies that
dv(r) <_3 |:1+a
d - 8
if (x) =00nR, and
dv () 1+a /At qF (x(1))
< —0 N
d ~ 8 dr

if o(x) # 0 onR. Integrating (2.16) and (2.17) from to ¢ € [t1, T) and simplifying, we
obtain the following:
If o(x) =0o0nR, then

B/(1+a) dF(X(I))

(2.16) pra

V() —m)}

(2.17) V@) — m)]

1i:i 7 (V) — m)(1+ol—/3)/(l+ol) —(V(n) — m)(1+ol—/3)/(l+ol)]
1+« B/(L+a)
< —A ( 5 ) [F(x(®) — F(x(r))].

If o(x) # 0 0nR, then
A+a)[(V() — m)l/(l+“) —(V(t) — m)l/(1+a)]

1 o/(1+a)
< —o( +“) [F(x(0) — F(x()].

)
Therefore, for € [11, T), we have

218 F(x()) < F(x(t1)) 1ta 5\ V(t (A+a—p)/(L+a)
2. (x(r)) = F(x(r1) +A(1+a—ﬁ)<1+a> (V(tr) —m)
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if (x) =0o0nR, and

o/(14+a
(2.19 Fx() < Fle(n) + 222 (L) ! )(vm) — m)H )
o 1+«
if (x) # 0onR. (2.18) and (2.19) imply thaf' (x (1)) < cofort € [11, T), which contradicts
the facts lim_7 x(t) = oo and lim_ 7 F(x(t)) = limy_ o F(x) = co. Hence Case (2.4)
can not occur if limsup., ., |F(x)| = oc.

It now remains to consider the case of limsup (G(x) + F?(x)) < oo,
limsup,_, ., |F(x)] < oo and limsup_, . ¢(x) = oo. Since lim_rx(t) = oo and
YU (@) > ex@)) for all t € [ro, T), it follows that limsup_, ; y* ()¢ (y()) =
oo, which implies limsup,, ; () = oo. But, by (2.9) and (I) (i) and (lll) (iii), we have
limsup_ 7 |y()| < oco. This is a contradiction. Therefore, Case (2.4) can not occur if
limsup,_, ,, ¢(x) = co. This completes the proof.

A similar argument leads to

LEMMA 2.4. Suppose that (I)—(VI) hold. Then, for each (xo, yo) € {(x,y);x <
0, y*v¥ (y) < ¢(x)}, the positive semi-trajectory of (1.1) passing through (xo, yo) €ither inter-
sects the curve y* v (y) = ¢(x) or tendsto some point (x*, y*) € {(x, y); x < 0, y*yr(y) =
@), YPR() f () + Xiig pi(0) /i () + g (0)k(y) = 0}.

REMARK 2.5. Inthe proof of Lemma 2.3 (similarly for Lemma 2.4), (111) (iii) is used
only to derive (2.10) and to yield a contradiction when limsup, (G (x) + F¥(x)) < oo,
limsup,_, ., |F(x)| < oo and limsup_, , ¢(x) = oo. Therefore, if there exist positive
constantsy, A andé such that the functiong (y), h(y) andk(y) satisfy (2.10) orR (for
example, for the special case whef€y) = h(y) = k(y) = 1 for all y € R) and use
assumption
(VD* limsup(|F(x)|+ G(x) + F?(x)) = 00

x—>+o00

instead of (VI), then the conclusion of Lemma 2.3 (Lemma 2.4) holds even if (I11) (iii) is not
assumed.

3. Main results.

THEOREM 3.1. If (I)=(VII) are satisfied, then all solutions of (1.1) are bounded.

PROOF  Suppose to the contrary. Then there exists a pBint (xo, yo) € R? such
that the positive semi-trajectoly™ (Po) of (1.1) starting fromPp at timezg is unbounded. By
Lemmas 2.1-2.4, it is easy to see thdt(Py) eventually spirals around the origin clockwise.

Let

Co = 14+ maX{|xol, |yol, a, b, Xo, X3},
Mo = max{| £ ()], [g )], [, | f;O)l; x| < Co,i =1,2,...,n},
C1=maxCo, 1+ ¥ 1(Mo)}.
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According to (1), (IV) and (VII), we can choose constafts> C1 ande > 0 such that

Mo 1 max H Pi(y) ‘ k(y)

}<£ for |y| = C2,

C3¥(Ca) 27 islzeom yBR(y) | | yBh(y)
and
(3.1 —[F(b) — F(-a)] + ZCO—MZ + 4MoCo(n + e < 0.
CIY(C2) —

In view of Lemmas 2.1 and 2.2, we can choose a condiant C» such that, for all
r > D, the positive semi-trajectorik (¢), y(¢)) of (1.1) with (x (z5), y(t3)) = (—=Co, r) (resp.
(x (1), y(t3)) = (Co, —r)) must intersect the ling = Co (resp. x = —Cp) at some time
t7 >ty andy(¢) > Cz (resp.y(t) < —C>) forallt € [13, 1] ].

For ease of exposition, in the following discussion we denotéxlgs), y(¢)) the coordi-
nates ofL ™ (Pp) at timer and denote by. ™ (A) the positive semi-trajectory of (1.1) passing
through an arbitrary poin.

We next prove that there existsa> #p such thatc(r1) = —Cp andy(r1) > D. Let
Ay = (—Co, 1+ D). Then from the above argument it follows that (A,) intersects the line
x = Cp at some poinfiy, and the arci1 A, of L+ (A1) is above the ling = C,. By Lemma
2.3, L7 (A1) also intersects the curvgy/(y) = ¢(x) at some pointAs = (xa5, ya5) €
{(x,y); ¥ (y) = ¢(x), x > 0} ortends tads. Itis certain that the arA/Z\Ag of LT (A7) ison
the right-hand side of the line= Cg andx4, > Cp. In view of Lemma 2.2, we may choose

a pointA4 = (xa,, ya,) Onthe linex = x4, such thatL* (Ay) intersects the line = —Co
at some pointds, and the arcAsAs of LT (Ay) is below the liney = —C,. By Lemma

2.4, L (As) also intersects the curv&y (y) = ¢(x) at some pointde = (xaq, yag) €
{(x, y); y*¥(y) = ¢(x), x < 0} ortends toAde. It is certain that the are@ of LT(Ay) is
on the left-hand side of the line= —Cg andx,4, < —Cp. Again, according to Lemma 2.1,
we may choose a poimt7 = (x44, y4;) ON the linex = x4 such thatL* (A7) intersects the
line x = —Cp at some pointAg and the aro@ of LT (A7) is above the lingy = 1+ D.

In view of the choice ofCo and Cz, it is easy to see thak lies in the region bounded by
the segmental arcAlAz A2A3 A4A5 A5A5, A7A8 and the line segmentdzAs, AgA7
andAgA1. SinceL™ (Py) is unbounded and on the line segmeAsi4 andAgA7, we have
dx/dr < 0 and d/dr > O, respectively. It is obvious thdt™(Py) must intersect the line
segmentgA;. Therefore, there existsta > rg such that (1) = —Co andy(r1) > D.

In a similar fashion, we can show that there exists & 79 such thatc(f;) = Cg and
y(t1) < —D.

Since L™ (Pp) is unbounded and eventually spirals around the origin clockwise, it is
not difficult to see, from the above arguments and Lemmas 2.1-2.4, that OPy) there
exist pointsP1 = (=Co, yp,), P2 = (Co,yp,), P3 = (Co, ypy), P4 = (=Co, yp,) and
Ps = (—Co, yps;) such that the aro?le of L*(Pp) is above the Imey = (>, the arcP2P3
of L*(Po) is on the right-hand side of the line = Cy, the arcP3P4 of LT(Pp) is below
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the liney = —Cy, the arcPs Ps of L+ (Pp) is on the left-hand side of the line= —Cp and
YPs > YpP;-
Let

(x(t1), y(t1) = (=Co, yp)) = P and  (x(22), y(12)) = (Co, yp,) = P2.

Then, by integrating (2.2) fron®; to P, along the aro@ of L*(Pp), we have

yr2 ya =By (y)
H — H = "~ -7d
(sz) (yPl) /ypl h(y) y
o &ﬂum+ZLMMﬂmﬁume@mmwmww%mwmn<mm>w
~ 1— oG (0)/ OV ()] dr
_ Cbf@mx_/ﬂLﬂunwuo»vw%nw@a»]Cnm>dt
¢ L 1— @)/ Oy \ d
. ”ZLﬂm@u»ﬁua»+gumwom»vwﬁnMﬂnn(wu»dt
n 1—o@®)/Iy*@®y(y)] dr
Co ’2M0+eor+1ny%ow@u»|<dwo>
— d M d
f.l%ﬂ”x+ o). T oY) - Mo a )Y
’ dx + M? 0 ! dx + M, 1 0 ! d
< — -
== ) fode 9/%qu»—Mox+ ”m+{/%1—Mww&Man

2COM§
+ 4MpCo(n + 1)e

—[F(b) — F(— — 0
<=[F®) - Feal+ Gre g

<0,
which implies that

H(yp,) < H(ypy),
and hence p, > yp, (> C2). Therefore, it is easy to see that

(3.2 K@p) > KQp,) .

Using a similar argument, we can show tlatyp,) < H(yp,), which impliesyp, < yp,
(< —C2). Thus, we have

(3.3) K(yps) > K(yp,) -
Again using a similar argument as in the proof of Lemma 2.3, we can obtain

dv(x,y)
dr

<0 forall |x] > Cp.
1.1

Therefore, along the ard& P; and P4 Ps of L+ (Po) we have

dvix, y) <0 and dvi(x,y)
dr P dr

<0.

oS
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It follows that

V(Co, yp,) = V(Co,yp;) and V(—Co, yp,) = V(=Co, yps) -
That is
K(yp,) + G(Co) + F¥(Co) = K(yp,) + G(Co) + F¥(Co)
and
K(yp,) + G(=Co) + F¥(—=Co) = K (yps) + G(—Co) + F?(—Co) .
Therefore,

(3.4) K(yp,) = K(yp;)
and

(3.5 K(yp,) = K(yps) -
Thus, from (3.2)—(3.5) we obtain

(3.6) K(yp) > K(yps).

Notice thatyp, > C2 andyp, > C». Therefore, (3.6) impliesp, > yp,. However, this
contradicts the fact thatp, > yp,. This completes the proof.

REMARK 3.2. By Remark 2.5 and the proof of Theorem 3.1, if there exist positive
constantsr, A andé such thaty (y), h(y) andk(y) satisfy (2.10) orR and use (VIJ instead
of (VI), then (111) (iii) can be dropped in Theorem 3.1.

COROLLARY 3.3. Suppose that (1), (II) and (IV)—(VIl) hold and that the following
condition

3.7 xg(x) >0 if |x| > Xo for some constant Xo > 0
issatisfied. Then all solutions of (1.1) are bounded.

PrROOFE By Theorem 3.1, it suffices to show that (3.7), together with the other assump-
tions in the corollary, implies that (Ill) holds.

In fact, (3.7), together with (I1) (i), implies thatp (x) > Ofor|x| > X = maxXo, Xo},
and sax f (x)g(x) > O for x| > X{. Therefore, it is easy to see that

G(x)+ F?(x) =/0 (g(u) + fu)p(u))du

is nondecreasing ofXg, co) and is nonincreasing oft-oco, —Xg]. Thus, it is obvious that
liMy— 100(G(x) + F¥(x)) exists or is>o, and that
G(x) + F?(x) <limsupgG(z) + F¢(2)] = lim [G(z) + F¥(2)] for x > X§,
7—> 00

—>0Q0

G(x) + F?(x) <limsupgG(z) + F¥(2)] = ﬂrpoo[G(z) + F?(z)] for x < —Xj

7—>—00
and
G(x)+ F?(x) > —-Yy forsomeYy>0 and allx € R.

Hence, (11l) holds. This completes the proof.
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COROLLARY 3.4. Suppose that (3.7)and (1), (1), (IV), (V) and (VII) hold and that
one of the following four equalitiesis satisfied:
@(F00) = +00,
+o0
F?(£o0) = f@)pu)du = oo,
0

(3.8) 00
G (£00) =/ gu)du = 0o,
0
+o0
F(+o0) = F(u)du = Fo00.
0

Then all solutions of (1.1)are bounded.

PrROOF By an argument similar to that in the proof of Corollary 3.3, we know that
@(x)sgnx > Ofor|x| > X% = maxXo, Xo}, and thatF¢ (x) andG (x) are nondecreasing on
[X§, o0) and nonincreasing ofy-oco, —X{]. It follows that

liminf F(x) = lim F?(x) > —c0
x—+o0

x—+o00

and
IiminfGx) = lim G(kx) > —o0.
x—+o00 x—>+00

Therefore, each in (3.8) implies that

lim sup(|F (x)| + ¢(x) sgnx + G(x) + F?(x)) = co.

x—£o00

This means that (VI) holds. Therefore, the conclusion follows from Corollary 3.3.

THEOREM 3.5. Suppose that the following conditions are satisfied.

o0
(€t lim y*y(y) = 0o and/ AR
y—>00 o k&
(C*t2) thereexistsaconstant Xo > Osuchthat f(x) > 0and f;(x) >0@G =1,2,... ,n)
for all x > Xo.
(C*3) thereexist constants X§ > 0 and Yo > O suchthat G(x) > —Yp for all x > X}
(CT4) limsup,_ o F(x)<oo, limsup,_, o, Fi(x)<oo (i = 1,2,...,n), limsup,_, ,,G(x)

< oo andlimsup,_, , ¢(x) < oo.
Then there exists an unbounded solution of (1.1) whose components are eventually positive.

PROOFE Let
W = SUHG (x); x = max{Xo, X3}}
and
W* = supe(x); x > max{Xo, X§}}.
According to condition(C* 1), we can choose constant$ > max0, W*} andw > w* such
that

*

o w* d
Y@y > an 0 0)

1
< > forall y > w*
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and

(3.9) /www@5y>qw+%y
w* k()’)

Thus, for allx > max{Xo, X}, we have

/“’ y“w(y)dyizf’“ A% [1— w* j|dy
w* k()’) w* k(y) y“l/f(y)

(3.10) .
52/ Y'Y (y) [1— 9 (x) j|dy
we k(y) Y (y)
Set
N:max{@, |pi(y)|;w*§y§w,i=l,2,... n} .
k(y)  k(y)

Then, in view of conditiongC*2) and(C*4), there exists amg > max Xo, X_g} such that

% W + Yo
/xo fw)du < 72N(w*)/3
and

W + Yo
2nN

o0
/ fi(u)du < i=1,2...,n.
X0

We now consider the positive semi-trajectory of (1.1) starting from the pgentw)
at time rg and denote its coordinates at timdy (x(z), y(¢)). We are going to show that
y() > w* forall t > 1.

Otherwise, there exist > 11 > to such thaty(¢1) = w, y(f2) = w* andw™* < y(¢t) < w
fort € [11, t2). Again by noticing that d/dt = y*¢(y) — ¢(x) = y*y¥(y) — W* > O for all
y > w*, we obtain thak (r) > xg forall € [11, £2).

On the other hand, by (1.1) we have

YU () — @(x) yPh(y) 2 pi(y)
311 YW ey +3 (1) + dx .
(3.11 ko) y [ k) fx) 2 k(y)f(x) g(X)] x



408 L. HUANG, Y. CHEN AND J. WU

Integrating (3.11) from(x(#1), y (1)) to (x(z2), y(r2)) along the trajectory(x(¢), y(¢)); 11 <
t < 12}, we have

/wy%MW[l_ w@)}dy
we k(Y) Yy y)

:_/Wy%mo—mnw

w k(y)
_ /Wz) YU — ek
= - Uy
¥(t1) k(y)
B /fz YEOY (D) — p(x (1)) (dy(t)) d
n k(y()) dr
B .
YP()h(y(t)) pi(y(1)) mm)
— i d
/tl [ ) flx (>)+Zk(y(,))f(x(f)Hg(x(f))K Lo

x(t2)

< W"PN fmxm+4v§:/
1 X

x(t1)

x(t2) x(t2)
fiw)du + f g ()

(1) x(t1)

< N f f)du + N Z " fiwdi + Gx() — G (1)
X0

i=1v*0
W+ Yo W + Yo
<WHYPN—+N W+ Y,
< (W) 2N(w*)ﬁ+ N + W+ Yo
=2(W + Yo),

which, together with (3.10), implies that

Yy (y) -
d 4W +Yo).
/w* ko) y < 4W + Yp)

But this contradicts (3.9). Hence(r) > w* for all t > ro.

Since d:/dr = y*¢¥ (y) —p(x) > W*—¢p(x) > 0forally > w* andx > max{Xo,X_g;},
(1.1) has no equlibrium points in the regifix, y); x > max{Xo, X_é}, y > w*}. ltis easy to
see that the positive semi-trajectory of (1.1) passing thr@ughv) is unbounded and its two
coordinates are positive. This completes the proof.

Similarly, we can obtain the following:
THEOREM 3.6. Suppose that the following conditions are satisfied.

—0oQ o
(C 1) M1www:wwm/ YV g~ 0o
y—>—00 0 k(y)
(C2) thereexistsaconstant Xo > Osuchthat f(x) > 0and f;(x) >0(G =1,2,... ,n)
for all x < —Xo.

(C™3) thereexist constants Xg > 0and Yo > O such that G(x) > —Yp for all x < —X¢.
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(C4) liminfy, o F(x) > —oo, liminf,,_ Fi(kx) > —o0o (i = 1,2,...,n),
limsup,, ., G(x) < oo and limsup_, _,¢x)sgnx < oo (i.e,
liminf, 5 @(x) > —00).

Then there exists an unbounded solution of (1.1) whose components are eventually negative.

The following result gives a necessary and sufficient condition for all solutions of (1.1)
to be bounded.

THEOREM 3.7. Supposethat (I)—(V), (VII) hold. Moreover assume that
(3.12 there exists a constant ¥;j > O such that ¢ (x) sgnx > —Y for x € R,
and that there exist constants M;r andM; (i=1,2,... ,n)suchthatfori =1,2,... ,n,

(3.13) limsup|F;(x)| < M;" +limsup|F(x)|, limsup|F;(x)| < M; +limsup|F (x)] .

X—>0Q X—> 00 X—>—00 X—>—00

Then all solutions of (1.1) are bounded if and only if (VI) holds.

PrROOF The sufficiency follows from Theorem 3.1. We only need to show the neces-

sity.
Let
(3.1% limsup(|F(x)| + ¢(x) sgnx + G(x) + F¥(x)) < 0o.
X—> 00
By (llI) (i) and condition (3.12), it iseasy to see that (3.14) implies that
(3.15 limsup|F(x)| < oo, limsupp(x) < oo,
X—> 00 X—>00
and
(3.16) limsup(G(x) + F?(x)) < 00.

X—>00

It follows from (I1) and (3.13) that
(3.17) limsupF(x) =limsup|F(x)| <oco, limsupF;(x) <oco fori=121,2...,n.

X—>0Q X—> 00 X—>00

Let N* = sup.. x, F(x). Then, forx > X, we have

F?(x) = /0 fw)e(u)du

Xo X
:/ f(u)(p(u)du—i-/ S ) (u)du
0 Xo

Xo x
2 | Sedu =5 | fadu

Xo
= F%(Xo) + Y F(Xo) — Yy F(x)
> F¥(Xo) + Y§ F(Xo0) — Y{N*,
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which, together with (3.16), implies that

(3.18 limsupG(x) < 0o.

X—>00

Again letN = sup,. x, (x). Then, forx > Xo, we have

F?(x) = /0 f)e(u)du

Xo

= J @) (u)du + / J )@ (u)du
0 Xo

< F¥(Xo) + 1\7/: f (u)du
= F¥(Xo) + N[sz) — F(Xo)]
< F%(Xo) + NN* — NF(Xo),
which, together with (11I) (i), implies that
(3.19 G(x) > —Yo— F¥(x) > —Yp — F¥(Xo) — NN* + NF(Xo)

for all x > Xp. Thus, from (3.15)—(3.19) and Theorem 3.5, it is easy to see that there exists
an unbounded solution of (1.1).

By a similar argument, we can show that, under the conditions of Theorem 3.7, the
condition

(3.20 limsup(| F(x)| + ¢(x) sgnx + G(x) + F¢(x)) < oo
X—>—00
implies that
liminf F(x) > —o0, liminf F;(x) > —00 (=12,...,n),
X—>—00 X—>—00
liminf ¢(x) > —o0, limsupG(x) < oo,
X—>=00 X——00

and that conditiofC~3) holds. Thus, it follows from Theorem 3.6 that there exists an un-
bounded solution of (1.1) if (3.20) holds. This completes the proof.

REMARK 3.8. For the special case of (1.1) with(x) = 0 onRfori =1, 2,...,n,
that is

dr
a =7 () —okx),

d p
= h(y)f(x) — g(x)k(y).

(1) (i) and (3.13) hold naturally. It is easy to see that Theorem 3.7 is valid even (IV) is
dropped.

(3.21)
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If we further lete = g andy(y) = h(y) = k(y) = 1forally € Rin (3.21), then (3.21)
reduces to the following form

==y — ()
—_— = — X
dr y px),

dy
dr
For convenience of applications, we list the following results for (3.22).

COROLLARY 3.9. (1) If @D (i), (1) (i), (1D, (V) and (VII) are satisfied, then all
solutions of (3.22)are bounded.

(2) 13D @), (4 i, @ @, qny i, (viy *and (VI are satisfied, then all solutions
of (3.22)are bounded.

(3) 1F( @), (1 (i), (1, (Vi) and (3.12) hold, then all solutions of (3.22) are
bounded if and only if (VI) holds.

ProOF  Noting that (1), (1D (iii), (IV), (V) and (2.10) hold for (3.22), the conclusion (1)
follows from Theorem 3.1; the conclusion (2) follows from Theorem 3.1 and Remark 3.2; the
conclusion (3) follows from Theorem 3.7.

(3.22)
=—y"f(x) —gx).

REMARK 3.10. By usingthe methods similar to those used for (1.1), we can deal with
more general systems of the following type:

dr =¥ (y) — ),
(3.23 gt
d_f =—P(y)f(x) =Y pi¥)fix) — g(Ok(y),
i=1

where¥, P : R — R are continuous, the other functions in the right-hand side of (3.23) are
the same as in (1.1), and (3.23) has a unique solution for the Cauchy initial value problem. In
fact, using the condition

. o l1’/(y)

lim ¢ and =

Jm, (y) =00 / O )
instead of conditioC* 1) in Theorem 3.5, by a similar argument as in the proof of Theorem
3.5, one can show that the conclusion of Theorem 3.5 holds for (3.23). Similarly, if using the
condition
T W(y)

li ' = — d —dy =
y—|>rDoo ) oo an /0 ) y = o0

instead of conditioC™1) in Theorem 3.6, then the conclusion of Theorem 3.6 also holds for
(3.23). One may also establish the results similar to those in Theorems 3.1 and 3.7 for (3.23)
under some minor additional assumptionsiofy) and P(y).

The following example and the argument in the next section show that the above results
are very significant.
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ExamMpLE 3.11. All solutions of the planar system
dx y? 4x
i (1+y?% 1+(x2-18
dy  y'?-1
dt  (1+y?)2

(3.24)
2x

2
_ _oy_ =
YA X =2 = A Ty

are bounded.

PROOF  For this system, we have= 9,8 =7,n = L ¥ (y) = (14 y9) 3, h(y) =
A+y)72 k() = A+ y) o) = a1+ 2= DL fx) = x2 =1L p1(y) =
y, f1(x) = x2+x — 2, g(x) = 2x(1 + x*~L. Furthermore, after some simple calculations,
we obtain

Fx) = =x°
x_3x X,

G(x) = arctanx?,

F?(x) = arctarix? — 1)2 — arctan 1

KOy =>y5— 2y*+ 232 _2In1 4+,
» g T Ty 1+ 2(1+y2)+2

H(y)=y — arctany .

It is easy to check that the assumptions (1)—(VI) are satisfied. On the other hand, if we take
a,b > +/3, then the assumptioVIl ) holds. Therefore, it follows from Theorem 3.1 that all
solutions of (3.24) are bounded.

4. Applications to Systems of Liénard Type. In this section, we apply our main
results to some Liénard type systems to illustrate that our results not only improve and gener-
alize many existing ones but also contain some new contributions.

Restricted to the Liénard equation (1.8), we have the following result:

THEOREM 4.1. Suppose that there exist a continuous function f : R - R and a
differentiable function ¢ : R — Rsuchthat f*(x) = f(x) + dp(x)/dx for all x € R. Let
g(x) = g*(x) — f(x)p(x). Then the following results hold:

Q) If f, ¢ and g satisfy (II) (i), (I1) (i), (111), (VI) and (VII), then all solutions of (1.8)
are bounded.

(2) If f, ¢ and g satisfy (1) (i), (1) (i), (1) (i), (11 Gii), (V1) * and (VII), then all
solutions of (1.8) are bounded.

(3) If f, ¢ and ¢ satisfy (II) (i), (I1) (i), (1), (V) and (3.12),then all solutions of
(1.8) are bounded if and only if (V1) holds.

PrROOFE By using the transformation (1.10), the Liénard equation (1.8) can be rewritten
as system (1.11) which is a special case of (3.22) with 1. So the conclusions (1) and (2)
and the part of the sufficiency of the conclusion (3) follow from the conclusions (1), (2) and
(3) of Corollary 3.9, respectively. Finally, we show the necessity part of the conclusion (3).
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Assume that (VI) does not hold. Then either

4.1) limsup(|F(x)| + ¢(x) sgnx + G(x) + F¥(x)) < oo
or
4.2 limsup(|F(x)| + ¢(x) sgnx + G(x) + F¥(x)) < oco.

Note that (1.11) is a special case of (1.1) and (3.22). Also note that (1.11) satisfies (1),
(1 (iii), (IV) and (V). If (4.1) holds, then, by Theorem 3.7 and the proofs of Theorems 3.5
and 3.7, there exists an unbounded solutio), y(r)) of (1.11) withx(¢) and y(¢) being
eventually positive. From the proofs of Theorems 3.5 and 3.7, we know ttiat/d: > O,
x(t) > x(t0) > maxXo, Xg} andy(t) > w* for all ¢+ € (t, T), wherew* is given in
the proof of Theorem 3.5 and@ represents the supremum of time of existence of such a
solution. Since (1.11) satisfies the conditions of Lemma 2.1, it is easy to see that the case
where lim_.r x(t) < oo and limsup_, ; y(¢#) = oo cannot occur and hence limr x (1) =
oo. This means that (1.8) has an unbounded solution if (4.1) holds. Similarly, by using
Theorems 3.6 and 3.7 and Lemma 2.2, (1.8) has an unbounded solution if (4.2) holds. This
completes the proof.

The following examples illustrate that our results are new and different from those ob-
tained in [1-18] even for the special Liénard systems.

ExaMPLE 4.2. All solutions of the Liénard equation

d?x dx .
(4.3 az +(1+ZCOSx)E +4sinx =0

are bounded.

PROOFE (4.3) is a special case of (1.8) wiff (x) = 1+ 2cosrx andg*(x) = 4 sinx.
Choosef (x) = 1, p(x) = 2sinx andg(x) = ¢*(x) — f(x)p(x) = 2sinx. Then, we have
f*(x) = f(x) +dp(x)/dx, F(x) = x, G(x) = F?(x) = 2(1 — cosx). ltis straight for-
ward to check that all assumptions needed in the conclusion (1) of Theorem 4.1 are satisfied.
Therefore, all solutions of (4.3) are bounded.

REMARK 4.3. (4.3)is a very simple Liénard equation. But, if using traditional equiv-
alent system (1.2) or (1.3), that is
dv
dr
dy

P —y(1+ 2cosx) — 4sinx

Y,

or

dx .
—tzy—(x+23|nx),

dy .
— = —4sinx,
dr o
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thenf(x) = 14 2cosx, g(x) = 4sinx, F(x) = x + 2sinx andG(x) = 4(1 — cosx). Itis
clear that conditions (1.4)—(1.6) are not satisfied. Moreover, it is easy to check that the results
obtained in [1-18] are not applicable.

ExAaMPLE 4.4. All solutions of the Liénard equation

d2x 2 2 . 2 dx
) 2 +[6(x%—1)+ (3x*— 1 sinx +x(x°—1) COSX]E

+(6x% — 12x2 4+ 7)x sinx =0
are bounded.
PROOF Let f(x) = 6(x2 — 1), p(x) = (x2 — D)xsinx, f*(x) = 6(x% —1) + (3x2 —

1) sinx 4+ x(x2 — 1) cosx andg*(x) = (6x* — 122 + 7)x sinx. Thenf*(x) = f(x) +
do(x)/dx. By using the transformation (1.10), that is,

d . .
y == +G2=Drsiny, g0 =g (@) — Fe) =xsinx,
(4.4) can be rewritten as
((tij_x =y — (x2—1xsinx,
(4.5) dt
d_)t) =—6(x2—1)y — xsinx,

which is of the form of (1.11) and (3.22). For this system, if we chakge= 1, then it is
obvious that (11) (i) and (11) (ii) hold. Furthermore, after some simple calculations, we have

F(x) = 2x3 — 6x,

G(x) = sinx — x COSx,

F¥(x) = 6[—x° + 22¢3 — 133] cosx + 6[5x* — 66x2 4 133 sinx,

G(x) + F?(x) = 6x[—x* + 22x? — 799/6] cosx + 6[5x* — 66x2 + 799/6] sinx .
Obviously, limsup_, 1 (G(x) + F?(x)) = oco. This implies that (Il1) (i), (111 (i) and(VI1)*
are satisfied. On the other hand, if we choese 1 andb = 3, then

F(b)—F(—a)=32>0 and f(x)>0 for x ¢ (—1,3),

and so (VII) also holds. Thus, it follows from the conclusion (2) of Corollary 3.9 that all
solutions of (4.5) are bounded, and hence all solutions of (4.4) are bounded.

REMARK 4.5. Forsystem (4.5), itis easy to see that liminf . (G(x) + F?¢(x)) =
—o0, and hence (ll1) (iii) is not satisfied. On the other hand, using the traditional transforma-
tion
_dx

rEXLY=Eg
or q
x .
xX=x, yza—i-/of(u)du,
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(4.4) is transformed into the equivalent Liénard system

dx
&,
(4.6) gt
d—f — —[(3x2 — 1) sinx + (x2 — 1)(6+ x cosx)]y — (6x* — 122 + 7)x sinx
or
d.x 3 2 .
a:y_ [2x° — 6x + (x© — Dx sinx],
47
4.7 dy . , .
&= —(6x* — 12x2 + 7)x sinx .

For systems (4.6) and (4.7), we have
f(x) =6(x%—1) + (3x% — 1) sinx + x(x®> — 1) cosx ,

F(x) = /xf(u)du = 2x% — 6x + (x% — 1)x sinx
0

and
g(x) = (6x* — 12x? + 7)x sinx .
Obviously,
limsupf(x) =limsupg(x) = limsupg (x) F(x) = 0o
x—>+00 x—+o00 x—+o00
and
liminf f(x) = liminf g(x) = liminf g(x) F(x) = —c0.
x—+00 x—+o00 x—+o00

Therefore, conditions (1.4), (1.5) and (1.6) do not hold for (4.6) and (4.7), and so the results
obtained in [1-5, 7, 15] are not applicable to (4.6) and (4.7). It is also easy to verify that the
results obtained in [6, 8-14, 16-18] are not applicable to (4.6) and (4.7) as well.

In order to compare our results with those obtained in [1-5, 7, 15], we now consider the
following generalized Liénard type system
dv
3=
dy

& = RO =Y p i) — g (kG),
i=1

o

Yo,
(4.8)

which is a special case of (1.1) wigh(x) = 0 onRandy(y) = 1 onR. Sincep(x) = 0 onR
implies thatF?(x) = 0 onR and (Il) (i) and (3.12) hold, from the results obtained in Section
3, we have the following immediate consequences:

THEOREM 4.6. (1) Suppose that (1) (i), (1) (iii), (IV), (VI) and (VIl) hold and the
following assumptions are satisfied.

+oo L« +oo ,,a—p k
(h* / Y dy = oo, / 4 dy = £ooand lim () =
o kO o h y—c0 yPh(y)
(IlH*  thereexist constants X > 0 and Yo > 0 such that
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() G(x) <limsupG(z) for x > X%,
Z—>00
(i) G(x) <limsupG(z) for x < —X%,

(i) Gx)>—Yoforallx eR
Then all solutions of (4.8)are bounded.

(2) Suppose that conditions (C*2) and (C*3) hold. Moreover, assume the following
conditions.

o yOl
(CTn* / dy = oo;
0

k(y)
(CT4)* limsupF(x) < oo, limsupF;(x) <oo (i =1,2,...,n), limsupG(x) < oo.

Then there exists an unbounded solution of (4.8) whose components are eventually positive.
(3) Supposethat (C~2) and (C~3) hold. Moreover, assume the following conditions:

_ —o0 yO(
c 1* dy = o0;
©9D /0 k(y) Y=o

(C4* liminf F(x) > —oo, liminf F;(x) > —co (i = 1,2, ... ,n), limsupG(x) < oco.
X—>—00 X—>—00 X——00
Then there exists an unbounded solution of (4.8) whose components are eventually negative.
(4) Supposethat ()*, (I1) (i), (I1) (i), A1H)*, (IV), (VII) and (3.13)are satisfied. Then
all solutions of (4.8) are bounded if and only if

lim sup(| F (x)] + G(x)) = 00 .

x—+o0

REMARK 4.7. Ifh(y) = k(y) = 1forally € R, then the third term oflll )* may be
dropped in the conclusion (1) of Theoren®4This follows from Theorem 3.1 and Remark
3.2

REMARK 4.8. System (4.8) is a generalization of (1.7). For the special case where
fix) =0(¢ = 1,2...,n) forx € R, Theorem 4.4 was previously obtained in [5, 7] and
improves or extends various results in [1-4, 15].
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