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Abstract. A compact minimal Lagrangian submanifold immersed in a Kähler mani-
fold is calledHamiltonian stable if the second variation of its volume is nonnegative under
all Hamiltonian deformations. We study compact Hamiltonian stable minimal Lagrangian
submanifolds with parallel second fundamental form embedded in complex projective spaces.
Moreover, we completely determine Hamiltonian stability of all real forms in compact irre-
ducible Hermitian symmetric spaces, which were classified previously by M. Takeuchi.

Introduction. Let (M,ω) be a 2n-dimensional symplectic manifold with a symplectic
form ω andL be ann-dimensional smooth manifold. An immersionϕ : L → M is called
a Lagrangian immersion if the 2-formϕ∗ω on L pulled back by the immersionϕ : L → M

vanishes identically. ThenL is called aLagrangian submanifold immersed in a symplectic
manifoldM.

We say that a compact Lagrangian submanifold immersed in a Kähler manifoldM is
anH-minimal Lagrangian submanifold if it has extremal volume under all Hamilitonian vari-
ations of the Lagrangian immersion. If a compact Lagrangian submanifoldL immersed in
a Kähler manifoldM is minimal, in the sense that it has extremal volume under all smooth
variations of the immersion, then it is always H-minimal. A compact H-minimal Lagrangian
submanifold in a Kähler manifoldM is calledHamiltonian stable if the second variation for
the volume is nonnegative for all Hamiltonian deformations of the Lagrangian immersion.
Any compactstable, in the sense that the second variations are nonnegative under all smooth
variations of the immersion, minimal submanifoldL immersed in a Kähler manifoldM is
always H-stable.

In [18], [19], [20], [21], Oh developed the fundamental theory for Hamiltonian stability
of H-minimal Lagrangian submanifolds of Kähler manifolds. It is known that every compact
minimal Lagrangian submanifoldL in an Einstein-Kähler manifoldM with nonpositive Ricci
curvature is stable ([5], [18]).
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It is an interesting problem to classify all compact Hamiltonian stable minimal La-
grangian submanifoldsL in an Einstein-Kähler manifoldM with positive Ricci curvature.
In this paper we study this problem in the case whenM is either a complex projective space
or a compact Hermitian symmetric space. Compact stable minimal submanifolds in compact
rank one symmetric spaces have already been classified by Lawson-Simons in [9] and the
second named author in [22].

Let CPn = CPn(c) be ann-dimensional complex projective space equipped with the
Fubini-Study metric of constant holomorphic sectional curvaturec. Let Sm(c) denote anm-
dimensional standard sphere ofconstant sectional curvaturec or radius 1/

√
c. The real pro-

jective subspaceRPn ⊂ CPn is the first example of a compact minimal Lagrangian subman-
ifold embedded inCPn. Consider an(n + 1)-dimensional torusT n+1 = S1((n + 1)c/4) ×
· · · × S1((n + 1)c/4) ⊂ S2n+1(c/4) naturally embedded inC n+1. By the Hopf fibration
π : S2n+1(c/4) → CPn, we have the so-called Clifford torusT n = π(T n+1) ⊂ CPn of
CPn, which is the second example of a compact minimal Lagrangian submanifold embedded
in CPn. Oh showed that the real projective subspacesRPn and the Clifford toriT n are Hamil-
tonian stable minimal Lagrangian submanifolds embedded inCPn ([18]). Then the following
is a natural and interesting problem (cf. [4]).

PROBLEM. Determine all compact Hamiltonianstable minimal Lagrangian submani-
folds in CPn.

The purpose of this paper is to study this problem for a class of compact Hamiltonian sta-
ble minimal Lagrangian submanifolds embedded inCPn, including real projective subspaces
RPn and the Clifford toriT n. Our main result is

THEOREM. Let L be an n-dimensional compact totally real minimal submanifold em-
bedded in CPn with parallel second fundamental form in the following list :
(1) SU(p)/Zp, n = p2 − 1.
(2) SU(p)/SO(p)Zp, n = (p − 1)(p + 2)/2.
(3) SU(2p)/Sp(p)Z2p, n = (p − 1)(2p + 1).
(4) E6/F4Z3, n = 26.

Then L is a Hamiltonian stable minimal Lagrangian submanifold in CPn.

In Section 1, we recall fundamental results on Hamiltonian stability of minimal La-
grangian submanifolds in Kähler manifolds. Section 2 is devoted to reviewing the classi-
fication theory of totally real submanifolds inCPn with parallel second fundamental form.
The proof of our main theorem is given in Sections 3 and 4. Finally, we study Hamiltonian
stability of totally geodesic Lagrangian submanifolds in compact Hermitian symmetric spaces
of rank greater than 1 in Section 5.

The authors would like to thank the referee for his careful reading of the manuscript.

1. Hamiltonian stability of minimal Lagrangian submanifolds in Kähler mani-
folds. Let M be a 2n-dimensional symplectic manifold with symplectic formω, and let
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L be ann-dimensional smooth submanifold ofM. Let ϕ : L → M be a Lagrangian immer-
sion. SetNL := ϕ−1T M/ϕ∗T L, the quotient vector bundle ofϕ−1T M by the subbundle
ϕ∗T L. For eachv ∈ (ϕ−1T M)x , defineαv ∈ T ∗

x L by αv(X) := ωϕ(x)(v,X) for X ∈ TxL.
By the nondegeneracy ofω it induces a linear isomorphism� : NxL → T ∗

x L by v �→ αv

and thus a bundle isomorphismNL → T ∗L.
By the definition aLagrangian deformation of ϕ is a smooth family{ϕt | |t| < ε} of

Lagrangian immersions ofL into M with ϕ0 = ϕ. Such a deformation is characterized by
a property thatαVt ∈ Ω1(L) is closed for eacht , whereVt = ∂ϕt/∂t is an infinitesimal
deformation of{ϕt} at a timet . An infinitesimal deformationV ∈ C∞(ϕ−1T M) is called
Lagrangian if αV ∈ Ω1(L) is closed andHamiltonian if αV ∈ Ω1(L) is exact. A smooth
family {ϕt } of Lagrangian immersions ofL into M is called aHamiltonian deformation of
ϕ = ϕ0 if its infinitesimal deformation∂ϕt/∂t is Hamiltonian for eacht .

Assume thatM is ann-dimensional Kähler manifold with complex structureJ and Käh-
ler metricg . The Kähler formω of M, which is defined byω(X, Y ) := g (JX, Y ), defines
a symplectic structure ofM. If an immersionϕ : L → M satisfiesJx(ϕ∗TxL) ⊂ T ⊥

x L for
eachx ∈ L, thenL is called atotally real submanifold immersed in a Kähler manifoldM
([6]). Here forx ∈ L we define an orthogonal decompositionTϕ(x)M = ϕ∗TxL⊕T ⊥

x L along
ϕ with respect to the metricg . We can identify the bundleNL with the bundleT ⊥L. Then
the complex structureJ induces a bundle isomorphismNL → ϕ∗T L preserving metrics and
connections. Since we haveαv(X) = g ϕ(x)(J v, ϕ∗X) for X ∈ TxL, αv corresponds toJv

through the linear isomorphismT ∗
x L ∼= TxL ∼= ϕ∗TxL with respect tog . Then we have a

linear isomorphism

� : C∞(T ⊥L) � V �→ αV ∈ Ω1(L) .(1.1)

DEFINITION 1.1. A compact Lagrangian submanifoldL immersed in a Kähler mani-
fold M is calledHamiltonian minimal or H-minimal if the first variation for the volume ofL
vanishes under all Hamiltonian deformations ofL in M.

Let H denote the mean curvature vector field of a Lagrangian immersionϕ : L → M. If
M is an Einstein-Kähler manifold, then it satisfiesdαH = 0, that is,αH is a closed 1-form on
L ([7]). In [20] it was shown that a Lagrangian submanifoldL immersed in a Kähler manifold
M is H-minimal if and only if δαH = 0, whereδ is the codifferential operator ofd with
respect to the induced metric onL. If a Lagrangian immersionϕ : L → M has parallel mean
curvature vector fieldH with respect to the normal connection, then it is H-minimal. Note
that if L is a compact H-minimal Lagrangian submanifold in an Einstein-Kähler manifoldM

with H 1(L, R) = {0} or more strongly with positive Ricci curvature, then the mean curvature
vector fieldH of L vanishes, that is,L is minimal.

DEFINITION 1.2. A compact H-minimal Lagrangian submanifoldM immersed in a
Kähler manifold is calledHamiltonian stable if the second variation for the volume ofM is
nonnegative under all Hamiltonian deformations ofM.
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Suppose thatL is a compact minimal Lagrangian submanifold immersed in an Einstein-
Kähler manifoldM with Einstein constantκ . Under the correspondence betweenC∞(NL)

andΩ1(L) = d(Ω0(L)) ⊕ Ker(d∗|Ω1(L)), the Jacobi operatorJ of L as a minimal sub-
manifold corresponds to the linear operatorJ̃ = �1 − κ Id, where�1 = dδ + δd denotes the
Laplacian ofL acting on 1-forms and Id denotes the identity operator. The second variation
of the volume for a compact minimal Lagrangian submanifold under Hamiltonian deforma-
tions is described by the restriction of̃J to d(Ω0(L)). The null space ofJ on Hamiltonian
deformations corresponds to the null space ofJ̃ ond(Ω0(L)), and it is linearly isomorphic to
the eigenspace of the Laplacian onC∞(L) with eigenvalueκ . We denote byn(L) the nullity
of L, that is, the dimension of the null space.

Let K denote the space of Killing vector fields on a compact Einstein-Kähler manifold
M with positive Einstein constantκ . Assume thatK �= {0}, or equivalently by a theorem
of Lichnerowicz [10] and Matsushima [12], the first eigenvalue of the Laplacian acting on
C∞(M) is equal to 2κ . We denote by V1(M) the corresponding eigenspace. By a theorem of
Matsushima [12], we know that

K = {Jgradf ∈ C∞(T M) | f ∈ V1(M)} .

For eachW ∈ K, we have an orthogonal decompositionW = WT + W⊥, whereWT

andW⊥ denote the tangential and the normal components of the restriction ofW to L in M.
Set

K⊥ = {W⊥ ∈ C∞(NL) | W ∈ K} .

Then we have a linear isomorphism

K⊥ ∼= K/{W ∈ K | W⊥ = 0} .

If W = −Jgradf ∈ K for the first eigenfunctionf of the Laplacian acting onC∞(M),
then it is easy to check that the formula

d(f |L) = αW⊥

holds onL, which means that eachW⊥ ∈ K⊥ is an infinitesimal Hamiltonian deformation.
Hence, for a suitable constantα, f |L + α is an eigenfunction of the Laplacian acting on
C∞(L) with eigenvalueκ . SetnK(L) = dimK⊥. Since eachW ∈ K with W⊥ = 0 induces
a Killing vector field onL, we obtain inequalities

n(L) ≥ nK(L) ≥ dimK − dimI0(L) ,

whereI0(L) denotes the identity component of the isometry group ofL. In the case when
M = CPn, since dimK = dimSU(n + 1) = (n + 1)2 − 1 and dimI0(L) ≤ n(n + 1)/2 ,

compact minimal Lagrangian submanifoldsL in CPn satisfy

n(L) ≥ nK(L) ≥ dimK − dimI0(L) ≥ n(n + 3)/2 .(1.2)

The Hamiltonian stability problem of compact minimal Lagrangian submanifolds in an
Einstein-Kähler manifold is reduced to the first positive eigenvalue problem of the Laplacian
acting on functions.
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THEOREM 1.1 ([18]). Let M be an Einstein-Kähler manifold with Einstein constant
κ . A compact minimal Lagrangian submanifold L in M is Hamiltonian stable if and only if
λ1 ≥ κ, where λ1 > 0 is the first eigenvalue of the Laplacian acting on C∞(L).

It is an important property of compact minimal Lagrangian submanifolds inCPn(c) that
if f is the first eigenfunction of the Laplacian onCPn(c), then the restrictionf |L of f to
L is the eigenfunction of the Laplacian onL with eigenvaluec(n + 1)/2. This was used
by Urbano [28] and a similar result was studied by Ono [23] for a class of generalized flag
manifolds including Hermitian symmetric spaces.

THEOREM 1.2 ([28], [23]). Assume that M is a compact Hermitian symmetric space
with standard Einstein-Kähler metric and Einstein constant κ . Then a compact minimal La-
grangian submanifold L in M is Hamiltonian stable if and only if λ1 = κ . Here λ1 is the
first eigenvalue of the Laplacian acting on C∞(L). In particular, when M is a complex pro-
jective space CPn(c) with constant holomorphic sectional curvature c, a compact minimal
Lagrangian submanifold L in CPn(c) is Hamiltonian stable if and only if λ1 = c(n + 1)/2.

There is some topological restriction for compact minimal Lagrangian submanifolds in
CPn to be Hamiltonian stable.

THEOREM 1.3. Let L be a compact minimal Lagrangian submanifold immersed in
CPn. If L is Hamiltonian stable, then H1(L; Z) �= {0}. In particular, L cannot be simply
connected.

PROOF. By ϕ : L → CPn we denote the Lagrangian immersion and byπ : S2n+1(c/

4) → CPn(c) = CPn the Hopf fibration. On theS1-bundleϕ−1S2n+1 → L pulled-back
by ϕ from the Hopf fibration, the induced connection is flat, by virtue of the Lagrangian
property ofϕ. Let ρ : π1(L) → S1 be the holonomy homomorphism of the flat connec-
tion. Sinceπ1(L)/Kerρ ∼= Imρ ⊂ S1 is abelian, the natural homomorphismH1(L; Z) ∼=
π1(L)/[π1(L), π1(L)] → π1(L)/Kerρ is surjective. Assume thatH1(L; Z) = {0}. Then
ρ is trivial. Hence there is a minimal isometric immersionϕ̃ : L → S2n+1(c/4) which
is horizontal with respect toπ : S2n+1(c/4) → CPn such thatϕ = ϕ̃ ◦ π . By Taka-
hashi’s theorem [24], component functions ofϕ̃ : L → S2n+1(c/4) are eigenfunctions of the
Laplaician ofL with eigenvaluecn/4. Hence the first eigenvalueλ1 of the Laplacian satisfies
λ1 ≤ cn/4 < c(n + 1)/2. Thus the minimal Lagrangian immersionϕ : L → CPn is not
Hamiltonian stable. �

REMARK 1. This result does not hold in the case of compact Hermitian symmetric
space of rank greater than 1 (see Section 4).

2. Minimal Lagrangian submanifolds in CPn with parallel second fundamental
form. Totally real submanifolds in a complex projective space have been much investigated
after the publication of the paper [6] (cf. [5] and [17]). Also totally real submanifolds in com-
plex space forms (that is, a complex Euclidean spaceC n, a complex projective spaceCPn
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and a complex hyperbolic spaceCHn) with parallel second fundamental form were elabo-
rately classified by Naitoh and Naitoh-Takeuchi in [14], [15], [13], [16]. Since the parallelism
of the second fundamental form implies the parallelism of the mean curvature vector field,
such submanifolds provide a nice class of H-minimal Lagrangian submanifolds in complex
projective spaces.

By virtue of their theory, all totally real submanifolds inCPn with parallel second funda-
mental form are constructed in the following way. Let(U,G) be a Hermitian symmetric pair
of compact type with the canonical decompositionu = g+p. Set dim(U/G) = 2(n+1). Let
〈 , 〉� denote the Ad(U)-invariant inner product ofu defined by(−1)-times Killing-Cartan
form of u. Relative to the complex structure the subspacep can be identified with a com-
plex Euclidean spaceC n+1. We take the decomposition of(U,G) into irreducible Hermitian
symmetric pairs of compact type:

(U,G) = (U1,G1) ⊕ · · · ⊕ (Us,Gs) .(2.1)

Set dim(Ui/Gi) = 2(ni + 1) for i = 1, . . . , s. Let ui = gi + pi be the canonical decompo-
sition of (Ui,Gi) for eachi = 1, 2, . . . , s. Assume that there is an elementηi ∈ pi satisfy-
ing the condition(adηi)

3 + 4(adηi) = 0. Choose positive numbersc1 > 0, . . . , cs > 0
with

∑s
i=1 1/ci = 1/c. Put ai = 1/

√
2ci(ni + 1) for eachi = 1, . . . , s. Set L̂i =

Ad(Gi)(aiηi) ⊂ S2ni+1(ci/4) ⊂ pi . It should be remarked that̂Li is an irreducible sym-
metricR-space standardly embedded in a complex Euclidean spacepi .

Let η = a1η1 + · · · + asηs ∈ p. Let L̂ = Ad(G)(η) ⊂ S2n+1(c/4) ⊂ p, which is a
symmetricR-space standardly embedded in a complex Euclidean spacep. Then we have the
inclusions:

L̂ = L̂1 × · · · × L̂s ⊂ S2n1+1(c1/4) × · · · × S2ns+1(cs/4) ⊂ S2n+1(c/4) .(2.2)

THEOREM 2.1 ([16]). Let π : S2n+1(c/4) → CPn(c) be the Hopf fibration and put
L = π(L̂). Then

(1) L is a compact totally real submanifold embedded in CPn(c) with parallel second
fundamental form, and thus L is a symmetric space.

(2) L is a minimal submanifold in CPn(c) if and only if ci(ni +1) = c(n+1) for each
i = 1, . . . , s.

(3) The dimension of the Euclidean factor of L is equal to s − 1.
(4) L is flat if and only if s = n + 1.
(5) L has no Euclidean factor if and only if s = 1. In this case L is an irreducible

symmetric space and a minimal submanifold in CPn.
(6) Conversely every totally real submanifold immersed in CPn with parallel second

fundamental form covers an open submanfold of L constructed in this way.

Note thatL is always a compact H-minimal Lagrangian submanifold embedded inCPn(c).
Note thatL̂ is also a compact H-minimal Lagrangian submanifold inC n+1. Their Hamilton-
ian stability will be discussed in a forthcoming paper [2].
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In the case whenL is flat, L is the Clifford torus ofCPn. In the case whenL has no
Euclidean factor,L is locally isometric to one of the following symmetric spaces: Sn(c/4),
SU(p), SU(p)/SO(p), SU(2p)/Sp(p), E6/F4. Their explicit descriptions are given in Sec-
tion 5 of [13]. From now on we only discuss this case.

Suppose that(U,G) is irreducible(s = 1). In order to determine the Hamiltonian
stability of the Lagrangian submanifoldL embedded inCPn, we have to calculate the first
eigenvalueλ1 of the Laplacian onC∞(L) with respect to the induced metric onL from the
Fubini-Study metric ofCPn.

Let L̃ denote the universal covering space ofL. Let λ̃1 denote the first eigenvalue of the
Laplacian acting onC∞(L̃). The complete list of all irreducible Hermitian symmetric spaces
U/G of compact type and correspondingL, L̃ is given as follows:

Class U/G n + 1 L L̃

AIII
SU(2p)

S(U(p) × U(p))
p2 SU(p)Zp SU(p)

DIII
SO(4p)

U(2p)
p(2p − 1)

SU(2p)

Sp(p)Z2p

SU(2p)

Sp(p)

BDI
SO(p + 2)

SO(p) × SO(2)
p RPn Sn

CI
Sp(p)

U(p)

p(p + 1)

2

SU(p)

SO(p)Zp

SU(p)

SO(p)

EVII
E7

E6 · T
27

E6

F4Z3

E6

F4

Here note that the compact symmetric spaceL is a bottom space.
We take the decomposition

g = c(g) ⊕ g′(2.3)

into the center and the semisimple part ofg.
Let us denote byB�( , ) the Killing-Cartan form of a Lie algebrah. Define the invariant

inner products onu andg′ by

〈 , 〉� := −B�( , )(2.4)

and

〈 , 〉�′ := −B�′( , ) ,(2.5)

respectively. Forη ∈ p with 〈η, η〉� = 4/c, put

k := {X ∈ g′ | [X, η] = 0} .(2.6)
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Then we have an orthogonal decomposition

g′ = k + m .(2.7)

Define an inner product onm by

〈X,Y 〉 := 〈[X, η], [Y, η]〉�(2.8)

for X,Y ∈ m, which corresponds to the induced metric onL from the Fubini-Study metric of
CPn.

Now we assume that there exists a constantC > 0 such that

〈X,Y 〉 = C〈X,Y 〉�′(2.9)

for X,Y ∈ m. Then the constantC > 0 can be given explicitly as follows.

LEMMA 2.1.

C = 2

c

(
1

n + 1
− 2

dimg′ a(p)

)
,(2.10)

where a(p) denotes the eigenvalue of the Casimir operator on the representation space p of g′
with respect to 〈 , 〉�′ .

This lemma follows immediately from Propositions 2.1 and 2.2.
Assume that there is a constantl > 0 such that

〈X,Y 〉� = l〈X,Y 〉�′(2.11)

for X,Y ∈ g′.
Setm = dimm. Then we obtain the following formula forC in terms ofl.

PROPOSITION 2.1. Let 〈 , 〉 be the inner product of m defined in (2.8). Assume that

〈X,Y 〉 = C〈X,Y 〉�′

for X,Y ∈ m. Then we have

C = l

m

2n

c(n + 1)
.(2.12)

PROOF. Let {ei} be an orthonormal basis ofm with respect to〈 , 〉�. By using (2.9) and
(2.11), we have

m∑
i=1

〈ei, ei〉 =C

m∑
i=1

〈ei , ei〉�′ = C

l

m∑
i=1

〈ei , ei〉�

=C

l
dimm = C

l
m .

(2.13)
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On the other hand, we obtain

m∑
i=1

〈ei , ei〉 =
m∑

i=1

〈[ei , η], [ei, η]〉�

= −
m∑

i=1

〈(adη)2ei , ei〉� = −tr�′(adη)2

= −
(
tr�(adη)2 − tr��(adη)2

)
= − 1

2
tr�(adη)2 + tr��(adη)2

=1

2
〈η, η〉� − 1

2(n + 1)
〈η, η〉�

=1

2

4

c
− 1

2(n + 1)

4

c
= 2n

c(n + 1)
.

(2.14)

�

Next we are going to prove a formula determining the positive constantl. Here we can
show a similar formula in a slightly general setting. Let(u, g) be an irreducible symmetric
Lie algebra of compact type with canonical decompositionu = g + p . Assume thatg =
g′

0 ⊕ g′
1 ⊕ · · · ⊕ g′

t is a decomposition into the center and simple ideals, whereg′
0 = c(g).

PROPOSITION 2.2. If there is a constant l1 > 0 such that

〈X,Y 〉� = l1〈X,Y 〉�′
1

(2.15)

for X,Y ∈ g′
1, where

〈 , 〉�′
1

= −B�′
1
( , ) .

Then the constant l1 > 0 is given by

l1 = 1

k1

(
k1 − (dimp)a′(p)

)
,(2.16)

where k1 = dim g′
1 and a′(p) denotes the eigenvalue of the Casimir operator on the represen-

tation space p of g′
1 with respect to 〈 , 〉�′

1
.

PROOF. Let {X1, . . . , Xk} be an orthonormal basis ofg′
1 with respect to〈 , 〉�′

1
. Then

we have

k1∑
j=1

〈Xj ,Xj 〉� = l1

k1∑
j=1

〈Xj ,Xj 〉�′
1

= l1k1 .(2.17)



592 A. AMARZAYA AND Y. OHNITA

On the other hand, we obtain

k1∑
j=1

〈Xj ,Xj 〉� = −
k1∑

j=1

tr�(adXj)
2

= −
k1∑

j=1

tr�(adXj)
2 −

k1∑
j=1

tr�(adXj )
2

= −
k1∑

j=1

tr�′
1
(adXj)

2 −
k1∑

j=1

tr�(adXj )
2

=
k1∑

j=1

〈Xj ,Xj 〉�′
1
− tr�(C)

= k1 − (dimp)a′(p) ,

(2.18)

whereC = C(�′
1,〈 , 〉

�
′
1
) denotes the Casimir operator ofg′

1 with respect to〈 , 〉�′
1
. �

3. Calculation of the first eigenvalues of minimal Lagrangian submanifolds inCPn

with parallel second fundamental form. To calculate the eigenvalues of the Laplacian act-
ing on functions we review relevant results from the theory of spherical functions on com-
pact symmetric spaces ([26]). LetG/K be a compact symmetric space with symmetric pair
(G,K, σ), whereG is a compact connected Lie group. Letg = k+m be its canonical decom-
position anda be a maximal abelian subspace ofm. We fix an AdG-invariant inner product
( , ) of g. Let t be a maximal abelian subalgebra ofg containinga. Then we havet = b + a,
whereb = t ∩ k. We fix aσ -linear order< on t. The maximal torusT of G is generated byt.
For eachα ∈ t, we put

g̃α = {X ∈ gC | (adH)X = 2π
√−1(α,H)X for eachH ∈ t} .(3.1)

An elementα ∈ t is called aroot of g with respect tot if g̃α is nonzero. We denote byΣ(G)

andΣ+(G) the set of all roots and all positive roots ofg with respect tot, respectively, and
putΣ0(G) = Σ(G) ∩ b. Then we have the root decomposition

gC = tC +
∑

α∈Σ(G)

g̃α .

We always denote byΠ(g) the fundamental system of roots and setΠ0(g) = Π(g) ∩ Σ0(G).
Set

Γ (G) := {H ∈ t | expH = e} ,

Z(G) := {Λ ∈ t | (Λ,H) ∈ Z for eachH ∈ Γ (G)} ,

D(G) := {Λ ∈ Z(G) | (Λ, α) ≥ 0 for eachα ∈ Σ+(G)} .

(3.2)
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Let D(G) be the complete set of inequivalent irreducible unitary representations ofG. Then
it is known that for each(V , ρ) ∈ D(G) the highest weightΛρ of (V , ρ) belongs toD(G),
and the mappingD(G) → D(G) is bijective.

Let A be the torus ofG generated bya andÂ = Ao be a maximal torus ofG/K, where
o denotes the origineK of G/K. For eachγ ∈ a, we put

gγ = {X ∈ gC | (adH)X = 2π
√−1(α,H)X for eachH ∈ a} .

An elementγ ∈ a is called aroot of g with respect toa if gγ is nonzero. We denote by
Σ(G,K) andΣ+(G,K) the set of all roots and all positive roots ofg with respect toa,
respectively. Then we have the decomposition

gC = g0 +
∑

γ∈Σ(G,K)

gγ .

Put
Γ (G,K) := {H ∈ a | (expH)o = o} ,

Z(G,K) := {Λ ∈ a | (Λ,H) ∈ Z for eachH ∈ Γ (G,K)} ,

D(G,K) := {Λ ∈ Z(G,K) | (Λ, γ ) ≥ 0 for eachγ ∈ Σ+(G,K)} .

Then we haveZ(G,K) ⊂ Z(G) andD(G,K) ⊂ D(G). Let D(G,K) be the complete set
of inequivalent class-one unitary representations of pair(G,K). Then for each(Vρ, ρ) ∈
D(G,K) the subspace(Vρ)K = {v ∈ Vρ | ρ(k)v = v for eachk ∈ K} is of complex dimen-
sion 1, and the bijectionD(G) → D(G) induces the bijectionD(G,K) → D(G,K).

Let Π(G,K) = {γ1, . . . , γl} be the fundamental root system forΣ(G,K). We define

βi =


γi if 2γi /∈ Σ(G,K)

2γi if 2γi ∈ Σ(G,K) ,

and setβ∗
i = 2βi/(βi, βi). It is known (cf. [11]) that ifG/K is simply connected, then

Γ (G,K) =
l∑

i=1

Z
(

1

2
β∗

i

)
,

and ifG/K is a bottom space, then

Γ (G,K) =
{
H ∈ a

∣∣∣∣
(

H,
1

2π
γi

)
∈ 1

2
Z, i = 1, 2, . . . , p − 1

}
.

Let g be aG-invariant Riemannian metric onG/K induced by( , ). If G/K is ir-
reducible andg is a G-invariant Riemannian metric induced from the(−1)-times Killing-
Cartan form, then(G/K, g ) is an Einstein manifold with Einstein constant 1/2 (cf. [27]). Let
� be the Laplacian of(G/K, g ) acting on functions, and letΛ = Λρ be the highest weight
of the representationρ ∈ D(G,K). Then by the Freudenthal formula the complete set of
eigenvalues of� is given by

{−aΛ = 4π2(Λρ + 2δ(G),Λρ) | ρ ∈ D(G,K)} .(3.3)
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Here we set

δ(G) = 1

2

∑
α∈Σ+(G)

α .

The multiplicity of thek-th eigenvalueµk of � is given by
∑

ρ dρ , where the summation runs
over allρ ∈ D(G,K) such thatµk = −aΛ. By Weyl’s dimension formuladρ is given by

dρ = dim(Vρ, ρ) =
∏

α∈Σ+(G)

(α,Λρ + δ(G))

(α, δ(G))
.(3.4)

Let {Λ1, . . . ,Λl′ } be the fundamental weight system of the semisimple partg′ of g,
wherel′ = rankg′. Then the highest weightΛ(p) of the isotropy representation of irreducible
Hermitian symmetric pair(U,G) restricted tog′ and the corresponding eigenvaluea(p) of
their Casimir operator with respect to the(−1)-times Killing-Cartan form ofg′ is given in the
following list (cf. [8, Chapter 8]). Moreover, the constantC in (2.9) is also given in each case.

Class g′ Λ(p) n + 1 dim g′ −a(p) C

AIII su(p) ⊕ su(p) Λ1 ⊗ Λp−1 p2 2(p2 − 1)
p2 − 1

p2

4

p2c

DIII su(2p) Λ2 2p2 − p 4p2 − 1
2p2 − p − 1

p2

2

p2c

BI so(2p − 1) Λ1 2p − 1 2p2 − 3p + 1
p − 1

2p − 3

1

(n − 1)c

DI so(2p) Λ1 2p p(2p − 1)
2p − 1

4(p − 1)

1

(n − 1)c

CI su(p) 2Λ1
p(p + 1)

2
p2 − 1

p2 + p − 2

p2

8

p2c

EVII e6 Λ1 27 78
13

18

1

9c

Here we give a computation ofC only in the case of EVII. In this case(U,G) = (E7, T ·
E6) and(G,K) = (T · E6, F4). From (2.12) and (2.16) we have

C =2

c

(
1

n + 1
− 2

dimg′ a(p)

)
= 2

c

(
1

27
+ 2

78

13

18

)
= 1

9c
.(3.5)

LEMMA 3.1. Assume that G/K is one of compact irreducible symmetric spaces RPn =
SO(n + 1)/S(O(n) × O(1)), SU(p)/Zp, SU(p)/SO(p)Zp, SU(2p)/Sp(p)Z2p and
E6/F4Z3. Then the first eigenvalue µ1 of the Laplacian for functions on G/K with respect to
the metric defined by the (−1)-times Killing-Cartan form of g is given in the following list:



MINIMAL LAGRANGIAN SUBMANIFOLDS 595

G/K G̃/K n = dimG/K µ1 µ̃1

RPn Sn n
n + 1

2(n − 1)

n

4(n − 1)

SU(p)

Zp

SU(p) p2 − 1 2
2(p2 − 1)

p2

SU(p)

SO(p)Zp

SU(p)

SO(p)

(p − 1)(p + 2)

2

2(p + 1)

p

(p − 1)(p + 2)

p2

SU(2p)

Sp(p)Z2p

SU(2p)

Sp(p)
(p − 1)(2p + 1)

2p − 1

p

(p − 1)(2p + 1)

2p2

E6

F4Z3

E6

F4
26

3

2

13

18

Here G̃/K is the universal covering space of G/K, µ̃1 denotes the first eigenvalue of the
Laplacian acting on functions for G̃/K and p ≥ 2 is an integer.

PROOF. We use the table of root systems for complex simple Lie algebras in [3].
The caseG/K = (

SU(p)/Zp × SU(p)/Zp

)
/
(
SU(p)/Zp

) ∼= SU(p)/Zp: Suppose
that k = su(p) is a compact simple Lie algebra of typeAp−1. Let t be a maximal abelian
subalgebra ofk. If {ε1, . . . , εp} denotes the standard orthonormal basis ofRp, thent can be
identified with the subspace ofRp as follows:

t =
{ p∑

i=1

xiεi

∣∣∣∣
p∑

i=1

xi = 0

}
.

The fundamental root system of(k, t) is

Π(k) = {αi = εi − εi+1 | i = 1, 2, . . . , p − 1} .

Setγ ∗
i = 2γi/(γi, γi) = γi , i = 1, 2, . . . , p − 1.

The setsΓ (SU(p)), Z(SU(p)) andD(SU(p)) are given explicitly as follows:

Γ (SU(p)) =
{

2π

p∑
i=1

xiεi

∣∣∣∣
p∑

i=1

xi = 0, xi ∈ Z, i = 1, 2, . . . , p

}
,

Z(SU(p)) =
{

1

2π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0 ,

mi − mi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
,
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D(SU(p)) =
{

1

2π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0 ,

0 ≤ mi − mi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
.

Furthermore,Γ (SU(p)/Zp), Z(SU(p)/Zp) andD(SU(p)/Zp) are given explicitly as
follows:

Γ (SU(p)/Zp) =
{

2π

p∑
i=1

xiεi

∣∣∣∣
p∑

i=1

xi = 0, xi − xi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
,

Z(SU(p)/Zp) =
{

1

2π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0, mi ∈ Z , i = 1, 2, . . . , p

}
,

D(SU(p)/Zp) =
{

1

2π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0,mi ∈ Z, i = 1, 2, . . . , p,

mi − mi+1 ≥ 0, i = 1, 2, . . . , p − 1

}
.

Hereδ(G) is given by

δ(G) = 1

2π

1

2

p∑
i=1

(p − 2i + 1)εi .

By the Freudenthal formula we determine all eigenvalues of the Casimir opetrator of
SU(p)/Zp. For eachΛ ∈ D(SU(p)/Zp), the corresponding eigenvalue−aΛ is given by

−aΛ = 4π2
(

1

2π

p∑
i=1

miεi + 1

2π

p∑
i=1

(p − 2i + 1)εi,
1

2π

p∑
i=1

miεi

)

=
p∑

i=1

m2
i − 2

p∑
i=1

imi .

For (m1,m2, . . . ,mp) = (1, 0, . . . , 0,−1), we have−aΛ = 2 − 2(1 − p) = 2p.
By using Lemma 3.2, we see that−aΛ = 2p is the first eigenvalue ofSU(p)/Zp. By

using Weyl’s dimension formula (3.4), we can show that its multiplicity is equal top2(p2 −
1). Hence the first eigenvalue ofSU(p)/Zp relative to the metric(−1)B�( , ) is equal to
2p/2p = 1. Thus the first eigenvalue of

(
SU(p)/Zp × SU(p)/Zp

)
/
(
SU(p)/Zp

)
relative to

the metric(−1)B�( , ) is equal to 1× 2 = 2.
The caseG/K = SU(p)/SO(p)Zp: Suppose thatg = su(p) and k = so(p). Let

{ε1, ε2, . . . , εp} be the standard orthonormal basis ofRp.
Recall the Satake diagram of AI:
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� � � · · · · · · � �

α1 α2 α3 αp−2 αp−1

The fundamental root system of(g, t) can be found as follows:
Π(g) = {αi = εi − εi+1 | i = 1, 2, . . . , p − 1} .

In this caseΠ0(g) = ∅, b = {0} and

Π(g, a) = {γi = ᾱi = αi | i = 1, 2, . . . , p − 1} = Π(g) .

Then the subspacea is given by

a =
p−1∑
i=1

R · (εi − εi+1) .

The Dynkin diagram ofΠ(g, a) is of typeAp−1 and given by

� � · · · · · · � �

γ1 γ2 γp−2 γp−1

Setβi := γi , i = 1, 2, . . . , p − 1, andβ∗
i := γ ∗

i = 2γi/(γi, γi) = γi , i = 1, 2, . . . , p − 1.
The setsΓ (SU(p), SO(p)), Z(SU(p), SO(p)) andD(SU(p), SO(p)) are described

as follows:

Γ (SU(p), SO(p)) =
{
π

p∑
i=1

xiεi

∣∣∣∣
p∑

i=1

xi = 0, xi ∈ Z, i = 1, 2, . . . , p

}
,

Z(SU(p), SO(p)) =
{

1

π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0,

mi − mi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
,

D(SU(p), SO(p)) =
{

1

π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0,

0 ≤ mi − mi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
.
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Similarly, Γ (SU(p), SO(p)Zp), Z(SU(p), SO(p)Zp) and D(SU(p), SO(p)Zp) are de-
scribed as follows:

Γ (SU(p), SO(p)Zp) =
{
π

p∑
i=1

xiεi

∣∣∣∣
p∑

i=1

xi = 0, xi − xi+1 ∈ Z , i = 1, 2, . . . , p − 1

}
,

Z(SU(p), SO(p)Zp) =
{

1

π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0, mi ∈ Z , i = 1, 2, . . . , p

}
,

D(SU(p), SO(p)Zp) =
{

1

π

p∑
i=1

miεi

∣∣∣∣
p∑

i=1

mi = 0, mi ∈ Z, i = 1, 2, . . . , p,

mi − mi+1 ≥ 0, i = 1, 2, . . . , p − 1

}
.

Here

δ(SU(p)) = 1

2π

1

2

p∑
i=1

(p − 2i + 1)εi .

For eachΛ ∈ D(SU(p), SO(p)Zp), the corresponding eigenvalue−aΛ is

−aΛ = 4π2
(

1

π

p∑
i=1

miεi + 1

2π

p∑
i=1

(p − 2i + 1)εi,
1

π

p∑
i=1

miεi

)

= 4
p∑

i=1

(mi)
2 − 4

p∑
i=1

imi .

For (m1,m2, . . . ,mp) = (1, 0, . . . , 0,−1), we have−aΛ = 4(p + 1). This is the first
eigenvalue ofSU(p)/SO(p)Zp by Lemma 3.2. The first eigenvalue ofSU(p)/SO(p)Zp rel-
ative to the metric(−1)B�( , ) is equal to 2(p+1)/p. The first eigenvalue ofSU(p)/SO(p)Zp

relative to the metric(−2)B�( , )/p2 is equal top(p + 1)/4. By using Weyl’s dimension for-
mula (3.4), we can show that its multiplicity is equal top2(p − 1)(p + 3)/4.

The caseG/K = SU(2p)/Sp(p)Z2p: Suppose thatg = su(2p) andk = sp(p). Let
{ε1, ε2, . . . , ε2p} be the standard orthonormal basis ofR2p. The subspacet can be identified
with

t =
{ 2p∑

i=1

ξ iεi

∣∣∣∣
2p∑
i=1

ξ i = 0

}
.

Recall the Satake diagram of AII:
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� � � · · · · · · � �

α1 α2 α3 α2p−2 α2p−1

The fundamental root system of(g, k) is given by

Π(g) = {αi = εi − εi+1 | i = 1, 2, . . . , 2p − 1} .

In this case

Π0(g) = {α2i−1 | i = 1, 2, . . . , p} ,

b =
p∑

i=1

R · α2i−1 =
p∑

i=1

R · (ε2i−1 − ε2i)

and

Π(g, a) = {γi = ᾱ2i | i = 1, 2, . . . , p − 1} .

The Dynkin diagram ofΠ(g, a) is of typeAp−1:

� � · · · · · · � �

γ1 γ2 γp−2 γp−1

Definep vectorsfi of R2p by

fi := 1√
2
(ε2i−1 + ε2i ) , i = 1, 2, . . . , p − 1, p .

Then, fori = 1, 2, . . . , p − 1 we have

α2i = ε2i − ε2i+1 , γi = 1√
2
(fi − fi+1) .

The subspacea can be identified with

a =
p−1∑
i=1

R · (fi − fi+1) .
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Set βi := γi , and β∗
i := γ ∗

i = 2γi/(γi, γi) = 2γi , i = 1, 2, . . . , p − 1. Then
Γ (SU(2p), Sp(p)), Z(SU(2p), Sp(p)) andD(SU(2p), Sp(p)) are described as follows:

Γ (SU(2p), Sp(p)) =
{√

2π

p∑
i=1

xifi

∣∣∣∣
p∑

i=1

xi = 0, xi ∈ Z, i = 1, 2, . . . , p

}
,

Z(SU(2p), Sp(p)) =
{

1√
2π

p∑
i=1

mifi

∣∣∣∣
p∑

i=1

mi = 0,

mi − mi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
,

D(SU(2p), Sp(p)) =
{

1√
2π

p∑
i=1

mifi

∣∣∣∣
p∑

i=1

mi = 0,

0 ≤ mi − mi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
.

Moreover,Γ (SU(2p), Sp(p)Z2p), Z(SU(2p), Sp(p)Z2p) andD(SU(2p), Sp(p)Z2p) are
described as follows:

Γ (SU(2p), Sp(p)Z2p) =
{√

2π

p∑
i=1

xifi

∣∣∣∣
p∑

i=1

xi = 0,

xi − xi+1 ∈ Z, i = 1, 2, . . . , p − 1

}
,

Z(SU(2p), Sp(p)Z2p) =
{

1√
2π

p∑
i=1

mifi

∣∣∣∣
p∑

i=1

mi = 0, mi ∈ Z, i = 1, 2, . . . , p

}
,

D(SU(2p), Sp(p)Z2p) =
{

1√
2π

p∑
i=1

mifi

∣∣∣∣
p∑

i=1

mi = 0, mi ∈ Z, i = 1, 2, . . . , p,

mi − mi+1 ≥ 0 , i = 1, 2, . . . , p − 1

}
.

Here

δ(SU(2p)) = 1

2π

1

2

2p∑
i=1

(2p − 2i + 1)εi

= 1

2π

1

2

p∑
i=1

((2p − 4i + 3)ε2i−1 + (2p − 4i + 1)ε2i) .
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For eachΛ ∈ D(SU(2p), Sp(p)Z2p), the corresponding eigenvalue−aΛ is

−aΛ = 4π2
(

1√
2π

p∑
i=1

mifi + 1

2π

2p∑
i=1

(2p − 2i + 1)εi,
1√
2π

p∑
i=1

mifi

)

= 2
p∑

i=1

(mi)
2 − 8

p∑
i=1

imi .

All eigenvalues of the Laplacian on functions forSU(2p)/Sp(p)Z2p relative to the met-
ric (−1)B�( , ) are given by the formula

− 1

4p
aΛ = 1

2p

( p∑
i=1

(mi)
2 − 4

p∑
i=1

imi

)
= 1

2p

p∑
i=1

mi(mi − 4i) .

For (m1,m2, . . . ,mp) = (1, 0, . . . , 0,−1),

− 1

4p
aΛ = 1

2p

p∑
i=1

mi(mi − 4i) = 2p − 1

p
.

By using Lemma 3.2, we see that−aΛ/4p = (2p − 1)/p is the first eigenvalue ofSU(2p)/

Sp(p)Z2p. By Weyl’s dimension formula (3.4), we can show that its multiplicity is equal to
p2(2p + 1)(2p − 3).

The caseG/K = E6/F4Z3: Suppose thatg = e6 andk = f4. Let {ε1, ε2, . . . , ε8} be the
standard orthonormal basis ofR8. Let

t =
5∑

i=1

R · εi + R · (ε6 + ε7 − ε8) ⊂ R8 .

The fundamental root system of(g, t) is given as

Π(g) = {α1, α2, . . . , α6} ,

where

α1 = 1

2
(ε1 + ε8) − 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7) ,

α2 = ε1 + ε2 ,

α3 = ε2 − ε1 ,

α4 = ε3 − ε2 ,

α5 = ε4 − ε3 ,

α6 = ε5 − ε4 .

The Satake diagram of EIV is given by
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� � � � �

�

α6 α5 α4 α3 α1

α2

Moreover,

Π0(g) = {α2, α3, α4, α5}
and

b = R · α2 + R · α3 + R · α4 + R · α5

= R · ε1 + R · ε2 + R · ε3 + R · ε4 ,

a = R · ε5 + R · (ε6 + ε7 − ε8) .

The fundamental root system of(g, a) is given as

Π(g, a) = {ᾱ1, ᾱ6} .

Set

γ1 := ᾱ1 = −1

2
(ε5 + ε6 + ε7 − ε8) , γ2 := ᾱ6 = ε5 .

The Dynkin diagram ofΠ(g, a) is of typeA2 and is given by

� �

γ1 γ2

Define

γ ∗
1 := 2

(γ1, γ1)
γ1 = 2γ1 , γ ∗

2 := 2

(γ2, γ2)
γ2 = 2γ2 .

Let {f1, f2} be an orthonormal basis ofa defined by

f1 = ε5 , f2 = − 1√
3
(ε6 + ε7 − ε8) .(3.6)

Then we have

γ1 = −1

2
f1 +

√
3

2
f2 , γ2 = f1 .
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Moreover, we have

Γ (E6, F4) = {π(k1f1 + √
3k2f2) | k1, k2 ∈ 2Z or k1, k2 ∈ 2Z + 1} ,

Z(E6, F4) =
{
x1f1 + x2f2

∣∣∣∣ x1 ∈ 1

2π
Z, x2 ∈ 1

2
√

3π
Z, x1 + √

3x2 ∈ 1

π
Z
}

=
{

1

2π

(
k1f1 + 1√

3
k2f2

) ∣∣∣∣ k1, k2 ∈ Z, k1 + k2 ∈ 2Z
}

,

D(E6, F4) =
{

1

2π

(
k1f1 + 1√

3
k2f2

) ∣∣∣∣ k1, k2 ∈ Z, k1 + k2 ∈ 2Z, k2 ≥ k1 ≥ 0

}
.

Similarly Γ (E6, F4Z3), Z(E6, F4Z3) andD(E6, F4Z3) are described as follows:

Γ (E6, F4Z3) =
{
π

(
k1f1 + k2√

3
f2

) ∣∣∣∣ k1, k2 ∈ 2Z or k1, k2 ∈ 2Z + 1

}

Z(E6, F4Z3) =
{
x1f1 + x2f2

∣∣∣∣ x1 ∈ 1

2π
Z, x2 ∈

√
3

2π
Z, x1 + 1√

3
x2 ∈ 1

π
Z
}

=
{

1

2π

(
k1f1 + 1√

3
k2f2

) ∣∣∣∣ k1 ∈ Z, k2 ∈ 3Z, k1 + k2 ∈ 2Z
}

,

D(E6, F4Z3) =
{

1

2π

(
k1f1 + 1√

3
k2f2

) ∣∣∣∣ k1 ∈ Z, k2 ∈ 3Z, k1 + k2 ∈ 2Z ,

k2 ≥ k1 ≥ 0

}
.

Here

δ = 1

2π
(ε2 + 2ε3 + 3ε4 + 4ε5 + 4(ε8 − ε7 − ε6))

= 1

2π
(ε2 + 2ε3 + 3ε4 + 4f1 + 4

√
3f2) .

Note thatε2 + 2ε3 + 3ε4 ∈ b and 4f1 + 4
√

3f2 ∈ a.
For eachΛ = Λ(k1, k2) ∈ D(E6, F4), the corresponding eigenvalue−aΛ of E6/F4 is

found by the following formula:

−aΛ = k1(k1 + 8) + k2

(
k2

3
+ 8

)
.(3.7)

Here we examine eigenvalues corresponding to small values of pairs(k1, k2).
For (k1, k2) = (1, 1) or (k1, k2) = (0, 2), we have

−aΛ = 52

3
and − aΛ

24
= 13

18
.(3.8)

For (k1, k2) = (2, 2), we have

−aΛ = 112

3
and − aΛ

24
= 14

9
.(3.9)
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For (k1, k2) = (1, 3), we have

−aΛ = 36 and − aΛ

24
= 3

2
.(3.10)

For (k1, k2) = (3, 3), we have

−aΛ = 60 and − aΛ

24
= 5

2
.(3.11)

Otherwise, we obtain

−aΛ

24
>

3

2
.(3.12)

The first eigenvalue ofE6/F4 is equal to 13/18. The second eigenvalue ofE6/F4 and the first
eigenvalue ofE6/F4Z3 are equal to 3/2. By Weyl’s dimension formula (3.4), we can show
that the multiplicity of the first eigenvalue ofE6/F4Z3 is equal to 650. �

LEMMA 3.2. Let (m1, . . . ,mp) be a p-tuple of integers satisfying

p∑
i=1

mi = 0 and mi − mi+1 ≥ 0, i = 1, 2, . . . , p .(3.13)

Suppose that (m1, . . . ,mp) �= 0 and t is a positive real number. Then the following inequality
holds:

p∑
i=1

(mi)
2 − t

p∑
i=1

imi ≥ 2 + t (p − 1)(m1 − mp)/2 .

The equality holds if and only if (m1,m2, . . . ,mp−1,mp) = (1, 0, . . . , 0,−1).

PROOF. PutZ � ki := mi − mi+1 ≥ 0, i = 1, 2, . . . , p − 1. Then we havemp =
− ∑p−1

j=1 jkj/p. By using the identity

p∑
i=1

imi =
p∑

i=1

i(mp + kp−1 + kp−2 + · · · + ki)

= mp
p(p + 1)

2
+

p−1∑
j=1

j (j + 1)

2
kj

= −p + 1

2

p−1∑
j=1

jkj +
p−1∑
j=1

j (j + 1)

2
kj

= −1

2

p−1∑
j=1

j (p − j)kj ,
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we obtain
p∑

i=1

m2
i − t

p∑
i=1

imi =
p∑

i=1

m2
i + t

2

p−1∑
j=1

j (p − j)kj

≥ 2 + t

2

p−1∑
j=1

(p − 1)kj = 2 + t (p − 1)(m1 − mp)/2 .

Here we see that
p∑

i=1

m2
i + t

2

p−1∑
j=1

j (p − j)kj = 2 + t (p − 1)(m1 − mp)/2

if and only if (k1, k2, . . . , kp−2, kp−1) = (1, 0, . . . , 0, 1) (p ≥ 3) or k1 = 2 (p = 2), and
equivalently(m1,m2, . . . ,mp−2,mp−1,mp) = (1, 0, . . . , 0, 0,−1). �

4. Hamiltonian stability of minimal Lagrangian submanifolds in CPn with paral-
lel second fundamental form. First, combining Proposition 2.1 and Lemma 3.1, we obtain
the following lemma.

LEMMA 4.1. Suppose that L is an n-dimensional compact totally real submanifold
embedded in CPn constructed in Section 2 with s = 1. Then the Einstein constant, the first
eigenvalue λ1 of the Laplacian acting on C∞(L) with respect to the induced metric and its
multiplicity d1 are given in the following table:

L L̃ κL λ1 λ̃1 d1

RPn Sn (n − 1)c

4

(n + 1)c

2

nc

4

n(n + 3)

2

SU(p)

Zp

SU(p)
p2c

8

p2c

2

(p2 − 1)c

2
(p2 − 1)2

SU(p)

SO(p)Zp

SU(p)

SO(p)

p2c

16

p(p + 1)c

4

(p + 2)(p − 1)c

8

p2(p − 1)(p + 3)

4

SU(2p)

Sp(p)Z2p

SU(2p)

Sp(p)

p2c

4

p(2p − 1)c

2

(p − 1)(2p + 1)c

4
p2(2p + 1)(2p − 3)

E6

F4Z3

E6

F4

9c

2

27c

2

13c

2
650

Here κL is the Einstein constant of L and p ≥ 2 is an integer.

Comparing tables of Lemma 3.1 and 4.1, we see thatL satisfies the Hamiltonian stability
condition of Theorem 1.2, that is, the first eigenvalueλ1 of the Laplacian ofL is equal to
c(n + 1)/2 in each case. We also note that this condition is not satisfied forL̃.
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In Lemma 4.1, the multipliciesd1 of λ1 were computed by the Weyl’s dimension formula
(3.4). In these cases we have

n(L) = d1 .

In each caseL = G/K, we can observe the fact that

d1 = dim(su(n + 1)) − dimG

= dimK − dimI0(L) .

By (1.2), we obtain

n(L) = nK(L) .

Therefore we obtain the following theorem.

THEOREM 4.1. Let L be an n-dimensional compact totally real minimal submanifold
embedded in CPn with parallel second fundamental form in the following list:
(1) SU(p)/Zp, n = p2 − 1.
(2) SU(p)/SO(p)Zp, n = (p − 1)(p + 2)/2.
(3) SU(2p)/Sp(p)Z2p, n = (p − 1)(2p + 1).
(4) E6/F4Z3, n = 26.

Then L is a Hamiltonian stable minimal Lagrangian submanifold in CPn. Moreover the null
space of L is exactly the span of the normal projections of Killing vector fields on CPn.

In our cases we see that all the eigenfunctions of the Laplacian onL with eigenvalue
c(n + 1)/2 are obtained as the restriction of the first eigenfunctions of the Laplacian onCPn

to L.
The submanifolds from(1) through(4) of Theorem 4.1 and the real projective spaceRPn

exhaust all compact irreducible totally real minimal submanifolds embedded in the complex
projective spaceCPn with parallel second fundamental form. Hence we state the following

THEOREM 4.2. All n-dimensional compact totally real minimal submanifolds embed-
ded in CPn with parallel second fundamental form and positive Ricci curvature are Hamil-
tonian stable as minimal Lagrangian submanifolds.

Based on our results we shall now remark on some related open problems.

PROBLEM 4.1. Is it true that all compactn-dimensional totally real submanifolds em-
bedded inCPn with parallel second fundamental form are Hamiltonian stable as H-minimal
Lagrangian submanifolds?

PROBLEM 4.2. Is it true that compact Hamiltonian stable H-minimal Lagrangian sub-
manifolds inCPn have parallel second fundamental form?

PROBLEM 4.3. Is such a compact Hamiltonian stable H-minimal Lagrangian subman-
ifold L in CPn globally Hamiltonian stable or not, that is, volume minimizing with respect to
every Hamiltonian deformation ofL?
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Few examples of globally Hamiltonian stable (H-)minimal Lagrangian submanifolds
seems to be known in specific Kähler manifolds such as complex projective spaces, com-
pact Hermitian symmetric spaces and so on. It is known that the real projective subspaces
RPn ⊂ CPn areglobally Hamiltonian stable minimal Lagrangian submanifolds inCPn (cf.
[1] and [18]).

5. Hamiltonian stability of symmetric R-spaces canonically embedded in Hermit-
ian symmetric spaces. In this section we discuss Hamiltonian stability of totally geodesic
Lagrangian submanifolds in compact Hermitian symmetric spaces of rank greater than 1.
Let M be a compact Hermitian symmetric space andL be a symmetricR-space canonically
embedded inM. Such pairs represent a nice class of minimal Lagrangian submanifolds em-
bedded in Einstein-Kähler manifolds.

A real form of a compact Hermitian symmetric spaceM is defined as the fixed point
subset by an involutive anti-holomorphic isometry. It is a totally real and totally geodesic
submanifold ofM with dimension equal to the half of dimM, and hence it is a totally geodesic
Lagrangian submanifold ofM. In [25], Takeuchi proved that every compact totally geodesic
Lagrangian submanifold of a compact Hermitian symmetric spaceM is obtained as a real form
by an involutive anti-holomorphic isometry ofM, and it is nothing but a symmetricR-space
canonically embedded in a compact Hermitian symmetric space. Moreover in [25], he showed
that a symmetricR-spaceL canonically embedded in a compact Hermitian symmetric space
is stable if and only ifL is simply connected. The theory of symmetricR-spaces is well-
investigated and we refer [25] for a complete list of symmetricR-spaces. In [25], he also
proved the following.

THEOREM 5.1 ([25]). Let L be a symmetric R-space canonically embedded in a com-
pact irreducible Hermitian symmetric space M = G/K equipped with a metric g induced
from the (−1)-times Killing-Cartan form of g = Lie(G). If g is an Einstein metric, then the
first eigenvalue of the Laplacian of L acting on C∞(L) is equal to 1/2.

Moreover, we already know that a compact irreducible Hermitian symmetric spaceM

with a metricg induced from the(−1)-times Killing-Cartan form is an Einstein manifold with
Einstein constant 1/2. Hence Theorem 5.1 implies that, if an irreducible symmetricR-space
embedded in a compact Hermitian symmetric space as a real form is an Einstein manifold,
then it is a Hamiltonian stable minimal Lagrangian submanifold (see [18]). Analyzing root
space of symmetricR-spaces, Takeuchi classified all irreducible symmetricR-spaces into five
classes: The Hermitian and four other types (cf. [25]). The irreducible symmetricR-spaces
of Hermitian type are just irreducible Hermitian symmetric spaces of compact type, which
are Einstein. The Hermitian symmetric spaces of compact type canonically embedded in a
Hermitian symmetric spaceM as a real form are always stable and hence Hamiltonian stable.
By calculating the first eigenvalues of symmetricR-spaces of other types canonically embed-
ded in a compact irreducible Hermitian symmetric space, we can determine their Hamiltonian
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stability. Here we give a complete list of the Hamiltonian stability for all irreducible symmet-
ric R-spaces of non-Hermitian type canonically embedded in compact irreducible Hermitian
symmetric spaces.

M L Einstein µ1 H-stable stable

Gp,q(C), q ≥ p ≥ 1 Gp,q(R) Yes 1/2 Yes No

G2p,2q(C), q ≥ p ≥ 1 Gp,q(H) Yes 1/2 Yes Yes

Gm,m(C),m ≥ 2 U(m) No 1/2 Yes No

SO(2m)

U(m)
SO(m),m ≥ 5 Yes 1/2 Yes No

SO(4m)

U(2m)
,m ≥ 3

U(2m)

Sp(m)
No

m

4m − 2
No No

Sp(2m)

U(2m)
Sp(m),m ≥ 2 Yes 1/2 Yes Yes

Sp(m)

U(m)
,m ≥ 3

U(m)

O(m)
No 1/2 Yes No

Qp+q−2(C), q − p ≥ 3 Qp,q(R), p ≥ 2 No
p

p + q − 2
No No

Q2p−2(C) Qp,p(R), p ≥ 2 Yes 1/2 Yes No

Q2p+k−2(C), k = 1, 2 Qp,p+k(R), p ≥ 2 No 1/2 Yes No

Qq(C), q < 5 Q2,q(R) No 1/2 Yes No

Qq−1(C), q < 4 Q1,q(R) Yes 1/2 Yes No

E6/T · Spin(10) P2(K) Yes 1/2 Yes Yes

E6/T · Spin(10) G2,2(H)/Z2 Yes 1/2 Yes No

E7/T · E6 SU(8)/Sp(4)Z2 Yes 1/2 Yes No

E7/T · E6 T · E6/F4 No 1/6 No No



MINIMAL LAGRANGIAN SUBMANIFOLDS 609

Here we use the following notation:
Gp,q(F): Grassmann manifold of allp-dimensional subspaces ofFp+q

for F = R, C and a real quaternion algebraH.
P2(K): Cayley projective plane,
Qn(C): complex quadric of dimensionn,
Qp,q(R) = {[x] ∈ RPp+q−1 | x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
p+q = 0}

: real quadric.
Note that the third column indicates whetherL is Einstein or not.
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