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Abstract. A compact minimal Lagrangian submanifold immersed in a Kéhler mani-
fold is calledHamiltonian stable if the second variation of its volume is nonnegative under
all Hamiltonian deformations. We study compact Hamiltonian stable minimal Lagrangian
submanifolds with parallel second fundamental form embedded in complex projective spaces.
Moreover, we completely determine Hamiltonian stability of all real forms in compact irre-
ducible Hermitian symmetric spaces, which were classified previously by M. Takeuchi.

Introduction. Let (M, w) be a 2-dimensional symplectic manifold with a symplectic
form w and L be ann-dimensional smooth manifold. An immersign: L — M is called
aLagrangian immersion if the 2-formgp*w on L pulled back by the immersiop : L — M
vanishes identically. Then is called aLagrangian submanifold immersed in a symplectic
manifold M.

We say that a compact Lagrangian submanifold immersed in a Kéhler mandfad
anH-minimal Lagrangian submanifold if it has extremal volume under all Hamilitonian vari-
ations of the Lagrangian immersion. If a compact Lagrangian submanifétdmersed in
a Kéahler manifoldM is minimal, in the sense that it has extremal volume under all smooth
variations of the immersion, then it is always H-minimal. A compact H-minimal Lagrangian
submanifold in a Kéhler manifold/ is calledHamiltonian stable if the second variation for
the volume is nonnegative for all Hamiltonian deformations of the Lagrangian immersion.
Any compactstable, in the sense that the second variations are nonnegative under all smooth
variations of the immersion, minimal submanifaldimmersed in a Kéhler manifold? is
always H-stable.

In [18], [19], [20], [21], Oh developed the fundamental theory for Hamiltonian stability
of H-minimal Lagrangian submanifolds of Kahler manifolds. It is known that every compact
minimal Lagrangian submanifoll in an Einstein-K&hler manifold/ with nonpositive Ricci
curvature is stable ([5], [18]).
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It is an interesting problem to classify all compact Hamiltonian stable minimal La-

grangian submanifold& in an Einstein-Kahler manifolds with positive Ricci curvature.

In this paper we study this problem in the case whtis either a complex projective space

or a compact Hermitian symmetric space. Compact stable minimal submanifolds in compact
rank one symmetric spaces have already been classified by Lawson-Simons in [9] and the
second named author in [22].

Let CP" = CP"(c) be ann-dimensional complex projege space equipped with the
Fubini-Study metric of constant holomorphic sectional curvatureet S™(c) denote ann-
dimensional standard sphereaufnstant sectional curvatuceor radius ¥./c. The real pro-
jective subspacBP" c CP" is the first example of a compact minimal Lagrangian subman-
ifold embedded irCP". Consider ar(n + 1)-dimensional torug”*+1 = S1((n + 1)c/4) x

- x SX((n+ De/4) c $2+1(c/4) naturally embedded i€”+1. By the Hopf fibration
7 1 §2t1(¢/4) — CP", we have the so-called Clifford tori&" = = (7"*t1) c CP”" of
CP", which is the second example of a compaatimial Lagrangian submanifold embedded
in CP". Oh showed that the real projective subspdte& and the Clifford toriT’” are Hamil-
tonian stable minimal Lagrangian submanifolds embeddé&¥it ([18]). Then the following
is a natural and interesting problem (cf. [4]).

PrRoOBLEM. Determine all compact Hamiltoniestable minimal Lagrangian submani-
foldsinCP".

The purpose of this paper is to study this problem for a class of compact Hamiltonian sta-
ble minimal Lagrangian submanifolds embedde@®’, including real projective subspaces
RP" and the Clifford toriT”. Our main result is

THEOREM. Let L be an n-dimensional compact totally real minimal submanifold em-
bedded in CP" with parallel second fundamental formin the following list:

(1) SUWP)/Zp,n=p*—1.

(2) SU(P)/SO(P)Zp,n=(p—D)(p+2)/2.
(3) SURP)/Sp(p)Z2p,n = (p—D2p+1).
(4) Eg/FsZ3, n = 26.

Then L isa Hamiltonian stable minimal Lagrangian submanifold in CP".

In Section 1, we recall fundamental results on Hamiltonian stability of minimal La-
grangian submanifolds in Kahler manifolds. Section 2 is devoted to reviewing the classi-
fication theory of totally real submanifolds @P" with parallel second fundamental form.
The proof of our main theorem is given in Sections 3 and 4. Finally, we study Hamiltonian
stability of totally geodesic Lagrangian submanifolds in compact Hermitian symmetric spaces
of rank greater than 1 in Section 5.

The authors would like to thank the referee for his careful reading of the manuscript.

1. Hamiltonian stability of minimal Lagrangian submanifolds in K&hler mani-
folds. Let M be a 2-dimensional symplectic manifold with symplectic form and let
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L be ann-dimensional smooth submanifold &f. Lety : L — M be a Lagrangian immer-
sion. SetNL := ¢~ 1TM/¢,TL, the quotient vector bundle ¢f 17 M by the subbundle
@«TL. Foreachv € (91T M),, definea, € T¥L by ay(X) := wyx)(v, X) for X € T, L.
By the nondegeneracy of it induces a linear isomorphisar : NyL — T;L by v — a,
and thus a bundle isomorphisNiL — T*L.

By the definition aLagrangian deformation of ¢ is a smooth family{g; | |t| < €} of
Lagrangian immersions df into M with ¢o = ¢. Such a deformation is characterized by
a property thatey, € 21(L) is closed for each, whereV, = d¢,/d¢ is an infinitesimal
deformation of{y;} at a timer. An infinitesimal deformatioV € C®(¢~1T M) is called
Lagrangian if ay € £21(L) is closed andHamiltonian if ay € £21(L) is exact. A smooth
family {¢;} of Lagrangian immersions df into M is called aHamiltonian deformation of
¢ = gq if its infinitesimal deformatiord ¢, /dr is Hamiltonian for each .

Assume thal is ann-dimensional K&hler manifold with complex structur@nd Kéh-
ler metricg. The Kéhler formw of M, which is defined by (X, Y) := ¢g(JX,Y), defines
a symplectic structure o¥/. If an immersiony : L — M satisfies/, (¢.TxL) C TXLL for
eachx € L, thenL is called atotally real submanifold immersed in a K&hler manifold
([6]). Here forx € L we define an orthogonal decompositifin,) M = ¢, T, L ® T L along
¢ with respect to the metrig. We can identify the bundl& L with the bundleT - L. Then
the complex structuré induces a bundle isomorphismL — ¢, T L preserving metrics and
connections. Since we havg (X) = 9oy (JV, 9 X) for X € T, L, o, corresponds to'v
through the linear isomorphisfif L = T,L = ¢.TxL with respect tog. Then we have a
linear isomorphism

(1.1) w: COTTL) 5V i> ay € 2Y1).

DEFINITION 1.1. A compact Lagrangian submanifaldimmersed in a K&hler mani-
fold M is calledHamiltonian minimal or H-minimal if the first variation for the volume of.
vanishes under all Hamiltonian deformationsoin A .

Let H denote the mean curvature vector field of a Lagrangian immegsiah — M. If
M is an Einstein-Kéhler manifold, then it satisfiégy = 0, that is,«y is a closed 1-form on
L ([7]). In[20] it was shown that a Lagrangian submaniféldimmersed in a Kéhler manifold
M is H-minimal if and only iféay = 0, where$ is the codifferential operator af with
respect to the induced metric d@n If a Lagrangian immersion : L — M has parallel mean
curvature vector fieldd with respect to the normal connection, then it is H-minimal. Note
that if L is a compact H-minimal Lagrangian submanifold in an Einstein-Kéhler manifold
with HY(L, R) = {0} or more strongly with positive Ricci curvature, then the mean curvature
vector fieldH of L vanishes, that i, is minimal.

DEFINITION 1.2. A compact H-minimal Lagrangian submanifald immersed in a
Kahler manifold is calledHamiltonian stable if the second variation for the volume &1 is
nonnegative under all Hamiltonian deformations\of
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Suppose thak is a compact minimal Lagrangian submanifold immersed in an Einstein-
Kéahler manifoldM with Einstein constant. Under the correspondence betweeil (N L)
and2L(L) = d(2%L)) & Ker(d*|21(L)), the Jacobi operatqf of L as a minimal sub-
manifold corresponds to the linear operaoe= Al — «1d, whereA® = d5 + 8d denotes the
Laplacian ofL acting on 1-forms and Id denotes the identity operator. The second variation
of the volume for a compact minimal Lagrangian submanifold under Hamiltonian deforma-
tions is described by the restriction Ofto d(2°(L)). The null space off on Hamiltonian
deformations corresponds to the null spacé’afn d(22°(L)), and itis linearly isomorphic to
the eigenspace of the Laplacian 6f° (L) with eigenvaluec. We denote by:(L) the nullity
of L, that is, the dimension of the null space.

Let IC denote the space of Killing vector fields on a compact Einstein-Kéhler manifold
M with positive Einstein constamt. Assume thafC £ {0}, or equivalently by a theorem
of Lichnerowicz [10] and Matsushima [12], éHirst eigenvalue of the Laplacian acting on
C°° (M) is equal to 2. We denote by Y(M) the corresponding eigenspace. By a theorem of
Matsushima [12], we know that

K = {Jgradf € C®(TM) | f € Vi(M)}.
For eachW e K, we have an orthogonal decompositish= W’ + W+, wherew”

andW+ denote the tangential and the normal components of the restrictishtofZ in M.
Set

K+t ={W!teC®NL)|WeK}.
Then we have a linear isomorphism
Ktr=K/{wekK|wWt=0}.

If W = —Jgradf e K for the first eigenfunctiory of the Laplacian acting o> (M),
then it is easy to check that the formula

d(flL) = ays

holds onL, which means that eadit- € Kt is an infinitesimal Hamiltonian deformation.
Hence, for a suitable constant f|; + « is an eigenfunction of the Laplacian acting on
C>(L) with eigenvaluec. Setny (L) = dimXL. Since eactW e K with W+ = 0 induces

a Killing vector field onL, we obtain inequalities

n(L) > nx(L) > dim/X —dim Io(L),
wherelp(L) denotes the identity component of the isometry group. ofin the case when

M = CP", since dimK = dimSU( +1) = (n + 1)2 — 1 and dimlo(L) < n(n +1)/2,
compact minimal Lagrangian submanifoldsn CP”" satisfy

(1.2 n(L) > nx(L) > dimK —dimIg(L) > n(n + 3)/2.

The Hamiltonian stability problem of compact minimal Lagrangian submanifolds in an
Einstein-Kahler manifold is reduced to the first positive eigenvalue problem of the Laplacian
acting on functions.
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THEOREM 1.1 ([18]). Let M be an Einstein-Kahler manifold with Einstein constant
k. A compact minimal Lagrangian submanifold L in M is Hamiltonian stable if and only if
A1 >k, where A1 > Oisthefirst eigenvalue of the Laplacian acting on C*°(L).

Itis an important property of compact minimal Lagrangian submanifol@Hh(c) that
if f is the first eigenfunction of the Laplacian @P"(c), then the restrictiory’|, of f to
L is the eigenfunction of the Laplacian dnwith eigenvaluec(n + 1)/2. This was used
by Urbano [28] and a similar result was studied by Ono [23] for a class of generalized flag
manifolds including Hermitian symmetric spaces.

THEOREM 1.2 ([28], [23]). Assume that M is a compact Hermitian symmetric space
with standard Einstein-K&hler metric and Einstein constant «. Then a compact minimal La-
grangian submanifold L in M is Hamiltonian stable if and only if A1 = «. Here A1 isthe
first eigenvalue of the Laplacian acting on C°°(L). In particular, when M isa complex pro-
jective space CP" (c¢) with constant holomorphic sectional curvature ¢, a compact minimal
Lagrangian submanifold L in CP"(¢) is Hamiltonian stable if and only if A1 = ¢(n + 1)/2.

There is some topological restriction for compact minimal Lagrangian submanifolds in
CP" to be Hamiltonian stable.

THEOREM 1.3. Let L be a compact minimal Lagrangian submanifold immersed in
CP". If L is Hamiltonian stable, then H1(L; Z) # {0}. In particular, L cannot be simply
connected.

PROOF. By ¢ : L — CP" we denote the Lagrangian immersion andmby $2'*+1(c/
4) — CP"(c) = CP" the Hopf fibration. On thesl-bundlep—15%*t1 — L pulled-back
by ¢ from the Hopf fibration, the induced connection is flat, by virtue of the Lagrangian
property ofp. Letp : m1(L) — S* be the holonomy homomorphism of the flat connec-
tion. Sincemr1(L)/Kerp = Imp c St is abelian, the natural homomorphisth (L; Z) =
w1(L)/[m1(L), m1(L)] — m1(L)/Kerp is surjective. Assume thatly(L; Z) = {0}. Then
p is trivial. Hence there is a minimal isometric immersign: L — S$2*+1(c/4) which
is horizontal with respect tar : $2't1(c/4) — CP”" such thaty = ¢ o n. By Taka-
hashi’s theorem [24], component functionsjof L — $§2'*1(c/4) are eigenfunctions of the
Laplaician ofL with eigenvalue-n/4. Hence the first eigenvalug of the Laplacian satisfies
A < cen/d < c(n+1)/2. Thus the minimal Lagrangian immersign: L — CP”" is not
Hamiltonian stable. O

REMARK 1. This result does not hold in the case of compact Hermitian symmetric
space of rank greater than 1 (see Section 4).

2. Minimal Lagrangian submanifolds in CP" with parallel second fundamental
form. Totally real submanifolds in a complex peajtive space have been much investigated
after the publication of the paper [6] (cf. [5] and [17]). Also totally real submanifolds in com-
plex space forms (that,i@ complex Euclidean spa¢&’, a complex projective spadepP”
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and a complex hyperbolic spa@H") with parallel second fundamental form were elabo-
rately classified by Naitoh and Naitoh-Takeuchi in [14], [15], [13], [16]. Since the parallelism
of the second fundamental form implies the parallelism of the mean curvature vector field,
such submanifolds provide a nice class of H-minimal Lagrangian submanifolds in complex
projective spaces.

By virtue of their theory, all totally real submanifolds@P” with parallel second funda-
mental form are constructed in the following way. I(Et, G) be a Hermitian symmetric pair
of compact type with the canonical decompositioa g+ p. SetdimU/G) = 2(n+1). Let
(, )u denote the AdU)-invariant inner product ofi defined by(—1)-times Killing-Cartan
form of u. Relative to the complex structure the subspa@an be identified with a com-
plex Euclidean spadg”*1. We take the decomposition 6/, G) into irreducible Hermitian
symmetric pairs of compact type

(2.1) U,G)=U1,G) @ @ (Us, Gy) .

SetdimU;/G;) =2(n; + 1) fori =1,...,s. Letu; = g; + p; be the canonical decompo-
sition of (U;, G;) for eachi = 1,2,...,s. Assume that there is an elemente p; satisfy-
ing the condition(ady;)® + 4(ady;) = 0. Choose positive numberg > 0,...,¢; > 0
with Y3, 1/c; = 1/c. Pute; = 1//2ci(n; + 1) for eachi = 1,...,s. Setl; =
Ad(G))(ain;) C $%i*tL(¢c;/4) C p;. It should be remarked thafti is an irreducible sym-
metric R-space standardly embedded in a complex Euclidean gpace

Letn = awn1 + - + asns € p. Let L = Ad(G)(n) C $¥"*1(c/4) C p, which is a
symmetricR-space standardly embedded in a complex Euclidean gpaideen we have the
inclusions

(2.2) L=>L1x-xLsC 8%t (c1/8) x - x §¥5F ey /) € §2(c/4).

THEOREM 2.1 ([16]). Let 7 : $?**1(¢c/4) — CP"(c) be the Hopf fibration and put
L = n(L). Then

(1) L isacompact totally real submanifold embedded in CP" (¢) with parallel second
fundamental form, and thus L is a symmetric space.

(2) L isaminimal submanifoldin CP"(¢) ifandonlyif ¢;(n; +1) = c(n+ 1) for each
i=1,...,5s.

(3) Thedimension of the Euclidean factor of L isequal tos — 1.

(4) Lisflatifandonlyifs =n + 1.

(5) L hasno Euclidean factor if and only if s = 1. Inthis case L is an irreducible
symmetric space and a minimal submanifold in CP".

(6) Conversely every totally real submanifold immersed in CP” with parallel second
fundamental form covers an open submanfold of L constructed in this way.

Note thatL is always a compact H-minimal Lagrangian submanifold embeddeééitic).
Note thatZ is also a compact H-minimal Lagrangian submanifol€iht!. Their Hamilton-
ian stability will be discussed in a forthcoming paper [2].
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In the case whed is flat, L is the Clifford torus ofCP". In the case whei has no
Euclidean factor[ is locally isometric to one of the following symmetric spac&%(c/4),
SU(p), SU(p)/SO(p), SU2p)/Sp(p), Es/ Fa. Their explicit descriptions are given in Sec-
tion 5 of [13]. From now on we only discuss this case.

Suppose thatU, G) is irreducible(s = 1). In order to determine the Hamiltonian
stability of the Lagrangian submanifold embedded irCP", we have to calculate the first
eigenvaluer, of the Laplacian orC*° (L) with respect to the induced metric dnfrom the
Fubini-Study metric oCP”".

Let L denote the universal covering spacdofLet 11 denote the first eigenvalue of the
Laplacian acting oiC®(L). The complete list of all irreducible Hermitian symmetric spaces
U/ G of compact type and correspondiﬂgz is given as follows

Class U/G n+1 L L
SU@2p) )
Alll | — 2222 SU(p)Z, | SU
supxupy | T (P)Zp )
SO(4p) SU@2p) | SU(2p)
DIl 2P 2p —1
U(2p) PP =D S Zay | Sp(p)
BD| M )4 RP” S”
SO(p) x SO(2)
cl Sp(p) p(p+1 SU(p) SU(p)
U(p) 2 SO(p)Zy, | SO(p)
EVII k7 27 Ee Es
Ee-T FuZ3 Fy

Here note that the compact symmetric spade a bottom space.
We take the decomposition

(2.3) g=c(g)Dg

into the center and the semisimple pargof

Let us denote by (, ) the Killing-Cartan form of a Lie algebrig. Define the invariant
inner products om andg’ by

(2.4) (, hui=—Bu(,)
and

(2.5) (. )g ==—Bg(,),
respectively. Fon € p with (n, n)y = 4/c, put

(2.6) t={Xeg |[X,n=0}.
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Then we have an orthogonal decomposition

(2.7) g =t+m.

Define an inner product om by

(2.8) (X,Y) = (X, nl, [Y, n]u

for X, Y € m, which corresponds to the induced metriclofrom the Fubini-Study metric of
cp".
Now we assume that there exists a constant 0 such that

(2.9) (X,Y)=C(X,Y)y

for X, Y € m. Then the constar > O can be given explicitly as follows.

LEMMA 2.1.

2/ 1 2
(2.10) == <n - dimg,a(p)) :

where a(p) denotes the eigenvalue of the Casimir operator on the representation space p of g’
with respect to (, ).

This lemma follows immediately from Propositions 2.1 and 2.2.
Assume that there is a constant 0 such that
(2.112) (X, Y)u =KX, Y)g’
forX,Y eg.
Setmm = dimm. Then we obtain the following formula far in terms ofl.
PROPOSITION 2.1. Let (, ) betheinner product of m defined in (2.8). Assume that

(X,Y)=C(X,Y)g

for X, Y € m. Then we have

l 2n
“m cn+1)°
PROOF. Let{e;} be an orthonormal basis of with respect tq , ). By using (2.9) and
(2.11), we have

(2.12)

m

m C m
D eirei) =C ;(ei, ¢ilg =7 D eiseiu
=

(2.13) i=1 i=1

C . C
=—dimm=—m.
l l
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On the other hand, we obtain

m

D eivei) =Y (lei, nl, [ei, nlu
i=1

i=1 i

=— ) (@dp?e;, i)y = —try (ady)?

i=1

(2.14) =- (tfg(adn)z —treg (ady)z)

S %tru(adn)z + tre, (adh)?

_1 1
—E(TI» Mu — m

14 1 4 2n

ZEE_Z(n—I—l)E_c(n—i—l)'

(n, Mu

d

Next we are going to prove a formula determining the positive constafére we can
show a similar formula in a slightly general setting. Ietg) be an irreducible symmetric
Lie algebra of compact type with canonical decompositiog g + p . Assume thayy =
go® g7 @ --- ® g; is adecomposition into the center and simple ideals, wigee c(g).

PrOPOSITION 2.2. If thereisa constant /1 > 0 such that
(2.15) (X, Y)u = l1(X, Y>g/l
for X, Y e g}, where
Then the constant /; > Oisgiven by
1 , )
(2.16) hh= k_l (k1 — (dimp)a (P)) ,

where k1 = dim g} and a’(p) denotes the eigenvalue of the Casimir operator on the represen-
tation space p of g7 with respectto (, ).

91
PROOF. Let{X1,..., X} be an orthonormal basis @f with respect tq{ , g, - Then
we have
ks ks
(2.17) Y X Xjhu=11) (X), X))g, =lak1.

j=1 j=1
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On the other hand, we obtain

ky ky
DX, X ==Y try(adx ;)
j=1 j=1
ka ka
=— ) trg(adx;)* — ) " try(adx;)?
j=1 j=1
(2.18) k1 , ,
=— ) trg (adx;)® — > "try(adx;)
j=1 j=1
k1
=) (X}, Xj)g — trp(C)
j=1
=k — (dimp)a’(p),
whereC = Cgyi. o) denotes the Casimir operatorgf with respect tq(, g, - a

3. Calculation of the first eigenvalues of minimal Lagrangian submanifolds irCP”
with parallel second fundamental form. To calculate the eigenvads of the Laplacian act-
ing on functions we review relevant results from the theory of spherical functions on com-
pact symmetric spaces ([26]). L&t/ K be a compact symmetric space with symmetric pair
(G, K, o), whereG is a compact connected Lie group. Iget £+ m be its canonical decom-
position andax be a maximal abelian subspacenaf We fix an AdG-invariant inner product
(, ) of g. Lett be a maximal abelian subalgebragofontaininga. Then we have = b + q,
whereb = t N £. We fix ao-linear order< ont. The maximal torug” of G is generated by.
For eachx € t, we put

(3.1) de = {X € g° | (adH)X = 27 v/—1(a, H)X foreachH € t} .

An elementx € tis called aroot of g with respect ta if g, is nonzero. We denote by (G)
and X (G) the set of all roots and all positive roots gfvith respect ta, respectively, and
put Xo(G) = ¥ (G) N b. Then we have the root decomposition

gC = tC + Z ga .
aeX(G)

We always denote b (g) the fundamental system of roots and Bel(g) = I1(g) N Xo(G).
Set

I'(G):={H e t|expH = e},
3.2 Z(G):={Aet|(A,H) e ZforeachH € I'(G)},

D(G):={A € Z(G) | (A, ) > Oforeachx € T (G)}.
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Let D(G) be the complete set of inequivalent irreducible unitary representatiofis dhen
it is known that for eacliV, p) € D(G) the highest weightt,, of (V, p) belongs toD(G),
and the mappin®(G) — D(G) is bijective.

Let A be the torus o5 generated byt andA = Ao be a maximal torus off/ K , where
o denotes the origiaK of G/K. For eachy € a, we put

g, = (X € ¢°| (adH)X = 2nv/~1(a, H)X for eachH € a}.

An elementy € a is called aroot of g with respect toa if g, is nonzero. We denote by
¥ (G, K) and X T (G, K) the set of all roots and all positive roots gfwith respect toa,
respectively. Then we have the decomposition

¢ =g0+ Z Gy -
y€X(G,K)

Put

I'(G,K):={H €a| (expH)o = o},

Z(G,K)={Ae€a|(A,H)e ZforeachH € I'(G, K)},

D(G,K):={AeZ(G,K)|(A,y) > 0foreachy € Z7(G, K)}.
Then we haveZ (G, K) € Z(G) andD(G, K) C D(G). LetD(G, K) be the complete set
of inequivalent class-one unitary representations of pairk). Then for each'V,, p) €
D(G, K) the subspacéV,)x = {v € V, | p(k)v = v for eachk € K} is of complex dimen-
sion 1, and the bijectio®(G) — D(G) induces the bijectio® (G, K) — D(G, K).

Letl1(G, K) = {y1, ..., y1} be the fundamental root system fb(G, K). We define
vi if 2yi ¢ ¥(G,K)
2)/,' if 2)/,' € E(G, K),
and seis) = 28;/(Bi, Bi)- Itis known (cf. [11]) that ifG /K is simply connected, then
!

1
rG,K)= ZZ<§/3,-*>,

i=1

Bi =

and if G/ K is a bottom space, then

F(G,K):{Hea

1 1
<HaEYi)EEZ, i=1,2,...,p—1}_

Let g be aG-invariant Riemannian metric o6/K induced by(, ). If G/K is ir-
reducible andy is a G-invariant Riemannian metric induced from the1)-times Killing-
Cartan form, thenG /K, ¢) is an Einstein manifold with Einstein constan®l(cf. [27]). Let
A be the Laplacian ofG/K, g) acting on functions, and let = A, be the highest weight
of the representatiop € D(G, K). Then by the Freudenthal formula the complete set of
eigenvalues oA\ is given by

(3.3) {—ax = 472(A, +25(G), Ay) | p € D(G, K)}.
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Here we set
1
5((;):E Z o.
aeXt(G)

The multiplicity of thek-th eigenvalugy; of A is given byZp d,, where the summation runs
over allp € D(G, K) such thalu, = —a,. By Weyl's dimension formula@,, is given by

: (a, Ap +6(G))
(3.4) dp =dim(V,, p) = l_[ —_—
weSHG) (o, 3(G))
Let {Aj,..., Ay} be the fundamental weight system of the semisimple gadf g,

wherel’ = rankg’. Then the highest weight(p) of the isotropy representation of irreducible
Hermitian symmetric paitU, G) restricted tog’ and the corresponding eigenvalué) of
their Casimir operator with respect to thel)-times Killing-Cartan form ofy’ is given in the
following list (cf. [8, Chapter 8]). Moreover, the constanin (2.9) is also given in each case.

Clasg g A(p) n+1 dimg —a(p) C
21 4
Alll [su(p) @ su(p)|A1® Ap_1|  p? 2(p? — 1) PT 2
2p2—p—1 2
DIII su(2p) A 22— p| 4p2-1 |22 2” <
P pec
p—1 1
BI 2p—1 A 2p—1 |2p2-3p+1
so@r =1 ! P P Pt 2p—3 (n—Dc
2p—1 1
DI 2 A 2 2p—1
2oep) ' GO I e v s M R 1
1 2 -2 8
Cl su(p) 24, @ PO R A iy
p pec
13 1
EVil e6 Ay 27 78 I8 o

Here we give a computation ¢f only in the case of EVII. In this casé/, G) = (E7, T -
Eg) and(G, K) = (T - Eg, F4). From (2.12) and (2.16) we have

3.5) c=2( - ) =2 (S a) = o
' 1 T dmg®™) T c\27 T 7818) T o

LEMMA 3.1. Assumethat G/K isoneof compact irreducible symmetric spacesRP" =
SO(n+1)/S(0n) x O()), SU(p)/Zp, SU(p)/SO(p)Z,, SU2p)/Sp(p)Zz2p, and
Es/ F4Z3. Then thefirst eigenvalue w1 of the Laplacian for functionson G/ K with respect to
the metric defined by the (—1)-times Killing-Cartan form of g is given in the following list:
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G/K G/K | n=dimG/K n1 i1
" " n+1 n
RP 5 " 21— 1) An—1)
2 _
SU(p) SU(p) 21 5 2(p - 1)
Zy p
SU(p) SU(p) | p—=D(p+2) | 20p+D | (p—D(p+2
SO(p)Z, | SO(p) 2 P p?
SU@2p) | SU(2p) 2p—-1 | (p—-DH(2p+1
—1H2p+1
Sp(p)Z2p | Sp(p) (P =D@Ep+1 p 2p?
R Ee 26 3 13
FaZ3 Fy 2 18

595

Here 677{ is the universal covering space of G/K, fi1 denotes the first eigenvalue of the
Laplacian acting on functionsfor G/K and p > 2 isan integer.

PROOF We use the table of root systems for complex simple Lie algebras in [3].

The caseG/K = (SU(p)/Z, x SU(p)/Z,)/(SU(p)/Z,) = SU(p)/Z,: Suppose
thatt = su(p) is a compact simple Lie algebra of typg,_1. Lett be a maximal abelian
subalgebra of. If {1, ..., ¢,} denotes the standard orthonormal basi®dfthent can be
identified with the subspace 8% as follows

p
t= { Zx,'{;‘,'
i=1

Fomo]

The fundamental root system df t) is

H(E)Z{ai=8,‘—8i+1|i=1,2,...,p—l}.

Sety =2y;/(vi,vi)=vi,i=12,...,p—1
The setd" (SU (p)), Z(SU (p)) andD(SU (p)) are given explicitly as follows

p
le.zo’ xi €Z, i=1,2,...,p},
i=1

P
Zmi =0,

i=1

p
rSu(p)) = {271 > xigi

i=1

1 P
Z(SU(p)) = {Z ;miei

m; —mj41 € Z, i=1,2,...,p—1},
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p

Zmi =0,

i=1

1 p
D(SU(p)) = {Z;’""‘?"

O0<mj —mjy1 €2, i=1,2,...,p—1}.

Furthermore " (SU(p)/Z,), Z(SU(p)/Z,) andD(SU (p)/Z,) are given explicitly as
follows:

14
inZO, x,-—x,-+1€Z, i=1,2,...,p—1},
i=1

14
r(SU(p)/Z,) = {271 > xie

i=1

1 14 p
Z(SU(p)/Zp)z{ZZmisi mi =0, mje€Z, i=1,2,...,p},
i=1 1

1

p
o= Zmizo,miez,izl,Z,...,p,

i=1

D(SU(p)/Zp) = { mi&;

14
i=1

m; —mjq41 > 0, i=1,2,...,p—1}.

Heres(G) is given by
11
= —= E —2i + 1yg; .
8(G) 57 2 i_l(p i +1e

By the Freudenthal formula we determine all eigenvalues of the Casimir opetrator of
SU(p)/Z,. ForeachA € D(SU(p)/Z,), the corresponding eigenvalue: 4 is given by

(1 12 12
—ap =4n <Z X;mi&' +o, 2;(17 —2i + D¢y, o X;m,-gi)
1= 1= 1=

p p
= Zmlz — ZZimi .
i=1 i=1

For(my,mo,... ,mp) = (1,0,...,0,—-1), we have—a, = 2—2(1 - p) = 2p.

By using Lemma 3.2, we see thatiy = 2p is the first eigenvalue oSU (p)/Z,. By
using Weyl's dimension formula (3.4), we can show that its multiplicity is equalig? —
1). Hence the first eigenvalue otU (p)/Z, relative to the metriq—1)Be(, ) is equal to
2p/2p = 1. Thus the first eigenvalue 65U (p)/Z, x SU(p)/Z,,)/(SU(p)/Z},) relative to
the metric(—=1) By (, ) is equal to 1x 2 = 2.

The caseG/K = SU(p)/SO(p)Z,: Suppose thay = su(p) andt = so(p). Let
{e1,€2, ..., &p} be the standard orthonormal basidRsf.

Recall the Satake diagram of Al
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O O O ...... O O
o1 o2 o3

The fundamental root system @f, t) can be found as follows
) ={ai=¢—¢g4+11i=12,...,p—1}.
In this casdTp(g) = ¥, b = {0} and
g,o)={vi=ai=0a;|i=12,...,p -1} =1(g) .
Then the subspaceis given by

p—1

a=>Y R-(s —ei1).
i=1
The Dynkin diagram of7(g, a) is of typeA,_1 and given by

O OoO— e O O
Y1 Y2 Yp-2 Yp—-1

Setgi ==y, i=12,...,p—L,andg ==y =2y/(vi.vi)) =vi,i=12,... ,p— 1L
The setsI"(SU (p), SO(p)), Z(SU(p), SO(p)) and D(SU (p), SO(p)) are described
as follows

P
XiEj inZO, xiGZ, i=1,2,...,p},

i=1
p
Z m; =0,
i=1

m; —mjy1 € Z, i=1,2,...,p—1},

M~ L=

I'(SU(p), SO(p)) = {ﬂ

1

m;é&;

1
Z(SU(p),SO(p)) = {;

Il
N

p

Zmi =O,

i=1

1 p
D(SU(p), SO(p)) = {; > misi
i=1

O0<m; —mjy1 €2, i=1,2,...,p—1}.
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Similarly, I"'(SU(p), SO(p)Zp), Z(SU(p), SO(p)Z,) and D(SU(p), SO(p)Z,) are de-

scribed as follows

p
F(SUp).SO(P)Zp) = {7 ) _ xiei
i=1

p
Zx,-:O, x,~-x,-+1ez,i=1,2,...,p—1},
i=1

1 p
Z(SU(p), SO(P)Zp) = | — D _miei
i=1

p
> mi=0, mieZ,izl,Z,...,p},
i=1

1 p
D(SU(p), SO(PZp) = 1= 3 miey
i=1

P
Zmi:o’ mieZ, i=1,2,...,p,
i=1

m; —mjy1 > 0, i:l,z,...,p—l}.

For eachA € D(SU(p), SO(p)Z)), the corresponding eigenvaluer 4 is
(1L 1< 1

—as =4 <; ;miei + Z Zl(p —2i + 1)g;, ; Zlmié;‘i)
1= 1= 1=

p p
=43 (m)?—4) im;.
i=1 i=1

For(my,m2,... ,mp) = (1,0,...,0,-1), we have—a, = 4(p + 1). This is the first
eigenvalue o8U (p)/SO(p)Z, by Lemma 3.2. The first eigenvalue $/ (p) /SO (p)Z, rel-
ative to the metri¢—1) By(, ) is equal to 2p+1)/p. Thefirst eigenvalue &&U (p)/SO(p)Z,
relative to the metri¢—2) By(, )/p? is equal top(p + 1) /4. By using Weyl's dimension for-
mula (3.4), we can show that its multiplicity is equalg®(p — 1)(p + 3)/4.

The caseG/K = SU(2p)/Sp(p)Z2p: Suppose thay = su(2p) andt = sp(p). Let
{e1, €2, ..., €2p} be the standard orthonormal basisR3P. The subspacecan be identified
with

2p
t= { Zéi&'
i=1

Recall the Satake diagram of All

2p
> = o}.
i=1
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o1 o2 o3 o2p—2 a2p—1

The fundamental root system @f, £) is given by

g ={ai=¢—¢e111i=12,...,2p—1}.

In this case
Mo(g) ={azi11i=1,2,...,p},
P P
b=) R-az1=) R-(e2i-1—¢2)
i=1 i=1
and

(g a)={yi=ax|i=12...,p—1}.

The Dynkin diagram of1(g, a) is of typeA ,_1:

O O ...... O O
Y1 Y2 Yp

Define p vectorsf; of R?” by
1
fi= 72(821'714‘821')1 i=12...,p—1p.

Then, fori =1,2,..., p — 1 we have

1
oy = €2 — €2i41, Vi = 72(]3‘ — fi+1).

The subspace can be identified with

p—1
a=) R-(fi = fis).
i=1
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Setgi =y, andp} = v = 2y;/vi.vi) = 2y, i = 1,2,...,p — 1. Then
r'(SU2p), Sp(p)), Z(SU(2p), Sp(p)) andD(SU (2p), Sp(p)) are described as follows

p
Y xi=0x€eZ i:l,2,...,p},
i=1

p
ZmiZO,

i=1

m; —mjy1 € Z, i=1,2,...,p—1},
p

Zmi=0,

i=1

O0<mj —mjy1 €2, i=1,2,...,p—1}.

p
I (SU@2p). Sp(p)) = {fzn > il

i=1

1 p
Z(SU(2p). Sp(p)) = {E > mifi
i=1

1 p
D(SU(2p), Sp(p)) = {E > mifi
i=1

Moreover, I'(SU (2p), Sp(p)Z2p), Z(SU(2p), Sp(p)Z2p) and D(SU (2p), Sp(p)Z2p) are
described as follows

p
I (SU@2p). Sp(p)Zzp) = {fh > il
i=1

p
D xi=0.
i=1

Xi — Xj+1 € Z, i=1,2,...,p—1},

1 2 p
Z(SU@2p), Sp(p)Zzp) = {E Somifi| Yomi=0meZ i=12... ,p},
i=1 i=1

p
Zm,':O, mieZ i=12...,p,

P
D(SU2p), Sp(p)Zap) = {— > mif;
i i=1

m; —mijt1 >0, i:l,z,...,p—l}.

Here
112 ,
S(SU(2p)) = —= 2p — 2i 4+ L)g;
27 2 =

11
=55 > (@p —4i +3)ez1+ (2p — 4i + Deai) .
i=1
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For eachA € D(SU(2p), Sp(p)Z2;), the corresponding eigenvaluer 4 is
2p

1 < 1 1 <
—a =4n2(— mifi+=—Y 2p—2i+Deg, — Y m; )
A \/EJT; i fi 2]_[; 4 i \/ETL’; i fi
p P
ZZZ(mi)2—8Zimi.
i=1 i=1

All eigenvalues of the Laplacian on functions W/ (2p)/Sp(p)Z2, relative to the met-
ric (—1)Bgy(, ) are given by the formula

1 1(& o, L 1y
4p 2p<; l ; l 21’; o
For(my,mo,... ,mp) = (1,0,...,0,=1),
1 1 <& 2p —1
——ap = — m(m—4l)= .
4p 217; o p

By using Lemma 3.2, we see thati4/4p = (2p — 1)/ p is the first eigenvalue oSU (2p)/
Sp(p)Z2,. By Weyl's dimension formula (3.4), we can show that its multiplicity is equal to
p?2p +1)(2p —3).
The case5/K = Eg/F4Z3: Suppose thaf = eg andt = f4. Let{e1, &2, ... , €8} be the
standard orthonormal basis&f. Let
5

t=ZR-e,~+R-(86+e7—ss) Cc RS,
i=1
The fundamental root system @f, t) is given as
I1(g) = {a1, @2, ... , a6},
where
1 1
a1 = 5(814'88)— 5(82+83+84+85+86+87),
a2 =¢e1+ €2,
a3 = €2 — €1,
a4 = €3 — €2,
o5 = €4 — €3,
g = €5 — &4.

The Satake diagram of EIV is given by
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o2

07 as oq a3 o1

Moreover,
Iy(g) = {az, a3, ay, as}

and
b=R-a2+R-a3+R-as+R-as5
=R-¢1+R-e¢2+R-e3+R-¢4,
a=R-e5+R-(eg+¢e7—¢3g).

The fundamental root system @f, a) is given as
II(g, a) = {a1, a6} .
Set

1 _
1=—§(85+86+87—88), Y2 =g = £5.

Qi

yLi=

The Dynkin diagram of1 (g, a) is of type A2 and is given by

O——O

V1 V2
Define

= 1=2y1, = ———y2=2)2.
R M AR R TP L
Let{f1, f2} be an orthonormal basis efdefined by
1

(3.6) fr=es, fZZ_ﬁ(86+87—88)o

Then we have

1 V3
)’1=—§f1+ 7f2, v2=f1.
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Moreover, we have

['(Es, Fa) = {m(kif1 + ~/3kaf2) | k1, ko € 2Z or k1, kp € 2Z + 1},

Z(Ee, Fa) =1x1f1+x2f2 | x1 € %Z,xze 2\/_%2, x1+«/§xz€ %Z}
= i(k]_f]_ + iszz) ‘ ki,ko € Z,k1+ ko € ZZ} ,
2 V3
D(Eg, Fy) = i(klfl + iszz) ‘ ki, ko€ Z, k1 +kp € 2Z,kp > k1 > 0} .
2 V3

Similarly I'(Ee, F4Z3), Z(Eg, F4Z3) andD(Eg, F4Z3) are described as follows

k
I'(Eg, FaZ3) = n(klf]_ + T%fz) ‘ k1,kp € 2Z0rk1,kp € 2Z + 1}

Z(Ee, F4Z3) ={x1f1+x2f2

1 V3 1 1

—7Z, —Z, — —Z
xlezn szZn x1+ﬁx2€n }
1

1
= k —k k Z, k 3,k k 2Z %,
2n<1f1+\/§2f2)‘ 1€ 2 € 1+ ko€ }

1 1
D(Ee, F4Z3) = Z<klfl + ﬁszz) ‘ ki€ Z ko €3Z, ki+kz€2Z,

kzzklzo}.

Here

1
§= Z(ez + 263+ 34 + 465+ 4(eg — €7 — €6))

1
= o (ea+ 263+ 3ea+4fi + 4V3f).

Note thatey + 2e3 + 3e4 € b and 41 + 4v/3f> € a.

For eachA = A(k1, k2) € D(Ee, Fa), the corresponding eigenvalue: 4 of Eg/Fy is
found by the following formula

k
(3.7) —ap = ki(k1 + 8) +k2<§2 +8>.

Here we examine eigenvalues corresponding to small values of pairs?).
For (k1, k2) = (1, 1) or (k1, k2) = (0, 2), we have

52 apn 13
3.8 —as = — d -2 -
(3:8) =5 24 = 18
For (k1, ko) = (2, 2), we have

112
(3.9) —ap=—3- and - ="o.
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For (k1, k2) = (1, 3), we have

ap 3
3.10 —a, =36 and — — =-—.
(3.10) a4 24~ 2
For (k1, k2) = (3, 3), we have

ap 5
3.11 —ap=60 and — — =-.
(3.11) aa 24~ 2
Otherwise, we obtain

ap 3

3.12 - > —.
(3.12) 24~ 2

The first eigenvalue ofs/ F4 is equal to 1318. The second eigenvalue B§/ F4 and the first
eigenvalue offs/ F4Z3 are equal to . By Weyl's dimension formula (3.4), we can show
that the multiplicity of the first eigenvalue &fg/ F4Z3 is equal to 650. O

LEMMA 3.2. Let (my,...,m,) bea p-tuple of integers satisfying

p
(3.13) > mi=0andm; —miy1>0,i=12....p.
i=1
Supposethat (m1, ..., m,) # 0andr isa positive real number. Then the following inequality
holds:

p p
D om? =1 imi =24 1(p — Dimy—mp)/2.

i=1 i=1
The equality holdsif and only if (mq, ma, ... ,mp_1,m,) = (1,0,...,0,=1).

PROOF. PutZ > k; :==m; —m;11 > 0,i =1,2,...,p— 1. Then we haven, =
— Y7} jkj/p- By using the identity

P p
imj = Zi(mp +kp_1+kp2+---+ki)
i=1 i=1

-1
p(p+1 S JG+D
== ek
+Z; >

= mp 2 J
-1 p—1 .
+15 +1
:_pT 'k.,-+Z](]2 )k/
j=1 j=1

173
=52k,
j=1
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we obtain
p p P ¢ p-1
Y mZ—1> im =Zm,?+§2j(p—j)kj
i=1 i=1 i=1 j=1
Py
>2+ 5> (p—Dkj=2+1(p = D(m1—m))/2.
j=1

Here we see that

P p—1
S om?+ % > i — ki =2+1(p—1)(m1—m,)/2

i=1 j=1
if and only if (k1, k2, ... ,kp—2,kp—1) = (1,0,...,0,) (p = 3) or kg =2 (p = 2), and
equivalently(my, mo, ... ,mp_2,mp_1,mp) = (1,0,...,0,0, =1). O

4. Hamiltonian stability of minimal Lagrangian submanifolds in CP" with paral-
lel second fundamental form. First, combining Proposition 2.1 and Lemma 3.1, we obtain
the following lemma.

LEMMA 4.1. Suppose that L is an n-dimensional compact totally real submanifold
embedded in CP" constructed in Section 2 with s = 1. Then the Einstein constant, the first
eigenvalue 11 of the Laplacian acting on C°°(L) with respect to the induced metric and its
multiplicity d1 are given in the following table:

L L KL A 5»1 di
(n—1c (n+ 1c nc nn+3)
n n N
RP S 4 2 4 2
SU(p) pec pe (p? — e 2 42
L — Rl -1
z, SU(p) 8 5 5 (p )
SUW) | SU(p) | pPe | pptDe | (p+2(p—De | pPp—D(p+3)
SO(p)Z, | SO(p) 16 4 8 4
SU@2p) | SU@2p) 2 2p —De | (p—D@2p+ D
P Pl EE | B2 P P p?(2p+1)(2p—93)
Sp(p)Zap | Sp(p) 4 2 4
Es Eg 9¢ 27c 13¢
— = i — 650
F4Z3 Fa 2 2 2

Hereky, isthe Einstein constant of L and p > 2 isan integer.

Comparing tables of Lemma 3.1 and 4.1, we seelhedtisfies the Hamiltonian stability
condition of Theorem 1.2, that is, the first eigenvalyeof the Laplacian ofL is equal to
c¢(n + 1)/2in each case. We also note that this condition is not satisfiet.for
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InLemma 4.1, the multiplicieg; of A1 were computed by the Weyl's dimension formula
(3.4). In these cases we have

n(L) = di.
In each casé. = G/K, we can observe the fact that
d1 = dim(su(n + 1)) — dimG
=dimK — dimlp(L) .
By (1.2), we obtain
n(L) =nx(L).
Therefore we obtain the following theorem.

THEOREM 4.1. Let L be an n-dimensional compact totally real minimal submanifold
embedded in CP" with parallel second fundamental formin the following list:
(1) SU(p)/Zp,n=p?—1
(2) SUP)/SO(P)Zp,n=(p—D(p+2)/2
() SU@p)/Sp(p)Z2p,n=(p—D(2p+1).
(4) Ee/FsZ3, n = 26.
Then L isa Hamiltonian stable minimal Lagrangian submanifold in CP". Moreover the null
space of L is exactly the span of the normal projections of Killing vector fieldson CP".

In our cases we see that all the eigenfunctions of the Laplaciah with eigenvalue
c¢(n + 1)/2 are obtained as the restriction of the first eigenfunctions of the Laplaci@®Ptn
to L.

The submanifolds fromil) through(4) of Theorem 4.1 and the real projective spR#&
exhaust all compact irreducible totally real minimal submanifolds embedded in the complex
projective spac€P" with parallel second fundamental form. Hence we state the following

THEOREM 4.2. All n-dimensional compact totally real minimal submanifolds embed-
ded in CP" with parallel second fundamental form and positive Ricci curvature are Hamil-
tonian stable as minimal Lagrangian submanifolds.

Based on our results we shall now remark on some related open problems.

PrROBLEM 4.1. s it true that all compaet-dimensional totally real submanifolds em-
bedded inCP" with parallel second fundamental form are Hamiltonian stable as H-minimal
Lagrangian submanifolds?

PROBLEM 4.2. Isit true that compact Hamiltonian stable H-minimal Lagrangian sub-
manifolds inCP" have parallel second fundamental form?

PROBLEM 4.3. Is such a compact Hamiltonian stable H-minimal Lagrangian subman-
ifold L in CP" globally Hamiltonian stable or not, that is, volume minimizing with respect to
every Hamiltonian deformation df?
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Few examples of globally Hamiltonian stable (H-)minimal Lagrangian submanifolds
seems to be known in specific Kéhler manifolds such as complex projective spaces, com-
pact Hermitian symmetric spaces and so on. It is known that the real projective subspaces
RP" c CP" areglobally Hamiltonian stable minimal Lagrangian submanifold<iR” (cf.

[1] and [18]).

5. Hamiltonian stability of symmetric R-spaces canonically embedded in Hermit-
ian symmetric spaces. In this section we discuss Hamiltonian stability of totally geodesic
Lagrangian submanifolds in compact Hermitian symmetric spaces of rank greater than 1.
Let M be a compact Hermitian symmetric space dnlde a symmetrick-space canonically
embedded inM. Such pairs represent a nice class d@fimal Lagrangian submanifolds em-
bedded in Einstein-Kahler manifolds.

A real form of a compact Hermitian symmetric spadeis defined as the fixed point
subset by an involutive anti-holomorphic isometry. It is a totally real and totally geodesic
submanifold of\f with dimension equal to the half of diM, and hence it is a totally geodesic
Lagrangian submanifold a¥/. In [25], Takeuchi proved that every compact totally geodesic
Lagrangian submanifold of a compact Hermitian symmetric spAceobtained as a real form
by an involutive anti-holomorphic isometry 8f, and it is nothing but a symmetriR-space
canonically embedded in a compact Hermitian symmetric space. Moreover in [25], he showed
that a symmetridR-spacel canonically embedded in a compact Hermitian symmetric space
is stable if and only ifL is simply connected. The theory of symmetRespaces is well-
investigated and we refer [25] for a complete list of symmeRispaces. In [25], he also
proved the following.

THEOREM 5.1 ([25]). Let L bea symmetric R-space canonically embedded in a com-
pact irreducible Hermitian symmetric space M = G/K equipped with a metric ¢ induced
from the (—1)-times Killing-Cartan form of g = Lie(G). If ¢ isan Einstein metric, then the
first eigenvalue of the Laplacian of L actingon C*°(L) isequal to 1/2.

Moreover, we already know that a compact irreducible Hermitian symmetric s@ace
with a metricg induced from thé—1)-times Killing-Cartan form is an Einstein manifold with
Einstein constant/2. Hence Theorem 5.1 implies that, if an irreducible symmeRrigpace
embedded in a compact Hermitian symmetric space as a real form is an Einstein manifold,
then it is a Hamiltonian stable minimal Lagrangian submanifold (see [18]). Analyzing root
space of symmetri®-spaces, Takeuchi classified all irreducible symmeRrigpaces into five
classesThe Hermitian and four other types (cf. [25]). The irreducible symmeRrgpaces
of Hermitian type are just irreducible Hermitian symmetric spaces of compact type, which
are Einstein. The Hermitian symmetric spaces of compact type canonically embedded in a
Hermitian symmetric spac¥ as a real form are always stable and hence Hamiltonian stable.
By calculating the first eigenvalues of symmetRiespaces of other types canonically embed-
ded in a compact irreducible Hermitian symmetric space, we can determine their Hamiltonian
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stability. Here we give a complete list of the Hamiltonian stability for all irreducible symmet-
ric R-spaces of non-Hermitian type canonicallykmdded in compact irreducible Hermitian

symmetric spaces.

M L Einstein w1 H-stable| stable
Gpq©,g=p=1 Gpq(R Yes 1/2 Yes No
G2p2(C),g>p=>1 Gpq(H) Yes 1/2 Yes Yes
Gum(C,m=>2 U(m) No 1/2 Yes No
SO ((2m)
SO(m),m >5 Yes 1/2 Yes No
U(m)
SO 4
( m),m > U@m) No " No No
U(2m) Sp(m) 4m — 2
Sp(2m) Sp(m),m > 2 Yes 1/2 Yes | Yes
U (2m) -
S U
pim) s Uim) No 1/2 Yes | No
U(m) O (m)
p
2C),qg—p=>3 R),p=>2 No _ No No
Qp+q-2(C),q —p Qpq(R), p P
02,-2(C) 0p.p(R,p=2 Yes 1/2 Yes No
Q2p+4-2(0), k=12 | Qp (R, p=2| No 1/2 Yes | No
0,0),q <5 02,4(R) No 1/2 Yes No
04-1(C),q <4 014(R) Yes 1/2 Yes No
Eg/T - Spin(10) P>(K) Yes 1/2 Yes Yes
Ee/T - Spin(10) G22H)/Z2 Yes 1/2 Yes No
E7/T - Eg SU(8)/Sp(4)Z> Yes 1/2 Yes No
E7/T - Eg T -Ees/Fy No 1/6 No No
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Here we use the following notation

G 4(F): Grassmann manifold of ai-dimensional subspaces Bf
for F = R, C and a real quaternion algela
P2(K): Cayley projective plane,
0, (C): complex quadric of dimensian,
Qpg(R) = {Ix] € RPPHITL a2 ol —xyy = —afy = 0)
: real quadric.

Note that the third colmnn indicates whethek is Einstein or not.
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