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ON STRICHARTZ’S UNCERTAINTY INEQUALITY
FOR THE HEISENBERG GROUP

CHETTUTTY SMITHA AND SUNDARAM THANGAVELU
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Abstract. The aim of this article is to obtain a lower bound for the variance of a nor-
malisedL2 function on the Heisenberg group under the assumption that its Fourier transform
is small along a sequence of well distributed rays in the Heisenberg fan. This is achieved by
proving an uncertainty inequality for Laguerre series which is analogous to the one obtained
by Strichartz for spherical harmonic expansions. Applications to Hermite and special Hermite
expansions are also given.

1. Introduction. The classical Heisenberg-Weyl uncertainty inequality for the Fou-
rier transform onRn says that(∫

Rn
|x|2|f (x)|2dx

)(∫
Rn

|ξ |2|f̂ (ξ)|2dξ

)
≥ n2

4

(∫
Rn

|f (x)|2dx

)2

(1.1)

This means that for a normalisedf ∈ L2(Rn) the variance of|f (x)|2dx has to be large iff̂ (ξ)

is small. There are many other situations where we have analogues of the Fourier transform
but the perfect symmetry between the function and its Fourier transform is something very
special to the Euclidean case. Rather than looking for a perfect analogue of (1.1) we can ask
the question of finding suitable conditions on the Fourier transform which will ensure that the
variance is large.

This point of view has been taken in Strichartz [5], where he has formulated and proved
new uncertainty inequalities for the Euclidean Fourier transform and spherical harmonic ex-
pansion. For example, it was shown that for a normalisedf ∈ L2(R),∫

x2|f (x)|2dx ≥ cε2

b2(1.2)

if the Fourier transform is small in the sense that( ∞∑
j=−∞

|f̂ (aj )|2
)1/2

≤ 1 − ε√
b

,(1.3)

whereaj is a well distributed sequence withaj+1−aj ≤ b. More interesting is the uncertainty
inequality obtained for spherical harmonic expansions.
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If fk are the spherical harmonic components of a normalisedf ∈ L2(Sn−1), then
Strichartz has obtained the lower bound

inf
y∈Sn−1

∫
Sn−1

| sind(x, y)|2|f (x)|2dx ≥ cb−2(1.4)

under a suitable smallness assumption on the componentsfk. More precisely, let{aj } be an
increasing sequence of even numbers and{bj } an increasing sequence of odd numbers such
thataj+1 − aj ≤ b, bj+1 − bj ≤ b, a0 ≤ b andb0 ≤ b. Then the lower bound (1.4) is valid
whenever

∞∑
j=0

‖faj ‖2
2 + ‖fbj ‖2

2 ≤ cb−1

with c sufficiently small.
In [5] Strichartz mentions several interesting open problems. One among them is to find

an analogue of (1.4) for eigenfunction expansions associated to Schrodinger operators. In this
article we prove analogues of (1.4) for Hermite, special Hermite and Laguerre expansions. A
simple minded analogue of (1.2) can be proved for the Fourier transform on the Heisenberg
group. By writing down the Plancherel theorem for the Heisenberg group in terms of certain
representations of the Heisenberg motion group, we formulate an uncertainty inequality for
the Fourier transform on the Heisenberg group.

There is a vast literature on various generalisations of the uncertainty principle. We refer
the reader to the survey of Folland and Sitaram [1] and references given there.

The first author wishes to thank the IndianAcademy of Sciences for the Summer Re-
search Fellowship during which period this research was started. She also wishes to thank
the Indian Statistical Institute for the hospitality and facilities provided during several visits.
Both authors wish to thank Ms. Ashalata for her incredible efficiency in typing the manu-
script. They also thank the referee for his careful reading of the manuscript and pointing out
some errors in the previous version.

2. Hermite expansions. Normalised Hermite functions on the real line are defined
by

hk(t) = (2kk!√π)−1/2et2/2 dk

dtk
(e−t2

) .(2.1)

Then-dimensional Hermite functions are then defined by taking tensor products. For each
α ∈ N n andx ∈ Rn, we define

Φα(x) =
n∏

j=1

hαj (xj ) .

These functions{Φα; α ∈ N n} form an orthonormal basis forL2(Rn). Moreover, they are
eigenfunctions of the Hermite operatorH = −� + |x|2 as well as the Fourier transform. We
refer to [6] for more information about Hermite functions and expansions in terms of them.
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SinceHΦα = (2|α|+n)Φα, thek-th eigenspace corresponding to the eigenvalue(2k+n)

is spanned by{Φα; |α| = k}. Let Pk be the orthogonal projection ofL2(Rn) onto thek-th
eigenspace. ThenPk is an integral operator whose kernel is

Φk(x, y) =
∑
|α|=k

Φα(x)Φα(y) .

The Plancherel theorem for the Hermite expansions reads as‖f ‖2
2 = ∑∞

k=0 ‖Pkf ‖2
2.

In this section we are interested in proving the following uncertainty inequality for the
Hermite expansions. GivenA ⊂ N, we define

EA(f )2 =
∑
j∈A

‖Pjf ‖2
2 .(2.2)

With this notation we have

THEOREM 2.1. Let A be the union of two sequences {aj } and {bj }, where aj are all
even and bj odd and they satisfy aj+1 − aj ≤ b, bj+1 − bj ≤ b. Also, assume that a0 ≤
b, b0 ≤ b. Let f ∈ L2(Rn). Then∫

Rn
|x|2|f (x)|2dx ≥ 1

8
b−2

∫
Rn

|f (x)|2dx ,

whenever EA(f )2 ≤ (1/4)b−1‖f ‖2
2 holds.

This theorem will be proved by reducing it to an uncertainty inequality for the Laguerre
expansions. We pause for a moment to make the following observation. The above inequality
can be thought of as a refinement of the Heisenberg-Weyl uncertainty inequality. SinceΦα

are eigenfunctions of the Fourier transform with eigenvalue(−i)|α|, it follows thatPj f̂ =
(−i)jPj f and thereforeEA(f ) = EA(f̂ ). Thus for normalised functionsf ∈ L2(Rn) for
whichEA(f )2 ≤ (1/4)b−1, each of the factors in (1.1) has the lower bound(1/8)b−2.

Given f ∈ L2(Rn), we consider the spherical harmonic expansion off . Let Sm be
the space of spherical harmonics of degreem. Writing x = |x|x ′, x ′ ∈ Sn−1, we expand
f (x) = f (|x|x ′) in terms of spherical harmonics asf (x) = ∑∞

m=0 fm(x) with fm ∈ Sm

when restricted toSn−1. Thesefm can be expressed in terms of certain representations of the
orthogonal groupO(n).

The natural action ofO(n) on Sn−1 defines a unitary representation onL2(Sn−1). The
restrictions of this to eachSm defines an irreducible unitary representation denoted byδm. Let
χm be the character anddm the degree ofδm. Then we have

fm(x) = dm

∫
O(n)

χm(σ)f (σ · x)dσ .

A proof of this can be found in Helgason [3]. The kernelsΦk(x, y) of the projectionsPk

satisfy the propertyΦk(σx, σy) = Φk(x, y) for everyσ ∈ O(n). This follows from the fact
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thatΦk are given by the generating function
∞∑

k=0

rkΦk(x, y) =π−n/2(1 − r2)−n/2 exp((−1/2)((1 + r2)/(1 − r2))(|x|2 + |y|2)

+ (2r/(1 − r2))x · y)

valid for |r| < 1.
In view of the above observations we infer thatPkfm = (Pkf )m. Since the spheri-

cal harmonic spacesSm give an orthogonal decomposition ofL2(Sn−1), we have‖f ‖2
2 =∑∞

m=0 ‖fm‖2
2. Therefore,

EA(f )2 =
∑
j∈A

∞∑
m=0

‖Pjfm‖2
2 =

∞∑
m=0

EA(fm)2 .

Let {Smk; k = 0, 1, 2, . . . , dm} be an orthonormal basis forSm so that

fm(x) =
dm∑
k=1

fmk(x) =
dm∑
k=1

f̃mk(|x|)Smk(x
′) .

Now, each piecefmk(x) = f̃mk(|x|)Smk(x
′) is left invariant by the Hermite projections. In

fact, we have the following result.
Let Lα

k (t) be the Laguerre polynomials of typeα > −1, k = 0, 1, 2, . . . . Given a
functiong ∈ L2(R+, r2α+1dr), we define

Rα
k (g ) = 2

Γ (k + 1)

Γ (k + α + 1)

∫ ∞

0
g (r)Lα

k (r2)e−r2/2r2α+1dr .(2.3)

Functions of the formP(x) = |x|mS(x) whereS ∈ Sm are called solid harmonics.

PROPOSITION 2.2. Let f (x) = g (|x|)P (x), where P is a solid harmonic of degree m.
Then P2k+mf (x) = Rα

k (g )P (x)Lα
k (|x|2)e−|x|2/2 where α = n/2 + m − 1. Pj f = 0 for all

other values of j .

A proof of this proposition can be found in [6, Theorem 3.4.1]. From the proposition it
follows that

EA(f )2 =
∞∑

m=0

EA(fm)2 =
∞∑

m=0

dm∑
k=1

EA(fmk)
2 .

A similar decomposition is true for‖f ‖2
2 as well as for

∫ |x|2|f (x)|2dx. In view of these
remarks, in order to prove Theorem 2.1, it is enough to establish∫

|x|2|fmk(x)|2dx ≥ (1/4)b−2
∫

|fmk(x)|2dx − (1/2)b−1EA(fmk)
2 .(2.4)

Then, by adding all these inequalities, we obtain Theorem 2.1.
By the proposition, all the integrals in the above inequality are expressible in terms of

Laguerre coefficients. Thus everything boils down to establishing an uncertainty inequality
for Laguerre series. This will be stated and proved in Section 5.
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3. Special Hermite expansions. In this section we are interested in proving an un-
certainty inequality for expansions in terms of special Hermite functions which are eigenfunc-
tions of the operator

L = −� + 1

4
|z|2 − i

n∑
j=1

(
xj

∂

∂yj

− yj
∂

∂xj

)
.

For each pair of multiindices(α, β) we have the function onC n defined by

Φαβ(z) = (2π)−n/2
∫

Rn
ei(x·ξ+(1/2)x·y)Φα(ξ + y)Φβ(ξ)dξ ,

wherez = x + iy. These are eigenfunctions ofL with eigenvalues(2|β| + n) and they form
an orthonormal basis forL2( C n). For more about this expansion we refer to [6].

The special Hermite expansion of anL2 functionf on C n can be written in a compact
form. Define

ϕk(z) = Ln−1
k

(
1

2
|z|2

)
e−(1/4)|z|2 ,(3.1)

whereLn−1
k are Laguerre polynomials of type(n − 1). Let

f × g (z) =
∫

C n
f (z − w)g (w)e(i/2)Im(z·w)dw

be the twisted convolution of two functionsf andg . Then it can be shown that∑
|β|=k

∑
α

(f,Φαβ)Φαβ(z) = (2π)−nf × ϕk(z)

so that the special Hermite expansion off reads

f (z) = (2π)−n

∞∑
k=0

f × ϕk(z) .(3.2)

Note that(2π)−nf × ϕk(z) is the orthogonal projection ofL2( C n) onto thek-th eigenspace.
The following is the analogue of Theorem 2.1 for the special Hermite expansions.

THEOREM 3.1. Let A = {aj } be a sequence of natural numbers such that a0 ≤ b and
aj+1 − aj ≤ b. Let f ∈ L2( Cn) be such that ‖f ‖2 = 1. Then we have the lower bound∫

Cn
|z|2|f (z)|2dz ≥ 1

8
b−2 ,

whenever the condition ∑
k∈A

‖f × ϕk‖2
2 ≤ 1

4
b−1

is satisfied.
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As in the case of Hermite expansions this theorem will be proved by reducing it to an
inequality for Laguerre series. We will briefly indicate how this reduction is done.

The reduction is achieved by using a Hecke-Bochner type identity for the Weyl transform
proved by Geller [2]. For each pair of non-negative integersp andq, letPp,q be the space of
all polynomialsP in z andz of the form

P(z) =
∑

|α|=p

∑
|β|=q

cαβzαzβ .

Let Hpq = {P ∈ Ppq; �P = 0}, where� is the standard Laplacian onC n. Elements of
Hpq are called bigraded solid harmonics. IfSpq are the restrictions of elements ofHpq to
S2n−1, thenL2(S2n−1) is the orthogonal direct sum ofSpq.

Given a functionf on C n, consider the expansion

f (rw) =
∞∑

k=0

∑
p+q=k

fpq(rw) ,(3.3)

wherez = rw,w ∈ S2n−1 andfpq ∈ Spq . The functionsfpq can be represented in terms
of certain unitary representations of the unitary groupU(n). For each(p, q) there is an
irreducible, unitary representationδpq of U(n) onSpq . Then

fpq(z) = d(p, q)

∫
U(n)

χpq(σ )f (σ · z)dσ ,

whereχpq is the character andd(p, q) the degree ofδpq, see [4].
We first note that the special Hermite projections commute with the above decomposi-

tion. Indeed, using the above expression, recalling the definition off ×ϕk and noting that the
symplectic form Im(z·w) is preserved byU(n), we getfpq ×ϕk(z) = (f ×ϕk)pq(z). A result
of Geller [2] says that elements of the formfpq have simple special Hermite expansions.

PROPOSITION 3.2. Suppose f ∈ L2( C n) is of the form f (z) = g (z)P (z), where g is
radial and P ∈ Hpq . Then

f × ϕk(z) = ckP (z)L
n−1+p+q
k−p

(
1

2
|z|2

)
e−(1/4)|z|2 ,

where ck = 0 for k < p and for k ≥ p

ck = (k − p)!(n − 1)!
(k + q + n − 1)!

∫
Cn

g (z)L
n−1+p+q
k−p

(
1

2
|z|2

)
e−(1/4)|z|2|z|2(p+q)dz .

A proof of this can be found in [2]. In [4] the above formula has been used in the
study of twisted spherical means onC n. In view of the preceding remarks, in order to prove
Theorem 3.1 it is enough to consider functions of the formf (z) = g (z)P (z) with g radial
andP ∈ Hpq . Then by the proposition we are reduced to proving an uncertainty inequality
for Laguerre expansions. Theorem 3.1 thus follows from Theorem 5.1.
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4. Heisenberg group. Consider the Heisenberg groupHn = C n × R equipped with
the group law

(z, t)(w, s) =
(

z + w, t + s + 1

2
Im(z · w)

)
.

All the infinite dimensional irreducible unitary representations ofHn are given, up to unitary
equivalence, by the Schrodinger representationsπλ, λ ∈ R, λ 	= 0. All these representations
are realised onL2(Rn); explicitly, they are given by

πλ(z, t)ϕ(ξ) = eiλt eiλ(x·ξ+(1/2)x·y)ϕ(ξ + y)

for ϕ ∈ L2(Rn). The Fourier transform of an integrable functionf is defined to be the
operator valued function

f̂ (λ) =
∫

Hn

f (z, t)πλ(z, t)dz dt .(4.1)

We refer to the monograph [7] for more about Heisenberg group and the Fourier transform.
A simple minded extension of the inequality (1.2) to the Heisenberg group set-up is the

following. Let {aj } and{bj } be two sequences, 0< aj → ∞, 0 > bj → −∞, aj+1 − aj ≤
b andbj − bj+1 ≤ b. Then, forf ∈ L2(Hn) normalised so that‖f ‖2 = 1, the condition

∞∑
j=0

(‖f̂ (aj )‖2
HS + ‖f̂ (bj )‖2

HS) ≤ 1 − ε√
b

(4.2)

for someε > 0 implies the lower bound∫
Hn

t2|f (z, t)|2dz dt ≥ 8
ε2

b2 .(4.3)

The proof of this is almost the same as the proof of (1.2). In fact, an easy calculation shows
that

|λ|n‖f̂ (λ)‖2
HS = (2π)n

∫
C n

|f̃ (z, λ)|2dz ,(4.4)

where

f̃ (z, λ) =
∫

f (z, t)eiλt dt

and hence the argument given in[5] proves the above estimate.
In this section we are interested in establishing a lower bound for theL2 norm of|z|f (z, t).

In order to do this we are going to view the Fourier transform not as a function of the single
variableλ but as a function of(λ, k), k = 0, 1, 2, . . . . This can be compared with the point of
view taken by Helgason [3] in considering the Euclidean Fourier transformf̂ (ξ) as a function
of (λ, ω), whereξ = λω, ω ∈ Sn−1. The best way to do this is to go to a bigger group,
namely the Heisenberg motion group and look at the group Fourier transform there.
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The Heisenberg motion group denoted byGn is the semi-direct product ofU(n) andHn

with the group law

(σ, z, t)(τ,w, s) =
(

στ, z + σw, t + s − 1

2
Im(σw · z)

)
.

Consider the set inR2 given by

{(λ, (2k + n)|λ|); λ 	= 0, k = 0, 1, 2, . . . } ,

which is called the Heisenberg fan. To each point(λ, (2k + n)|λ|) on the Heisenberg fan
there is an associated representationρλ

k of Gn. Let Φλ
α(x) = |λ|n/4Φα(|λ|1/2x), and define

Eλ
αβ(z, t) = (πλ(z, t)Φ

λ
α,Φλ

β ). Let Hλ
k be the Hilbert space for which

{Eλ
αβ; α, β ∈ N n, |α| = k}

is an orthonormal basis.ρλ
k are realised onHλ

k and the action is given by

ρλ
k (σ, z, t)f (w, s) = f (π((σ, z, t)−1)(w, s)) ,

whereπ(σ, z, t)(w, s) = (z, t)(σw, s) is the action ofGn on Hn. We refer to [7] for more
about these representations.

Given a functionf on Gn, we can defineρλ
k (f ) as an operator onHλ

k . Whenf ∈
L1 ∩ L2(Hn), we can show thatρλ

k (f ) is a Hilbert-Schmidt operator and

‖ρλ
k (f )‖2

HS = |λ|n k!(n − 1)!
(k + n − 1)!

∫
C n

|f λ ∗λ ϕλ
k (w)|2dw .(4.5)

Heref λ(z) = f̃ (z, λ), ϕλ
k (w) = ϕk(|λ|1/2w) and theλ-twisted convolution off λ andϕλ

k is
defined by

f λ ∗λ ϕλ
k (z) =

∫
C n

f λ(z − w)ϕλ
k (w)ei(λ/2)Im(z·w)dw .

Note that whenλ = 1, this is just the twisted convolution used in Section 3. In terms ofρλ
k (f )

we have the Plancherel theorem

‖f ‖2
2 = (2π)−2n−1

∫ ∞

−∞

( ∞∑
k=0

‖ρλ
k (f )‖2

HS

(k + n − 1)!
k!(n − 1)!

)
|λ|ndλ .(4.6)

We are now ready to state our uncertainty inequality.

THEOREM 4.1. Let A = {aj } be an increasing sequence of natural numbers such that
a0 ≤ b, aj+1 − aj ≤ b. Let f ∈ L2(Hn) with ‖f ‖2 = 1. Then there are constants C, c > 0
such that ∫

Hn

|z|2|f (z, t)|2dz dt ≥ C b−2 ,

whenever the inequality∫ ∞

−∞

(∑
k∈A

‖ρλ
k (f )‖2

HS

(k + n − 1)!
k!(n − 1)!

)
|λ|ndλ ≤ c b−1

is satisfied by the operators ρλ
k (f ).
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In view of the above observations we need to establish the following inequality:∫
C n

|z|2|f λ(z)|2dz

≥ C b−2
∫

C n
|f λ(z)|2dz − b−1|λ|n

∑
k∈A

∫
C n

|f λ ∗λ ϕk(z)|2dz .
(4.7)

This is just an analogue of Theorem 3.1 and can be proved in a similar fashion. Indeed, we
have an analogue of Proposition 3.2. Whenf (z) = g (z)P (z) as in Proposition 3.2,

f ∗λ ϕλ
k (z) = cλ

kP (z)L
n−1+p+q
k−p

(
1

2
|λ||z|2

)
e−(1/4)|λ||z|2

wherecλ
k are given by

cλ
k = (k − p)!(n − 1)!

(k + q + n − 1)!
∫

C n
g (z)L

n−1+p+q
k−p

(
1

2
|λ||z|2

)
e−(1/4)|λ||z|2|z|2(p+q)dz .

It is now clear that as in the case of Theorem 3.1, everything boils down to the uncertainty
inequality of Theorem 5.1.

5. Laguerre expansions. Laguerre polynomials of typeα > −1 are defined by the
equation

e−t tαLα
k (t) = 1

k!
dk

dtk
(e−t tk+α)(5.1)

for t > 0 andk = 0, 1, 2, . . . . They satisfy the orthogonality relations∫ ∞

0
Lα

k (t2)Lα
j (t2)e−t2

t2α+1dt = 1

2

�(k + α + 1)

�(k + 1)
δkj .(5.2)

Suitably normalised, they form an orthonormal basis forL2(R+, t2α+1dt). In this section we
establish the following result.

THEOREM 5.1. Let A = {ak} be an increasing sequence of natural numbers such that
a0 ≤ b, ak+1 − ak ≤ b. Let α ≥ −1/2 and let

f (t) =
∞∑

j=0

cjL
α
j (t2)e−(1/2)t2

be the Laguerre series of f ∈ L2(R+, t2α+1dt). Then we have the inequality∫ ∞

0
|f (t)|2t2α+3dt ≥ 1

4
b−2

∫ ∞

0
|f (t)|2t2α+1dt − 1

2
b−1

∑
j∈A

|cj |2�(j + α + 1)

�(j + 1)
.

Once this theorem is established, Theorems 2.1, 3.1 and 4.1 all follow immediately. Note
that we get the lower bound ∫ ∞

0
|f (t)|2t2α+3dt ≥ 1

8
b−2 ,
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whenever the Laguerre coefficients off satisfy the condition

∑
j∈A

|cj |2�(j + α + 1)

�(j + 1)
≤ 1

4
b−1 .

We now proceed to the proof of the above result.
If f is given as in the theorem, itsL2 norm is given by

∫ ∞

0
|f (t)|2t2α+1dt = 1

2

∞∑
j=0

|cj |2�(j + α + 1)

�(j + 1)
.(5.3)

Let us writeAj = cj (�(j + α + 1)/�(j + 1))1/2. By making use of the recursion relation
(see [6])

tLα
j (t) = (2j + α + 1)Lα

j (t) − (j + 1)Lα
j+1(t) − (j + α)Lα

j−1(t)

valid for j ≥ 1, we get

t2f (t) = c0t
2Lα

0(t2)e−(1/2)t2

+
∞∑

j=1

cj ((2j + α + 1)Lα
j (t2) − (j + 1)Lα

j+1(t
2) − (j + α)Lα

j−1(t
2))e−(1/2)t2

.

Using the orthogonality properties of the Laguerre functions, we calculate that∫ ∞

0
t2|f (t)|2t2α+1dt = c0

∫ ∞

0
Lα

0(t2)e−(1/2)t2
t2f (t)t2α+1dt

+ 1

2

∞∑
k=1

(
|ck|2�(k + α + 1)

�(k + 1)
(2k + α + 1)

− ckck+1
�(k + α + 2)

�(k + 2)
(k + 1) − ckck−1

�(k + α)

�(k)
(k + α)

)
.

Using the recursion relation once again and simplifying, we get∫ ∞

0
t2|f (t)|2t2α+1dt

= 1

2

∞∑
k=0

(|Ak|2(2k + α + 1) − 2 Re(AkAk+1)(k + α + 1)1/2(k + 1)1/2) .

Since we also have the equality

∫ ∞

0
|f (t)|2t2α+1dt = 1

2

∞∑
k=0

|Ak|2 ,
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we need to establish
∞∑

k=0

|Ak|2(2k + α + 1) − 2 Re(AkAk+1)(k + α + 1)1/2(k + 1)1/2

≥ 1

4
b−2

∞∑
k=0

|Ak|2 − b−1
∑
k∈A

|Ak|2 .

Writing 2k + α + 1 = (k + α) + (k + 1) and changingk into k + 1,
∞∑

k=0

|Ak|2(2k + α + 1) =
∞∑

k=0

|Ak+1|2(k + α + 1) + |Ak|2(k + 1) + α|A0|2,

and therefore the above inequality becomes
∞∑

j=0

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2 + α|A0|2

≥ 1

4
b−2

∞∑
j=0

|Aj |2 − b−1
∑
j∈A

|Aj |2 .

(5.4)

Case 1: α ≥ 0. Definingρj by the equation

(1 + ρj ) =
(

1 + α

j + 1

)1/2

,

we see that

(j + 1)ρj = 1

2

∫ α

0

(
1 + s

j + 1

)−1/2

ds ,

is an increasing function inj and converges toα/2 asj → ∞. Further define a functionF(j)

as

F(j) = α − jρj−1 − (j + 1)ρj ,(5.5)

which is a decreasing function ofj and tends to 0 asj → ∞. Let J be the first integer such
thatF(J ) ≤ b−2/4 and letL ≤ J ≤ M be integers inA which are nearest toJ .

Now we have
J−1∑
j=0

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

=
J−1∑
j=0

((j + α + 1)|Aj+1|2 + (j + 1)|Aj |2 − 2(j + α + 1)1/2(j + 1)1/2Re(Aj Āj+1)) ,

which is bounded below by

J−1∑
j=0

(j + α + 1)|Aj+1|2 + (j + 1)|Aj |2 − (|Aj |2 + |Aj+1|2)(j + 1)1/2(j + α + 1)1/2 .
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This can be written as

J−1∑
j=0

((j + α + 1)1/2 − (j + 1)1/2)((j + α + 1)1/2|Aj+1|2 − (j + 1)1/2|Aj |2)

=
J−1∑
j=0

(1 + ρj − 1)((1 + ρj )|Aj+1|2 − |Aj |2)(j + 1)

=
J−1∑
j=0

((ρ2
j + 2ρj )|Aj+1|2 − ρj (|Aj+1|2 + |Aj |2))(j + 1)

=
J−1∑
j=0

(α|Aj+1|2 − ρj (j + 1)(|Aj+1|2 + |Aj |2))

=
J−1∑
j=0

F(j)|Aj |2 − α|A0|2 + (α − JρJ−1)|AJ |2 .

Recalling the fact thatF(j) ≥ (1/4)b−2 for 0 ≤ j ≤ J − 1 we have

J−1∑
j=0

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥ 1

4
b−2

J−1∑
j=0

|Aj |2 − α|A0|2 + (α − JρJ−1)|AJ |2 .

(5.6)

Next we estimate the sum taken fromj = J to ∞. Let m andl be natural numbers such that
l < m. From the definition ofρj , we can see that

m−1∑
j=l

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2 =
m−1∑
j=l

|(1 + ρj )Aj+1 − Aj |2(j + 1) ,

which can be written as

m−1∑
j=l

(|Aj+1 − Aj |2(j + 1) + α|Aj+1|2) + R ,

whereR = −2
∑m−1

j=l ρj (j + 1) Re(Aj Āj+1). Using the estimate

|R| ≤
m−1∑
j=l

ρj (j + 1)(|Aj |2 + |Aj+1|2) ,
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we get

m−1∑
j=l

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥
m−1∑
j=l

[|Aj+1 − Aj |2(j + 1) + α|Aj+1|2 − ρj (j + 1)(|Aj+1|2 + |Aj |2)](5.7)

=
m−1∑
j=l

|Aj+1 − Aj |2(j + 1) + E ,

where the error termE is given by

E =
m−1∑
j=l

(α|Aj+1|2 − ρj (j + 1)(|Aj+1|2 + |Aj |2)) .

It is easy to get a lower bound for the main term in (5.7). Since

Ak = Al +
k−1∑
j=l

(Aj+1 − Aj)

for l ≤ k ≤ m − 1, we get the estimate

1

2
|Ak|2 ≤ |Al|2 +

(m−1∑
j=l

|Aj+1 − Aj |
)2

.

Applying Cauchy-Schwarz inequality and noting thatm − l ≤ b, we get the estimate

1

2

m−1∑
k=l

|Ak|2 ≤ b|Al|2 + b2
m−1∑
j=l

|Aj+1 − Aj |2 .

Thus we have

m−1∑
j=l

|Aj+1 − Aj |2(j + 1) ≥ 1

2
b−2

m−1∑
j=l

|Aj |2 − b−1|Al|2 .(5.8)

In order to estimate the error term in (5.7) we observe that

E =
m−1∑
j=l

F (j)|Aj |2 − (α − lρl−1)|Al|2 + (α − mρm−1)|Am|2

≥ −(α − lρl−1)|Al|2 + (α − mρm−1)|Am|2 ,
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recalling the fact thatF(j) is non-negative. Combining this with (5.8), we have

m−1∑
j=l

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥ 1

2
b−2

m−1∑
j=l

|Aj |2 − b−1|Al |2 − (α − lρl−1)|Al|2 + (α − mρm−1)|Am|2
(5.9)

which leads to the estimate

∞∑
j=J

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥ 1

4
b−2

∞∑
j=J

|Aj |2 − b−1
∑

M≤j∈A

|Aj |2 − (α − JρJ−1)|AJ |2 .

(5.10)

From (5.6) and (5.10) we have

∞∑
j=0

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥ 1

4
b−2

∞∑
j=0

|Aj |2 − b−1
∑
j∈A

|Aj |2 − α|A0|2

which proves the estimate (5.4), ifα ≥ 0.
Case 2: −1/2 ≤ α < 0. Definingρj by the equation

(1 + ρj ) =
(

1 − α

j + α + 1

)1/2

,

we can see that,

(j + α + 1)ρj = 1

2

∫ −α

0

(
1 + s

j + α + 1

)−1/2

ds

is an increasing function inj and converges to−α/2 asj → ∞. Also define a functionF(j)

as

F(j) = −α − (j + α)ρj−1 − (j + α + 1)ρj

which is a decreasing function ofj and tends to 0 asj → ∞. As in the case 1, chooseL, J

andM such thatF(J ) ≤ (1/4)b−2.
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Arguing as in Case 1 we have

J−1∑
j=0

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥
J−1∑
j=0

(1 − (1 + ρj ))(|Aj+1|2 − (1 + ρj )|Aj |2)(j + α + 1)

=
J−1∑
j=0

((ρ2
j + 2ρj )|Aj |2 − ρj (|Aj+1|2 + |Aj |2))(j + α + 1)

=
J−1∑
j=0

(−α|Aj |2 − ρj (j + α + 1)(|Aj+1|2 + |Aj |2))

=
J−1∑
j=0

F(j)|Aj |2 − α|A0|2 − (α + J )ρJ−1|AJ |2

≥ 1

4
b−2

J−1∑
j=0

|Aj |2 − α|A0|2 − (α + J )ρJ−1|AJ |2 .

(5.11)

noting thatρ−1 = −1.
For estimating the sum taken fromJ to ∞ we consider the sum over blocks,l ≤ j < m

wherel,m ∈ A, as in Case 1.
We have

m−1∑
j=l

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2 =
m−1∑
j=l

|Aj+1 − (1 + ρj )Aj |2(j + α + 1) ,

which can be written as

m−1∑
j=l

|Aj+1 − Aj |(j + α + 1) + R ,(5.12)

whereR = ∑m−1
j=l ((2ρj + ρ2

j )|Aj |2 − 2ρjRe(Aj Āj+1))(j + α + 1).
The main term in (5.12) can be estimated as in Case 1 and the error termR can be

bounded below as follows.

R ≥
m−1∑
j=l

((2ρj + ρ2
j )|Aj |2 − ρj (|Aj |2 + |Aj+1|2))(j + α + 1)

=
m−1∑
j=l

(−α|Aj |2 − ρj (j + α + 1)(|Aj |2 + |Aj+1|2))
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=
m−1∑
j=l

F (j)|Aj |2 + (α + l)ρl−1|Al|2 − (α + m)ρm−1|Am|2

≥ (α + l)ρl−1|Al|2 − (α + m)ρm−1|Am|2 ,

sinceF(j) is non-negative.
Following the steps as in Case 1, we get

∞∑
j=J

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥ 1

4
b−2

∞∑
j=J

|Aj |2 − b−1
∑

M≤j∈A

|Aj |2 + (α + J )ρJ−1|AJ |2 .

(5.13)

Combining (5.11) and (5.13), we have

∞∑
j=0

|(j + α + 1)1/2Aj+1 − (j + 1)1/2Aj |2

≥ 1

4
b−2

∞∑
j=0

|Aj |2 − b−1
∑
j∈A

|Aj |2 − α|A0|2 ,

which proves the estimate (5.4), for the case−1/2 ≤ α < 0. Hence Theorem 5.1 is estab-
lished.
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