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BLOW-UP BEHAVIOR FOR A SEMILINEAR HEAT EQUATION
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Abstract. We study the blow-up behaviors of solutions of a semilinear heat equation
with a nonlinear boundary condition. Under certain conditions, we prove that the blow-up
point occurs only at the boundary. Then, by apmj the well-known method of Giga-Kohn,
we derive the time asymptotic of solutionsar the blow-up time. Finally, we prove that the
blow-up is complete.

1. Introduction. In this paper, we study the following initial boundary value problem

(1.1) ur=uye+u?, xe€(@©,1), >0,
1.2 u(0,0) =0, u, 1, t)=u?l,t), >0,
(1.3) u(x,0) =uo(x), xel0,1],

wherep, g are positive constants, ang(x) is a positive smooth function. For convenience,
we always assume that
up(0) =0, upl) = ud(d).

We say that the solutiom of the problem (1.1) —(1.3) blows up if there is a finite tiffie
such that mag<x<1u(x, 1) — oo ast 1 T. It has been shown in [11] that the solutierof
the problem (1.1)—(1.3) blows up if and only if mgx ¢} > 1. In [11], they also studied the
blow-up set and derived the upper and lower bounds for blow-up rate under certain conditions.

A point xg is said to be a blow-up point far if there is a sequencgx,, t,)} such that
Xn = x0, tn — T, andu(x,,t,) — oo asn — oo. Under certain conditions, it is shown in
[11] that the boundary point = 1 is the only blow-up point. This phenomenon of blow-up
on the boundary has been observed and studied by many authors. We refer the readers to two
nice survey papers [4] and [2] and the references cited therein. See also the references cited
in[11].

We are concerned with the blow-up behaviors of solutions of the problem (1.1)—(1.3).
Hence throughout this work we always assume that{max} > 1. In the sequel, we shall
assume that the solutianof the problem (1.1)—(1.3) blows up @ < oo. First, we study
the blow-up set. We prove that blow-up point occurs only at the boundary pointl, if
ug > 01in [0, 1]. This improves the results of [11], where the monotonicity.ah time is
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assumed. Furthermore, by deriving some a priori estimates, with the help of the lower and
upper bounds for blow-up rate, we can apply the well-known Giga-Kohn transformation (cf.
[8]) to derive the time asymptotic of solutions. This gives a more precise information of the
blow-up behaviors. We remark here that a similar problem for the case when the heat operator
is replaced by the porous medium operator in the half real line has been studied by de Pablo,
Quirds and Rossi [3].

The next question is the possibility of continuation of solutions beyond the blow-up time.
For more references on this subject, we referraders to the paper [5] and some references
listed there. We show that the blow-up for the problem (1.1)—(1.3) is complete, i.e., solutions
blowing up in finite time will be infinite identically after the blow-up time.

This paper is organized as follows. We study the blow-up set in Section 2. Some a priori
estimates are given in Section 3. In Section 4, we study the self-similar solution for the critical
case by an ordinary differential equation approach. Then we study the time asymptotic of the
solution in Section 5. Finally, in Section 6 we prove that the blow-up is complete.

We thank the referee for helpful comments which improve some results in Section 2.

2. Blow-up set. Letu be the solution of the problem

(2.2) ur=uxy +u?, xe€(,1), O0<t<T,
(2.2) uy(0,) =0, u,(1,t)=u?1,t), O<t<T,
(2.3) u(x,0) =wuo(x), xe[0,1],

whereT is the blow-up time ofu. Here as usual we always assume thgi0) = 0 and
up() = ug(l). We shall assume thaf, > 0in [0, 1], so that by the maximum principle we
haveu, > 0in (0, 1] x (0, 7). We shall modify the method of Friedman and McLeod ([7])
to study the blow-up set.

THEOREM 2.1. Supposethat p > 1. If uy > 0in [0, 1], then the blow-up occurs only
atx = 1.

PROOF. Suppose that there is a blow-up pointe [0, 1). Then there is a sequence
{(xn, t,)} such thatx, — a,t, — T, andu(x,,,) — oo asn — oo. Fix a constant
d € (a,1). By comparing the solution with the function

(i, 1) Sin[ (x — d) /(1 = d) expl—[7/ (L = )PPt — 1))
for eachn sufficiently large, it is easy to show that
u(x,t) > uxy, ty) sinfr(x —d)/(L—d)] exp{—[n/(1— d)]z(t — )}
forx € [d, 1] andr > t,. Hence
(2.4) lim u(x,1) = o0

uniformly overx € [b, ¢] for any compact subséb, c¢] of (d, 1).



BLOW-UP BEHAVIOR FOR A SEMILINEAR HEAT EQUATION 567

Now, we fix a compact subsgh, ¢] of (d, 1). We take any- € (1, p) and consider the
function

J, ) =ue(x, 1) — gu (x,1),

whereg (x) = e sin[w(x — b)/(c — b)] for somee > 0 to be determined. Using (2.4), there is
ar € (0, T) such that

(2.5) Ji = Jex — (puP L+ 2rg'u""Hy >0

in [b, ¢] x [to, T) for anye > 0. By choosing: > 0 sufficiently small such thak(x, 70) > 0
foranyx e [b, c], it follows from the maximum principle that > 0in[b, ¢] x [tg, T). Hence
we have

(2.6) u"(x,Dux(x,t) > g(x) in [b,c]x [0, T).

An integration of (2.6) leads to a contradiction. Hence the theorem follows. O
If p <1,theng > 1, since magp, g} > 1.
LEMMA 2.2, LetO< p <1 Ifug>0in[0, 1], thenx = 1istheonly blow-up point.

PROOF. Sinceuy(1) > 0, there is a constadte (0, 1) such thaty > 0in[1— 6, 1].
Set

n=_inf {up)/ubx)}, M=(q—-p) sup uP7L.
1-5<x<1 0 [1-6,1]1x[0,T)

Then0< n < 1and O< M < oco. Choose a positive integar> 3 such thaiz > M and
a positive numbet < min{y, §*}. Defineg(x) = (x — 1+ /M if 1 — /" < x < 1;
g(x) = 0, otherwise. It is easy to see that C2([0, 1]) and satisfies

(2.7) O<g=<e, ¢'20, ¢"20, ¢">Mg.

Then, by using the faet > 1 and the maximum principle, it is easy to show that
gu? (x, 1) < ux(x, 1)

forO<x <landO<t < T.Hence

(2.8) u 4(x, Duy(x, 1) > g(x)

forO < x <land0<t < T. An integration of (2.8) shows that cannot blow up at any
pointx < 1. This proves the lemma. O

Indeed, the conditio% > 0in[0, 1] can be removed if & p < 1.
THEOREM 2.3. If 0 < p < 1, thenx = 1istheonly blow-up point.

PrRoOOF. We first extend the function(x, r) to w(x, ) defined on—1, 1] x [0, T) so
thatw(x, r) = u(x, ) andw(—x, 1) = w(x, ) forx € [0, 1] andr € [0, T). Thenw satisfies

w =wy +w’, xe(=11, O0<t<T,
wy(=1,1) =—-wi(=1,1), wyd,t)=wil1t), O0<t<T.



568 S.-C. FU, J.-S. GUO AND J.-C. TSAI

Arguing as Lemma 1.2 of [9], there existse (0, T) such that
n@) =#ae[—11] | wy(a,t) =0}

is a constant for all > *. Moreover, there ar€! functionsso(?), ... , sw(r), I > 0, from
[t*, T) to[—1, 1] such that

s_y(t) <---<so(t) <---<s(t), so(t)=0,

{ae[-11]|wx(a,t) =0} = {s(®),...,s0(0),...,s(t)} for t=>1r",
and the limits; := lim 47 s;(¢) exists for alli. Sincen(t) is constant int*, T), it follows
from Theorem C of [1] thatv,,(s; (¢),t) # O forallt € [+*, T). Note that for each there
is a fixed sign forw., (s; (¢), ¢t) for all r € [¢*, T). Also, it suffices to consider the so-called
maximum curve, i.e., the curve for whieh, . (s; (¢), 1) < 0 on[t*, T).

If I = 0, thenu,(x,r) > 00on(0,1] x [¢*, T). Hence the conclusion follows from
Lemma 2.2. Suppose that>- 0. Setm;(r) := w(s;(¢),t). Notice thatm](r) < m;(r)? on
[£*, T), if wex(si(2),2) < 0on[t*, T). Since 0< p < 1, m;(¢) remains bounded nedr.
This implies thatw cannot blow up at any point i1, 1). The theorem is proved. a

3. Somea priori estimates. In this section, we will derive some a priori estimates
which will be used in Section 5 to prove the time asymptotic results.ullgd the solution
of (2.1)—(2.3) with blow-up time". From now on we shall always assume thgt> 0 in
[0, 1], so that by the maximum principle we havg > 0 in (0, 1] x (0, T). Notice that
u(l,t) = maxo<x<1u(x,t).

The following lemma is given in [11] under the assumptigi+- u(’)’ >a > 0in[0,1].
Indeed, we have the following lemma.

LEMMA 3.1. Ifuf+u} >0in[0, 1], thenu, > 0in[0, 1] x [0, T).

PROOF. Setv = u,. Thenv satisfies

vtzvxx—l—pup*lv, O<x<1l, O<t<T,
v (0,1) =0, vl 1) =qu Y1 v@1), O<t<T,
v(x,O):ug—i—u(’)j >0, O<x<l1.
For any fixedr € (0, T), let
1
L= max {Equql(x,t)} ., M=2L+4L%*+ max {puP"t(x,0)}.

O<x<1,0=<t=<t O<x<1,0=<r=<t

Setw(x, 1) = e~ M'=~Lx%y(x, 1). Thenw satisfies
Wy = Wyy +4Lxwy +cw, O<x<1l, O<t<rT,
wy(0,0) =0, w(l,t)=dw(@,t), O<tr=<rT,
w(x,00>0, 0<x<1,

wherec = ¢(x,t) < 0andd = d(r) < 0. By the maximum principle, we obtain that> 0
in [0, 1] x [0, =]. Hence the lemma follows. O
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Recall from [11] that ifu, > O, then there are positive constantand A such that

(3.1) o(T—1)"" <u(,t) < AT —1)"",
where the exponent is given by

_J -1 if p>29-1,
T 11/[2g - D] if p<2g-—1.
Hereafter we shall assume thgf > 0 andug + ug > 0in [0, 1]. Therefore, we have
u, > 0 andu, > 0. We now make the following Giga-Kohn transformation

1_
(3.2) y= Tx, s=—In(T —1),

(3.3) w(y,s) = (T —)%u(x,t),

wherex is defined as in (3.1). Let

~

W={(s|0<y<e’? s>—InT}.
Then forp > 2¢g — 1 we have

(3.4) Wy = Wyy — %wy —aw+w? in W,

(3.5) wy(0,5) = —e” w(0, )7, wy(es/z, s) =0, s>—InT,
(3.6) w(y, —InT) = Tuo(1—yvT), 0<y=<1VT,
wherey = [(2¢g — 1) — p]/[2(p — 1)] < O; for p = 2¢ — 1 we have

(3.7) Wy = Wyy — %wy —aw+w? in W,

(3.8) wy(0,5) = —w(0,5)7, wy(e/?5)=0, s>—-InT,
(3.9) w(y, =INT) = Tuo(l - yWT), 0<y=1T,

while for p < 2¢g — 1 we have

(3.10) Ws = Wyy — %wy —aw+ e w? in W,
(3.11) wy (0, 5) = —w(0, )7, wy(e"'/z, s)=0, s>—InT,
(3.12) w(y, —InT) = T%uo(l— yv/T), 0<y<1/V/T,

wheres = [p — (29 — 1)]/[2(q¢ — 1)] < O.
We have the following a priori estimates for

LEMMA 3.2. w and w, arebounded in W.

ProoOF. The fact thatw is bounded follows from (3.1).
It follows from Lemma 3.1 thati,, > —u? in [0, 1] x [0, T). Multiplying the above
inequality byu, > 0 and integrating it fromx to 1 , we obtain

2
(3.13) u?(x, 1) <u® (1, 1)+ ——uP*t1(1,1).
p+1
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Note thatw, (y, s) = —(T — 1)+ 2u, (x, 1).
Recall (3.1). Fop > 2¢ — 1, it follows from (3.13) and Lemma 3.1 that

2
wl(y,s) < (T — 2211, 1) + ——(T — >+ P+, 1)
Y p+1

2
= [(T — )%u(L, )1 =P (1, 1) + ———[(T — *u(d, )P+
p+1
< Ap+1u§qflfp(1) + APTL,
Forp < 2q — 1, it also follows from (3.13) and Lemma 3.1 that
2
w2(y,s) < (T — 2211, 1) + ——(T — >+ P+, 1)
Y p+1
2
= [(T — %L, )% + ——[(T — )%u(L, N1*7uP~271(1, 1)
p+1
2 _
< A% 4 S APt ()
= + » 1 Ug ( )

Hence the lemma is proved. a

LEMMA 3.3. There is a positive constant C such that |wg(y, s)| < C(1 + y) and
[wyy (¥, < C(A+y) inw.

ProoOF. It follows from Lemma 3.2 thafw,(y, s) — wyy(y,s)| < C(1 4+ y) in W for
some positive constaid. The lemma follows by applying the standard theory of parabolic
equations, e.g., Theorem 6.44, Theorem 4.30 and Theorem 4.31 in [10]. o

4. Sdf-similar solution. In this section, we shall study the self-similar solution of
(1.1)—(1.2) forthe casp = 2g — 1, i.e.,q = (p+1)/2. We are concerned with the existence
and uniqueness of global positive monotone decreasing solution of the initial value problem

(P):
1 1 /
(4.2) w —Eyw—o;w+w”=O, y>0,
(4.2) w'(0) = —w’(0),
wherew = w(y) anda = 1/(p — 1). We always assume that > 1. The existence result
has been obtained before by Wang and Wang in [12]. Here we present a different proof for
the existence. Some of the lemmas will be useful for the proof of uniqueness.

Given anyn > 0, there is a unique local solutian(y; n) of (4.1)—(4.2) withw(0) = 7.
Let p(y) = exp{—y?/4} and f (w) = —aw + wP. Thenw satisfies

y
(4.3) (pw)(y) = —n? — /0 p(s) f(w(s))ds .
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Let x be the unique positive solution ¢gf(w) = 0. Note thatw’ < 0 as long asv > «. Set
1\“

(a.4) ko= (%3) ‘.
Note that O< kg < «.

LEMMA 4.1. Letn > ko. Thenw’ < Oaslongasw > O.

PROOF. Let

G(y) = %[w’(y)]2 +F()),
whereF (w) = [ f(s)ds. Note that
(4.5) G(O0) > F(0) ifandonlyif n > «o.
Since
G'(y) = %y[w’(y)]z,

and the problem (P) has no non-trivial constant soluti@iis strictly increasing.
If w is not monotone decreasing, then there is the first critical peint 0 of w such
thatw’(yg) = 0 andw > 01in [0, yg]. Notice thatw(yg) < «. Hence

G(yo) = F(w(yo)) < F(0).

On the other hand, by (4.5) we hag&0) > F(0), sincen > ko. This implies thatG(0) >
G (yo), a contradiction. Therefore, the lemma follows. O

Suppose thay > 0 andw’ < 0in [0, 00). Let! = lim,_, o w(y). Then! € [0, «)
and there is a sequen¢e,} such thatw’(y,) — 0 asn — oo. Dividing Equation (4.1) by
y and integrating it from 1 tg, for anyn large, as: — oo, this leads to a contradiction, if
[ € (0,x). Hencel = 0.

LEMMA 4.2. For n > ko, the solution w is monotone decreasing to zero at some
finite R.

ProoF. Otherwise, by Lemma 4.1 and the above observaiialy) — 0 asy — oo
and there is a sequengg, } such thaw’(y,) — 0 asn — oco. ThenG(y,) — F(0) asn —
oo. SinceG is monotone increasing, its limit must be greater tag0), i.e., F(0) > G(0), a
contradiction to (4.5). This proves the lemma. O

We now turn to the case whenis small. First, letyg be a positive constant such that
—f(w) > aw/2 for all w € [0, no]. Notice thatng < «. Choosen1 € (0, no) such that
nt=1 > ¢4 forall n € (0, n1). Now, given any fixed; € (0, n1), suppose thaw’ < 0 in
[0, R] andw(R) = 0 for someR = R(n) > 0. Since, by (4.3)p(y)w'(y) > —n4 for all
y € [0, R), we have

R 2
n=—/ w' (s)ds < n9ReR/4.
0
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Letg(y) = yeyz/“. Sincey is strictly monotone increasing, we conclude tRat R(n) > 1,
if n < n1.

LEMMA 4.3. There is a small positive constant », such that w’ vanishes before w
vanishes, if n < n,.

PROOF. Letn, be a positive constant such that< n1 and
(4.6) e > Mel/‘l forall n € (0, ny) .
/2
Suppose that there is ane (0, n,) such that the lemma does not hold. Then the correspond-
ing solutionw must have the property that < 0 in [0, yo] for someyp > 1. From (4.3) it
follows thatp (y)w’(y) > —n4 for all y € [0, yo] and so

y

4.7) w(y) =17 +/ w'(s)ds > n— 77"yey2/4 forall y € [0, yo] .
0

Then from (4.3), (4.7), and noting that< o, we obtain that

y
p(w' (y) = —n? + 5/0 p($)w(s)ds

2
y
> +5/ =4 — yfise’ Mds
2 Jo
a 5 o —v2/4
>_(1+= q 4 — e/
= ( + 4)’ )rl + Zye n

forall y € (0, yo). In particular, fory = 1 we have

4
sincen < n,. Thisis a contradiction and the lemma is proved. m]

e ' (1) = —<1+ g)n" + %e*Wn >0,

Now, we define

Iy = {n > 0| w(y; n) is decreasing to zero at some finké
I> = {n > 0] w'(y; n) vanishes befora(y; n) vanishe}

Notice thatw andw’ cannot vanish at the same time. Hergeand I> are disjoint.
Lemmas 4.2 and 4.3 imply thatg, co) C I3 and(0, n,) C I».

LEMMA 4.4. Theset I isopen.

PROOF. Letng € I>. Thenng < ko < « and there is the first pointy > 0 such that
wo > 01in [0, yol, wy < 0in [0, yo) andwg(yo) = 0, wherewo(y) = w(y; no). Since
wq(yo) > 0, there is a positive constafitsuch thatwg(y) > 0 fory € (yo, yo + 8]. Let
e > 0,e < wo(y0)/2, ande < wy(yo + 8)/2. By the continuous dependence of initial value,
there is a positive constaptsuch thatw(y; n) —wo(y)| < e and|w’(y; n) —wy(y)| < & for
ally € [0, yo+ 8], if n € (no — y,no+ y). Thisimplies thaino — y, no + y) C I> and so
I is open. ]
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To prove that/; is open, we consider the quantity

1
(4.8) H() = aw(y) + Zyw'().
ThenH satisfies the equation
, 1 1 , 1
(4.9) H(y)=5yH() + <§ +a>w ¥) = 5yw’ ().

Suppose that (yg) < 0 for someyg > 0. Thenw’(yg) < 0 by (4.8) andH’(yp) < O by
(4.9). Hence, by (4.9) agaif’(y) < O andH (y) < Oforally > yp as long asv > 0.

LEMMA 4.5. Theset I1 isopen.

PrROOF. First, we claim that if there is a poingy > 0 such thatH (yp) < 0, thenw
is decreasing afteyp and vanishes at some finife > yg. Otherwise, ifw > 0 in [0, c0),
thenH (y) < 0 andH’(y) < O forall y > yo. Hence there is a positive constarguch that
H(y) < —é§forall y > yo. By an integration, we obtain that

20 3 3 20 3
w(y) < o/y)w(yo) — o + a(yo/y) - as y— oo,

a contradiction.

Now, letno € I1 andwo(y) = w(y;: no). Then there is a finit& > 0 such thaivg < 0
andwo > 0in [0, Ro). Sincewo(Ro) = 0 andwy(Ro) < 0, there is a positive constahuch
that Ho(Ro — 8) < 0, whereHo(y) = awo(y) + ywq(y)/2. It follows from the theory of
continuous dependence on initial value that there is a positive constarth thatw(y; n) >
0,w'(y;n) <O0fory e [0, Rp—8],andH(Ry —8) < 0,ifn € (no— y,no+ y). Thenw
is decreasing afteRg — § and vanishes at some finife> Ro — 8, if n € (no — ¥, no + y).
Hence the lemma is proved. O

We now state and prove an existence theorem as follows.
THEOREM 4.6. Thereisa global positive monotone decreasing solution of (P).

PROOF. Seti; = inf I1. Then the corresponding solutian(y) = w(y; i) must be a
global positive monotone decreasing solution of (P). O

Indeed, for anyy ¢ I1 U I, the corresponding solutiom(y; ) is a global positive
monotone decreasing solution of (P) satisfying; n) — 0 asy — oo.

We have from Lemma 4.2 the estimate< «g. Also, the initial valuen < «g for any
global positive monotone decreasing solutiéii®). To derive a better estimate, we need the
following generalized version of Pohozaev Identity, which is inspired by Lemma 2.1 of [13]
(see also [14]).

LEMMA 4.7. Suppose w(y) isa solution of (P)and define

1 2
J(y) == p() (W' (»))? - gp(y)w’(ww(y) + <Z — a)p(y)wz(y) + ——p(MwPt(y),
p+1



574 S.-C. FU, J.-S. GUO AND J.-C. TSAI

where p(y) = exp—y2/4]. Then the following identity holds:

_P+3 i1 P75 2 /” { p=1 1 _}}2
_p+1w (O)+4(p_1)w ) + A sp(s) 2(p+1)w (s) 8 w(s)ds .

PrRooF. DifferentiatingJ (y) and using4.1), we obtain

J(y)

/ p—1 -1 1] 2
J'(y) = P = .
6)) yp(y){ 20 + Y ) 8}w )
IntegratingJ’(y) from O toy and noting that
0) = ——wP*(0) + ————w?(0
J(0) p+1w ()+4(p_1)w(),
we get the desired identity. ]

COROLLARY 4.8. Suppose that w(y) is a global positive solution of (P) satisfying
w(y) - 0asy — oo. Then

o0 1 p—1 _ +3 p—5
4.10 - p=1 2(9)ds = ——=wP*L0
( )/0 SP(S){S 251" (S)}w ($)ds = =7 w0+ 77—
PrROOF. Sincew(y) is a global positive solution of (P) and lim o, w(y) = 0, there is
a sequence;, — oo such that lim,— o, w’(y,) = 0. Using Lemma 4.7, (4.10) follows. O

Define fi(w) = {1/8 — [(p — 1)/2(p + 1) Jw?~w? and letic = («/2)*. Thenitis
easy to check that

p

w2(0) .

max fi(w) = fi(k).

wel0,00

The following lemma gives an upper bound for any global positive solution of (P) which
tends to zero ag — oo.

LEMMA 4.9. Suppose that w(y) is a global positive solution of (P) with w(0) = 7
such that w(y) — Oasy — oo. Thenn < k. In particular, we have i < k.

PrROOF. For contradiction, we assume that> i. It follows from the definition ofi
that
-1
P— " z2,
4p+1)

/0 sp(s) fi(w(s))ds < /0 sp(s) fi(k)ds =
On the other hand, sinae(0) = n > «, we have
—_— 0 0 T 0
1 O 0% 000" Pt
__pr=1 5 r—1
=110 0% 170

a contradiction tg4.10). This completes the proof. O

w?(0)

THEOREM 4.10. If 1 < p < 2, then there is a unique global positive monotone de-
creasing solution of (P).



BLOW-UP BEHAVIOR FOR A SEMILINEAR HEAT EQUATION 575

PrROOF. For contradiction, we suppose that there are two distinct global positive mono-
tone decreasing solutiong andw- of (P). Note thatw; (y) — 0 asy — oo fori = 1, 2.

First, we claim thatw; andw2 must intersect each other at least once. Multiplying the
equation

(pw)' () = —pM fwi(y), =12,
by wo fori = 1; by wj fori = 2, respectively, and integrating by parts, we end up with

/0 p()wi(s)w2(s)(w? ™ (s) — wh Hs)ds = wi(Ow20) w0 — wi™H0)),

usingw;(0) = —w? (0),i = 1, 2. Hence they must intersect each other at least once.

Without loss of generality, we may assume thaty) > w2(y) in [0, yo) andw1(yg) =
wa2(yo) for someyo > 0. Then we havey (yo) < wj(yo). Hence there existg; > yo such
thatw1(y1) < wa(y1). Definev(y) := w1(y) — w2(y). Then it follows from(4.1) thatv(y)
satisfies

(4.11) o — %v’ +[pEP(y) —alv =0,

for some£(y) € [minfw1(y), wa(y)}, maxwi(y), w2(y)}]l. Since lim, oo w;(y) =0, i =
1, 2, there existy, > y; such thaf v(y2) |<| v(y1) | /2.

Now, lety € [0, y2] be a minimal point ob in [0, y2]. Theny € (0, y2) andv(y) < 0.
Sincey is an interior extreme point af, we have

(4.12) v'(») =0, V() =0.
From Lemma 8 andé(y) < max{w1(0), w2(0)}, it follows that
(4.13) P&’ 13 —a <0,

if1 < p <2. Then, by4.11), (4.12) and(4.13), we obtain that
0=0"(5) = SV'(3) + [pE" () — v ()
> [pgP1(F) — alv(F)
>0,
a contradiction. This completes the proof. O

We conjecture that Theorem 4.10 should hold for any- 1. Unfortunately we are
unable to prove it now, so we left it as an open problem.

5. Timeasymptotic analysis. In this section, we shall study the time asymptotic of
the solutions of the problem (2.1) —(2.3) for various cases. The method is the same as the one
used in [8] with some modifications. Hence we shall only give the outline of the proofs.

THEOREM 5.1. For p > 2¢g — 1, we have
(T —)%u(d — y/T —t,1) > «
ast — T uniformly for y € [0, C] forany C > 0. Herea = 1/(p — 1) and k = «.



576 S.-C. FU, J.-S. GUO AND J.-C. TSAI

PrROOF. Asin [8], we take any increasing sequericg in (0, o) suchthak; 1 —s; —
oo asj — oo. For eachj € N, we define

wi(y,s) =w(y,s+s;) forall (y,s) e W;={(y,s)|0=<y=< SN2 o> g —In T}.
j J J J

Note that( J ;?":1 W; =[0,00) x RandWy C W> C ---. Recall Lemmas 3.2 and 3.3. By
the Ascoli-Arzela Theorem and a diagonal process, we can get a subsequence (still denoted
by w;) such thatw;(y,s) = we(y,s) asj — oo uniformly on any compact subset of
[0,00) x R and that for any integem we havew; ,(y,m) — wWweo,y(y,m) @Sj — 0o
pointwise fory € [0, co) for some functiorw., defined o0, co) x R. Itis easy to see that
W IS @ classical solution of the equation
Wy = Wyy — Eywy —aw+w? in [0,00) xR.
Now, we claim thatw s (v, s) = 0in [0, co) x R. Introduce the energy function

1 S 2 o S 2 1 s +1
E = — d — dy — —— PTidy
[w](s) Z/Opw) y+2/0pw y P Opw y
wherep(y) = e VIR, By a simple computation, we get
d S
(5.1 ——E[w](S)=/ pw?dy — G(s),
ds 0 '
where

G(s) :p(s){%wi(s, s) + %wz(s, §) — Lw”"’l(s, §) 4+ wy (s, s)wy(s, s)}

p+1
(29—-1)—p
2p-1
Letso = max{2In2, —InT}. Note that

+exp{ s}w(O, $)7ws (0, s) .

{(y,5)|0<y<s, s=s0} CW.

Integrating both sides of (5.1) from + s; tom + 541 foranym, j € Z withm +s5; > so,
we obtain

m+sjq1

/0 p(MWA(y, s)dyds

m+s;
m+sjq1

= Em+Sj [w](m + Sj) - Ein+s_,'+1[w](m + sj+l) + / G(s)ds .

m+s;

By a change of variable, we get

m+sji1—5; S+s 2
/ /0 p(Mw5 (v, s)dyds
m

n
m+sjq1
= Em+5j [wj](m) - Em+Sj+1[wj+1](m) + / G(s)ds .

m+s;
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Since
(29 -1 — P

|G(s)| =< Cexp{ 20— 1)

}(1 +5),
it follows that

o0
/ | G(s) |ds < 00.

0
Proceeding as in [8], we get

M poo
/ / pwgo,sdyds =0 forall m,MeZ m<M.
m JO

Hencews s = 0 and sowso(y, ) = wee(y) for all y € [0, oo) ands.
Note thatw. (0) > 0. Also, fromw; ;(0, s) = —e? ™) w (0, 5)4, where

y =129 -1 —pl/I2(p — D] <0,
it follows thatw/,(0) = 0. Thereforews, is @ bounded positive global solution of

w' —Zyw —aw+wP =0
and sows, = « (cf. [8]). Since the sequendeg;} is arbitrary, the theorem follows. O
Recall from [6] that there is a unique bourdgositive global solution (denoted b(y))
of
" 1 !/ !/
(5.2) w' — —yw' —aw =0, w'(0)=-wi0).

2
THEOREM 5.2. For p < 2 — 1, we have

(T —)*u(l— yT —t, 1) = V(y)
ast — T uniformly for y € [0, C] for any C > 0. Hereax = 1/[2(q — 1)].

PROOF. Lets;, w;, ws be defined as in Theorem 5.1. Then it is easy to seeuthais
a classical solution of

Wy = Wyy — zywy —aw, ye[0,00), seR.

2
Next, we introduce the energy function

1 s 2 o s 2 1 +1
Elw](s) = 5/0 pwydy + —/ pwdy — q—+1w’1 O, s).

2 Jo
Proceeding as in the proof of Theorem 5.1, we obtain that, = 0 and Sows(y, s) =
Weo(¥). Sincewy (0, s) = —w?(0, s), we getw,,, (0) = —w,(0). Recallws(0) > 0. Hence
woo(y) = V(y) and the theorem follows. O

Finally, we shall consider the critical case, i.e., the gase 2¢g — 1. Suppose thab(y)
(as defined in Section 4) is the unique global positive monotone decreasing solution of (4.1).
Then the same argument as above leads to the following conclusion. Note,thatO for
y > 0. Hence the limit function satisfies,, < 0.
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THEOREM 5.3. Let p =2¢ — 1. If 1 < p < 2, then we have
(T —)%u(@d — y/T —t,1) — w(y)
ast — T uniformly for y € [0, C] forany C > 0. Herea = 1/(p — 1).

6. Completeblow-up. Suppose that the solutienof the problem (1.1)—(1.3) blows
up at the finite tim& andx = 1 is the only blow-up point. This is the case if ifaxq} > 1
andug > 0in [0, 1]. Let

F™(s) =min{s?,n?}, ¢™(s) =min{s”,n?}, s>0, neN,

and let«™ be the solution of the problenB(™):

(6.1) W =u® 4 gWwu™y, xe@©1), >0,
(6.2) u™©0,0)=0u"1)=fPwu"1), >0,
(6.3) u™(x,0) =uog(x), xel0,1].

We shall follow the method used in [5] to prove that the blow-up is complete, i.e..-as0,
u™(x, 1) — oo forall (x, ) € [0, 1] x (T, 00).

Let K = maxo<y<1uo(x). Since f™ and g™ are locally Lipschitz in(0, K] and
up(1) = £ (uo(1)) forn > K, the solutionu™ of (B™) is C* up to the boundary.

Suppose that™ is a positive smooth supersolution ant is a smooth subsolution of
(B™). Then it is easy to show by the maximum principle th&t > w™ for 0 < x < 1,
t > 0,ifn > K. Note that the functiok + (n? +n?)t +n9x2/2 is a supersolution of§).
Therefore, for any positive integer > K, the problem B?) has a unique positive global
(in time) solutionu™ such that™ < u™*b for (x, 1) € [0, 1] x [0, c0) andu™ < u for
(x,1) €[0,1] x [0, T).

Now, we define

vix, ) = lim u™x,1), 0<x<1, ¢>0.
n—o0

Then we can show that(x, ) = u(x,t) for0 < r < T. Note thatv(1, T) = oco. Further-
more, we have

LEMMA 6.1. Ifg > 1,thenv(1l,7) =ocoforallt > T.

PROOF. ForanyM > 1, there is a smooth functioi such that/ (1) = M, U'(1) =
M1,UE) =0,andU” + UP = 0in (&, 1] for somet € (0, 1), sinceq > 1. We extend the
function U to be linear or0, £] so thatU € C2([0, 1]). Let M > max1, ug(1), ||u6||iéq}.
Thenug intersectd/ exactly once.

Sincev(1, T) = oo, there is a positive integér> K such thai®)(1, 19) > M for some
o € (0, T). Then there is1 € (0, 19) such that:® (1, 11) = M andu®(1,1) < M for all
t € [0, 11). Sinceu®(0,7r) > U(0) andu®(1,1r) < U(1) for all r € [0, 11), it implies that
u® (., 1) intersectd/ at least once. Note that
g(k)(u(k)) + Uxx

@® = Uy = @ = Ux + e, 0@ = U cen) = =
u® —U
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Sinceu® (x, 1) is bounded away from zero [9, 1] x [0, 71), the functionc(x, ¢) is bounded.
Applying Theorem D of [1]x® (., r) intersectd/ exactly once for < 1. Lets®(r) be the
function such that

w® —)s®@),r)=0 forall t€l0,1).
Applying Theorem D of [1] again, we have
@® —0),s® @), 1) £0 forall re0,1n).

Therefore, by the Implicit Function Theorem, the functidf (¢) is continuous irf0, 7).
Now, we will show that

(6.4) u®(x,11) > Ux) forall x €[0,1].

To prove (6.4), we consider two cases. First, we suppose thpguln"s(k) (1) exists. we claim

that IimHtI s%®(7) = 1. For contradiction, we assume that_<(]imH,f s® (1) < 1. Recall

that(u® — U)(1,11) = 0 and® — U)(x,t) < Oforallx e [s®(r), 1] andr € [0, 11]. By
the Hopf Boundary Point Lemmgy® — U), (1, 1) > 0, a contradiction. Since

@® —U)x,1)>0, xe[0,sPw®)], tel01),

by lettings — 11, the inequality (6.4) follows.
Next, we suppose that lim, - s (r) does not exist. We assume that

a = liminf s® (1) < limsups® (1) = b.
1=ty 11y

Thené < a < b < 1. Itis easy to see thau® — U)(x,r) = 0 for all x € [a, b] and
w® — U)(x,11) > Oforallx € [0,a). If b =1, then (6.4) follows immediately. Suppose
thath < 1. For contradiction, we assume that®) — U)(xo, 11) < O for somexg € (b, 1).
Since lim sup., - s® () = b < xp, there existss € [0, 1) such thats® (7) < xg for all

t € (t2, 11). Hence

w® —U)(x,1) <0, forall (x,) € {[xo, 1] x [r2, 1]} U {[s® (1), 1] x [0, 12]} .

It follows from the Hopf Boundary Point Lemma that*) — U), (1, 1) > 0, a contradiction.
Hence (6.4) follows.

Sinceu® (&, 1) > U() for all t > 1, it follows from the maximum principle that
u®(x, 1) > Ux)forall (x,1) € [£,1] x [r1, 00). In particularu™ (1,¢) > M forallt > T
andn > k. Hencev(1, ) = oo for all r > T and the lemma follows. O
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Now, by the representation formula of solution &),

1 t
u(")(x,t)z/ u(”)(y,tl)l"(x,t;y,tl)dy—i—/ FP U@, ), 1, t)d
0

5%

t t
— / u™(1, Iy(x, 151, v)dr +/ u™ (0, )Iy(x,1; 0, 7)dt
1 15

1 1
t pl

+// g(")(u(”)(y, N (x,t;y, t)dydt
t1J0

forx € (0,1) andr > r1 > 0, where

N2
[ty 1) = (x y)},

1
VATt —1) eXp{_ At — 1)

and the jump relation ai™ (0, r)
1 1 t
54 (0.1) = / u™ (y, 1)L, 11 y, )dy + / P @™ (@) O, 11, 1)de
0 1

t t 1
_/ u™ (1, )00, 1 1, T)dT + / g™ @™ (y, ) O, 15y, 1)dydr
t 0

1 n

fort > 11 > 0, we conclude thai(x, ) = oo for all + > T. This proves that the blow-up is
complete whergy > 1.
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