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Abstract. The theory of stochastic differential equation on the fielgbeddics is ini-
tiated by Kochubei. In this article, we will focus on a class of random walks with a certain
integrability to develop the theory of stochastic analysis in a way similar to the existing theory
of stochastic analysis based on the Brownian motion. In fact, for any random walk in the class,
we can introduce the notion of stochastic gred with respect to the random walk and jus-
tify the existence of the solution of the stochastic differential equations based on the random
walk, where the stochastic differential equations admit not only Lipschitz continuous path de-
pendent coefficients but also continuous cogdfits growing at most linearly with respect to
p-adic norm. Finally, we will see an example stbchastic process which can be covered by
Dirichlet space theory and obtained also byving stochastic differential equation.

1. Introduction. The theory ofp-adic numbers has become an important language to
put a reasonable interpretation of several physical phenomena. In fact, many researchers pro-
posed to investigate the theory in mathematjgtafsics relying on the hierarchical structure
(see [4], [B], [6], [11], [12]). Some classes of stochastic processes based on the hierarchical
structure are dealt with by Karwowski and Vilela-Mendes [17] and by Kochubei [19], where
the importance and the history pfadic structure in mathematical physics are explored. Also,
Vladimirov, Volovich and Zelenov discussed in their monograph the Brownian moti€},on
as a counterpart of the one on the real number field ([22]).

After Evans suggested in [9] a significance of a clasQ pivalued stochastic processes
including more general ones, Albeverio and Karwowski described explicitly the transition
probability and detected the corresponding &itet forms ([1]). In fact, by introducing a
sequencel = {a(m)}52__ ., satisfying

(1) a(m) > a(m + 1)
and
(2) mle()()a(m) =0, Erﬂma(m) >0 or =00,

they constructed a time homogeneous symmetric Hunt process, which is associated with the
regular Dirichlet form(&, F) on LZ(QI,; w) determined by

K+L—m+1
p

(r—1
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&gy, 1p,) = —2J(B1, B2) = — (aim —1) —a(m)),
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whereB; and B, stand for balls with radipX and p’ respectively, disiB;, B,) = p™, and
u denotes the Haar measure.

Subsequently, Yasuda derived a recurrence criterion using their expression on the transi-
tion probability in [20]. As forQ,-valued spatially inhomogeneous stochastic process, Kar-
wowski and Vilela-Mendes [17] established a family of spatially inhomogeneous processes
and Albeverio, Karwowski and Zhao [2] introduced another family of spatially inhomoge-
neous stochastic processes. The present author introduced a family of spatially inhomoge-
neous stochastic processes based on a modified derivative operator in terms of Fourier trans-
formation (see [15]). In [19], Kochubei initiated a theory of stochastic integral and stochastic
differential equation based on thestable processes by using the associ@gdalued Lévy
system, which provides us also with time-inhomogeneous processes. In this article, we first
shed light on advantages of stochastic integral with respec@pealued stochastic process
in a restrictive class, and will establish another approach to the theory of stochastic differen-
tial equations which admits path dependent coefficients. We attempt extending Kochubei’'s
framework so that it covers a stochastic differential equation with Lipschitz continuous coef-
ficient based on variou ,-valued stochastic processes.dkabei obtained a solution of the
stochastic differential equation with Lipschitz continuous coefficient whose Lipschitz con-
stant varies according to the width of jump of tlestable process ([19]). However, we can
solve stochastic differential equations without such an assumption on the Lipschitz continuity
of the coefficient. The coverage of our formulation is completely consistent with Kochubei's
stochastic integral and stochastic differential equation as long as both approaches work.

For mathematical foundations pfadic numbers, the readers are referred to [22]. Stimu-
lating discussions with Professor M. Takeda and Professor K. Yasuda are gratefully acknowl-
edged. The author expresses his gratitude to the referee of this article for valuable suggestions.

2. Stochagtic integral. We begin with the definition of stochastic integral based on
the Q,,-valued stochastic process corresponding to a sequéneea(m)},’__, satisfying
(1), (2) and

o

(3) Y a(m)p”™ < oo forsome given numbey > 1.

m=—0o0

More specifically, let us denote the family of all sequences with these three properties by
A(y). Then we fix a real numbep with y > 1, pick out a sequencé from A(y) and
consider Albeverio and Korwowski’s random walK (¢)} corresponding t4, which is a
D(0,T] — Qp)-valued random variable, whef([0, 7] — Q) stands for the space of all
right continuous sample paths: [0, T] — Q, with left limit at every point. The goal of this
section is to establish the notion of stochastic integral with respect to the randorfiXv@ajk
with X (0) = 0 determined by an arbitrarily given parameter sequenoé.A(y).

Choose a filtratior{ F;} satisfyingF; D o[X(s)|s < t] for anyt so that{F;} is in-
dependent ob[X (s + 1) — X(¢)|s > 0] for everyr > 0. Denote bySr the set of
¢ = Zl’.’;()lﬁl[,i,,i+l), where {t;}!_,is a division 0= 10 < 11 < --- < t, = T of
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[0, 7] and eachf; is an{F;}-measurabl& ,-valued random variable. Then for any ele-
mentyp = Z?;& filis,1,0) € St, the stochastic integrgig ¢ (s)d X (s) with respect td X (¢)}
is defined by

t n—1

/0 &)X (s) =Y fi(X(tisant) =Xt A1) for 0<t<T.
i=0

The family of random variablesfé ¢ (s)dX (s)}iefo0,71 can be regarded as 4tf; }-adapted
process as well asR([0, T] — Qp)-valued random variable.

LEMMA 1. Thereexistsa positive constant C, , satisfying the following two proper-
ties:

() ENX®I,] < Cayt foral ¢ >0,

(i) E[ sup

0<t<u

t
/0 $()dX (s)

)/ n
} <Ca,y ZE[IlﬁH;](h‘H Au—(ti Au))
14 i=0

for O<u<T.

ProoFE (i) Since the functiorP,, (t) = P(X(¢) € B(0, p™)) has the expression

Pn(t) = pTT:Lpri exp(_ pa(m+i)_a(M+i+l)t>

i=0
obtained by Albeverio and Karwowski ([1]), we easily see that

p—-1

o0
ENXOIp) = Y p""(Pu(t) = Pnoa(t))
m=—0o0
o0 o0 . .
=< —p_l Z p?’mZpi(l—exp<— pam + 1 _1)1_a(m+l)t))
p m=—0o0 i=0 P
o0 o
p—1 _pa(m4+i—1) —a(m+i)
SP2L Sy Do,
P m=—o0 i=0 p
o0 o0 )
< > p" platm+i— Dt
m=—0o0 i=0
o0
p
= -1 > pMa(m -1y

m=—0oQ

oo
m=—0o0

Therefore, we can chooggp — 1)1y p’™a(m — 1) asC,,, for the estimate.
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(i) Since one observes that

t Y n—1 4
H f ¢)X ()| = | Y filXUiganD) = X (G AD)
0 P i=0 p
< max L fi(X (s A0 = X A
1=0,...,n
n—1
< Y AN Giya A D) = X (@6 A
i=0
it is not difficult to see that
tinu Y
max / d(s)dX (s)
/:0! n 0 p
n—1
< j_fgaxnz AN Ciga Aty A ) = X (6 At Al
“0.n
n—1
< Y AP Ciga A w) = X (G A u)ly -
i=0

Accordingly, by using the constagl, ., in (i), one sees that
|
P

n—1
< E[ZE[IIﬁIILIIX(nJrl Au) = Xt A, m,&}

i=0

E max
i=0,...,

J= n

tiANu
fo T )X (s)

n—1
= CAJ’EI:Z Lfill, tra A — 15 A u)i| .
i=0

If we take a finer divisiomA : 0 = s < 51 < --- < s, = T 0f [0, T'] than the original
onedy : 0=19 < t1 <--- <t, =T of the functiongp = Z;’;Olﬁl[timl), then¢ admits
another expressiopi = Zf":‘ol 9 j1s;.s;41), @and it turns out that

SjAu y m—1

E[ ma / @ (s)dX(s) i| SCA,;,E[Z||gj||;,(Sj+1/\u—sj/\u)i|
j=0,....m 0 » =
n—1

= CA,VE[Z LAl (tipa A — 13 A u)i| _
i=0

By passing to the limit agA| — 0, one can verify
n—1

y
E[ sup } SCA,yE[ZIIfiII;(IiH/\M—tiAu)] O
14 i=0

0<t<u

t
/0 $()dX (s)
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Denote the set o ,-valued random variable¥ satisfyingE[||X||;] <oohbyL?, and

denote the set dfF; }-adapted) ,-valued processes regarded as continuous maps|fFofii
to LY by C([0, T] — LY). For any elemenp € C([0, T] — L), there exists a sequence
{¢n} C St such that lim . oo SUR<, <7 Elllém (1) — ¢(t)||;] = 0. Then one can derive from
Lemma 1 (ii) that

Y

} _o.
p

Therefore, the stthastic integra}fé ¢ (s)dX (s) of ¢ with respect td X (¢)} can be defined as
a uniqueQ,-valued processY (1)} satisfying
14
} —o.
p

Since we already know thzfg dn(s)dX(s) isaD(0,T] — Qp)-valued random vari-
able, we immediately see thﬁgqb(s)dX(s) isaD([0, T] — Q,)-valued variable as well.

lim E[ sup

n,m—» 00 0<t<T

t t
/c)¢n(s)dx(s)_/c) Gm(s)d X (s)

lim E[ sup

n—00 0<t<T

t
Y () - /0 u(s)dX (5)

PrRoPOSITION 1. The stochastic integral has the following properties:

Y v
} < CA,yE[/ |I¢(S)||st]
14 u

t t t
(ii) /0(¢(s)+1/f(s))dX(s)=/0 ¢(S)dX(S)+/O V(s)dX(s),

0] E[ sup

u<t=<v

t
/ ¢ (s)d X (s)

(iii) /uqﬁ(s)dX(s) =/U¢(s)dX(s)+/u¢(s)dX(s) for all v, u withu > v,
0 0 v

t
(iv) / ¢ (s)dX (s) isaQP—valued processinC([0, T]— L7).
0

PrRooOE (i) Similarly to the proof of Lemma 1 (ii), for ang € Sy, one can verify

t
/ ¢(s)dX (s)

E[ sup

v<t<u

Y n
} < Cay Y ENSlI G Aw) Vo = (6 Aw) V),
P i=0
forall 0 < u,v < T with u > v. From this one can conclude that

Y u
} < cA,yE[/ ||¢<s)||;ds}
p v
forall u, v € [0, T] with u > v.

(i) and (iii) follow immediately from the definition of the stochastic integral.
(vi) Since the second term of the right-hand side in (iii) converges to zeld ias
u — v, (vi) has been proved. O

E[ sup

vV<t<u

/ $()dX (5)
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For two Q,,-valued stochastic processgs: (1)} and{X2(#)}, a fundamental calculation
shows that

X1()X2(t) — X1(0)X2(0)

S () ()
(sa(*5) ()

() () 0 ()

B () () () ()

i=0

In particular, whenX; and X, are random walks corresponding to some sequences of
A(y) for a fixedy > 1, the first and the second terms convergeféd(l(s)dxz(s) and

to [é X2(s)dX1(s), respectively. As a consequence of this fact, we obtain the following two
examples:

ExampLE 1. For the random walkX (t)} corresponding tA € A(y) with y > 2,
there exists an elemefi (1)} of C([0, T] — LY/?) satisfying

t
X(1)? - X(0)% = 2/ X(s)dX (s)+ Z(1).
0

{Z(¢)} is characterized also as a unique elemeri(@, 7] — LY) enjoying

n—1 . . 2.y
ol S(52) () ]
i 14

i=0
ExamMpPLE 2. For independent two random wali&1(7)} and{X2(¢)} corresponding
to AjandAz € A(y) (y > 1) respectively, we have the following formula:

t t
X1()X2(t) — X1(0)X2(0) =/0 X1(s)dX2(s) +/0 Xo(s)dX1(s),
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(52 () () ()]
A(52) 1) () ()
(52 () (52 ()
S ) () e ) ()

— . . 2
i+ Dr it
= a3 (R
i=0
t2
= CAls)’CAZJ/; -0 (n— o0).

i

|
|
|

1

|
o5

1=

3. Stochasticdifferential equation with path dependent coefficient. We considera
functiono (¢, X) defined o0, T] x C([0, T] — L") for somey > 1 enjoying the following
properties:

(4) foreachX € C([0,T] — L?),o0(-, X) defines an element 6[0, T] — LY),

(5) foreachs € [0, T], any elemenX e C([0, T] — LY) gives an{Fs}-measurable
random variables (s, X) depending only on the family of random variablgs(u) |u €
(O, s1},

(6) there exists a positive constant satisfying

Elllo(t, X) —o(z, X’)II;] = CTE|: sup [ X (u) — X'(M)II:,}
O<u<t
foranyX, X’ € C([0,T] — LY) and anyr € [0, T].
For an elemend enjoying these properties (4), (5) and (6) and a random \u&l)}
corresponding to soma of A(y), if an element{Y (t)} € C([0,T] — LY) satisfies the
stochastic integral equation

t
Y(t):x—i—/ o(s,Y)dX(s), 0<t<T,
0

for some starting point € Q,, then{Y ()} is called a solution of the stochastic differential
equation

dY () =o(1,Y)dX (1),

Y(0)=x.
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THEOREM 1. If {X ()} isarandomwalk corresponding to some sequence A of A(y)
with y > 1, then the stochastic differential equation

{dY(t) =o(t, Y)dX(1),
Y(0) =x,
has a unique solution {Y (#)} for every starting point x € Q,,.
PROOF  Define a sequende ™ (1)}52, of C([0, T] — L) inductively by
YO@) =x,

t
Y(”)(t)zx—i—/ o(s, Y Vydx(s), n=12....
0

From Proposition 1 (i), it follows that
E[ sup [|IYPw) —x||;:| <KCpyt for K= sup E[fo(t,x)ll,].
Ofugt OStST
In general, by assuming
tn
E[ sup Y @) — Y("”(u)n;} <KCL,CF =,

O<u<t ’ n!

one can derive

tn+l
(n+1)!

’

E[ sup ||Y(n+l)(u) _ Y(n)(u)”;i| < KC/T—]'C;

Y
O<u<t

since

E [ sup [[Y D () — Y“”(u)n;}

O<u<t

]

/u (0(s, Y)Y — (s, Y V) d X (s)
0

§E[ sup

O<u<t

t
< cA,yE[ / lo (s, Y™) — o (s, Y("l))IIZdS]
0
t
= Cay f Ello(s, Y) — o (s, YO~y Jas
0

t
< CayCr / E[ sup [[(Y™ (u) — Y“‘”(u))ﬂj,}ds
0

O<u<s

tn+l

(n+1!°
Therefore, combining the estimate

<KCiHCh

1 C T n+1 C n
P[ sup YD @) -y @), > _} < g CayD(CTp)
O<u<T p n+1)!
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with Borel-Cantelli lemma, one can see that there exist§fahadapted procedd (7)} sat-
isfying

P[ lim sup Y™ @) - Y@, = 0i| =1.

n—=>00 gt <T

On the other hand, since one observes that

m k+1 k
E[ sup [[Y® (1) - Y(’")(t)llj,} <x Y e,
k=n

0<t<T (k+1)!

Fatou’s Lemma shows that

y e (Ca, ()
E Y™ -y } K 24 )
[oinan =YD, | < kgj T D!

Therefore, the sequen(ﬂ'@f(”)(t)};‘lo:l converges tqY (z)} in LY uniformly in¢ € [0, T] asn

goes taco. Combining this inequality with the assumption (6), one can derive from Proposi-
tion 1 (i) that

i

p

Y(s) — YPs)

E[ sup

O<u<t

/u(o(s, Y) —a(s, Y™)NdX(s)
0

t
SCA,VCTEI:/ sup
0

O<u<s

Y
dsi| -0 (n—> ).
p
Consequently, from
t
Y® (@) =x +/ o, Y dxes) m=12...)
0

we can derive ,
Y(t) =x +/ o(s,Y)dX(s).
0

This also ensures th@t (1)} is an element of ([0, 7] — L) and aD([0, T] — Q,)-valued
random variable as well.
On the other hand, if another elemé@t(r)} € C([0, T] — L?) satisfies
dZ(t) =0, Z)dX (1),
{Z(O) =x,
then we can immediately derive the equaliB(r)} = {Y (r)} as the elements @f([0, T'] —
L7) from the following estimates:

E[ sup [|Y (u) — Z(u)nj,}

O<u<t

:E[ sup

O<u<t

/u(a(s, Y)—o0(s, 2)dX(s)
0

|

p
t

< cA,yCTE[/ sup [|Y (u) — Z(u)||;dsi|. m
0

O<u<s
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4. Stochastic differential equation with continuous coefficient of linear growth.
We consider a functiono(z, x) on[0, T'] x Q, enjoying the following properties:

(7) eacly € [0, T'] defines a continuous mag(z, -) : Q, — Q,,,

(8) there exists a sequengs,(z, -)} of coefficients defined o, 7'] x Q,, so that every
coefficient admits a positive constafit, r satisfying

sup |loy(t, x) — U/z(t’x,)||p <Curlx - x,”p for all xax/ € Qp
te[0,T]

and

lim  sup |lon(t,x) —oo(t, x)||, =0 for each positive integeN,
n—00  te[0,7T]

xEB(O,pN)

(9) there exists a non-negative functigrdefined orf0, oo) satisfying lim: .o ¥ (§) =
0 andE[|lon (t, X (1)) — ou(t’, X(t’))lli,] = Y(ENX @) — X(t’)lli,]) foranyX € C([0, 7] —
L% andeach =0,1,2, ...,
(10) there exists a positive constatg satisfying

sup [lon(r, ), < Ko(1+ llx|lp)
1€[0,T]

foranyx € Q, andn=0,1,2,....
By virtue of Theorem 1, given a random w&lK (z)} corresponding taA of A(2), the
assumptions (8) and (9) enable us to define a sequéntr)}° ; of C([0, T] — L?) by

t
Y® (@) =x +/ on(s, Y (s)NdX(s), n=12,....
0

LEMMA 2. Ifarandomwalk {X (r)} correspondsto some A of A(1)N.A(2), thenthere
exist positive constants K1, K2 and K3, depending only on the starting point x and on the
sequence A, which satisfy the following properties:

(i) E[ sup ||Y(”)(u)||;i| < KxexpK1t), n=1,2 ...,

O<u<t

(ii) E[ sup Y™ @) — Y™ (s)nf,} < 2Ca2Ko(1+ K2 eXpK1T))(t — 5.

s<u<t

n=12...,

(i) EY®@@ + ) = YOIy P ) — YO — b)) < Ksh'h™”,
n=12,...,foranyz,t' € [0, T]with¢ > ¢ and for any positive numbers
h, k' enjoyingr —h, t' +h' € [0, T].
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PrROOF (i) Since the assumption (10) together with Proposition 1 (i) implies that

|

E|: sup [|Y ™ (u) —x||f,i| = E[ sup

O<u<t O<u<t

/ ' on(s, Y™ (5))d X (5)
0
t
< cA,zKéE[ / 1+ ||Y<">(s)||p)2ds}
0
t
< KlE[ / L+ 1Y (s) —x||§,)ds}
0

t
sxlE[ (1+ sup ||Y<">(u>—x||§,)ds}
0

O<u<s
for some constank’1, one easily sees
E[ sup Y™ ) —x||;j| < exp(K11) .
O<u<t
From this one can immediately derive the estimate (i).

(i) By applying the inequality in Proposition 1 (i) to the right-hand side of the identity
Y™ ) — Y™ (s) = [ 0 (v, Y™ (v))d X (v), we can utilize (i) to obtain estimate (ii).

(iii) Since the stochastic integral is defined as the limit of the sequence of stochastic
integrals with integrands &7, it suffices to show that for an{F;}-measurable random
variable f with E[|| f[3] < 2K&(1+ K2exp(K1T)), there exists a positive constaki
satisfying

E[fXE +h) = XEDIpIY P @) = YO = h)llp] < Ksh'hY?,
which easily follows from the following inequalities:
E(If XA +h) = XENpIY ™ @) = YO =] ,]
= E[E[If (XU + ) = XEDIp 1Y @) =Y (@ =)l | o]l
= E[E[I(X(&" +h) = XEDIHIEN 1Y V@) = YO = W)l | F]
< CAalELNflp 1Y ™ @) =Y = b))
< Catl ENNFIBIYVELNY P (1) — Y™t = h)|51Y2

< Caal’ x 2C3/5K3(1+ Kz exp(K1T)hY2. O

If an elemen{Y (1)} € C([0, T] — L?) satisfies the stochastic integral equation
t
Y(t) =x +/ o(s,Y(s))dX(s), 0<t=<T,
0

for some pointc € Q,, and some random wall ()} corresponding tal, then the stochastic
differential equation
dY(t) =o(t,Y(®)dX (),
{ Y(0) =x,
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is said to have a solution with respect to a random walk correspondiagdndx is called a
starting point.

THEOREM 2. If arandomwalk {X (r)} corresponds to some A of A(1) N .A(2), then
the stochastic differential equation

dY(t) = oo(t, Y(1))dX (1),
{Y(O) =x,

has a solution with respect to a random walk corresponding to A for every starting point
x€Q,.

PROOFE By combining Lemma 2 with a result in Ethier and Kurtz [8], it is known that
the family (Y™ (t A T), X(t A T)}ejo.00) Of Q, x Q,-valued stochastic processes is tight,
whereQ, x Q, is considered as a metric space with the nomy)| = [lx[l, +Iyll, (x.y €
Q,). Therefore, there exists a family’ ™ (1), X (1)}, of Q, x Q,-valued processes
which has the following two properties:

(11) foreach =1,2,...,{Y™ (), X" ()} has the same probability law 88" (r A
T), X(t A T)}el0.00),

(12) (Y™ (@), X (1)} converges t¢¥ @ (1), X© (1)} in the spaceD([0, o0) — Q, x
Q,) asn — oo.

These properties ensure tHat® (1)} and{X (1)} have the same probability law and that

E[ sup ||)7(°)(u)||§} < K>exp(K1t) forall 1 € [0, T].

O<u<t

Therefore, Lemma 2 (ii) and assumption (9) show that, foramyO0, there exists a division

O=1<t1 <<t =T0f[0, T]such that

k-1

E[ Y o, Y u)) (X (tiga A1) = X (1 A 1))
i=0

t
- / o (s, T ())dX ™ (s)
0

2-1/2
P

forn =0,1,2,.... Thisimplies the finiteness of

k=1

> oo, Y @) (X Wty A ) = X4 A1)
i=0

supE[
n

2j|
p
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which vyields the uniform integrability of the family of the random variables
(525 00, YO u)) (XD (tpa A1) — XD (1 A1) 5)°2,- Accordingly, in the inequality

k—1
E[ Y o, YPu)) (X (tiga A1) = X1 A1)
i=0
k—1
=00, YOu)X Qi nt) = XOw A1) }
i=0 )4

k—1
< E[ Y o, YPu)) X (tiga A1) = X (1 A1)
k—1 ) ) )
=Y oo, Y )XW (tixa Aty = X (1 A 1)) }
p
k-1
+ E[ Y oolt, Y @)) X W (tiga A1) = X1 A1)
k—1
=Y 00t YO X Oty A ) = X O A 1))
the property (12) shows that the second expectation of the right-hand side does not exceed
any given positive number as long as is sufficiently large, since the family of real-valued
integrable. -
On the other hand, the first expectation of the right-hand side is dominated by the sum of

i=0
i=0
i=0
i=0 Pi| ’
random variableg|l Y523 oo(ti, ¥ ™ (1) (X (111 A 1) — XD (1 A 0)1]»)2, i uniformly
the following expectations:

k-1
E[ > (ot Y1) — oo(ti, Y (1))
i=0
X ()_((n) (ti+l AN t) — )-((n) (ti A l)) 1{SuR)§u§t |?(”)(u)|§pN}:|
p
and
k—1
E[ > (ot Y1) — oo(ti, Y (1))
i=0

< (XM (tigant) — XO 6 A1)

1{5U‘:b§u5t 170 )| >PN}i| :

i

p
The former expectation is dominated by
k-1

Y XD nt) = X0 A1)
i=0

sup  |lou(t, x) — oo(t, X)IlpE[
xeB(0,pN)




78 H. KANEKO

From Lemma 1 (i), we see that this admits the upper bou€d 17 x
SUR¢[0,71,xeB(0,pN) lon(t, x) — oo(t, x)|,. Therefore, from the assumption (8), we see that
this goes to zero as — oco. By applying Schwarz’ inequality to the latter expectation, we
obtain its dominant

k-1

i

D (onlti, Y (1)) — oo(ti, Y (1))

i=0

x (XM (tiza nt) — XD (1 A1)

241/2 1/2
} P( sup Y )| > pN> :
p

O<u<t

Here, Lemma 1 (ii) implies the following estimate on the expectation:

i

k-1
> (ot YV (1) — o0ti, YO ) (X (tiga A1) = Xt A 1))
i=0

]

k-1
< cA,zE[ D llow (e, Y )) = oolt, Y @))15(tiva A1) — (1 A r))}
i=0
for n = 1,2,.... Combining Lemma 2 (i) with the assumption (10), we know that the

supremum of the expectations of the right-hand side remains finite. Again from Lemma 2 (i),
we can derive the following estimate:

P( sup YD @), > pN) = P( sup IYP @), > pN)

O<u<t O<u<t

< E[ sup ||Y<">(u)||f,}/p2N < Kaexp(Kat)/p" .

O<u<t

Since the right-hand side tends to zerd\as> oo, the expectation
k-1
i

D (onlti, Y (1)) — oot Y (1))

i=0

x (XM (tis1 A1) — XD (1 A1)

1{sum§u§t |Y<"><u>|>pN}}
p

converges to zero a¥ — oo. Accordingly, for any positive number, as long as: is
sufficiently large, we can verify that
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|

! 13
EHU on (s, Y ()X (5) - / o0(s, Y@ (5)dXO(s)
0 0

t
sE[H / o (s, 7 ()d X (s)
0

k-1
=Y 0nlti, YO )X Pt Aty = X (6 A 1)) }
i=0 p
k—1
+ E[ > 0uti, YO )XV (tixa A1) = X (1 A1)
i=0
k—1
=Y 00(ti, YO X Oty n ) = X A1) }
i=0 p
k—1
+ E[ > o0t YO )X Qe nt) = X At
i=0

t
—/ oo(s, Y Q(5))d X O (s)
0

]538.
P

Consequently, by passing to the limitias> oo, from the equality
t

P00 =3t [ s TV )X ).
0

we can derive .
YO ) =x+ / oo(s, y© (s))d)_((o)(s) .
As a result, we conclude that the stocr?astic differential equation
{dY(t) = oo(t, Y(1))d X (1),
Y(0) =x,
has a solution with respect to a random walk corresponding ¢ .A(1) N A(2) for every
starting pointr € Q,,. O

5. Stochastic analysis with respect to random walks in a larger family. In this
section, we will obtain wider perspectives pfadic stochastic analysis so that it covers the
theory of stochastic differential equations based orutlstable processes. For this purpose,
we consider a random walk corresponding to a sequdnee{a (m)} satisfying (1), (2) and

0
(13 Z a(m)p’™ < oo foragiven real numbey > 1.

m=—0o0
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Denote the family of all sequences with these three propertie$(lpy and define sequences
A(M) = {a(M; m)} of A(y) by

am) if m<M,

“(M”")z{o if m>M.

PROPOSITION 2. For any randomwalk {X (1)} corresponding to A of A(y), we have
the following:
(i) The Q,-valued process {X (M: )} defined by X (M: 1) = [o [3 fu()N(ds. dz)
y4
is a random walk corresponding to A(M), where N stands for the Poisson random measure
of {X (1)} and fy denotesthe Q,-valued function defined by
_ 7z izl =pmt™M, m =0,
fu@ = { otherwise.
(i) There exists a sequence {2(M; T)}3;_ of events satisfying lim . oo P(2(M;
7)) =1and
t t
/ H(5)dX (M; 5) = / ()X (M + k: 5)
0 0
foranyr e [0, T]andk =1,2,... a.s.on 2(M; T) forany ¢ of C([0, T] — LY).
(i)  For any sequence {¢(M; 1)}5;_, C C([0, T] — L”) enjoying ¢ (M; t) = ¢(M +
k;t) foranyre[0,T]andk=1,2,... a.s.on 2(M; T),

t t
/(])(M;s)dX(M;s):/ d(M +k; $)dX(M + k; 5)
0 0
foranyr e [0, T]andk =1,2,... a.s.on2(M;T).

PrROOF (i) Since we have, for any balt(x, p*) c B(0, pM)\ B(0, pM~1),

. k 0 —m k+m
im P(X(M;t) € B(x, p")) _ lim PX (1) € UpoBp™"x, p"™)

t—0 t t—0 t
_ o P (M + m — 1) — a(M +m))
m=0 P 1
B pk_M+la(M -1
= 1 ,
it follows that{X (M t)} has the same infinitesimal generator as the random walk determined
by A(M).

(i) Let £2(M; T) denote the everfthe sample path has no jump larger theh before
T}. Then, Yasuda’'s result shows th{2(M; T)) = exp(—a(M)T) — 1 asM — oo (see
[20]). The assertion immediately follows from the fact that

t t
/qb(s)dX(M;s):/ d)AXM +k;s) k=1,2,... a.s.on M;T)
0 0

for everyg € Sr.
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(i) There exist two sequencég, (M; s)}.° , and{¢, (M +k; 5)}7° , of St satisfying
liMyy—s 0o SURY<, <7 ELll¢n (M 1) = (M 1)]|)] = 0 and lim, . o0 SURy<, <7 ELlln (M +k; 1) —
¢ (M+k; t)||§] = Orespectively so that, (M; s) = ¢p,(M+k;s), 0<s <T, on2(M; T).
Therefore, we can derive the assertion from an argument similar to that for the proof of
(ii). m

Consequently, the stochastic inteqrﬁg @ (s)d X (s)}se0,77 With respect to an arbitrarily
given random walK X (1)} determined byA of A(y) can be defined as a uniq(g; }-adapted
procesdY ()} with continuity in probability satisfying

t
Y(t):/ ¢(M;s)dX(M;s) a.s.on2(M;T) forall M =0,1,2,...,
0

as long as théF; }-adapted procegs (1)} associates a sequengg M t)}5;_, C C([0, T] —
L?) enjoying

o) =¢M;t) foranyte[0,T] a.s.onQ2(M;T), M=0,1,....

REMARK. We can derive similar conclusions as in Example 1 and Example 2. In fact,
for the random walK X (1)} corresponding tod € A(y) with y > 2, there exists a unique
Q,-valued proces§Z(#)} with continuity in probability satisfying

t
X% - X(0)% = 2/ X()dX(s)+ Z(1),
0

whereZ(¢) is characterized as the limit ({)El'.’;ol(X((i + Dt/n) — X(it/n))z};;‘):l in proba-
bility. Furthermore, for independent two random wajlg (r)} and{X2(¢)} corresponding to
A1 andAz € A(y) (y > 1) respectively, we have the following formula:

t t

X1()X2(1) — X1(0)X2(0) =/0 Xl(S)dxz(S)—ir/0 Xo(s)dX1(s) .

If an {F;}-adapted proces¥ (1)} with continuity in probability satisfies the stochastic
integral equation

t
Y (1) :x+/ o(s,Y(s)dX(s), 0<tr=<T,
0
for a starting poink € Q, and for a random walkX (r)} corresponding tot of A(y), then
{Y(¢)} is called a solution of stochastic differential equation

dY(t) =0, Y()dX(t),
{ Y(0) =x.

THEOREM 3. If an-vaIued functiono (¢, x) definedon [0, T'] x Qp admitsa positive
constant Cr satisfying

lo(t, x) —o @, xHp < Crilx —x'll,

for any x,x’ € Q, andt € [0, T] and if each X of C([0, T] — LY)) gives an element
o(-, X(-)) of C([0, T] — L?), then for any randomwalk { X (r)} corresponding to A of A(y)
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there exists a unique solution {Y (¢)} of the stochastic differential equation

dY(t) =0, Y()dX(t),
Y(0) =x,

for every starting point x € Q,,. Inparticular, if the coefficient is given aso (x) independently
of the time variable ¢, then the solution {Y ()} is characterized as a unique Markov process
with the infinitesimal generator described as.

1
lim —(Ex[u(Yr)] — u(x))
t—0ft
/Q w(y) — u@)elog, Iy — ¥/ (@) lo @I, ndy) if o) #0,
= p

0 if o(x)=0,

for any locally constant function x with compact support, wherec(m) = (p—1)"1p=" (a(m—
1) — a(m)).

PrROOFE By virtue of Theorem 1, we obtain a soluti¢ri(M; r)} of the stochastic inte-
gral equation

13
Y(M; 1) :x+/ o(s,Y(M; s)dX(M; s)
0

foreveryM =0,1,....
Itis not difficult to see that

YM;t)=YM+k;t) forte[0,T]andk=12 ... as.on22(M;T),

and that the solution of the stochastic integral equation
13
Y(t) =x +/ o(s,Y(s)dX(s)
0
is obtained as a uniquer; }-adapted proced¥ (r)} satisfying

Y@&)=YWM;t) forrel0,T] a.s.on2(M;T) for M=0,1,....

Then clearly{Y (1)} is aD([0, T] — Q,)-valued random variable.
On the other hand, if the stochastic integral equation admits another sdldtiof, then
E|Z@ AT(M)=Y (@ A T(M))Il;]

-4 |

t
= CA(M),VC;/O E[IZ(s AT(M)) =Y (s A T(M))p)ds

tAT(M)
/0 (0(s, Z(s)) —o(s,Y(5)dX(s)

for anyr € [0, T] and for anyc (M) = inf{r > O] [ X ()], > pM}. Hence we have (1) =
Y(t)a.s.(t < t(M)) foreveryM = 0,1, ..., which shows the uniqueness of the solution
of the stochastic differential equation.
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Itis not difficult to show thafY ()} is a Markov process by the standard procedure as in
Kochubei [19].
The proof of Theorem 1 also yields the following estimate with some positive constant
C(T)M:

E[IY(M;s) — x|I)] < Comt .

On the other hand, for thigF; }-adapted process
n t
Y(M;t)=x +/ o(xX)dXM;s)=x+o(x)X(M;1),
0

one sees thal (¥ (M: 1) € B(y, p*)) = P(X(M: 1) € B((y —x/o(x), p' llo ()1l *) for any
yeQ,keZ andx with o (x) # 0. Hence one deduces that

lim LB (P (M )] — ()
t—0t
/Q (u(y) —ux))epmlog,li(y — X)/U(X)Ilp)IIG(X)II;,lu(dy) if o(x)#0,
0 if o(x)=0,
wherecy (m) = (p — 1)~ pl"(a(M; m — 1) — a(M; m)). One sees also that
Ellu(Y(M; 1)) —u(Y (M; 1)1 < C@)E[IY (M; 1) — ¥ (M; )]

t
= C(M)EH / (0 (Y(M;s)) —o(x)dX(M;s)
0

]
p
t
< C(M)CA(M),V/O E[ll(oc(Y(M; 5)) — o (x))|l;]ds

t

< C(u)cA(M>,yC¥/O E[Y(M;s) —x|h1ds

< C)Camy,yCpComt?,

by using the constar@(«) = SUR yeq, lu(x) —uM|/llx — y||j{, of u. These two facts then
imply

lim }(EX[M(Y(M; )] — u(x))
t—0t
/Q (u(y) —u(x))em(log,li(y — x)/o(x)||p)||a(x)||;1u(dy) if o(x)#0,

0 if o(x)=0.
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Accordingly, from the following estimates

1 1
?EX[M(Y(I)) —u()]— ;Ex[(u(Y(M; 1) — u(x))

1 1
= ‘;Ex[(u(Y(t)) —u(x)Iow;nl + T Exl @) — u(x)) 1]
1 1
— 7 Exlu(¥(M: 1)) — u(xNlomwm;nl — 7 Exlu(M; 1)) — u()) 1o wms;nel

§4SUPIMI%P(9(M; 1))

= 4sup|u|;1(1 —exp(—a(M)t)
< 4suplula(M),

one can derive thatim;_,o(1/¢) Ex[u(Y (1)) — u(x)]| < 4 suplula(M) at every pointc with
o (x) = 0. Similarly, one sees that, for some positive constanindependent ofi (M),

‘ lim }Ex[M(Y(I)) —u(x)]
t—0ft
- /Q (u(y)—u(x))c(log,,n(y—x)/o(x)||p>||a(x)||;1u(dy>‘
P

=<

lim }EX[M(Y(t)) —u(x)] — lim }Ex[(u(Y(M; n) — u(x))]‘
t—01 t—0t
+ ‘ /Q (u(y) —u(x))(ep(log,(y —x)/o () p)

p

—c(log,[I(y — X)/G(X)Ilp))IIG(X)Ille(dy)‘
< Kasuplula(M)

at every pointc € Q, with o (x) # 0. Sincea(M) tends to zero a8/ — oo, the assertion is
legitimized. O

ExAmMPLE 3. If a Lipschitz continuous functiow satisfies inflo|, > 0 and
supllo|l, < oo, for the random walKX (z)} characterized byA = {cp™*"};__ (@ > 0)
with some positive constant, the probability law of the solutiofY (¢)} of the stochastic
differential equation

dY (1) =o(Y(1))dX(1),
{ Y0 =x,

coincides with the one of the Hunt process corresponding to the smallest closed extension in
L?(|lo |3 of the pre-Dirichlet form

Eu,v) = / (u(x) —u()(wkx) —v(y))Jdx,dy)
(@QyxQ\4
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with the symmetric measuteon (Q, x Q) \A(A={x,x)|xeQ,}) given by

T(dx,dy) =kpeolly = xI,“ Y pndx)udy),

wherek, . o stands for some positive constant depending only ananda andu, v denote
locally constant functions with compact supports.

6. Q,-valued martingale. In this section, we assume that some increasing filtra-
tion {F;} is given on a probability spacg2, 7, P). For a square integrable random vari-
able X, if there exists a unique elemetit of L2($2, F;, P) satisfying E[| X — Y||§,] =
infzcr200.7, p) ELIX — Z||§,], we denoteY by E[X | F;] and call the random variable the
conditional expectation ok given by 7. Also, if there exists a unique elementof Q,
satisfyingE[|| X — a||;] = ianEQp E[||IX — z||;], we denote: by E[X] and call thep-adic
number the expectation &f.

PropPosITION 3. (i) Iftheprobability distribution 1y of a squareintegrable random
variable X satisfies jux (B(a, p*)) > ux(B(b, p*)) for anya, b € Q, with [lal, < [bll,
and any integer k with p* < |la — b|| ,, then E[X] = 0.

(i) If X isan F;-measurable square integrablerandomvariable, then E[X | ;] = X.

(iii)  If a square integrable random variable X with expectation is independent of 7,
then E[X | ;] = E[X].

PROOF (i) Forany element of Q, with ||a||, = p™*, we have
2 2
ET|X —all,]1 = E[IX]l,]

= Y PP"ux(SO, p™) + p*" ux(BO, p" )

m=mg+1

+ p?"aux (SO, p™) \ B(a, p™a~ 1))
mg—1 00

+ Y PP ux(S@ p™y = Y pPux(S©, p™)
m=—0o0 m=—0o0

= p?"(ux (B0, p"a~1)) — ux(B(a, p"a1)))
mg—1 mg—1

+ Y PP ux(S@ p") = Y. pPux(S©, p™)

m=—00 m=—0o0

= (ux(B(O, p™Y)) — ux(B(a, p™ )

ma—1 myy _ m
y (pzma _ Z o Hx(S(0, Iil)) ux(Sa, p ))71 )
px (B(O, p™a=)) — ux(B(a, pe=+))

m=—00

> 0.

(i) follows directly from the definition.
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(iii) Forany F;-measurable random varialtein L2, denote its probability distribution
by uz. Then we observe thatjifz ({0}) < 1,

E[IX — (E[X]+ 2)|5] =/ E[IIX — (E[IX]+ 2)l5]pz(dz2)

p

>/ E[IIX—E[X]IIf,]uz(dz).

Qy

Therefore, it follows that the infimum is attained if and onlwif ({0}) = 1. O

A Q,-valued{F;}-adapted square integrable procéss} is called an{F;}-martingale
if E[M,|Fs] = M, foranyr > s.
THEOREM 4. A-random walk {X (¢)} characterized by a parameter sequence A €
A(2) isan {F;}-martingale.
PROOF  Denotingb; (1) = p~  exp(—(p — 1)~ X(pa(i) — a(i + 1))t), the following
description onPy(X (¢) € B(0, p™)) is obtained ([1]):
p—1lg

Py(t) = —— p_i exp(—
p i=0

pa(m+i)—a(m+i+1)t>
p—-1

P—1 e
=——=p" Y bi(1).
p i=m

On the other hand, for any elemenwith |la|, = p™« > p™, one can see that

1
Po(X(t) € B(a, p™)) = Lﬂ(Pma (1) = Pny—1(1))
p—1pma
= If (p'"" Db —prt Yo b,m)
i=my i=my—1
o 1 o0
= pm( Yoy -= Y bi(t)>
i=mg i=my—1
=t i bi(t) < Py(t)
= p = 1 m .
ConsequentlyE[X (1)] = 0 andE[X(¢) | F5s] = E[X (@) — X(s) + X (s) | Fs] = E[X()—
X ()| Fsl+ X(s) = E[X(1) — X ()] + X (s) = X(5). O
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