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SOME HOMOLOGICAL INVARIANTS OF THE MAPPING CLASS GROUP
OF A THREE-DIMENSIONAL HANDLEBODY

SUSUMU HIROSE
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Abstract. We show that, ifg ≥ 2, the virtual cohomological dimension of the mapping
class group of a three-dimensional handlebody of genusg is equal to 4g − 5 and its Euler
number is equal to 0.

1. Introduction. A genusg handlebody Hg is an oriented 3-manifold which is con-
structed from 3-ball by attachingg 1-handles. Themapping class group Hg ofHg is defined
to be the group of isotopy classes of orientation-preserving diffeomorphisms ofHg . This
groupHg is a subgroup of the mapping class groupMg of a surface∂Hg , that is,Mg =
π0(Diff +(∂Hg )), where Diff+(∂Hg ) is the group of orientation preserving diffeomorphisms
of ∂Hg . Throughout this paper, we assumeg ≥ 2.

Thecohomological dimension of a groupG, cd(G), is defined to be the largest numbern
for which there exists aG-moduleM with Hn(G,M) nonzero. We remark that ifG1 ⊂ G2,
then cd(G1) ≤ cd(G2). Also, whenG has torsion, cd(G) is infinite. However, ifG has
finite index torsion-free subgroups (we callG virtually torsion-free), we define thevirtual
cohomological dimension of G, vcd(G), to be the cohomological dimension of a finite index
torsion-free subgroup̂G. A theorem of Serre [13] states that this number is independent of
the choice ofĜ. For the virtual cohomological dimensions ofMg andHg , Harer [5] showed
that vcd(Mg ) = 4g − 5, and McCullough [11] showed that vcd(H2) = 3 and, ifg ≥ 3,
3g − 2 ≤ vcd(Hg ) ≤ 4g − 5. In this paper, we prove the following result.

THEOREM 1.1. If g ≥ 2, the virtual cohomological dimension of Hg is equal to
4g − 5.

McCullough [12] informed the author that Hatcher has obtained (not published) this
result by investigating the action ofHg on the disk complex defined by McCullough [11]. In
this paper, by making an essential use of the construction of Mess given in [9], we prove the
result and give an explicit description of a subgroup ofHg that attains vcd(Hg ).

We also give some remarks on the relationship betweenHg and the outer automorphism
group of the free group of rankg . We denote byFg the free group of rankg and by Out(Fg )

its outer automorphism group. There is a natural homomorphism fromHg to Out(Fg ) defined
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by the action of diffeomorphisms on the fundamental group ofHg , which is a surjection [4].
Culler and Vogtmann [3] showed that vcd(Out(Fg )) = 2g − 3. This fact indicates that the
kernel of the above surjection is, in some sense, big. In fact, McCullough [10] showed that
the kernel of the above surjection is not finitely generated.

For any finitely generated abelian groupA, we define therank of A by rkZ(A) =
dimQ(Q ⊗Z A). For a torsion-free groupG of finite homological type, we define theEu-
ler characteristic χ(G) (see [2]) by

χ(G) =
∑

i

(−1)irkZ(Hi(G)) .

For a groupG of finite homological type which may have torsion, we choose a torsion-free
subgroupĜ of finite index, and defineχ(G) by

χ(G) = χ(Ĝ)

(G : Ĝ) ,

where(G : Ĝ) denotes the index of̂G in G. Since,Hg is of type VFL [11], we can define
χ(Hg ). Then we show the following result.

THEOREM 1.2. χ(Hg ) = 0.

Harer and Zagier [6] calculatedχ(Mg ), which turned out to be quite different from
χ(Hg ). This result indicates considerable difference betweenMg andHg .

Finally, the author would like to express his gratitude to Professors T. Akita, N. Ivanov,
N. Kawazumi, J. McCarthy and D. McCullough for their helpful comments. A part of this
paper was written while the author stayed at Michigan State University as a visiting scholar
sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology.
He is grateful to the Department of Mathematics, Michigan State University, for its hospitality.

2. Proof of Theorem 1.1. In general, for an orientedC∞-manifold A and its
subsetB, by Diff +(A) we denote the group of all orientation preserving diffeomorphisms
of A, by Diff +(A, fix B) the group of elements of Diff+(A) whose restriction toB
are the identity map, and by Diff+(A, B) the group of elements of Diff+(A) which
preserveB as a set. For a diskD in ∂Hg , we defineHg ,1 = π0(Diff +(Hg , fix D)),
andMg ,1 = π0(Diff +(∂Hg , fix D)). For the centerp of the diskD, we defineH1

g =
π0(Diff +(Hg , fix {p})), andM1

g = π0(Diff +(∂Hg , fix {p})). LetD1,D2, . . . ,Dg be the
cocores of 1-handles which are used to constructHg . These disksD1,D2, . . . ,Dg are prop-
erly embedded disks inHg . Let E1, . . . , Eg−1 andC be properly embedded disks as indi-
cated in Figure 1.

We introduce some specific elements ofHg . For a diskD properly embedded inHg ,
let N be a regular neighborhood ofD in Hg . We parametrizeN by φ : [−1,1] × D2 →
N such thatφ({0} × D2) = D andφ([−1,1] × ∂D2) is an annulus in∂Hg . Let ψ be a
diffeomorphism of[−1,1] ×D2 defined byψ(t, r, θ) = (t, r, θ + (1 − t)π), where(r, θ) is
a polar coordinate ofD2. The mapδD : Hg → Hg , defined byδD(x) = φ ◦ ψ ◦ φ−1(x) if
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FIGURE 1.

x ∈ N , = x if x 	∈ N , is an orientation preserving diffeomorphism ofHg , which we calla disk
twist aboutD. The isotopy class ofδD, denoted bydD, is an element ofHg , which we calla
disk twist aboutD. For an annulusA properly embedded inHg , letφ : [−1,1] × S1 × [0,1]
→ N be a parametrization of a regular neighborhoodN of A in Hg such thatφ|{0}×S1×[0,1]
is a parametrization ofA, and letψ be the diffeomorphism on[−1,1] × S1 × [0,1] defined
by ψ(t, θ, s) = (t, θ + (1 − t)π, s), whereθ is a polar coordinate ofS1. We defineαA ∈
Diff +(Hg ), which we callan annulus twist aboutA, in the same manner as the definition of
δD. The isotopy class ofαA, denoted byaA, is an element ofHg , which is calledan annulus
twist aboutA.

We now introduce the following terminologies for later use. LetN be a regular neigh-
borhood of∂Hg in Hg , andA be an annulus in∂Hg . We parametrizeN asφ : [0,1] ×
∂Hg → N such thatφ({0} × ∂Hg ) = ∂Hg andφ|{0}×∂Hg is an identity map. The setA′ =
φ(∂A × [0,1] ∪ A × {1}) is an annulus properly embedded inHg . We say that “wepush A
intoHg ” if we obtainA′ fromA. Similarly, for a diskD in ∂Hg , we say that “wepushD into
Hg ” if we obtain a diskD′ fromD in the same manner as above.

Mess [9] discovered certain subgroupsBg ,Bg ,1, calledMess subgroups, of the mapping
class groupsMg , Mg ,1, respectively, which are defined in a recursive manner as follows
(this definition is quoted from §6.3 of [8]):

Step 0: LetB2 be the subgroup ofM2 generated by Dehn twists about any three pair-
wise disjoint and pairwise nonisotopic simple closed curvesC0, C1, C2 in ∂H2.

Step 1g : We assume thatBg (g ≥ 2) is already defined. There is a surjection from
Diff +(∂Hg , fix D) to Diff +(∂Hg ) defined by forgetting the diskD, which induces a surjec-
tion f : Mg ,1 → Mg . LetBg ,1 be the preimage ofBg underf .

Step 2g : By restricting each diffeomorphism, we obtain a homomorphismρ :
Diff +(∂Hg , fix D) → Diff +(∂Hg \ intD, fix ∂D). We consider an embedding∂Hg \ intD
into ∂Hg+1 and identify∂Hg \ intD with its image. By extending each diffeomorphism of
∂Hg \ intD, whose restriction on∂D is the identity, across the complement of∂Hg \ intD
in ∂Hg+1, we obtain a homomorphismι : Diff +(∂Hg \ intD, fix ∂D) → Diff +(∂Hg+1).
The compositionι ◦ ρ induces a homomorphismi : Mg ,1 → Mg+1. In the complement of
∂Hg \ intD in ∂Hg+1, we choose a nontrivial simple closed curveC that is not isotopic into
∂Hg \ intD and consider the Dehn twistt ∈ Mg+1 about this curve. LetT be the infinite
cyclic group generated byt . We defineBg+1 as the group generated byi(Bg ,1) andT .
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Mess [9] showed the following result (see also Corollary 6.3B of [8]).

PROPOSITION 2.1. The cohomological dimension of Bg is equal to 4g − 5.

We will first show the following lemma, which is remarked by Mess [9, p. 4] without a proof.

LEMMA 2.2. Hg contains a subgroup isomorphic to Bg .

REMARK 2.3. The definition ofBg involves some choices. This lemma means that,
with some good choices,Bg is realized as a subgroup ofHg .

PROOF. Along the steps of the definition ofBg , we will check thatB2, Bg ,1, Bg+1 can
be constructed as subgroups ofH2, Hg ,1, Hg+1, respectively. In each step, we use the same
notation as used in definitions ofBg andBg ,1.

Step 0: We chooseC0 = ∂D1, C1 = ∂C, C2 = ∂D2. ThenB2 ⊂ H2.
Step 1g : We assume thatBg ⊂ Hg . Let g 1, . . . , g n be generators ofBg . For each

g i , we can choose an elementg̃ i of Hg ,1 such thatf (g̃ i ) = g i . By the definition,Bg ,1 is
generated by the kernel off andg̃ 1, . . . , g̃ n. In order to obtain generators for the kernel of
f , we consider the following two short exact sequences:

1 −→ Z −→ Mg ,1
α−→ M1

g −→ 1 ,(S1)

1 −→ π1(∂Hg , p)
β−→ M1

g
γ−→ Mg −→ 1 .(S2)

The groupZ in (S1) is an infinite cyclic group generated by the Dehn twistd about
∂D. The homomorphismα is induced by the homomorphism from Diff+(∂Hg , fix D) to
Diff +(∂Hg , fix{p}) defined by collapsingD into a pointp. The sequence (S2) is introduced
by Birman [1]. The homomorphismγ is induced by the homomorphism from Diff+(∂Hg ,

fix {p}) to Diff +(∂Hg ) defined by forgetting the pointp. The groupπ1(∂Hg , p) is generated
by simple loops in∂Hg with base pointp. Let l1, . . . , l2g be simple loops in∂Hg , whose
homotopy classes generateπ1(∂Hg , p). For eachli , letLi be an annulus in∂Hg , which is a
regular neighborhood ofli such thatLi ⊃ D 
 p. ∂Li consists of two simple closed curves
l1i and l2i in ∂Hg . The homomorphismβ is defined so that it maps a homotopy class ofli

(denote by[li] for short) to that ofλi = (+Dehn twist aboutl1i ) × (−Dehn twist aboutl2i ),
which is also an element of Diff+(∂Hg , fix D), andα (an element ofMg ,1 represented by
λi) = β([li]). Let l̃i be an element ofMg ,1 represented byλi . The kernel off is generated
by d and l̃1, . . . , l̃2g , since it is equal toα−1 (the kernel ofγ ) = α−1 (the image ofβ). Let
D′ be a disk inHg obtained by pushingD intoHg , andδD′ be the disk twist aboutD′. Let
L′
i be an annulus obtained by pushingLi into Hg , andαL′

i
be the annulus twist aboutL′

i .

The diffeomorphismsδD′ andαL′
i

are elements of Diff+(Hg , fix D), whose restrictions to

∂Hg representd andl̃i , respectively. This fact shows that the kernel off is included inHg ,1.
Hence,Bg ,1 ⊂ Hg ,1.

Step 2g : It is easy to see thati(Bg ,1) ⊂ Hg+1. If we chooseC = ∂Dg+1, thent ∈
Hg+1. Therefore,Bg+1 ⊂ Hg+1. �

Along the line of the proof of Theorem 6.4.A in [8], we will prove Theorem 1.1.
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PROOF OFTHEOREM 1.1. There is a natural homomorphismMg → Aut (H1(∂Hg ,

Z/3Z)) defined by the action of diffeomorphisms onH1(∂Hg ,Z/3Z). Let Γ be the kernel
of this homomorphism. It is a classical result thatΓ is torsion-free (see, e.g., Ivanov [7,
Corollary 1.5]). Therefore,Γ , Hg ∩ Γ andBg ∩ Γ are finite index torsion-free subgroups
of Mg , Hg andBg , respectively. By the definition of virtual cohomological dimension,
vcd(Mg ) = cd(Γ ), vcd(Hg ) = cd(Hg ∩ Γ ) and vcd(Bg ) = cd(Bg ∩ Γ ). By Harer [5,
Theorem 4.1], vcd(Mg )= 4g −5, and hence, cd(Γ )= 4g −5. By Proposition 2.1, vcd(Bg )

= cd(Bg ) = 4g − 5, and hence, cd(Bg ∩ Γ ) = 4g − 5. By Lemma 2.2,Bg ∩ Γ ⊂ Hg ∩ Γ
⊂ Γ . Therefore, cd(Bg ∩ Γ ) ≤ cd(Hg ∩ Γ ) ≤ cd(Γ ). These facts show the theorem.

3. Proof of Theorem 1.2. McCullough defined adisk complex L in [11] and used
it to estimate vcd(Hg ). We here review the definition ofL. By a disk in Hg , we mean a
properly embedded 2-disk inHg . A diskD is calledessential when∂D does not bound a
2-disk in ∂Hg . The disk complexL of Hg is a simplicial complex whose vertices are the
isotopy classes of essential disks inHg , and whose simplices are defined by the rule that a
collection ofn+ 1 distinct vertices spans ann-simplex if and only if it admits a collection of
representatives which are pairwise disjoint. McCullough showed the following Theorem in
[11, Theorem 5.3].

THEOREM 3.1 ([11]). The disk complex L of Hg is contractible.

We use the following Propositions regarding Eulercharacteristics of groups (see, e.g., [2,
Proposition §IX 7.3]) .

PROPOSITION 3.2. Let 1 → G′ → G → G′′ → 1 be a short exact sequence of
groups, where G′ and G′′ are of finite homology type. If G is virtually torsion-free, then G is
of finite homological type and χ(G) = χ(G′)χ(G′′).

PROPOSITION 3.3. Let X be a contractible simplicial complex on whichG act simpli-
cially. For each simplex σ ofX, letGσ = {g ∈ G | gσ = σ }. IfX has only finitely many cells
modG, and, for each simplex σ of X, Gσ is of finite homological type, then

χ(G) =
∑

σ∈E
(−1)dimσ χ(Gσ ) ,

where E is a set of representatives for the cells of X modG.

For each simplexσ = 〈D0, . . . ,Dn〉 of L, Proposition 6.5 of [11] shows thatGσ =
π0Diff +(Hg , D0∪· · ·∪Dn). For the same simplexσ , letΓσ be the graph defined as follows.
The vertices ofΓσ correspond to the components ofHg \D0∪· · ·∪Dn. Each edge corresponds
to one ofD0, . . . ,Dn and connects the vertices corresponding to the components attached
along this disk. LetHg /D0 ∪ · · · ∪Dn be the space obtained fromHg by collapsing eachDi
to one point, andδ be a homomorphism fromGσ to π0Diff +(Hg /D0 ∪ · · · ∪Dn,D0/D0 ∪
· · · ∪Dn/Dn) which is induced by collapsing eachDi to one point. LetZn+1 denote the free
abelian group generated by disk twists aboutD0, . . . ,Dn. Then we have the following exact
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sequence:

1 −→ Zn+1 −→ Gσ
δ−→ π0Diff +(Hg /D0 ∪ · · · ∪Dn,D0/D0 ∪ · · · ∪Dn/Dn) −→ 1 .

(S3)

Let ε be the natural homomorphism fromπ0Diff +(Hg /D0∪· · ·∪Dn,D0/D0∪· · ·∪Dn/Dn)
to the group of automorphisms ofΓσ . LetAσ be the image ofε, which is a finite group, since
the group of automorphisms ofΓσ is a finite group. ByH ′

g we denote the 3-manifold obtained

by cuttingHg alongD0, . . . ,Dn, and byD1
0,D

2
0, . . . ,D

1
n,D

2
n the disks on∂H ′

g obtained as

a result of cutting, and byH ′
g /D

1
0 ∪ D2

0 ∪ · · · ∪ D1
n ∪ D2

n the space obtained fromH ′
g by

collapsing eachDij (i = 1,2, j = 0, . . . , n) to one point. Then we obtain the following exact
sequence:

1 −→ π0Diff +(H ′
g /D

1
0 ∪D2

0 ∪ · · · ∪D1
n ∪D2

n,

fix D1
0/D

1
0 ∪D2

0/D
2
0 ∪ · · · ∪D1

n/D
1
n ∪D2

n/D
2
n)

−→ π0Diff +(Hg /D0 ∪ · · · ∪Dn,D0/D0 ∪ · · · ∪Dn/Dn) ε−→ Aσ −→ 1 .

(S4)

Sinceχ(Zn+1) = χ((S1)n+1) = 0, by applying Proposition 3.2 to (S3) and (S4), we obtain
χ(Gσ ) = 0. Theorem 1.2 now follows from the above observation together with Theorem
3.1 and Proposition 3.3.
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