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COMPLETE CONSTANT GAUSSIAN CURVATURE SURFACES
IN THE MINKOWSKI SPACE AND

HARMONIC DIFFEOMORPHISMS ONTO THE HYPERBOLIC PLANE
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Abstract. We complete the global classification of spacelike surfaces in the Minkowski
three-space with constant Gaussian curvature in terms of harmonic diffeomorphisms onto the
hyperbolic plane. A harmonic representation of them is also obtained.

1. Introduction. Similarly to the Euclidean case, the study of the Gauss map pro-
vides us with an important tool to investigate the properties of surfaces in the Minkowski
3-spaceL3. From this standpoint, Kobayashi [11], [12] and Akutagawa and Nishikawa [2]
obtain Lorentzian versions of the classical Enneper-Weierstrass and Kenmotsu representa-
tions, that play a fundamental role in the research of maximal and constant mean curvature
surfaces, respectively. In particular, they find numerous examples of surfaces with constant
mean curvature inL3 and extend the well-known result that the Gauss map of these surfaces
is harmonic, see [15] and [16].

Using this fact, from a global point of view, Au and Wan [20], [21] obtain the classifi-
cation of complete spacelike surfaces with constant mean curvature inL3, using one-to-one
harmonic maps into the hyperbolic planeH2+. Moreover, an important consequence of that
result, answering a question of Eells and Lemaire (see [6]), is the existence of harmonic maps
of rank 2 intoH2+, see also [1] and [4]. In particular, they find harmonic diffeomorphisms
from the unit diskD ontoH2+ and pose the question whether there is some harmonic diffeo-
morphism from the Euclidean plane onto the hyperbolic plane, see [3].

The main goal of this paper is to give a similar representation for surfaces inL3, using the
Gauss map and the conformal structure given by the second fundamental form. In our method,
it is deduced that the Gaussian curvature is a negative constant if and only if the Gauss map
is harmonic with respect to the Riemannian metric given by the second fundamental form.
Thus, we obtain as a main result the classification of complete spacelike surfaces with negative
constant Gaussian curvature inL3, in terms of harmonic diffeomorphisms onto the hyperbolic
plane. Moreover, since there do not exist isometric immersions from the sphere intoL3,
our result completes the global classification of spacelike surfaces with constant Gaussian
curvature in the Minkowski 3-space (see [5] and [9]).
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Finally, we obtain an interesting relation between harmonic diffeomorphisms ontoH2+
and a Monge-Ampère equation in a bounded convex domain.

2. Spacelike surfaces in L3. Let L3 be the Minkowski 3-space endowed with the
canonical linear coordinates(x1, x2, x3) and the scalar product〈 , 〉 given by the quadratic
form dx2

1 + dx2
2 − dx2

3. Associated with this metric one has the exterior product of two
vectorsu, v ∈ L3 given as the unique vectoru× v such that〈u× v,w〉 = − det(u, v,w) for
all w ∈ L3, where det denotes the usual determinant.

Consider the unit pseudosphere

H2 = {(x1, x2, x3) ∈ L3 | x2
1 + x2

2 − x2
3 = −1} ,

which is a two-sheeted hyperboloid, with constant Gaussian curvature−1 with respect to
the induced metric. We introduce complex coordinates onH2 by using the stereographic
mappingsψ1 : H2 −{(0,0,−1)} → C andψ2 : H2 −{(0,0,1)} →C defined, respectively, as

ψ1(x1, x2, x3) = x1 − ix2

1 + x3
, ψ2(x1, x2, x3) = x1 + ix2

1 − x3
.

If we takeH2+ = H2 ∩ {x3 > 0}, thenψ1 : H2+ → D = {w ∈ C | |w| < 1} is a biholomorphic
map and the induced metric onH2+ can be written as

ds2
P = 4 |dw|2

(1 − |w|2)2 ,
which is called the Poincaré metric.

Let us consider a connected smooth surfaceS and a spacelike immersionx : S→ L3

with negative Gaussian curvature with respect to the induced Riemannian metricI . SinceS
is orientable, we choose the orientation onS given by a unit normal vector fieldN : S→ H2

such that the second fundamental formII = 〈dx, dN〉 is positive definite. Up to the isometry
ϕ of L3, ϕ(x1, x2, x3) = (x1, x2,−x3), we will supose throughout this section thatN(S) ⊆
H2+.

Thus, from now onS will be considered as a Riemann surface with the conformal struc-
ture induced byII . If z = u+ iv is a conformal parameter, then

I = Edu2 + 2Fdudv +Gdv2 ,

II = e(du2 + dv2) ,
(1)

with e > 0 and the Weingarten equations (see p. 157 in [22]) state that

Nu = ∂N

∂u
= e

EG− F 2 (Gxu − Fxv) , Nv = ∂N

∂v
= e

EG− F 2 (−Fxu + Exv) .(2)

Let us denote byg = ψ1 ◦ N : S→ D the composition of the usual stereographic projection
with the Gauss mapN , that is,

g = N1 − iN2

1 + N3
,(3)

whereN = (N1, N2, N3). We will also call it theGauss map of the immersion.
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THEOREM 1. Let x : S→ L3 be a spacelike immersion with negative Gaussian curva-
ture K < 0, g : S→ D its Gauss map and z = u+ iv a conformal parameter. Then

∂x1

∂z
= −(1 + ḡ 2)g z + (1 + g 2)ḡ z√−K (1 − g ḡ )2

,

∂x2

∂z
= −i (1 − ḡ 2)g z + (1 − g 2)ḡ z√−K (1 − g ḡ )2

,(4)

∂x3

∂z
= 2

−ḡ g z + g ḡ z√−K (1 − g ḡ )2
,

where x = (x1, x2, x3), ∂/∂z = (1/2)(∂/∂u− i∂/∂v) and the complex conjugation is denoted
by bar.

PROOF. From (1) and (2), the Gauss mapN and the Gaussian curvatureK are given by

N = xu × xv√
EG− F 2

, K = −e2

EG− F 2 .(5)

Hence, one obtains

N × Nu = −√−Kxv , N ×Nv = √−Kxu
and

xz = i√−KN ×Nz .(6)

From (3), noting that〈N,N〉 = −1, one then has

N1 = g + ḡ
1 − g ḡ

, N2 = i
g − ḡ
1 − g ḡ

, N3 = 1 + g ḡ
1 − g ḡ

,(7)

from which (4) follows. �

A straightforward computation then implies

COROLLARY 1. With the above notation, the first, second and third fundamental forms
of the immersion are given, respectively, by

I = 4

−K(1 − g ḡ )2
(−g zḡ zdz

2 + (|g z̄|2 + |g z|2)|dz|2 − g z̄ḡ z̄dz̄
2) ,

II = 4
|g z̄|2 − |g z|2√−K(1 − g ḡ )2

|dz|2 ,(8)

III = 4

(1 − g ḡ )2
(g zḡ zdz

2 + (|g z̄|2 + |g z|2)|dz|2 + g z̄ḡ z̄dz̄
2) .

Moreover, the mean curvature H of the immersion satisfies

H = √−K |g z̄|2 + |g z|2
|g z̄|2 − |g z|2

.(9)

Concerning the structure equations of the immersion, we have
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THEOREM 2. If x : S→ L3 is a spacelike immersion with negative Gaussian curvature
K < 0, then the Gauss map g satisfies the equation

(E) 4K

(
g zz̄ + 2ḡ

g zg z̄
1 − g ḡ

)
= Kzg z̄ +Kz̄g z .

Moreover, the Gaussian curvature is determined, up to multiplication by positive constants,
by the Gauss map.

PROOF. From Theorem 1 it follows that(xjz)z̄ = (xj z̄)z, j = 1,2,3, if and only if the
following hold

8K

1 − g ḡ
((ḡ + ḡ 3)g zg z̄ − (g + g 3)ḡ zḡ z̄)+Kz((1 + g 2)ḡ z̄ − (1 + ḡ 2)g z̄)

+Kz̄((1 + g 2)ḡ z − (1 + ḡ 2)g z)+ 4K((1 + ḡ 2)g zz̄ − (1 + g 2)ḡ zz̄) = 0 ,
(10)

−8K

1 − g ḡ
((ḡ − ḡ 3)g zg z̄ + (g − g 3)ḡ zḡ z̄)+Kz((1 − g 2)ḡ z̄ + (1 − ḡ 2)g z̄)

+Kz̄((1 − g 2)ḡ z + (1 − ḡ 2)g z)− 4K((1 − ḡ 2)g zz̄ + (1 − g 2)ḡ zz̄) = 0 ,
(11)

8K

1 − g ḡ
(ḡ 2g zg z̄ − g 2ḡ zḡ z̄)+Kz(g ḡ z̄ − ḡ g z̄)+Kz̄(g ḡ z − ḡ g z)

+ 4K(ḡ g zz̄ − g ḡ zz̄) = 0 .
(12)

Then, subtracting (11) and 2g times (12) from (10), we obtain (E). Moreover, (E) together
with its conjugated equation yields

(log(−K))zg z̄ + (log(−K))z̄g z = 4

(
g zz̄ + 2ḡ

g zg z̄
1 − g ḡ

)
,

(log(−K))zḡ z̄ + (log(−K))z̄ḡ z = 4

(
ḡ zz̄ + 2g

ḡ zḡ z̄
1 − g ḡ

)
.

Since|g z̄|2 − |g z|2 > 0, we then obtain

(L) (log(−K))z = 4

|g z̄|2 − |g z|2
(
ḡ zg zz̄ − g zḡ zz̄ − 2g zḡ z

g ḡ z̄ − ḡ g z̄
1 − g ḡ

)
,

from which it is clear thatK is determined, up to multiplication by positive constants,
by g . �

REMARK 1. The equation (L) is equivalent to (E). Also, (E) is satisfied if and only if
(10), (11) and (12) are satisfied.

THEOREM 3. Let S be a simply connected Riemann surface and N : S→ H2+ a differ-
entiable map. Then, a spacelike immersion x : S→ L3 with the Gauss mapN exists in such a
way that the conformal structure on S is induced by the second fundamental form if and only
if the following hold.

|g z̄|2 − |g z|2 > 0 ,(13)
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Im

{
∂

∂z̄

(
4

|g z̄|2 − |g z|2
(
ḡ zg zz̄ − g zḡ zz̄ − 2g zḡ z

g ḡ z̄ − ḡ g z̄
1 − g ḡ

))}
= 0 ,(14)

where g is as in (3). Moreover, the immersion is unique, up to similarity transformations of
L3, and can be recovered by the equations

x1 = Re

( ∫
2
−(1 + ḡ 2)g z + (1 + g 2)ḡ z√−K (1 − g ḡ )2

dz

)
+ c1 ,

x2 = Re

( ∫
−2i

(1 − ḡ 2)g z + (1 − g 2)ḡ z√−K (1 − g ḡ )2
dz

)
+ c2 ,(15)

x3 = Re

( ∫
4

−ḡ g z + g ḡ z√−K (1 − g ḡ )2
dz

)
+ c3 ,

where

log(−K) = Re

( ∫
8

|g z̄|2 − |g z|2
(
ḡ zg zz̄ − g zḡ zz̄ − 2g zḡ z

g ḡ z̄ − ḡ g z̄
1 − g ḡ

)
dz

)
+ λ ,

c1, c2, c3, λ are real constants and the integral is taken along a path from a fixed point to
the variable point.

PROOF. If S is a Riemann surface with the conformal structure given by the second
fundamental form of a spacelike immersionx : S→ L3, thenK < 0, so that both log(−K)
and∂2(log(−K))/∂z∂z̄must be real. The result follows from Theorems 1 and 2 together with
Corollary 1.

Conversely, sinceS is simply connected, there existsϕ : S→ R such thatK = −eϕ
which satisfies (L) if and only if (14) is satisfied. Now, from Remark 1, it is easy to check that
(L) (or equivalently, (E)) is the complete integrability condition for (4).

Moreover, ifx, y : S→ L3 are two immersions as above with Gaussian curvatureK1, K2,
respectively, then(log(−K1))z = (log(−K2))z andK1 = rK2 for some positive constantr.
Thusyz = √

rxz andy = √
rx + c, c ∈ L3. �

From the above theorem we obtain the following uniqueness result for immersions with
negative Gaussian curvature,

PROPOSITION 1. Let S be a simply connected Riemann surface, and x1, x2 : S→ L3

be two spacelike immersions with negative Gaussian curvature K1, K2 and the Gauss map
N1, N2 : S→ H2+, respectively. Then the following conditions are equivalent:

(i) There exist a conformal equivalence ϕ on S and an orthocronal isometry f of L3

(that is, an isometry preserving the temporal orientation of L3) such that f ◦ x1 = x2 ◦ ϕ.
(ii) There exist a conformal equivalence ϕ on S and an isometry i of H2+ such that

i ◦N1 = N2 ◦ ϕ and K1 = K2 ◦ ϕ.

PROOF. Since each isometry preserves the Gaussian curvature of an immersion, iff ◦
x1 = x2 ◦ ϕ, thenK1 = K2 ◦ ϕ. Moreover,df (Tx1(p)S ) = Tx2◦ϕ(p)S, where, for instance,
Tx1(p)S denotes the tangent plane to the immersionx1 at the pointx1(p). Thus, if we consider
i as the restriction ofdf to H2+, it is clear thati ◦N1 = N2 ◦ ϕ.
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Conversely, given an isometryi of H2+, we considerf ′ as the extension ofi to an isome-
try of L3. If we takex ′

1 = f ′ ◦x1, then from (ii),N ′
1 = N2◦ϕ andK ′

1 = K2◦ϕ, whereN ′
1 and

K ′
1 are the Gauss map and Gaussian curvature ofx ′

1. So, using Theorem 3,d(x ′
1−x2◦ϕ) = 0.

Therefore,x ′
1 = x2 ◦ ϕ + c for somec ∈ L3 and the result follows. �

REMARK 2. The above computations can be carried out in a similar way for an immer-
sion with positive Gaussian curvature, consideringS as a Lorentz surface with the Lorentz
metric induced by the second fundamental form.

3. Constant Gaussian curvature and harmonic maps. Let x : S→ L3 be a space-
like immersion with negative constant Gaussiancurvature. Then, given a conformal parameter
z for its second fundamental form, we obtain, from Theorem 2,

g zz̄ + 2 ḡ
g zg z̄

1 − g ḡ
= 0 ,

that is, its Gauss mapN is harmonic into the hyperbolic plane.
Conversely, ifS is a simply connected Riemann surface andN : S→ H2+ a harmonic

local diffeomorphism then, from Theorem 3, there exists, up to translations, a unique immer-
sion with negative constant Gaussian curvatureK such thatN (or −N) is its Gauss map and
its conformal structure is induced by the second fundamental form of the immersion.

Now, we defineAK as the set of all complete spacelike immersions inL3 with constant
negative Gaussian curvatureK < 0, where congruent immersions are identified by isometries
of L3, andB be the set of all harmonic diffeomorphisms from the unit diskD or the complex
planeC onto the hyperbolic planeH2+, where two harmonic diffeomorphismsh1, h2 are iden-
tified if there exist a conformal equivalenceϕ on D or C and an isometryi on H2+ such that
h1 = i ◦ h2 ◦ ϕ.

Then we obtain the following classification theorem.

THEOREM 4. There exists a bijective correspondence between AK and B for all
K < 0. That is, complete spacelike surfaces with constant negative Gaussian curvature are
classified in terms of harmonic diffeomorphisms from Riemann surfaces onto the hyperbolic
plane.

PROOF. Note that without loss of generality we may supposeK = −1. Letx : S→ L3

be a complete spacelike immersion with constant Gaussian curvature−1. Since its Gauss
mapN is harmonic, we have

∂

∂z̄

(
g z ḡ z

(1 − g ḡ )2

)
= 0 ,

wherez is a conformal parameter for the second fundamental formII andg = ψ1 ◦ N or
ψ1 ◦ (−N). Equivalently, from (8), the(2,0)-part ofI andIII are holomorphic with respect
to II and the identity map Id: (S, II)→ (S, I) is a harmonic diffeomorphism.

On the other hand, noting that the immersion is complete,x(S) is a graph on the entire
plane, thereforeS is simply connected and there exist a conformal equivalenceϕ from S to
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D or C and an isometryi : (S, I)→ H2+. In consequence, for any immersionx as above
we consider the harmonic diffeomorphismi ◦ Id ◦ ϕ−1 that is uniquely determined up to
conformal equivalences onD or C and isometries onH2+.

Thus, for anyx we consider an element ofB, Φ(x) = [i ◦ Id ◦ ϕ−1], given by the
equivalence class ofi ◦ Id ◦ ϕ−1. Moreover, ify is another immersion such thaty = f ◦ x,
for some isometryf of L3, it is clear from Proposition 1 thatΦ(x) = Φ(y) and, hence, there
exists a mapΦ̄ : A−1 →B given byΦ̄([x]) = Φ(x).

Now, we consider two immersionsxj : Sj → L3, j = 1,2, such that[x1], [x2] ∈ A−1

andΦ(x1) = Φ(x2). Then there exists a holomorphic diffeomorphismϕ : S1 → S2 and
an isometryi : (S1, I )→ (S2, I ) such that IdS1 = i−1 ◦ IdS2 ◦ ϕ. Therefore,i = ϕ and
x1, x2◦i : S1 → L3 are two immersions with the same induced metric and conformal structure
for the second fundamental form. Since the Gaussian curvature of both immersions agree,
from the theorem egregium (see pp. 156, 157 in [22]) the second fundamental form must be
the same. Hence,x1 andx2◦ i agree up to an isometry ofL3, [x1] = [x2] andΦ̄ is one-to-one.

Let ∆ be the unit disk or the complex plane andh : ∆→ H2+ a surjective harmonic
diffeomorphism. From Theorem 3 there exists a spacelike immersiony : ∆→ L3 with con-
stant Gaussian curvature−1 such thath is its Gauss map. On the other hand, the identity
map Id∆ : (∆, IIy)→ (∆, Iy) is harmonic, where, for instance,Iy denotes the first funda-
mental form fory, and since∆ is simply connected, there exists an isometric immersion
i : (∆, Iy)→ H2+. Thus, from Theorem 3 there exists a spacelike immersionx : ∆→ L3

with constant Gaussian curvature−1 such thati ◦ Id∆ is its Gauss map. Moreover, from (8),
IIIx = i∗(ds2

P ) = Iy givesIIx = IIy andIx = IIIy . Therefore,x is complete because of
Ix = 〈dh, dh〉 = h∗(ds2

P ),Φ(x) = [h] andΦ̄ is onto. �

REMARK 3. From [1] together with the above theorem, it is clear that there exist infin-
itely many non-congruent isometric immersions from the hyperbolic plane in the Minkowski
3-space. Moreover, each of them has the second fundamental form conformally equivalent to
the unit disk.

On the other hand, the conjecture about the non-existence of harmonic diffeomorphisms
from the complex plane onto the hyperbolic plane is equivalent to the non-existence of a com-
plete spacelike immersion with negative constant Gaussian curvature and second fundamental
form conformally equivalent toC.

Concerning this, it is not difficult to prove the following result.

PROPOSITION 2. Let S be a simply connected surface and x : S→ L3 be a space-
like immersion with constant negative Gaussian curvature K< 0. If the mean curvature H
is bounded, then S, with the Riemann structure given by the second fundamental form, is
conformal to the unit disk.

PROOF. From (8) the second fundamental form is conformal to the metric

σ = 4 |g z̄|2√−K(1 − g ḡ )2
|dz|2.
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Sinceg is harmonic, the Gaussian curvature ofσ (see [17]) is given by

Kσ = √−K
( |g z|2

|g z̄|2
− 1

)
.

SinceH is bounded, we obtain from (9) that there exists a constantc < 1 such that
|g z|2/|g z̄|2 ≤ c andKσ ≤ √−K (c − 1) < 0. Hence, using the Ahlfors-Schwarz lemma
(see [10] p. 66),S is conformally equivalent to the unit disk. �

REMARK 4. The converse of the above proposition is not true. For instance, the surface
M0 in [9] is a complete spacelike immersion with constant negative Gaussian curvature−1
and non-boundedH , which is conformally equivalent toD with the structure given by its
second fundamental form.

Now, we find a relation between harmonic diffeomorphisms ontoH2+ and a Monge-
Ampère equation in a bounded convex domain.

THEOREM 5. There exists a bijective correspondence between harmonic diffeomor-
phisms from the unit disk or the complex plane onto the hyperbolic plane (up to conformal
equivalences in the domain) and the solutions of the Monge-Ampère equation

φuuφvv − φ2
uv = 1

(1 − u2 − v2)2
, 0 ≤ u2 + v2 < 1 .(16)

PROOF. Let ∆ be D or C andN : ∆→ H2+ a surjective harmonic diffeomorphism.
From Theorem 3, there exists a unique, up to translations, spacelike immersionx : ∆→ L3

with constant negative Gaussian curvature−1 such thatN is its Gauss map and the Riemann
structure on∆ is given by the second fundamental form. Then, we consider the Legendre
transformation

φ(u, v) = ux1 + vx2 − x3 ,

wherex = (x1, x2, x3) is locally a graph on the(x1, x2)-plane, and the map given byN =
(N1, N2, N3)→ (u, v) = (N1/N3, N2/N3) is a diffeomorphism fromH2+ onto the unit disk.

Thus, (u, v) are new parameters and a straightforward computation yieldsφu = x1,
φv = x2 and

D φuu = ∂2x3

∂x2
2

, D φuv = ∂2x3

∂x1∂x2
, D φvv = ∂2x3

∂x2
1

,(17)

with D = (∂2x3/∂x
2
1)(∂

2x3/∂x
2
2)− (∂2x3/∂x1∂x2)

2.
Therefore, from the expresion of the Gaussian curvature

K = −1 = − (∂
2x3/∂x

2
1)(∂

2x3/∂x
2
2)− (∂2x3/∂x1∂x2)

2

(1 − (∂x3/∂x1)2 − (∂x3/∂x2)2)2
,

we obtain (16).
Now, from (17), it is not difficult to prove that the graph(u, v, φ(u, v)) gives rise to an

immersion intoR3, which has conformal second fundamental form.
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Conversely, given a solutionφ, the harmonic mapN can be recover by the inverse Le-
gendre transformation of the graph(u, v, φ(u, v)). That is, the spacelike immersion with
constant negative Gaussian curvature−1 given by(φu, φv, uφu+vφv−φ) agrees withx, and
N is its Gauss map. Thus, the theorem follows in an easy way. �
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