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SOME HOMOLOGICAL INVARIANTSOF THE MAPPING CLASS GROUP
OF A THREE-DIMENSIONAL HANDLEBODY
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Abstract. We show that, ify > 2, the virtual cohomological dimension of the mapping
class group of a three-dimensional handlebody of genisequal to 4 — 5 and its Euler
number is equal to 0.

1. Introduction. A genusg handlebody H, is an oriented 3-manifold which is con-
structed from 3-ball by attaching 1-handles. Thenapping class group H, of H, is defined
to be the group of isotopy classes of orientation-preserving diffeomorphismi& ofThis
groupH, is a subgroup of the mapping class grolp, of a surfaced Hy, that is, M, =
mo(Diff +(8Hg)), where Diff+(8Hg) is the group of orientation preserving diffeomorphisms
of 9 H,. Throughout this paper, we assume- 2.

Thecohomological dimension of a groupG, cd(G), is defined to be the largest numizer
for which there exists &-moduleM with H" (G, M) nonzero. We remark that &1 C Go,
then cdG1) < cd(G»2). Also, whenG has torsion, c@?’) is infinite. However, ifG has
finite index torsion-free subgroups (we céll virtually torsion-free), we define thevirtual
cohomological dimension of G, ved(G), to be the cohomological dimension of a finite index
torsion-free subgroug. A theorem of Serre [13] states that this number is independent of
the choice ofG. For the virtual cohomological dimensions.et, andH,, Harer [5] showed
that ved M) = 4¢ — 5, and McCullough [11] showed that v@d;) = 3 and, ifg > 3,

39 — 2 < vcd(Hy) < 4g — 5. In this paper, we prove the following result.

THEOREM 1.1. If ¢ > 2, the virtual cohomological dimension of H, is equal to
49 — 5.

McCullough [12] informed the author that Hatcher has obtained (not published) this
result by investigating the action &f, on the disk complex defined by McCullough [11]. In
this paper, by making an essential use of the construction of Mess given in [9], we prove the
result and give an explicit description of a subgrougf that attains vedH-,, ).

We also give some remarks on the relationship betwggmand the outer automorphism
group of the free group of rank. We denote by, the free group of rank and by OutF)
its outer automorphism group. There is a natural homomorphism7gro Out(F,) defined
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by the action of diffeomorphisms on the fundamental group/@f which is a surjection [4].
Culler and Vogtmann [3] showed that \@ut(F,)) = 2g — 3. This fact indicates that the
kernel of the above surjection is, in some sense, big. In fact, McCullough [10] showed that
the kernel of the above surjection is not finitely generated.

For any finitely generated abelian group we define therank of A by rkz(A) =
dimg(Q ®z A). For a torsion-free groug of finite homological type, we define tHeu-
ler characteristic x (G) (see [2]) by

X(G) =) (~D)irkz(H;(G)) .

For a groupG of finite homological type which may have torsion, we choose a torsion-free
subgroupG of finite index, and defing (G) by

_ _x(©
G:6)’

where(G : G) denotes the index af in G. Since,H, is of type VFL [11], we can define
x(Hg). Then we show the following result.

THEOREM 1.2. x(H4) = 0.

x(G)

Harer and Zagier [6] calculateg(M ), which turned out to be quite different from
x(Hg). This result indicates considerable difference betwéénand?,,.

Finally, the author would like to express his gratitude to Professors T. Akita, N. lvanov,
N. Kawazumi, J. McCarthy and D. McCullough for their helpful comments. A part of this
paper was written while the author stayed at Michigan State University as a visiting scholar
sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology.
He is grateful to the Department of Mathematics, Michigan State University, for its hospitality.

2. Proof of Theorem 1.1. In general, for an oriented*-manifold A and its
subsetB, by Diff *(A) we denote the group of all orientation preserving diffeomorphisms
of A, by Diff T(A, fix B) the group of elements of Diff(A) whose restriction toB
are the identity map, and by Diff(A, B) the group of elements of Diff(A) which
preserveB as a set. For a disld in 9H,, we defineH, 1 = mo(Diff T(H,, fix D)),
and M, 1 = mo(Diff *(H,, fix D)). For the centep of the disk D, we defineH; =
mo(Diff T (Hy, fix {p})), and/\/lé = mo(Diff T(0H,, fix {p})). Let D1, Dy, ..., Dy be the
cocores of 1-handles which are used to constijct These diskdq, Do, ... , Dy are prop-
erly embedded disks i#f,. Let E1, ..., E;_1 andC be properly embedded disks as indi-
cated in Figure 1.

We introduce some specific elementsiéf. For a diskD properly embedded if,
let N be a regular neighborhood @ in H,. We parametrizeV by ¢ : [—1,1] x D? -

N such thaip ({0} x D?) = D and¢([—1,1] x dD?) is an annulus i H,. Lety be a
diffeomorphism off—1, 1] x D? defined byy (¢, r, 0) = (¢, r, 0 + (1 — t)7r), where(r, 0) is
a polar coordinate ob2. The mapsp : H, — Hg, defined bysp(x) =¢ oy o o Lx) if
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x € N,=xif x ¢ N,isan orientation preserving diffeomorphism/j, which we calla disk
twist aboutD. The isotopy class afp, denoted byip, is an element ot{,, which we calla
disk twist aboutD. For an annulust properly embedded iy, let¢ : [—-1, 1] x s %[0, 1]

— N be a parametrization of a regular neighborh@odf A in H, such thaip| g, 51,01

is a parametrization o, and letyr be the diffeomorphism op-1, 1] x St x [0, 1] defined
by ¥ (1,0,s) = (1,0 + (1 — 1)z, s), whered is a polar coordinate o$'. We definexy €
Diff *(H,), which we callan annulus twist aboutA, in the same manner as the definition of
8p. The isotopy class af4, denoted by:4, is an element o, which is calledan annulus
twist aboutA.

We now introduce the following terminologies for later use. Mebe a regular neigh-
borhood ofdH, in Hy, and A be an annulus idH,. We parametrizeV as¢ : [0, 1] x
dHy — N such tha ({0} x dH,) = dHy andelioyxan, is an identity map. The set’ =
$(0A x [0,1]U A x {1}) is an annulus properly embeddedFfy. We say that “wepush A
into H," if we obtain A’ from A. Similarly, for a diskD in d H,, we say that “wepush D into
H," if we obtain a diskD’ from D in the same manner as above.

Mess [9] discovered certain subgroups, By 1, calledMess subgroups, of the mapping
class groupsM,, M, 1, respectively, which are defined in a recursive manner as follows
(this definition is quoted from §6.3 of [8]):

Sep 0: Let By be the subgroup al, generated by Dehn twists about any three pair-
wise disjoint and pairwise nonisotopic simple closed cuigsC1, C2 in d Hy.

Sep 1,: We assume thaB, (g > 2) is already defined. There is a surjection from
Diff T (9 Hy, fix D) to Diff *(d H,) defined by forgetting the disk, which induces a surjec-
tion f : My 1 — M. Let By 1 be the preimage a8, under f.

Sep 2,: By restricting each diffeomorphism, we obtain a homomorphism:
Diff T(dH,, fix D) — Diff *(dH, \ int D, fix 3 D). We consider an embeddingi, \ int D
into 0 Hy 1 and identifyd Hy \ int D with its image. By extending each diffeomorphism of
9H, \ int D, whose restriction oD is the identity, across the complementadd, \ int D
in 9Hy11, we obtain a homomorphism: Diff *(dH, \ int D, fix D) — Diff (0 Hy1).
The composition o p induces a homomorphisim: M, 1 — Mg1. In the complement of
d0Hgy \intD in 0H,41, we choose a nontrivial simple closed cuehat is not isotopic into
dHg \ int D and consider the Dehn twiste M 1 about this curve. LeT" be the infinite
cyclic group generated kry We defineB, 1 as the group generated b§B, 1) andT.
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Mess [9] showed the following result (see also Corollary 6.3B of [8]).
PrOPOSITION 2.1. The cohomological dimension of B, isequal to 4g — 5.

We will first show the following lemma, which is remarked by Mess [9, p. 4] without a proof.
LEMMA 2.2. H, containsa subgroup isomorphicto By .

REMARK 2.3. The definition ofB, involves some choices. This lemma means that,
with some good choices, is realized as a subgroup &f; .

ProOOF. Along the steps of the definition &, , we will check thatBz, B, 1, By11 can
be constructed as subgroupsiof, Hy 1, Hy+1, respectively. In each step, we use the same
notation as used in definitions 8f, and B, 1.

Sep0: We choos&g = dD1, C1 = dC, C2 = dD2. ThenBy C Hoa.

Sep 1,: We assume thaB, C ‘H,. Letgy,..., g, be generators oB,. For each
gi, we can choose an elemejyt of 7, 1 such thatf(g;) = g;. By the definition,B 1 is
generated by the kernel gfandg,, ..., g,. In order to obtain generators for the kernel of
f, we consider the following two short exact sequences:

(S1) 1—Z— Mg1—> ML — 1,
(S2) 1— m(@H,, p) > ML 25 My — 1.

The groupZ in (S1) is an infinite cyclic group generated by the Dehn twisabout
dD. The homomorphisna is induced by the homomorphism from Diffd H,, fix D) to
Diff +(8Hg, fix{ p}) defined by collapsin@ into a pointp. The sequence (S2) is introduced
by Birman [1]. The homomorphism is induced by the homomorphism from Difto H,,

fix {p}) to Diff +(8Hg) defined by forgetting the point. The groupr1(d0 Hy, p) is generated
by simple loops i H, with base poinfp. Let/s, ... Iz, be simple loops i H,, whose
homotopy classes generatg(d Hy, p). For each, let L; be an annulus ia H,, which is a
regular neighborhood df such that.; > D > p. dL; consists of two simple closed curves
ll.l andli2 in 0H,. The homomorphisng is defined so that it maps a homotopy class; of
(denote byj/;] for short) to that ofA; = (+Dehn twist aboutl.l) x (—Dehn twist aboutl?),
which is also an element of Diﬁ‘(aHg, fix D), anda (an element ofM, 1 represented by
A = BULY). Let/; be an element aM,, 1 represented by;. The kernel off is generated
by d andl, ... ,log, since it is equal ta* (the kernel ofy) = o~ (the image of8). Let
D’ be a disk inH, obtained by pushing into H,, andsp be the disk twist aboub’. Let

L} be an annulus obtained by pushinginto H, ande; be the annulus twist about;.
The diffeomorphisms p/ andaL; are elements of Diff(Hg, fix D), whose restrictions to

dH, represent/ andi;, respectively. This fact shows that the kernelfat included inH ;.
Hence,By 1 C Hy 1.

Sep 2,: Itis easy to see that(B; 1) C Hy11. If we chooseC = 9Dy 1, thent €
Hg41. ThereforeBy 1 C Hy11. O

Along the line of the proof of Theorem 6.4.A in [8], we will prove Theorem 1.1.
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PROOF OFTHEOREM 1.1. There is a natural homomorphisit, — Aut (H1(0Hy,
Z/37)) defined by the action of diffeomorphisms @R (dH,,Z/3Z). Let I" be the kernel
of this homomorphism. It is a classical result tiatis torsion-free (see, e.g., Ilvanov [7,
Corollary 1.5]). Therefore]", H, N I" and B, N I" are finite index torsion-free subgroups
of My, H, and By, respectively. By the definitionfovirtual cohomobgical dimension,
ved(My) = cd(I"), ved(Hy) = cd(Hy N I') and vedBy) = cd(B, N I"). By Harer [5,
Theorem 4.1], vedM ;) = 4g — 5, and hence, ad”) = 4¢g — 5. By Proposition 2.1, vad, )
=cd(By) =49 —5,and hence,dd, N I') =49 —5. ByLemma22B,NI" C Hy N T
C I'. Therefore, cdB; N I') < cd(Hy N I") < cd(X"). These facts show the theorem.

3. Proof of Theorem 1.2. McCullough defined alisk complex L in [11] and used
it to estimate vcdH,). We here review the definition df. By adisk in H;, we mean a
properly embedded 2-disk iff;. A disk D is calledessential whend D does not bound a
2-disk inoH,. The disk complex. of H, is a simplicial complex whose vertices are the
isotopy classes of essential disksAfy, and whose simplices are defined by the rule that a
collection ofn + 1 distinct vertices spans ansimplex if and only if it admits a collection of
representatives which are pairwise disjoint. McCullough showed the following Theorem in
[11, Theorem 5.3].

THEOREM 3.1 ([11]). Thedisk complex L of H, is contractible.

We use the following Propositions regarding Eubdiaracteristics of groups (see, e.g., [2,
Proposition §1X 7.3]) .

ProPOSITION 3.2. Let1 —- G' — G — G” — 1 be a short exact sequence of
groups, where G” and G” are of finite homology type. If G isvirtually torsion-free, then G is
of finite homological type and x (G) = x (G x(G”).

PROPOSITION 3.3. Let X bea contractible simplicial complex on which G act simpli-
cially. For eachsimplexo of X, let G, ={g € G| go = o}. If X hasonlyfinitely many cells
modG, and, for each simplex o of X, G, is of finite homological type, then

X(G) =Y (=DM ¥ (G,),

oef

where £ is a set of representatives for the cells of X modG.

For each simplex = (Do, ..., D,) of L, Proposition 6.5 of [11] shows thai, =
moDiff +(Hg, DoU---UD,). Forthe same simplex, let I, be the graph defined as follows.
The vertices of, correspond to the componentsif \ DoU- - -UD,. Each edge corresponds
to one of Dy, ..., D, and connects the vertices corresponding to the components attached
along this disk. Let, /Do U - - - U D, be the space obtained frofy, by collapsing eactb;
to one point, and be a homomorphism fror&,, to moDiff +(Hg/Do U---UD,, Do/DoVU
.U D,/ D,) which is induced by collapsing eadh to one point. LeZ"** denote the free
abelian group generated by disk twists abbyt . .. , D,,. Then we have the following exact
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sequence:
(S3)
1— 7" 5 G, = moDiff T(Hy/DoU -~ U Dy, Do/DoU -+ U Dy/Dy) —> 1.

Lete be the natural homomorphism frarDiff *(H,/DoU- - -UD,, Do/DoU- - -UD, /D,)

to the group of automorphisms 6f. Let A, be the image of, which is a finite group, since
the group of automorphisms &% is a finite group. Byf/; we denote the 3-manifold obtained
by cutting H, alongDy, ... , D,, and byD}, D3, ... , D}, D? the disks ord H,, obtained as
a result of cutting, and by#,/D§ U D§ U --- U D} U DZ the space obtained from,, by
collapsing eachD; (i=1,2j=0,...,n)toone point. Then we obtain the following exact
sequence:

1 —> moDiff *(H, /D§ U D§U---U Dy U D,
(S4) fix DY/D§ U D3/D3U---U DY/DLU D2/ D?)
— 7oDiff *(Hy/DoU---U Dy, Do/DoU ---U D/ Dy) —> Ay —> 1.

Sincex (2"t = x((sH*+1) = 0, by applying Proposition 3.2 to (S3) and (S4), we obtain
x(Gy) = 0. Theorem 1.2 now follows from the above observation together with Theorem
3.1 and Proposition 3.3.
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