SOME HOMOLOGICAL INVARIANTS OF THE MAPPING CLASS GROUP OF A THREE-DIMENSIONAL HANDLEBODY

Susumu Hirose

(Received December 5, 2001, revised September 17, 2002)

Abstract

We show that, if $g \geq 2$, the virtual cohomological dimension of the mapping class group of a three-dimensional handlebody of genus g is equal to $4 g-5$ and its Euler number is equal to 0 .

1. Introduction. A genus g handlebody H_{g} is an oriented 3-manifold which is constructed from 3-ball by attaching g 1-handles. The mapping class group \mathcal{H}_{g} of H_{g} is defined to be the group of isotopy classes of orientation-preserving diffeomorphisms of H_{g}. This group \mathcal{H}_{g} is a subgroup of the mapping class group \mathcal{M}_{g} of a surface ∂H_{g}, that is, $\mathcal{M}_{g}=$ $\pi_{0}\left(\right.$ Diff $\left.^{+}\left(\partial H_{g}\right)\right)$, where Diff ${ }^{+}\left(\partial H_{g}\right)$ is the group of orientation preserving diffeomorphisms of ∂H_{g}. Throughout this paper, we assume $g \geq 2$.

The cohomological dimension of a group $G, \operatorname{cd}(G)$, is defined to be the largest number n for which there exists a G-module M with $H^{n}(G, M)$ nonzero. We remark that if $G_{1} \subset G_{2}$, then $\operatorname{cd}\left(G_{1}\right) \leq \operatorname{cd}\left(G_{2}\right)$. Also, when G has torsion, $\operatorname{cd}(G)$ is infinite. However, if G has finite index torsion-free subgroups (we call G virtually torsion-free), we define the virtual cohomological dimension of $G, \operatorname{vcd}(G)$, to be the cohomological dimension of a finite index torsion-free subgroup \hat{G}. A theorem of Serre [13] states that this number is independent of the choice of \hat{G}. For the virtual cohomological dimensions of \mathcal{M}_{g} and \mathcal{H}_{g}, Harer [5] showed that $\operatorname{vcd}\left(\mathcal{M}_{g}\right)=4 g-5$, and McCullough [11] showed that $\operatorname{vcd}\left(\mathcal{H}_{2}\right)=3$ and, if $g \geq 3$, $3 g-2 \leq \operatorname{vcd}\left(\mathcal{H}_{g}\right) \leq 4 g-5$. In this paper, we prove the following result.

THEOREM 1.1. If $g \geq 2$, the virtual cohomological dimension of \mathcal{H}_{g} is equal to $4 g-5$.

McCullough [12] informed the author that Hatcher has obtained (not published) this result by investigating the action of \mathcal{H}_{g} on the disk complex defined by McCullough [11]. In this paper, by making an essential use of the construction of Mess given in [9], we prove the result and give an explicit description of a subgroup of \mathcal{H}_{g} that attains $\operatorname{vcd}\left(\mathcal{H}_{g}\right)$.

We also give some remarks on the relationship between \mathcal{H}_{g} and the outer automorphism group of the free group of rank g. We denote by F_{g} the free group of rank g and by $\operatorname{Out}\left(F_{g}\right)$ its outer automorphism group. There is a natural homomorphism from \mathcal{H}_{g} to $\operatorname{Out}\left(F_{g}\right)$ defined

[^0]by the action of diffeomorphisms on the fundamental group of H_{g}, which is a surjection [4]. Culler and Vogtmann [3] showed that $\operatorname{vcd}\left(\operatorname{Out}\left(F_{g}\right)\right)=2 g-3$. This fact indicates that the kernel of the above surjection is, in some sense, big. In fact, McCullough [10] showed that the kernel of the above surjection is not finitely generated.

For any finitely generated abelian group A, we define the rank of A by $\mathrm{rk}_{\mathbf{Z}}(A)=$ $\operatorname{dim}_{\boldsymbol{Q}}\left(\boldsymbol{Q} \otimes_{\mathbf{Z}} A\right)$. For a torsion-free group G of finite homological type, we define the $E u$ ler characteristic $\chi(G)$ (see [2]) by

$$
\chi(G)=\sum_{i}(-1)^{i} \mathrm{rk}_{\mathbf{Z}}\left(H_{i}(G)\right)
$$

For a group G of finite homological type which may have torsion, we choose a torsion-free subgroup \hat{G} of finite index, and define $\chi(G)$ by

$$
\chi(G)=\frac{\chi(\hat{G})}{(G: \hat{G})}
$$

where $(G: \hat{G})$ denotes the index of \hat{G} in G. Since, \mathcal{H}_{g} is of type VFL [11], we can define $\chi\left(\mathcal{H}_{g}\right)$. Then we show the following result.

THEOREM 1.2. $\chi\left(\mathcal{H}_{g}\right)=0$.
Harer and Zagier [6] calculated $\chi\left(\mathcal{M}_{g}\right)$, which turned out to be quite different from $\chi\left(\mathcal{H}_{g}\right)$. This result indicates considerable difference between \mathcal{M}_{g} and \mathcal{H}_{g}.

Finally, the author would like to express his gratitude to Professors T. Akita, N. Ivanov, N. Kawazumi, J. McCarthy and D. McCullough for their helpful comments. A part of this paper was written while the author stayed at Michigan State University as a visiting scholar sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology. He is grateful to the Department of Mathematics, Michigan State University, for its hospitality.
2. Proof of Theorem 1.1. In general, for an oriented C^{∞}-manifold A and its subset B, by $\operatorname{Diff}^{+}(A)$ we denote the group of all orientation preserving diffeomorphisms of A, by $\operatorname{Diff}^{+}(A$, fix $B)$ the group of elements of $\operatorname{Diff}^{+}(A)$ whose restriction to B are the identity map, and by $\operatorname{Diff}^{+}(A, B)$ the group of elements of $\operatorname{Diff}^{+}(A)$ which preserve B as a set. For a disk D in ∂H_{g}, we define $\mathcal{H}_{g, 1}=\pi_{0}\left(\operatorname{Diff}^{+}\left(H_{g}\right.\right.$, fix $\left.D\right)$), and $\mathcal{M}_{g, 1}=\pi_{0}\left(\operatorname{Diff}^{+}\left(\partial H_{g}\right.\right.$, fix $\left.\left.D\right)\right)$. For the center p of the disk D, we define $\mathcal{H}_{g}^{1}=$ $\pi_{0}\left(\operatorname{Diff}^{+}\left(H_{g}\right.\right.$, fix $\left.\left.\{p\}\right)\right)$, and $\mathcal{M}_{g}^{1}=\pi_{0}\left(\operatorname{Diff}^{+}\left(\partial H_{g}\right.\right.$, fix $\left.\left.\{p\}\right)\right)$. Let $D_{1}, D_{2}, \ldots, D_{g}$ be the cocores of 1-handles which are used to construct H_{g}. These disks $D_{1}, D_{2}, \ldots, D_{g}$ are properly embedded disks in H_{g}. Let E_{1}, \ldots, E_{g-1} and C be properly embedded disks as indicated in Figure 1.

We introduce some specific elements of \mathcal{H}_{g}. For a disk D properly embedded in H_{g}, let N be a regular neighborhood of D in H_{g}. We parametrize N by $\phi:[-1,1] \times D^{2} \rightarrow$ N such that $\phi\left(\{0\} \times D^{2}\right)=D$ and $\phi\left([-1,1] \times \partial D^{2}\right)$ is an annulus in ∂H_{g}. Let ψ be a diffeomorphism of $[-1,1] \times D^{2}$ defined by $\psi(t, r, \theta)=(t, r, \theta+(1-t) \pi)$, where (r, θ) is a polar coordinate of D^{2}. The map $\delta_{D}: H_{g} \rightarrow H_{g}$, defined by $\delta_{D}(x)=\phi \circ \psi \circ \phi^{-1}(x)$ if

Figure 1.
$x \in N,=x$ if $x \notin N$, is an orientation preserving diffeomorphism of H_{g}, which we call a disk twist about D. The isotopy class of δ_{D}, denoted by d_{D}, is an element of \mathcal{H}_{g}, which we call a disk twist about D. For an annulus A properly embedded in H_{g}, let $\phi:[-1,1] \times S^{1} \times[0,1]$ $\rightarrow N$ be a parametrization of a regular neighborhood N of A in H_{g} such that $\left.\phi\right|_{\{0\} \times S^{1} \times[0,1]}$ is a parametrization of A, and let ψ be the diffeomorphism on $[-1,1] \times S^{1} \times[0,1]$ defined by $\psi(t, \theta, s)=(t, \theta+(1-t) \pi, s)$, where θ is a polar coordinate of S^{1}. We define $\alpha_{A} \in$ Diff ${ }^{+}\left(H_{g}\right)$, which we call an annulus twist about A, in the same manner as the definition of δ_{D}. The isotopy class of α_{A}, denoted by a_{A}, is an element of \mathcal{H}_{g}, which is called an annulus twist about A.

We now introduce the following terminologies for later use. Let N be a regular neighborhood of ∂H_{g} in H_{g}, and A be an annulus in ∂H_{g}. We parametrize N as $\phi:[0,1] \times$ $\partial H_{g} \rightarrow N$ such that $\phi\left(\{0\} \times \partial H_{g}\right)=\partial H_{g}$ and $\left.\phi\right|_{\{0\} \times \partial H_{g}}$ is an identity map. The set $A^{\prime}=$ $\phi(\partial A \times[0,1] \cup A \times\{1\})$ is an annulus properly embedded in H_{g}. We say that "we push A into H_{g} " if we obtain A^{\prime} from A. Similarly, for a disk D in ∂H_{g}, we say that "we push D into H_{g} " if we obtain a disk D^{\prime} from D in the same manner as above.

Mess [9] discovered certain subgroups $B_{g}, B_{g, 1}$, called Mess subgroups, of the mapping class groups $\mathcal{M}_{g}, \mathcal{M}_{g, 1}$, respectively, which are defined in a recursive manner as follows (this definition is quoted from $\S 6.3$ of [8]):

Step 0: Let B_{2} be the subgroup of \mathcal{M}_{2} generated by Dehn twists about any three pairwise disjoint and pairwise nonisotopic simple closed curves C_{0}, C_{1}, C_{2} in ∂H_{2}.

Step 1_{g} : We assume that $B_{g}(g \geq 2)$ is already defined. There is a surjection from Diff ${ }^{+}\left(\partial H_{g}\right.$, fix $\left.D\right)$ to $\operatorname{Diff}^{+}\left(\partial H_{g}\right)$ defined by forgetting the disk D, which induces a surjection $f: \mathcal{M}_{g, 1} \rightarrow \mathcal{M}_{g}$. Let $B_{g, 1}$ be the preimage of B_{g} under f.

Step 2_{g} : By restricting each diffeomorphism, we obtain a homomorphism ρ : Diff ${ }^{+}\left(\partial H_{g}\right.$, fix $\left.D\right) \rightarrow \operatorname{Diff}^{+}\left(\partial H_{g} \backslash\right.$ int D, fix $\left.\partial D\right)$. We consider an embedding $\partial H_{g} \backslash$ int D into ∂H_{g+1} and identify $\partial H_{g} \backslash$ int D with its image. By extending each diffeomorphism of $\partial H_{g} \backslash$ int D, whose restriction on ∂D is the identity, across the complement of $\partial H_{g} \backslash$ int D in ∂H_{g+1}, we obtain a homomorphism $\iota: \operatorname{Diff}^{+}\left(\partial H_{g} \backslash\right.$ int D, fix $\left.\partial D\right) \rightarrow \operatorname{Diff}^{+}\left(\partial H_{g+1}\right)$. The composition $\iota \circ \rho$ induces a homomorphism $i: \mathcal{M}_{g, 1} \rightarrow \mathcal{M}_{g+1}$. In the complement of $\partial H_{g} \backslash$ int D in ∂H_{g+1}, we choose a nontrivial simple closed curve C that is not isotopic into $\partial H_{g} \backslash$ int D and consider the Dehn twist $t \in \mathcal{M}_{g+1}$ about this curve. Let T be the infinite cyclic group generated by t. We define B_{g+1} as the group generated by $i\left(B_{g, 1}\right)$ and T.

Mess [9] showed the following result (see also Corollary 6.3B of [8]).
Proposition 2.1. The cohomological dimension of B_{g} is equal to $4 g-5$.
We will first show the following lemma, which is remarked by Mess [9, p. 4] without a proof.
Lemma 2.2. \mathcal{H}_{g} contains a subgroup isomorphic to B_{g}.
REMARK 2.3. The definition of B_{g} involves some choices. This lemma means that, with some good choices, B_{g} is realized as a subgroup of \mathcal{H}_{g}.

Proof. Along the steps of the definition of B_{g}, we will check that $B_{2}, B_{g, 1}, B_{g+1}$ can be constructed as subgroups of $\mathcal{H}_{2}, \mathcal{H}_{g, 1}, \mathcal{H}_{g+1}$, respectively. In each step, we use the same notation as used in definitions of B_{g} and $B_{g, 1}$.

Step 0: We choose $C_{0}=\partial D_{1}, C_{1}=\partial C, C_{2}=\partial D_{2}$. Then $B_{2} \subset \mathcal{H}_{2}$.
Step 1_{g} : We assume that $B_{g} \subset \mathcal{H}_{g}$. Let g_{1}, \ldots, g_{n} be generators of B_{g}. For each g_{i}, we can choose an element \tilde{g}_{i} of $\mathcal{H}_{g, 1}$ such that $f\left(\tilde{g}_{i}\right)=g_{i}$. By the definition, $B_{g, 1}$ is generated by the kernel of f and $\tilde{g}_{1}, \ldots, \tilde{g}_{n}$. In order to obtain generators for the kernel of f, we consider the following two short exact sequences:

$$
\begin{gather*}
1 \longrightarrow \boldsymbol{Z} \longrightarrow \mathcal{M}_{g, 1} \xrightarrow{\alpha} \mathcal{M}_{g}^{1} \longrightarrow 1, \tag{S1}\\
1 \longrightarrow \pi_{1}\left(\partial H_{g}, p\right) \xrightarrow{\beta} \mathcal{M}_{g}^{1} \xrightarrow{\gamma} \mathcal{M}_{g} \longrightarrow 1 . \tag{S2}
\end{gather*}
$$

The group \boldsymbol{Z} in (S1) is an infinite cyclic group generated by the Dehn twist d about ∂D. The homomorphism α is induced by the homomorphism from $\operatorname{Diff}^{+}\left(\partial H_{g}\right.$, fix $\left.D\right)$ to Diff ${ }^{+}\left(\partial H_{g}, \operatorname{fix}\{p\}\right)$ defined by collapsing D into a point p. The sequence (S 2) is introduced by Birman [1]. The homomorphism γ is induced by the homomorphism from $\operatorname{Diff}^{+}\left(\partial \mathrm{H}_{g}\right.$, fix $\{p\})$ to $\operatorname{Diff}^{+}\left(\partial H_{g}\right)$ defined by forgetting the point p. The group $\pi_{1}\left(\partial H_{g}, p\right)$ is generated by simple loops in ∂H_{g} with base point p. Let $l_{1}, \ldots, l_{2 g}$ be simple loops in ∂H_{g}, whose homotopy classes generate $\pi_{1}\left(\partial H_{g}, p\right)$. For each l_{i}, let L_{i} be an annulus in ∂H_{g}, which is a regular neighborhood of l_{i} such that $L_{i} \supset D \ni p$. ∂L_{i} consists of two simple closed curves l_{i}^{1} and l_{i}^{2} in ∂H_{g}. The homomorphism β is defined so that it maps a homotopy class of l_{i} (denote by $\left[l_{i}\right]$ for short) to that of $\lambda_{i}=\left(+\right.$ Dehn twist about $\left.l_{i}^{1}\right) \times\left(-\right.$ Dehn twist about $\left.l_{i}^{2}\right)$, which is also an element of $\operatorname{Diff}^{+}\left(\partial H_{g}\right.$, fix $\left.D\right)$, and α (an element of $\mathcal{M}_{g, 1}$ represented by $\left.\lambda_{i}\right)=\beta\left(\left[l_{i}\right]\right)$. Let \tilde{l}_{i} be an element of $\mathcal{M}_{g, 1}$ represented by λ_{i}. The kernel of f is generated by d and $\tilde{l}_{1}, \ldots, \tilde{l}_{2 g}$, since it is equal to α^{-1} (the kernel of γ) $=\alpha^{-1}$ (the image of β). Let D^{\prime} be a disk in H_{g} obtained by pushing D into H_{g}, and $\delta_{D^{\prime}}$ be the disk twist about D^{\prime}. Let L_{i}^{\prime} be an annulus obtained by pushing L_{i} into H_{g}, and $\alpha_{L_{i}^{\prime}}$ be the annulus twist about L_{i}^{\prime}. The diffeomorphisms $\delta_{D^{\prime}}$ and $\alpha_{L_{i}^{\prime}}$ are elements of $\operatorname{Diff}^{+}\left(H_{g}\right.$, fix $\left.D\right)$, whose restrictions to ∂H_{g} represent d and \tilde{l}_{i}, respectively. This fact shows that the kernel of f is included in $\mathcal{H}_{g, 1}$. Hence, $B_{g, 1} \subset \mathcal{H}_{g, 1}$.

Step 2_{g} : It is easy to see that $i\left(B_{g, 1}\right) \subset \mathcal{H}_{g+1}$. If we choose $C=\partial D_{g+1}$, then $t \in$ \mathcal{H}_{g+1}. Therefore, $B_{g+1} \subset \mathcal{H}_{g+1}$.

Along the line of the proof of Theorem 6.4.A in [8], we will prove Theorem 1.1.

PROOF OF THEOREM 1.1. There is a natural homomorphism $\mathcal{M}_{g} \rightarrow$ Aut $\left(H_{1}\left(\partial H_{g}\right.\right.$, $\boldsymbol{Z} / 3 \boldsymbol{Z})$) defined by the action of diffeomorphisms on $H_{1}\left(\partial H_{g}, \boldsymbol{Z} / 3 \boldsymbol{Z}\right)$. Let Γ be the kernel of this homomorphism. It is a classical result that Γ is torsion-free (see, e.g., Ivanov [7, Corollary 1.5]). Therefore, $\Gamma, \mathcal{H}_{g} \cap \Gamma$ and $B_{g} \cap \Gamma$ are finite index torsion-free subgroups of $\mathcal{M}_{g}, \mathcal{H}_{g}$ and B_{g}, respectively. By the definition of virtual cohomological dimension, $\operatorname{vcd}\left(\mathcal{M}_{g}\right)=\operatorname{cd}(\Gamma), \operatorname{vcd}\left(\mathcal{H}_{g}\right)=\operatorname{cd}\left(\mathcal{H}_{g} \cap \Gamma\right)$ and $\operatorname{vcd}\left(B_{g}\right)=\operatorname{cd}\left(B_{g} \cap \Gamma\right)$. By Harer [5, Theorem 4.1], $\operatorname{vcd}\left(\mathcal{M}_{g}\right)=4 g-5$, and hence, $\operatorname{cd}(\Gamma)=4 g-5$. By Proposition 2.1, $\operatorname{vcd}\left(B_{g}\right)$ $=\operatorname{cd}\left(B_{g}\right)=4 g-5$, and hence, $\operatorname{cd}\left(B_{g} \cap \Gamma\right)=4 g-5$. By Lemma 2.2, $B_{g} \cap \Gamma \subset \mathcal{H}_{g} \cap \Gamma$ $\subset \Gamma$. Therefore, $\operatorname{cd}\left(B_{g} \cap \Gamma\right) \leq \operatorname{cd}\left(\mathcal{H}_{g} \cap \Gamma\right) \leq \operatorname{cd}(\Gamma)$. These facts show the theorem.
3. Proof of Theorem 1.2. McCullough defined a disk complex L in [11] and used it to estimate $\operatorname{vcd}\left(\mathcal{H}_{g}\right)$. We here review the definition of L. By a disk in H_{g}, we mean a properly embedded 2-disk in H_{g}. A disk D is called essential when ∂D does not bound a 2-disk in ∂H_{g}. The disk complex L of H_{g} is a simplicial complex whose vertices are the isotopy classes of essential disks in H_{g}, and whose simplices are defined by the rule that a collection of $n+1$ distinct vertices spans an n-simplex if and only if it admits a collection of representatives which are pairwise disjoint. McCullough showed the following Theorem in [11, Theorem 5.3].

THEOREM 3.1 ([11]). The disk complex L of H_{g} is contractible.
We use the following Propositions regarding Euler characteristics of groups (see, e.g., [2, Proposition §IX 7.3]) .

Proposition 3.2. Let $1 \rightarrow G^{\prime} \rightarrow G \rightarrow G^{\prime \prime} \rightarrow 1$ be a short exact sequence of groups, where G^{\prime} and $G^{\prime \prime}$ are of finite homology type. If G is virtually torsion-free, then G is of finite homological type and $\chi(G)=\chi\left(G^{\prime}\right) \chi\left(G^{\prime \prime}\right)$.

Proposition 3.3. Let X be a contractible simplicial complex on which G act simplicially. For each simplex σ of X, let $G_{\sigma}=\{g \in G \mid g \sigma=\sigma\}$. If X has only finitely many cells $\bmod G$, and, for each simplex σ of X, G_{σ} is of finite homological type, then

$$
\chi(G)=\sum_{\sigma \in \mathcal{E}}(-1)^{\operatorname{dim} \sigma} \chi\left(G_{\sigma}\right),
$$

where \mathcal{E} is a set of representatives for the cells of $X \bmod G$.
For each simplex $\sigma=\left\langle D_{0}, \ldots, D_{n}\right\rangle$ of L, Proposition 6.5 of [11] shows that $G_{\sigma}=$ $\pi_{0} \operatorname{Diff}^{+}\left(H_{g}, D_{0} \cup \cdots \cup D_{n}\right)$. For the same simplex σ, let Γ_{σ} be the graph defined as follows. The vertices of Γ_{σ} correspond to the components of $H_{g} \backslash D_{0} \cup \cdots \cup D_{n}$. Each edge corresponds to one of D_{0}, \ldots, D_{n} and connects the vertices corresponding to the components attached along this disk. Let $H_{g} / D_{0} \cup \cdots \cup D_{n}$ be the space obtained from H_{g} by collapsing each D_{i} to one point, and δ be a homomorphism from G_{σ} to $\pi_{0} \operatorname{Diff}^{+}\left(H_{g} / D_{0} \cup \cdots \cup D_{n}, D_{0} / D_{0} \cup\right.$ $\cdots \cup D_{n} / D_{n}$) which is induced by collapsing each D_{i} to one point. Let Z^{n+1} denote the free abelian group generated by disk twists about D_{0}, \ldots, D_{n}. Then we have the following exact
sequence:
(S3)

$$
1 \longrightarrow Z^{n+1} \longrightarrow G_{\sigma} \xrightarrow{\delta} \pi_{0} \operatorname{Diff}^{+}\left(H_{g} / D_{0} \cup \cdots \cup D_{n}, D_{0} / D_{0} \cup \cdots \cup D_{n} / D_{n}\right) \longrightarrow 1
$$

Let ε be the natural homomorphism from π_{0} Diff $^{+}\left(H_{g} / D_{0} \cup \cdots \cup D_{n}, D_{0} / D_{0} \cup \cdots \cup D_{n} / D_{n}\right)$ to the group of automorphisms of Γ_{σ}. Let A_{σ} be the image of ε, which is a finite group, since the group of automorphisms of Γ_{σ} is a finite group. By H_{g}^{\prime} we denote the 3-manifold obtained by cutting H_{g} along D_{0}, \ldots, D_{n}, and by $D_{0}^{1}, D_{0}^{2}, \ldots, D_{n}^{1}, D_{n}^{2}$ the disks on ∂H_{g}^{\prime} obtained as a result of cutting, and by $H_{g}^{\prime} / D_{0}^{1} \cup D_{0}^{2} \cup \cdots \cup D_{n}^{1} \cup D_{n}^{2}$ the space obtained from H_{g}^{\prime} by collapsing each $D_{j}^{i}(i=1,2, j=0, \ldots, n)$ to one point. Then we obtain the following exact sequence:

$$
\begin{align*}
& 1 \longrightarrow \pi_{0} \operatorname{Diff}^{+}\left(H_{g}^{\prime} / D_{0}^{1} \cup D_{0}^{2} \cup \cdots \cup D_{n}^{1} \cup D_{n}^{2}\right. \\
& \left.\quad \text { fix } D_{0}^{1} / D_{0}^{1} \cup D_{0}^{2} / D_{0}^{2} \cup \cdots \cup D_{n}^{1} / D_{n}^{1} \cup D_{n}^{2} / D_{n}^{2}\right) \tag{S4}\\
& \\
& \longrightarrow \pi_{0} \operatorname{Diff}^{+}\left(H_{g} / D_{0} \cup \cdots \cup D_{n}, D_{0} / D_{0} \cup \cdots \cup D_{n} / D_{n}\right) \xrightarrow{\varepsilon} A_{\sigma} \longrightarrow 1
\end{align*}
$$

Since $\chi\left(\boldsymbol{Z}^{n+1}\right)=\chi\left(\left(S^{1}\right)^{n+1}\right)=0$, by applying Proposition 3.2 to (S3) and (S4), we obtain $\chi\left(G_{\sigma}\right)=0$. Theorem 1.2 now follows from the above observation together with Theorem 3.1 and Proposition 3.3.

References

[1] J. S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure and Appl. Math. 22 (1969), 213-238.
[2] K. S. Brown, Cohomology of groups, Grad. Texts in Math. 87, Springer-Verlag, New York-Berlin, 1982.
[3] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), 91-119.
[4] H. B. Griffiths, Automorphisms of a 3-dimensional handlebody, Abh. Math. Sem. Univ. Hamburg 26 (1964), 191-210.
[5] J. L. HARER, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), 157-176.
[6] J. L. HARER AND D. ZAGIER, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), 457-485.
[7] N. V. Ivanov, Subgroups of Teichmüller modular groups, Transl. Math. Monogr. 115, American Mathematical Society, Providence, RI, 1992.
[8] N. V. Ivanov, Mapping class groups, Handbook of geometric topology, 523-633, North-Holland, Amsterdam, 2002.
[9] G. MESs, Unit tangent bundle subgroups of the mapping class groups, preprint (1990).
[10] D. MCCULLOUGH, Twist groups of compact 3-manifolds, Topology 24 (1985), 461-474.
[11] D. McCullough, Virtually geometrically finite mapping class groups of 3-manifolds. J. Differential Geom. 33 (1991), 1-65.
[12] D. MCCULLOUGH, private communication.
[13] J.-P. Serre, Cohomology des groupes discrets, Prospects in Mathematics (Proc. Sympos., Princeton Univ., Princeton, N. J., 1970), 77-169, Ann. Math. Studies 70, Princeton Univ. Press, Princeton, N. J., 1971.

Department of Mathematics
Faculty of Science and Engineering
Saga University
SAGA, 840-8502
JAPAN
E-mail address: hirose@ms.saga-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 57N10; Secondary 57N05, 20 F38.
 Key words and phrases. Virtual cohomological dimension, Euler number, 3-dimensional handlebody, mapping class group.

