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Abstract. The theory of stochastic differential equation on the field ofp-adics is ini-
tiated by Kochubei. In this article, we will focus on a class of random walks with a certain
integrability to develop the theory of stochastic analysis in a way similar to the existing theory
of stochastic analysis based on the Brownian motion. In fact, for any random walk in the class,
we can introduce the notion of stochastic integral with respect to the random walk and jus-
tify the existence of the solution of the stochastic differential equations based on the random
walk, where the stochastic differential equations admit not only Lipschitz continuous path de-
pendent coefficients but also continuous coefficients growing at most linearly with respect to
p-adic norm. Finally, we will see an example ofstochastic process which can be covered by
Dirichlet space theory and obtained also by solving stochastic differential equation.

1. Introduction. The theory ofp-adic numbers has become an important language to
put a reasonable interpretation of several physical phenomena. In fact, many researchers pro-
posed to investigate the theory in mathematicalphysics relying on the hierarchical structure
(see [4], [5], [6], [11], [12]). Some classes of stochastic processes based on the hierarchical
structure are dealt with by Karwowski and Vilela-Mendes [17] and by Kochubei [19], where
the importance and the history ofp-adic structure in mathematical physics are explored. Also,
Vladimirov, Volovich and Zelenov discussed in their monograph the Brownian motion onQp
as a counterpart of the one on the real number field ([22]).

After Evans suggested in [9] a significance of a class ofQp-valued stochastic processes
including more general ones, Albeverio and Karwowski described explicitly the transition
probability and detected the corresponding Dirichlet forms ([1]). In fact, by introducing a
sequenceA = {a(m)}∞m=−∞ satisfying

a(m) ≥ a(m+ 1)(1)

and

lim
m→∞ a(m) = 0 , lim

m→−∞ a(m) > 0 or = ∞ ,(2)

they constructed a time homogeneous symmetric Hunt process, which is associated with the
regular Dirichlet form(E,F) onL2(Qp;µ) determined by

E(1B1,1B2) = −2J (B1, B2) = −p
K+L−m+1

(p − 1)
(a(m− 1)− a(m)) ,
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whereB1 andB2 stand for balls with radiipK andpL respectively, dist(B1, B2) = pm, and
µ denotes the Haar measure.

Subsequently, Yasuda derived a recurrence criterion using their expression on the transi-
tion probability in [20]. As forQp-valued spatially inhomogeneous stochastic process, Kar-
wowski and Vilela-Mendes [17] established a family of spatially inhomogeneous processes
and Albeverio, Karwowski and Zhao [2] introduced another family of spatially inhomoge-
neous stochastic processes. The present author introduced a family of spatially inhomoge-
neous stochastic processes based on a modified derivative operator in terms of Fourier trans-
formation (see [15]). In [19], Kochubei initiated a theory of stochastic integral and stochastic
differential equation based on theα-stable processes by using the associatedQp-valued Lévy
system, which provides us also with time-inhomogeneous processes. In this article, we first
shed light on advantages of stochastic integral with respect to aQp-valued stochastic process
in a restrictive class, and will establish another approach to the theory of stochastic differen-
tial equations which admits path dependent coefficients. We attempt extending Kochubei’s
framework so that it covers a stochastic differential equation with Lipschitz continuous coef-
ficient based on variousQp-valued stochastic processes. Kochubei obtained a solution of the
stochastic differential equation with Lipschitz continuous coefficient whose Lipschitz con-
stant varies according to the width of jump of theα-stable process ([19]). However, we can
solve stochastic differential equations without such an assumption on the Lipschitz continuity
of the coefficient. The coverage of our formulation is completely consistent with Kochubei’s
stochastic integral and stochastic differential equation as long as both approaches work.

For mathematical foundations ofp-adic numbers, the readers are referred to [22]. Stimu-
lating discussions with Professor M. Takeda and Professor K. Yasuda are gratefully acknowl-
edged. The author expresses his gratitude to the referee of this article for valuable suggestions.

2. Stochastic integral. We begin with the definition of stochastic integral based on
theQp-valued stochastic process corresponding to a sequenceA = {a(m)}∞m=−∞ satisfying
(1), (2) and

∞∑
m=−∞

a(m)pγm < ∞ for some given numberγ ≥ 1 .(3)

More specifically, let us denote the family of all sequences with these three properties by
A(γ ). Then we fix a real numberγ with γ ≥ 1, pick out a sequenceA from A(γ ) and
consider Albeverio and Korwowski’s random walk{X(t)} corresponding toA, which is a
D([0, T ] → Qp)-valued random variable, whereD([0, T ] → Qp) stands for the space of all
right continuous sample pathsω : [0, T ] → Qp with left limit at every point. The goal of this
section is to establish the notion of stochastic integral with respect to the random walk{X(t)}
with X(0) = 0 determined by an arbitrarily given parameter sequenceA of A(γ ).

Choose a filtration{Ft } satisfyingFt ⊃ σ [X(s) | s ≤ t] for any t so that{Ft} is in-
dependent ofσ [X(s + t) − X(t) | s > 0] for every t ≥ 0. Denote byST the set of
φ = ∑n−1

i=0 fi1[ti ,ti+1), where {ti}ni=0 is a division 0 = t0 < t1 < · · · < tn = T of
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[0, T ] and eachfi is an {Fti }-measurableQp-valued random variable. Then for any ele-

mentφ = ∑n−1
i=0 fi1[ti ,ti+1) ∈ ST , the stochastic integral

∫ t
0 φ(s)dX(s) with respect to{X(t)}

is defined by
∫ t

0
φ(s)dX(s) =

n−1∑
i=0

fi(X(ti+1 ∧ t)−X(ti ∧ t)) for 0 ≤ t ≤ T .

The family of random variables{∫ t0 φ(s)dX(s)}t∈[0,T ] can be regarded as an{Ft }-adapted
process as well as aD([0, T ] → Qp)-valued random variable.

LEMMA 1. There exists a positive constant CA,γ satisfying the following two proper-
ties:

(i) E[‖X(t)‖γp] ≤ CA,γ t for all t ≥ 0,

(ii) E

[
sup

0≤t≤u

∥∥∥∥
∫ t

0
φ(s)dX(s)

∥∥∥∥
γ

p

]
≤ CA,γ

n∑
i=0

E[‖fi‖γp](ti+1 ∧ u− (ti ∧ u))

for 0 ≤ u ≤ T .

PROOF. (i) Since the functionPm(t) = P(X(t) ∈ B(0, pm)) has the expression

Pm(t) = p − 1

p

∞∑
i=0

p−i exp

(
− pa(m+ i)− a(m+ i + 1)

p − 1
t

)

obtained by Albeverio and Karwowski ([1]), we easily see that

E[‖X(t)‖γp] =
∞∑

m=−∞
pγm(Pm(t)− Pm−1(t))

≤ p − 1

p

∞∑
m=−∞

pγm
∞∑
i=0

p−i
(

1 − exp

(
− pa(m+ i − 1)− a(m+ i)

p − 1
t

))

≤ p − 1

p

∞∑
m=−∞

pγm
∞∑
i=0

p−i pa(m+ i − 1)− a(m+ i)

p − 1
t

≤
∞∑

m=−∞
pγm

∞∑
i=0

p−ia(m+ i − 1)t

≤ p

p − 1

∞∑
m=−∞

pγma(m− 1)t .

Therefore, we can choosep(p − 1)−1 ∑∞
m=−∞ pγma(m− 1) asCA,γ for the estimate.
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(ii) Since one observes that
∥∥∥∥

∫ t

0
φ(s)dX(s)

∥∥∥∥
γ

p

=
∥∥∥∥
n−1∑
i=0

fi(X(ti+1 ∧ t)− X(ti ∧ t))
∥∥∥∥
γ

p

≤ max
i=0,... ,n

‖fi(X(ti+1 ∧ t)−X(ti ∧ t))‖γp

≤
n−1∑
i=0

‖fi‖γp‖(X(ti+1 ∧ t)−X(ti ∧ t))‖γp ,

it is not difficult to see that

max
j=0,... ,n

∥∥∥∥
∫ tj∧u

0
φ(s)dX(s)

∥∥∥∥
γ

p

≤ max
j=0,... ,n

n−1∑
i=0

‖fi‖γp‖(X(ti+1 ∧ tj ∧ u)−X(ti ∧ tj ∧ u))‖γp

≤
n−1∑
i=0

‖fi‖γp‖(X(ti+1 ∧ u)−X(ti ∧ u))‖γp .

Accordingly, by using the constantCA,γ in (i), one sees that

E

[
max

j=0,... ,n

∥∥∥∥
∫ tj∧u

0
φ(s)dX(s)

∥∥∥∥
γ

p

]

≤ E

[ n−1∑
i=0

E[‖fi‖γp‖X(ti+1 ∧ u)−X(ti ∧ u)‖γp |Fti ]
]

≤ CA,γ E

[ n−1∑
i=0

‖fi‖γp(ti+1 ∧ u− ti ∧ u)
]
.

If we take a finer division∆ : 0 = s0 < s1 < · · · < sm = T of [0, T ] than the original
one∆φ : 0 = t0 < t1 < · · · < tn = T of the functionφ = ∑n−1

i=0 fi1[ti ,ti+1), thenφ admits

another expressionφ = ∑m−1
i=0 g j1[sj ,sj+1), and it turns out that

E

[
max

j=0,... ,m

∥∥∥∥
∫ sj∧u

0
φ(s)dX(s)

∥∥∥∥
γ

p

]
≤ CA,γ E

[m−1∑
j=0

‖g j‖
γ

p(sj+1 ∧ u− sj ∧ u)
]

= CA,γ E

[ n−1∑
i=0

‖fi‖γp(ti+1 ∧ u− ti ∧ u)
]
.

By passing to the limit as‖∆‖ → 0, one can verify

E

[
sup

0≤t≤u

∥∥∥∥
∫ t

0
φ(s)dX(s)

∥∥∥∥
γ

p

]
≤ CA,γ E

[ n−1∑
i=0

‖fi‖γp(ti+1 ∧ u− ti ∧ u)
]
. �
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Denote the set ofQp-valued random variablesX satisfyingE[‖X‖γp] < ∞ by Lγ , and
denote the set of{Ft }-adaptedQp-valued processes regarded as continuous maps from[0, T ]
to Lγ by C([0, T ] → Lγ ). For any elementφ ∈ C([0, T ] → Lγ ), there exists a sequence
{φn} ⊂ ST such that limn→∞ sup0≤t≤T E[‖φm(t) − φ(t)‖γp] = 0. Then one can derive from
Lemma 1 (ii) that

lim
n,m→∞E

[
sup

0≤t≤T

∥∥∥∥
∫ t

0
φn(s)dX(s)−

∫ t

0
φm(s)dX(s)

∥∥∥∥
γ

p

]
= 0 .

Therefore, the stochastic integral
∫ t

0 φ(s)dX(s) of φ with respect to{X(t)} can be defined as
a uniqueQp-valued process{Y (t)} satisfying

lim
n→∞E

[
sup

0≤t≤T

∥∥∥∥Y (t)−
∫ t

0
φn(s)dX(s)

∥∥∥∥
γ

p

]
= 0 .

Since we already know that
∫ ·

0 φn(s)dX(s) is aD([0, T ] → Qp)-valued random vari-
able, we immediately see that

∫ ·
0 φ(s)dX(s) is aD([0, T ] → Qp)-valued variable as well.

PROPOSITION 1. The stochastic integral has the following properties:

(i) E

[
sup
u≤t≤v

∥∥∥∥
∫ t

u

φ(s)dX(s)

∥∥∥∥
γ

p

]
≤ CA,γ E

[ ∫ v

u

‖φ(s)‖γpds
]
,

(ii)
∫ t

0
(φ(s)+ ψ(s))dX(s) =

∫ t

0
φ(s)dX(s)+

∫ t

0
ψ(s)dX(s) ,

(iii)
∫ u

0
φ(s)dX(s) =

∫ v

0
φ(s)dX(s)+

∫ u

v

φ(s)dX(s) for all v, u with u ≥ v ,

(iv)
∫ t

0
φ(s)dX(s) is a Qp-valued process in C([0, T ] → Lγ ) .

PROOF. (i) Similarly to the proof of Lemma 1 (ii), for anyφ ∈ ST , one can verify

E

[
sup
v≤t≤u

∥∥∥∥
∫ t

v

φ(s)dX(s)

∥∥∥∥
γ

p

]
≤ CA,γ

n∑
i=0

E[‖fi‖γp]((ti+1 ∧ u) ∨ v − ((ti ∧ u) ∨ v) ,

for all 0 ≤ u, v ≤ T with u ≥ v. From this one can conclude that

E

[
sup
v≤t≤u

∥∥∥∥
∫ u

v

φ(s)dX(s)

∥∥∥∥
γ

p

]
≤ CA,γ E

[ ∫ u

v

‖φ(s)‖γpds
]

for all u, v ∈ [0, T ] with u ≥ v.
(ii) and (iii) follow immediately from the definition of the stochastic integral.
(vi) Since the second term of the right-hand side in (iii) converges to zero inLγ as

u → v, (vi) has been proved. �
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For twoQp-valued stochastic processes{X1(t)} and{X2(t)}, a fundamental calculation
shows that

X1(t)X2(t)−X1(0)X2(0)

=
n−1∑
i=0

(
X1

(
(i + 1)t

n

)
X2

(
(i + 1)t

n

)
−X1

(
it

n

)
X2

(
it

n

))

=
n−1∑
i=0

X1

(
it

n

)(
X2

(
(i + 1)t

n

)
−X2

(
it

n

))

+
n−1∑
i=0

X2

(
it

n

)(
X1

(
(i + 1)t

n

)
−X1

(
it

n

))

+
n−1∑
i=0

(
X1

(
(i + 1)t

n

)
−X1

(
it

n

))(
X2

(
(i + 1)t

n

)
− X2

(
it

n

))
.

In particular, whenX1 and X2 are random walks corresponding to some sequences of
A(γ ) for a fixedγ ≥ 1, the first and the second terms converge to

∫ t
0 X1(s)dX2(s) and

to
∫ t

0 X2(s)dX1(s), respectively. As a consequence of this fact, we obtain the following two
examples:

EXAMPLE 1. For the random walk{X(t)} corresponding toA ∈ A(γ ) with γ ≥ 2,
there exists an element{Z(t)} of C([0, T ] → Lγ/2) satisfying

X(t)2 −X(0)2 = 2
∫ t

0
X(s)dX(s)+ Z(t) .

{Z(t)} is characterized also as a unique element ofC([0, T ] → Lγ ) enjoying

lim
n→∞E

[∥∥∥∥Z(t)−
n−1∑
i=0

(
X

(
(i + 1)t

n

)
−X

(
it

n

))2∥∥∥∥
γ

p

]
= 0 .

EXAMPLE 2. For independent two random walks{X1(t)} and{X2(t)} corresponding
toA1 andA2 ∈ A(γ ) (γ ≥ 1) respectively, we have the following formula:

X1(t)X2(t)−X1(0)X2(0) =
∫ t

0
X1(s)dX2(s)+

∫ t

0
X2(s)dX1(s) ,
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since

E

[∥∥∥∥
n−1∑
i=0

(
X1

(
(i + 1)t

n

)
− X1

(
it

n

))(
X2

(
(i + 1)t

n

)
−X2

(
it

n

))∥∥∥∥
γ

p

]

≤ E

[
max
i

∥∥∥∥
(
X1

(
(i + 1)t

n

)
−X1

(
it

n

))(
X2

(
(i + 1)t

n

)
−X2

(
it

n

))∥∥∥∥
γ

p

]

≤ E

[ n−1∑
i=0

∥∥∥∥
(
X1

(
(i + 1)t

n

)
−X1

(
it

n

))(
X2

(
(i + 1)t

n

)
− X2

(
it

n

))∥∥∥∥
γ

p

]

=
n−1∑
i=0

E

[∥∥∥∥X1

(
(i + 1)t

n

)
−X1

(
it

n

)∥∥∥∥
γ

p

]
E

[∥∥∥∥X2

(
(i + 1)t

n

)
− X2

(
it

n

)∥∥∥∥
γ

p

]

≤ CA1,γ CA2,γ

n−1∑
i=0

(
(i + 1)t

n
− it

n

)2

= CA1,γ CA2,γ
t2

n
→ 0 (n → ∞) .

3. Stochastic differential equation with path dependent coefficient. We consider a
functionσ(t,X) defined on[0, T ] × C([0, T ] → Lγ ) for someγ ≥ 1 enjoying the following
properties:

(4) for eachX ∈ C([0, T ] → Lγ ), σ(·,X) defines an element ofC([0, T ] → Lγ ),
(5) for eachs ∈ [0, T ], any elementX ∈ C([0, T ] → Lγ ) gives an{Fs}-measurable

random variableσ(s,X) depending only on the family of random variables{X(u) | u ∈
[0, s]},

(6) there exists a positive constantCT satisfying

E[‖σ(t,X)− σ(t,X′)‖γp] ≤ CT E

[
sup

0≤u≤t
‖X(u)−X′(u)‖γp

]

for anyX,X′ ∈ C([0, T ] → Lγ ) and anyt ∈ [0, T ].
For an elementσ enjoying these properties (4), (5) and (6) and a random walk{X(t)}

corresponding to someA of A(γ ), if an element{Y (t)} ∈ C([0, T ] → Lγ ) satisfies the
stochastic integral equation

Y (t) = x +
∫ t

0
σ(s, Y )dX(s) , 0 ≤ t ≤ T ,

for some starting pointx ∈ Qp, then{Y (t)} is called a solution of the stochastic differential
equation {

dY (t) = σ(t, Y )dX(t) ,

Y (0) = x .
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THEOREM 1. If {X(t)} is a random walk corresponding to some sequence A of A(γ )
with γ ≥ 1, then the stochastic differential equation{

dY (t) = σ(t, Y )dX(t) ,

Y (0) = x ,

has a unique solution {Y (t)} for every starting point x ∈ Qp.

PROOF. Define a sequence{Y (n)(t)}∞n=0 of C([0, T ] → Lγ ) inductively by

Y (0)(t) = x,

Y (n)(t) = x +
∫ t

0
σ(s, Y (n−1))dX(s) , n = 1,2, . . . .

From Proposition 1 (i), it follows that

E

[
sup

0≤u≤t
‖Y (1)(u)− x‖γp

]
≤ KCA,γ t for K = sup

0≤t≤T
E[‖σ(t, x)‖γp] .

In general, by assuming

E

[
sup

0≤u≤t
‖Y (n)(u)− Y (n−1)(u)‖γp

]
≤ KCnA,γ C

n−1
T

tn

n! ,

one can derive

E

[
sup

0≤u≤t
‖Y (n+1)(u)− Y (n)(u)‖γp

]
≤ KCn+1

A,γ C
n
T

tn+1

(n+ 1)! ,

since

E

[
sup

0≤u≤t
‖Y (n+1)(u)− Y (n)(u)‖γp

]

≤ E

[
sup

0≤u≤t

∥∥∥∥
∫ u

0
(σ (s, Y (n))− σ(s, Y (n−1)))dX(s)

∥∥∥∥
γ

p

]

≤ CA,γ E

[ ∫ t

0
‖σ(s, Y (n))− σ(s, Y (n−1))‖γpds

]

= CA,γ

∫ t

0
E[‖σ(s, Y (n))− σ(s, Y (n−1))‖γp]ds

≤ CA,γ CT

∫ t

0
E

[
sup

0≤u≤s
‖(Y (n)(u)− Y (n−1)(u))‖γp

]
ds

≤ KCn+1
A,γ C

n
T

tn+1

(n+ 1)! .
Therefore, combining the estimate

P

[
sup

0≤u≤T
‖Y (n+1)(t)− Y (n)(t)‖γp >

1

pn

]
≤ K

(CA,γ T )
n+1(CT p)

n

(n+ 1)!



TIME-INHOMOGENEOUS STOCHASTIC PROCESSES 73

with Borel-Cantelli lemma, one can see that there exists an{Ft }-adapted process{Y (t)} sat-
isfying

P

[
lim
n→∞ sup

0≤t≤T
‖Y (n)(t)− Y (t)‖p = 0

]
= 1 .

On the other hand, since one observes that

E

[
sup

0≤t≤T
‖Y (n)(t)− Y (m)(t)‖γp

]
≤ K

m∑
k=n

(CA,γ T )
k+1(CT )

k

(k + 1)! (m > n) ,

Fatou’s Lemma shows that

E

[
sup

0≤t≤T
‖Y (n)(t)− Y (t)‖γp

]
≤ K

∞∑
k=n

(CA,γ T )
k+1(CT )

k

(k + 1)! .

Therefore, the sequence{Y (n)(t)}∞n=1 converges to{Y (t)} in Lγ uniformly in t ∈ [0, T ] asn
goes to∞. Combining this inequality with the assumption (6), one can derive from Proposi-
tion 1 (i) that

E

[
sup

0≤u≤t

∥∥∥∥
∫ u

0
(σ (s, Y )− σ(s, Y (n)))dX(s)

∥∥∥∥
γ

p

]

≤ CA,γ CT E

[ ∫ t

0
sup

0≤u≤s

∥∥∥∥Y (s)− Y (n)(s)

∥∥∥∥
γ

p

ds

]
→ 0 (n → ∞) .

Consequently, from

Y (n)(t) = x +
∫ t

0
σ(s, Y (n−1))dX(s) (n = 1,2, . . . )

we can derive

Y (t) = x +
∫ t

0
σ(s, Y )dX(s) .

This also ensures that{Y (t)} is an element ofC([0, T ] → Lγ ) and aD([0, T ] → Qp)-valued
random variable as well.

On the other hand, if another element{Z(t)} ∈ C([0, T ] → Lγ ) satisfies{
dZ(t) = σ(t, Z)dX(t) ,

Z(0) = x ,

then we can immediately derive the equality{Z(t)} = {Y (t)} as the elements ofC([0, T ] →
Lγ ) from the following estimates:

E

[
sup

0≤u≤t
‖Y (u)− Z(u)‖γp

]

= E

[
sup

0≤u≤t

∥∥∥∥
∫ u

0
(σ (s, Y )− σ(s, Z))dX(s)

∥∥∥∥
γ

p

]

≤ CA,γ CT E

[ ∫ t

0
sup

0≤u≤s
‖Y (u)− Z(u)‖γpds

]
. �
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4. Stochastic differential equation with continuous coefficient of linear growth.
We consider a functionσ0(t, x) on [0, T ] × Qp enjoying the following properties:

(7) eacht ∈ [0, T ] defines a continuous mapσ0(t, ·) : Qp → Qp,
(8) there exists a sequence{σn(t, ·)} of coefficients defined on[0, T ]×Qp so that every

coefficient admits a positive constantCn,T satisfying

sup
t∈[0,T ]

‖σn(t, x)− σn(t, x
′)‖p ≤ Cn,T ‖x − x ′‖p for all x, x ′ ∈ Qp

and

lim
n→∞ sup

t∈[0,T ]
x∈B(0,pN )

‖σn(t, x)− σ0(t, x)‖p = 0 for each positive integerN,

(9) there exists a non-negative functionψ defined on[0,∞) satisfying limξ→0ψ(ξ) =
0 andE[‖σn(t,X(t))− σn(t ′,X(t ′))‖2

p] ≤ ψ(E[‖X(t)−X(t ′)‖2

p]) for anyX ∈ C([0, T ] →
L2) and eachn = 0,1,2, . . . ,

(10) there exists a positive constantK0 satisfying

sup
t∈[0,T ]

‖σn(t, x)‖p ≤ K0(1 + ‖x‖p)

for anyx ∈ Qp andn = 0,1,2, . . . .
By virtue of Theorem 1, given a random walk{X(t)} corresponding toA of A(2), the

assumptions (8) and (9) enable us to define a sequence{Y (n)(t)}∞n=1 of C([0, T ] → L2) by

Y (n)(t) = x +
∫ t

0
σn(s, Y

(n)(s))dX(s) , n = 1,2, . . . .

LEMMA 2. If a random walk {X(t)} corresponds to someA of A(1)∩A(2), then there
exist positive constants K1, K2 and K3, depending only on the starting point x and on the
sequence A, which satisfy the following properties:

(i) E

[
sup

0≤u≤t
‖Y (n)(u)‖2

p

]
≤ K2 exp(K1t) , n = 1,2, . . . ,

(ii) E

[
sup
s≤u≤t

‖Y (n)(u)− Y (n)(s)‖2

p

]
≤ 2CA,2K

2

0(1 +K2 exp(K1T ))(t − s) ,

n = 1,2, . . . ,

(iii) E[‖Y (n)(t ′ + h′)− Y (n)(t ′)‖p‖Y (n)(t)− Y (n)(t − h)‖p] ≤ K3h
′h1/2

,

n = 1,2, . . . , for any t, t ′ ∈ [0, T ] with t ′ ≥ t and for any positive numbers
h, h′ enjoying t − h, t ′ + h′ ∈ [0, T ].
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PROOF. (i) Since the assumption (10) together with Proposition 1 (i) implies that

E

[
sup

0≤u≤t
‖Y (n)(u)− x‖2

p

]
= E

[
sup

0≤u≤t

∥∥∥∥
∫ u

0
σn(s, Y

(n)(s))dX(s)

∥∥∥∥
2

p

]

≤ CA,2K
2
0E

[ ∫ t

0
(1 + ‖Y (n)(s)‖p)2ds

]

≤ K1E

[ ∫ t

0
(1 + ‖Y (n)(s)− x‖2

p)ds

]

≤ K1E

[ ∫ t

0
(1 + sup

0≤u≤s
‖Y (n)(u)− x‖2

p)ds

]

for some constantK1, one easily sees

E

[
sup

0≤u≤t
‖Y (n)(u)− x‖2

p

]
≤ exp(K1t) .

From this one can immediately derive the estimate (i).
(ii) By applying the inequality in Proposition 1 (i) to the right-hand side of the identity

Y (n)(u)− Y (n)(s) = ∫ u
s σn(v, Y

(n)(v))dX(v), we can utilize (i) to obtain estimate (ii).
(iii) Since the stochastic integral is defined as the limit of the sequence of stochastic

integrals with integrands inST , it suffices to show that for any{Ft ′ }-measurable random
variablef with E[‖f ‖2

p] ≤ 2K2
0(1 + K2 exp(K1T )), there exists a positive constantK3

satisfying

E[‖f (X(t ′ + h′)−X(t ′))‖p‖Y (n)(t)− Y (n)(t − h)‖p] ≤ K3h
′h1/2 ,

which easily follows from the following inequalities:

E[‖f (X(t ′ + h′)−X(t ′))‖p‖Y (n)(t)− Y (n)(t − h)‖p]
= E[E[‖f (X(t ′ + h′)−X(t ′))‖p‖Y (n)(t)− Y (n)(t − h)‖p |Ft ]]
= E[E[‖(X(t ′ + h′)− X(t ′))‖p]E[‖f ‖p‖Y (n)(t)− Y (n)(t − h)‖p |Ft ]]
≤ CA,1h

′E[‖f ‖p‖Y (n)(t)− Y (n)(t − h)‖p]
≤ CA,1h

′E[‖f ‖2
p]1/2E[‖Y (n)(t)− Y (n)(t − h)‖2

p]1/2
≤ CA,1h

′ × 2C1/2
A,2K

2
0(1 +K2 exp(K1T ))h

1/2 . �

If an element{Y (t)} ∈ C([0, T ] → L2) satisfies the stochastic integral equation

Y (t) = x +
∫ t

0
σ(s, Y (s))dX(s) , 0 ≤ t ≤ T ,

for some pointx ∈ Qp and some random walk{X(t)} corresponding toA, then the stochastic
differential equation {

dY (t) = σ(t, Y (t))dX(t) ,

Y (0) = x ,
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is said to have a solution with respect to a random walk corresponding toA, andx is called a
starting point.

THEOREM 2. If a random walk {X(t)} corresponds to some A of A(1) ∩ A(2), then
the stochastic differential equation

{
dY (t) = σ0(t, Y (t))dX(t) ,

Y (0) = x ,

has a solution with respect to a random walk corresponding to A for every starting point
x ∈ Qp.

PROOF. By combining Lemma 2 with a result in Ethier and Kurtz [8], it is known that
the family {Y (n)(t ∧ T ),X(t ∧ T )}t∈[0,∞) of Qp × Qp-valued stochastic processes is tight,
whereQp×Qp is considered as a metric space with the norm|(x, y)| = ‖x‖p+‖y‖p (x, y ∈
Qp). Therefore, there exists a family{Ȳ (n)(t), X̄(n)(t)}∞n=0 of Qp × Qp-valued processes
which has the following two properties:

(11) for eachn = 1,2, . . . , {Ȳ (n)(t), X̄(n)(t)} has the same probability law as{Y (n)(t∧
T ),X(t ∧ T )}t∈[0,∞),

(12) {Ȳ (n)(t), X̄(n)(t)} converges to{Ȳ (0)(t), X̄(0)(t)} in the spaceD([0,∞) → Qp ×
Qp) asn → ∞.
These properties ensure that{X̄(0)(t)} and{X(t)} have the same probability law and that

E

[
sup

0≤u≤t
‖Ȳ (0)(u)‖2

p

]
≤ K2 exp(K1t) for all t ∈ [0, T ] .

Therefore, Lemma 2 (ii) and assumption (9) show that, for anyε > 0, there exists a division
0 = t0 < t1 < · · · < tk = T of [0, T ] such that

E

[∥∥∥∥
k−1∑
i=0

σn(ti , Ȳ
(n)(ti))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))

−
∫ t

0
σn(s, Ȳ

(n)(s))dX̄(n)(s)

∥∥∥∥
2

p

]1/2

≤ ε

for n = 0,1,2, . . . . This implies the finiteness of

sup
n
E

[∥∥∥∥
k−1∑
i=0

σ0(ti, Ȳ
(n)(ti ))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥

2

p

]
,



TIME-INHOMOGENEOUS STOCHASTIC PROCESSES 77

which yields the uniform integrability of the family of the random variables
{‖∑k−1

i=0 σ0(ti , Ȳ
(n)(ti ))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))‖p}∞n=0. Accordingly, in the inequality

E

[∥∥∥∥
k−1∑
i=0

σn(ti , Ȳ
(n)(ti ))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))

−
k−1∑
i=0

σ0(ti , Ȳ
(0)(ti ))(X̄

(0)(ti+1 ∧ t)− X̄(0)(ti ∧ t))
∥∥∥∥
p

]

≤ E

[∥∥∥∥
k−1∑
i=0

σn(ti , Ȳ
(n)(ti ))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))

−
k−1∑
i=0

σ0(ti , Ȳ
(n)(ti ))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥
p

]

+ E

[∥∥∥∥
k−1∑
i=0

σ0(ti , Ȳ
(n)(ti))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))

−
k−1∑
i=0

σ0(ti , Ȳ
(0)(ti))(X̄

(0)(ti+1 ∧ t)− X̄(0)(ti ∧ t))
∥∥∥∥
p

]
,

the property (12) shows that the second expectation of the right-hand side does not exceed
any given positive numberε as long asn is sufficiently large, since the family of real-valued
random variables{‖∑k−1

i=0 σ0(ti , Ȳ
(n)(ti))(X̄

(n)(ti+1 ∧ t) − X̄(n)(ti ∧ t))‖p}∞n=0 is uniformly
integrable.

On the other hand, the first expectation of the right-hand side is dominated by the sum of
the following expectations:

E

[∥∥∥∥
k−1∑
i=0

(σn(ti , Ȳ
(n)(ti))− σ0(ti, Ȳ

(n)(ti)))

× (X̄(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥
p

1{sup0≤u≤t ‖Ȳ (n)(u)‖≤pN }
]

and

E

[∥∥∥∥
k−1∑
i=0

(σn(ti , Ȳ
(n)(ti))− σ0(ti, Ȳ

(n)(ti)))

× (X̄(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥
p

1{sup0≤u≤t ‖Ȳ (n)(u)‖>pN }
]
.

The former expectation is dominated by

sup
x∈B(0,pN )

‖σn(t, x)− σ0(t, x)‖pE
[∥∥∥∥

k−1∑
i=0

(X̄(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥
p

]
.
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From Lemma 1 (ii), we see that this admits the upper boundCA,1T ×
supt∈[0,T ],x∈B(0,pN ) ‖σn(t, x) − σ0(t, x)‖p. Therefore, from the assumption (8), we see that
this goes to zero asn → ∞. By applying Schwarz’ inequality to the latter expectation, we
obtain its dominant

E

[∥∥∥∥
k−1∑
i=0

(σn(ti, Ȳ
(n)(ti))− σ0(ti, Ȳ

(n)(ti )))

× (X̄(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥

2

p

]1/2

P

(
sup

0≤u≤t
‖Ȳ (n)(u)‖ > pN

)1/2

.

Here, Lemma 1 (ii) implies the following estimate on the expectation:

E

[∥∥∥∥
k−1∑
i=0

(σn(ti, Ȳ
(n)(ti))− σ0(ti, Ȳ

(n)(ti)))(X̄
(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))

∥∥∥∥
2

p

]

≤ CA,2E

[ k−1∑
i=0

‖σn(ti, Ȳ (n)(ti))− σ0(ti, Ȳ
(n)(ti ))‖2

p((ti+1 ∧ t)− (ti ∧ t))
]

for n = 1,2, . . . . Combining Lemma 2 (i) with the assumption (10), we know that the
supremum of the expectations of the right-hand side remains finite. Again from Lemma 2 (i),
we can derive the following estimate:

P

(
sup

0≤u≤t
‖Ȳ (n)(u)‖p > pN

)
= P

(
sup

0≤u≤t
‖Y (n)(u)‖p > pN

)

≤ E

[
sup

0≤u≤t
‖Y (n)(u)‖2

p

]
/p2N ≤ K2 exp(K1t)/p

2N .

Since the right-hand side tends to zero asN → ∞, the expectation

E

[∥∥∥∥
k−1∑
i=0

(σn(ti, Ȳ
(n)(ti))− σ0(ti, Ȳ

(n)(ti )))

× (X̄(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥
p

1{sup0≤u≤t ‖Ȳ (n)(u)‖>pN }
]

converges to zero asN → ∞. Accordingly, for any positive numberε, as long asn is
sufficiently large, we can verify that
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E

[∥∥∥∥
∫ t

0
σn(s, Ȳ

(n)(s))dX̄(n)(s)−
∫ t

0
σ0(s, Ȳ

(0)(s))dX̄(0)(s)

∥∥∥∥
p

]

≤ E

[∥∥∥∥
∫ t

0
σn(s, Ȳ

(n)(s))dX̄(n)(s)

−
k−1∑
i=0

σn(ti, Ȳ
(n)(ti))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))
∥∥∥∥
p

]

+ E

[∥∥∥∥
k−1∑
i=0

σn(ti, Ȳ
(n)(ti))(X̄

(n)(ti+1 ∧ t)− X̄(n)(ti ∧ t))

−
k−1∑
i=0

σ0(ti, Ȳ
(0)(ti))(X̄

(0)(ti+1 ∧ t)− X̄(0)(ti ∧ t))
∥∥∥∥
p

]

+ E

[∥∥∥∥
k−1∑
i=0

σ0(ti, Ȳ
(0)(ti ))(X̄

(0)(ti+1 ∧ t)− X̄(0)(ti ∧ t))

−
∫ t

0
σ0(s, Ȳ

(0)(s))dX̄(0)(s)

∥∥∥∥
p

]
≤ 3ε .

Consequently, by passing to the limit asn → ∞, from the equality

Ȳ (n)(t) = x +
∫ t

0
σn(s, Ȳ

(n)(s))dX̄(n)(s) ,

we can derive

Ȳ (0)(t) = x +
∫ t

0
σ0(s, Ȳ

(0)(s))dX̄(0)(s) .

As a result, we conclude that the stochastic differential equation{
dY (t) = σ0(t, Y (t))dX(t) ,

Y (0) = x ,

has a solution with respect to a random walk corresponding toA of A(1) ∩ A(2) for every
starting pointx ∈ Qp. �

5. Stochastic analysis with respect to random walks in a larger family. In this
section, we will obtain wider perspectives ofp-adic stochastic analysis so that it covers the
theory of stochastic differential equations based on theα-stable processes. For this purpose,
we consider a random walk corresponding to a sequenceA = {a(m)} satisfying (1), (2) and

(13)
0∑

m=−∞
a(m)pγm < ∞ for a given real numberγ ≥ 1 .
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Denote the family of all sequences with these three properties byĀ(γ ) and define sequences
A(M) = {a(M;m)} of A(γ ) by

a(M;m) =
{
a(m) if m < M ,

0 if m ≥ M .

PROPOSITION 2. For any random walk {X(t)} corresponding to A of Ā(γ ), we have
the following:

(i) The Qp-valued process {X(M; t)} defined by X(M; t) = ∫
Qp

∫ t
0 fM(z)N(ds, dz)

is a random walk corresponding to A(M), where N stands for the Poisson random measure
of {X(t)} and fM denotes the Qp-valued function defined by

fM(z) =
{
pmz if ‖z‖p = pm+M, m ≥ 0 ,

z otherwise .

(ii) There exists a sequence {Ω(M; T )}∞M=0 of events satisfying limM→∞ P(Ω(M;
T )) = 1 and ∫ t

0
φ(s)dX(M; s) =

∫ t

0
φ(s)dX(M + k; s)

for any t ∈ [0, T ] and k = 1,2, . . . a. s. on Ω(M; T ) for any φ of C([0, T ] → Lγ ).
(iii) For any sequence {φ(M; t)}∞M=0 ⊂ C([0, T ] → Lγ ) enjoying φ(M; t) = φ(M +

k; t) for any t ∈ [0, T ] and k = 1,2, . . . a. s. on Ω(M; T ),∫ t

0
φ(M; s)dX(M; s) =

∫ t

0
φ(M + k; s)dX(M + k; s)

for any t ∈ [0, T ] and k = 1,2, . . . a. s. on Ω(M; T ).
PROOF. (i) Since we have, for any ballB(x, pk) ⊂ B(0, pM) \ B(0, pM−1),

lim
t→0

P(X(M; t) ∈ B(x, pk))
t

= lim
t→0

P(X(t) ∈ ⋃∞
m=0B(p

−mx, pk+m))
t

=
∞∑
m=0

pk+m−(M+m)+1(a(M +m− 1)− a(M +m))

p − 1

= pk−M+1a(M − 1)

p − 1
,

it follows that{X(M; t)} has the same infinitesimal generator as the random walk determined
byA(M).

(ii) Let Ω(M; T ) denote the event{the sample path has no jump larger thanpM before
T }. Then, Yasuda’s result shows thatP(Ω(M; T )) = exp(−a(M)T ) → 1 asM → ∞ (see
[20]). The assertion immediately follows from the fact that∫ t

0
φ(s)dX(M; s) =

∫ t

0
φ(s)dX(M + k; s) k = 1,2, . . . a. s. on Ω(M; T )

for everyφ ∈ ST .
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(iii) There exist two sequences{φn(M; s)}∞n=0 and{φn(M + k; s)}∞n=0 of ST satisfying
limn→∞ sup0≤t≤T E[‖φn(M; t)−φ(M; t)‖γp] = 0 and limn→∞ sup0≤t≤T E[‖φn(M+k; t)−
φ(M+k; t)‖γp] = 0 respectively so thatφn(M; s) = φn(M+k; s), 0 ≤ s ≤ T , onΩ(M; T ).
Therefore, we can derive the assertion from an argument similar to that for the proof of
(ii). �

Consequently, the stochastic integral{∫ t0 φ(s)dX(s)}t∈[0,T ] with respect to an arbitrarily
given random walk{X(t)} determined byA of Ā(γ ) can be defined as a unique{Ft }-adapted
process{Y (t)} with continuity in probability satisfying

Y (t) =
∫ t

0
φ(M; s)dX(M; s) a. s. onΩ(M; T ) for all M = 0,1,2, . . . ,

as long as the{Ft }-adapted process{φ(t)} associates a sequence{φ(M; t)}∞M=0 ⊂ C([0, T ] →
Lγ ) enjoying

φ(t) = φ(M; t) for any t ∈ [0, T ] a. s. onΩ(M; T ), M = 0,1, . . . .

REMARK. We can derive similar conclusions as in Example 1 and Example 2. In fact,
for the random walk{X(t)} corresponding toA ∈ Ā(γ ) with γ ≥ 2, there exists a unique
Qp-valued process{Z(t)} with continuity in probability satisfying

X(t)2 − X(0)2 = 2
∫ t

0
X(s)dX(s)+ Z(t) ,

whereZ(t) is characterized as the limit of{∑n−1
i=0 (X((i + 1)t/n)−X(it/n))2}∞n=1 in proba-

bility. Furthermore, for independent two random walks{X1(t)} and{X2(t)} corresponding to
A1 andA2 ∈ Ā(γ ) (γ ≥ 1) respectively, we have the following formula:

X1(t)X2(t)− X1(0)X2(0) =
∫ t

0
X1(s)dX2(s)+

∫ t

0
X2(s)dX1(s) .

If an {Ft }-adapted process{Y (t)} with continuity in probability satisfies the stochastic
integral equation

Y (t) = x +
∫ t

0
σ(s, Y (s))dX(s) , 0 ≤ t ≤ T ,

for a starting pointx ∈ Qp and for a random walk{X(t)} corresponding toA of Ā(γ ), then
{Y (t)} is called a solution of stochastic differential equation{

dY (t) = σ(t, Y (t))dX(t) ,

Y (0) = x .

THEOREM 3. If a Qp-valued function σ(t, x) defined on [0, T ]×Qp admits a positive
constant CT satisfying

‖σ(t, x)− σ(t, x ′)‖p ≤ CT ‖x − x ′‖p
for any x, x ′ ∈ Qp and t ∈ [0, T ] and if each X of C([0, T ] → Lγ )) gives an element

σ(·,X(·)) of C([0, T ] → Lγ ), then for any random walk {X(t)} corresponding to A of Ā(γ )
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there exists a unique solution {Y (t)} of the stochastic differential equation{
dY (t) = σ(t, Y (t))dX(t) ,

Y (0) = x ,

for every starting point x ∈ Qp. In particular, if the coefficient is given as σ(x) independently
of the time variable t, then the solution {Y (t)} is characterized as a unique Markov process
with the infinitesimal generator described as:

lim
t→0

1

t
(Ex[u(Yt )] − u(x))

=




∫
Qp

(u(y)− u(x))c(logp‖(y − x)/σ(x)‖p)‖σ(x)‖−1

p µ(dy) if σ(x) = 0 ,

0 if σ(x) = 0 ,

for any locally constant function uwith compact support,where c(m) = (p−1)−1p1−m(a(m−
1)− a(m)).

PROOF. By virtue of Theorem 1, we obtain a solution{Y (M; t)} of the stochastic inte-
gral equation

Y (M; t) = x +
∫ t

0
σ(s, Y (M; s))dX(M; s)

for everyM = 0,1, . . . .
It is not difficult to see that

Y (M; t) = Y (M + k; t) for t ∈ [0, T ] and k = 1,2, . . . a.s. onΩ(M; T ) ,
and that the solution of the stochastic integral equation

Y (t) = x +
∫ t

0
σ(s, Y (s))dX(s)

is obtained as a unique{Ft }-adapted process{Y (t)} satisfying

Y (t) = Y (M; t) for t ∈ [0, T ] a. s. onΩ(M; T ) for M = 0,1, . . . .

Then clearly{Y (t)} is aD([0, T ] → Qp)-valued random variable.
On the other hand, if the stochastic integral equation admits another solution{Z(t)}, then

E[‖Z(t ∧ τ (M))−Y (t ∧ τ (M))‖γp]

= E

[∥∥∥∥
∫ t∧τ (M)

0
(σ (s, Z(s)) − σ(s, Y (s)))dX(s)

∥∥∥∥
γ

p

]

≤ CA(M),γ C
γ

T

∫ t

0
E[‖Z(s ∧ τ (M))− Y (s ∧ τ (M))‖γp]ds ,

for any t ∈ [0, T ] and for anyτ (M) = inf{t > 0 | ‖X(t)‖p > pM }. Hence we haveZ(t) =
Y (t) a. s. (t < τ(M)) for everyM = 0,1, . . . , which shows the uniqueness of the solution
of the stochastic differential equation.
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It is not difficult to show that{Y (t)} is a Markov process by the standard procedure as in
Kochubei [19].

The proof of Theorem 1 also yields the following estimate with some positive constant
Cσ,M :

E[‖Y (M; s)− x‖γp] ≤ Cσ,Mt .

On the other hand, for the{Ft }-adapted process

Ŷ (M; t) = x +
∫ t

0
σ(x)dX(M; s) = x + σ(x)X(M; t) ,

one sees thatP(Ŷ (M; t) ∈ B(y, pk)) = P(X(M; t) ∈ B((y − x/σ(x), pk‖σ(x)‖−1
p ) for any

y ∈ Qp, k ∈ Z andx with σ(x) = 0. Hence one deduces that

lim
t→0

1

t
(Ex [u(Ŷ (M; t))] − u(x))

=




∫
Qp

(u(y)− u(x))cM(logp‖(y − x)/σ(x)‖p)‖σ(x)‖−1

p µ(dy) if σ(x) = 0 ,

0 if σ(x) = 0 ,

wherecM(m) = (p − 1)−1p1−m(a(M;m− 1)− a(M;m)). One sees also that

E[|u(Y (M; t))− u(Ŷ (M; t))|] ≤ C(u)E[‖Y (M; t)− Ŷ (M; t)‖γp]

= C(u)E

[∥∥∥∥
∫ t

0
(σ (Y (M; s))− σ(x))dX(M; s)

∥∥∥∥
γ

p

]

≤ C(u)CA(M),γ

∫ t

0
E[‖(σ (Y (M; s))− σ(x))‖γp]ds

≤ C(u)CA(M),γ C
γ

T

∫ t

0
E[‖Y (M; s)− x‖γp]ds

≤ C(u)CA(M),γ C
γ
T Cσ,Mt

2 ,

by using the constantC(u) = supx,y∈Qp
|u(x)− u(y)|/‖x − y‖γp of u. These two facts then

imply

lim
t→0

1

t
(Ex[u(Y (M; t))] − u(x))

=




∫
Qp

(u(y)− u(x))cM(logp‖(y − x)/σ(x)‖p)‖σ(x)‖−1
p µ(dy) if σ(x) = 0 ,

0 if σ(x) = 0 .
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Accordingly, from the following estimates∣∣∣∣1

t
Ex [u(Y (t))− u(x)] − 1

t
Ex [(u(Y (M; t))− u(x))

∣∣∣∣
=

∣∣∣∣1

t
Ex[(u(Y (t))− u(x))1Ω(M;t )] + 1

t
Ex[(u(Y (t))− u(x))1Ω(M;t )c]

− 1

t
Ex [(u(Y (M; t))− u(x))1Ω(M;t )] − 1

t
Ex[(u(Y (M; t))− u(x))1Ω(M;t )c]

∣∣∣∣
≤ 4 sup|u|1

t
P (Ω(M; t)c)

= 4 sup|u|1
t
(1 − exp(−a(M)t)

≤ 4 sup|u|a(M) ,
one can derive that| limt→0(1/t)Ex[u(Y (t))− u(x)]| ≤ 4 sup|u|a(M) at every pointx with
σ(x) = 0. Similarly, one sees that, for some positive constantK4 independent ofa(M),∣∣∣∣ lim

t→0

1

t
Ex[u(Y (t))− u(x)]

−
∫

Qp

(u(y)− u(x))c(logp‖(y − x)/σ(x)‖p)‖σ(x)‖−1

p µ(dy)

∣∣∣∣
≤

∣∣∣∣ lim
t→0

1

t
Ex[u(Y (t))− u(x)] − lim

t→0

1

t
Ex[(u(Y (M; t))− u(x))]

∣∣∣∣
+

∣∣∣∣
∫

Qp

(u(y)− u(x))(cM(logp‖(y − x)/σ(x)‖p)

− c(logp‖(y − x)/σ(x)‖p))‖σ(x)‖−1

p µ(dy)

∣∣∣∣
≤ K4 sup|u|a(M)

at every pointx ∈ Qp with σ(x) = 0. Sincea(M) tends to zero asM → ∞, the assertion is
legitimized. �

EXAMPLE 3. If a Lipschitz continuous functionσ satisfies inf‖σ‖p > 0 and
sup‖σ‖p < ∞, for the random walk{X(t)} characterized byA = {cp−αm}∞m=−∞ (α > 0)
with some positive constantc, the probability law of the solution{Y (t)} of the stochastic
differential equation {

dY (t) = σ(Y (t))dX(t) ,

Y (0) = x ,

coincides with the one of the Hunt process corresponding to the smallest closed extension in
L2(‖σ‖1−α

p µ) of the pre-Dirichlet form

E(u, v) =
∫
(Qp×Qp)\∆

(u(x)− u(y))(v(x)− v(y))J (dx, dy)
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with the symmetric measureJ on (Qp × Qp) \∆ (∆ = {(x, x) | x ∈ Qp}) given by

J (dx, dy) = kp,c,α‖y − x‖−(α+1)
p µ(dx)µ(dy) ,

wherekp,c,α stands for some positive constant depending only onp, c andα andu, v denote
locally constant functions with compact supports.

6. Qp-valued martingale. In this section, we assume that some increasing filtra-
tion {Ft } is given on a probability space(Ω,F , P ). For a square integrable random vari-
ableX, if there exists a unique elementY of L2(Ω,Ft , P ) satisfyingE[‖X − Y‖2

p] =
infZ∈L2(Ω,Ft ,P ) E[‖X − Z‖2

p], we denoteY by E[X | Ft ] and call the random variable the
conditional expectation ofX given byFt . Also, if there exists a unique elementa of Qp
satisfyingE[‖X − a‖2

p] = infz∈Qp E[‖X − z‖2

p], we denotea by E[X] and call thep-adic
number the expectation ofX.

PROPOSITION 3. (i) If the probability distributionµX of a square integrable random
variable X satisfies µX(B(a, pk)) > µX(B(b, p

k)) for any a, b ∈ Qp with ‖a‖p < ‖b‖p
and any integer k with pk < ‖a − b‖p, then E[X] = 0.

(ii) IfX is an Ft -measurable square integrable random variable, thenE[X |Ft ] = X.
(iii) If a square integrable random variable X with expectation is independent of Ft ,

then E[X |Ft ] = E[X].
PROOF. (i) For any elementa of Qp with ‖a‖p = pma , we have

E[‖X − a‖2

p] − E[‖X‖2

p]

=
∞∑

m=ma+1

p2mµX(S(0, pm))+ p2maµX(B(0, pma−1))

+ p2maµX(S(0, pma ) \ B(a, pma−1))

+
ma−1∑
m=−∞

p2mµX(S(a, p
m))−

∞∑
m=−∞

p2mµX(S(0, pm))

= p2ma (µX(B(0, pma−1))− µX(B(a, p
ma−1)))

+
ma−1∑
m=−∞

p2mµX(S(a, p
m))−

ma−1∑
m=−∞

p2mµX(S(0, p
m))

= (µX(B(0, p
ma−1))− µX(B(a, p

ma−1)))

×
(
p2ma −

ma−1∑
m=−∞

p2m µX(S(0, pm))− µX(S(a, p
m))

µX(B(0, pma−1))− µX(B(a, pma−1))

)

> 0 .

(ii) follows directly from the definition.
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(iii) For anyFt -measurable random variableZ inL2, denote its probability distribution
byµZ. Then we observe that ifµZ({0}) < 1,

E[‖X − (E[X] + Z)‖2
p] =

∫
Qp

E[‖X − (E[X] + z)‖2
p]µZ(dz)

>

∫
Qp

E[‖X − E[X]‖2
p]µZ(dz) .

Therefore, it follows that the infimum is attained if and only ifµZ({0}) = 1. �

A Qp-valued{Ft }-adapted square integrable process{Mt } is called an{Ft}-martingale
if E[Mt |Fs] = Ms for anyt > s.

THEOREM 4. A-random walk {X(t)} characterized by a parameter sequence A ∈
A(2) is an {Ft }-martingale.

PROOF. Denotingbi(t) = p−i exp(−(p − 1)−1(pa(i) − a(i + 1))t), the following
description onP0(X(t) ∈ B(0, pm)) is obtained ([1]):

Pm(t) = p − 1

p

∞∑
i=0

p−i exp

(
− pa(m+ i)− a(m+ i + 1)

p − 1
t

)

= p − 1

p
pm

∞∑
i=m

bi(t) .

On the other hand, for any elementa with ‖a‖p = pma > pm, one can see that

P0(X(t) ∈ B(a, pm)) = p

p − 1

1

pma−m
(Pma (t)− Pma−1(t))

= pm

pma

(
pma

∞∑
i=ma

bi(t)− pma−1
∞∑

i=ma−1

bi(t)

)

= pm
( ∞∑
i=ma

bi(t)− 1

p

∞∑
i=ma−1

bi(t)

)

≤ p − 1

p
pm

∞∑
i=ma

bi(t) < Pm(t) .

Consequently,E[X(t)] = 0 andE[X(t) |Fs] = E[X(t) − X(s) + X(s) |Fs] = E[X(t)−
X(s) |Fs] +X(s) = E[X(t)− X(s)] +X(s) = X(s). �
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