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HARMONIC DIFFEOMORPHISMS ONTO THE HYPERBOLIC PLANE
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Abstract. We complete the global classification of spacelike surfaces in the Minkowski
three-space with constant Gaussian cuneimrterms of harmonic diffeomorphisms onto the
hyperbolic plane. A harmonic repregation of them is also obtained.

1. Introduction. Similarly to the Euclidean case, the study of the Gauss map pro-
vides us with an important tool to investigathe properties of surfaces in the Minkowski
3-spacel.. From this standpoint, Kobayashi [11], [12] and Akutagawa and Nishikawa [2]
obtain Lorentzian versions of the classical Enneper-Weierstrass and Kenmotsu representa-
tions, that play a fundamental role in the research of maximal and constant mean curvature
surfaces, respectively. In particular, they find numerous examples of surfaces with constant
mean curvature ih3 and extend the well-known result that the Gauss map of these surfaces
is harmonic, see [15] and [16].

Using this fact, from a global point of view, Au and Wan [20], [21] obtain the classifi-
cation of complete spacelike surfaces with constant mean curvatiré irsing one-to-one
harmonic maps into the hyperbolic plahﬁ. Moreover, an important consequence of that
result, answering a question of Eells and Lemagsee [6]), is the existence of harmonic maps
of rank 2 intoHi, see also [1] and [4]. In particular, they find harmonic diffeomorphisms
from the unit diskD ontoHEr and pose the question whether there is some harmonic diffeo-
morphism from the Euclidean plane onto the hyperbolic plane, see [3].

The main goal of this paper is to give a similar representation for surfat€s irsing the
Gauss map and the conformal structure given by the second fundamental form. In our method,
it is deduced that the Gaussian curvature is a negative constant if and only if the Gauss map
is harmonic with respect to the Riemannian metric given by the second fundamental form.
Thus, we obtain as a main result the classification of complete spacelike surfaces with negative
constant Gaussian curvaturelif, in terms of harmonic diffeomorphisms onto the hyperbolic
plane. Moreover, since there do not exist isometric immersions from the sphere®into
our result completes the global classificatiof spacelike surfaces with constant Gaussian
curvature in the Minkowski 3-space (see [5] and [9]).
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Finally, we obtain an interesting relatiortween harmonic diffeomorphisms 0r1~tt§r
and a Monge-Ampére equation in a bounded convex domain.

2. Spacelike surfacesin L3. Let L2 be the Minkowski 3-space endowed with the
canonical linear coordinatgss, x2, x3) and the scalar produgt, ) given by the quadratic
form dxf + dx§ — dx%. Associated with this metric one has the exterior product of two
vectorsu, v € L3 given as the unique vectarx v such thatu x v, w) = — detu, v, w) for
all w € L3, where det denotes the usual determinant.

Consider the unit pseudosphere

H? = {(x1,x2,x3) € L3 | x%—i—x%—x% = -1},

which is a two-sheeted hyperboloid, with constant Gaussian curvatlirevith respect to
the induced metric. We introduce complex coordinatesHrby using the stereographic
mappingsy: : H2 —{(0, 0, —1)} — Candyr, : H2 — {(0, 0, 1)} — C defined, respectively, as

X1 —ix2 X1+ ixo
, 2(x1, x2, x3) =
1+ x3 v

If we takeH2 = H2 N {x3 > 0}, thenyr1 : H2 — D = {w € C| |w| < 1} is a biholomorphic
map and the induced metric Mﬁ can be written as

Ya(x1, x2, x3) = .
1—x3

ash = Ml
(1—wl®)

which is called the Poincaré metric.

Let us consider a connected smooth surfSicend a spacelike immersion: S — L3
with negative Gaussian curvature with respect to the induced Riemannian meSiicceS
is orientable, we choose the orientation®given by a unit normal vector fielty : S — H?
such that the second fundamental fafin= (dx, d N) is positive definite. Up to the isometry
@ of L3, @(x1, x2, x3) = (x1, x2, —x3), We will supose throughout this section thé{sS) <
HZ.

Thus, from now o will be considered as a Riemann surface with the conformal struc-
ture induced by 1. If z = u + iv is a conformal parameter, then
1) I = Edu® + 2Fdudv + Gdv?,

11 = e(du2 + dvz) ,

with e > 0 and the Weingarten equations (see p. 157 in [22]) state that
aN e IN e
E:iEG_Fz(Gxu—va), Nv:EZ—EG—FZ(_qu-’_EXU).
Let us denote by = ¢1 o N : S — D the composition of the usual stereographic projection
with the Gauss mapy, that is,

(2) N, =

N1 —iN>2
©)) g=———
1+ N3
whereN = (N1, N2, N3). We will also call it theGauss map of the immersion.
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THEOREM 1. Letx : §— L2 be a spacelike immersion with negative Gaussian curva-
tureK <0, g : S— DitsGaussmap and z = u + iv a conformal parameter. Then

dx1  —(1+ 799, +1A+¢737,

a_z_ V=K (1—gg)?

4) 2 _ (=379 +A- 973
9z V=K (1-yg9)?
0xs _, —09:+99.

0z VK A-gg)?
where x = (x1, x2, x3), d/9z = (1/2)(3/0u —id/dv) and the complex conjugation is denoted
by bar.
PrRooOF From (1) and (2), the Gauss mapand the Gaussian curvatukeare given by

(5) N — Xy X Xy —e?

-t K=
VEG = F? EG — F?

Hence, one obtains

N x N, =——Kx,, NXxN,=+~—Kx,

and
i
(6) X; = ﬁN X NZ .
From (3), noting thatN, N) = —1, one then has
_ e 1 _

() =TS Ny = i ST N2 2R

1-9g9 1-9g9 1-9g9
from which (4) follows. O

A straightforward computation then implies

COROLLARY 1. Withthe above notation, thefirst, second and third fundamental forms
of theimmersion are given, respectively, by

_ - 2 2 2 2 _ 2
I = m(—gzgzdz + gz +19.9dz|* — gz9:dz") ,
lg:12 =192
(8) I =4—=——=%* —|dz|°,
V=K1 -ygg)?
4 - .2 2 2 2 - 2
Il = m(gzgzdz + (gz1°+19,.19)1dz|* + gz9:dz°) .
Moreover, the mean curvature H of the immersion satisfies
2 2
(9) H — \/j |gz| +|gz|

lgz1%2 —1g.1%"

Concerning the structure equations of the immersion, we have
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THEOREM 2. Ifx : § — L3 isa spacelikeimmersion with negative Gaussian curvature
K < 0, then the Gauss map ¢ satisfies the equation

NE
(E) 4K<gzz +2§7— g}) =K:9: + Kzg. .

Moreover, the Gaussian curvature is determined, up to multiplication by positive constants,
by the Gauss map.

ProoF. From Theorem 1 it follows thatc;,); = (x;z);, j = 1, 2, 3, if and only if the
following hold

((G+3%9.9:— (9 +97.5:) + K.(L+ gD)F: — L+ 3Dg2)

(10) 1-ygg
+K: (14997, -1+ 399.) +4K(A+§Dg,: —1+¢Dj.) =0,
8K (5= 539.0:+ (9 — 49750 + Ko (L - g2z + (1— §Dg2)
(11) 1—ygg 29z 9z z z z
+K:(1—9%7.+1—-3%9.) —4K(L1—3§Dg:+ 1L —9%7.:) =0,
K 529,95 - 0%5.52) + K(97: — 592 + Ke(gGz — 592)
(12) 1—g5 979:97 —9 9;9z z2\997z — 3939z z2\99; —939;

Then, subtracting (11) andg2Zimes (12) from (10), we obtain (E). Moreover, (E) together
with its conjugated equation yields

(log(—K))-g: + (Iog(=K))zg, = 4(912 +2g %) )

(I0g(~K)):7 + (I0g(~K)):3. = 4(% +29 %) .

Since|g:|? — |g,|?> > 0, we then obtain

4 - - _ 9§z —§9:
(L) (|Og(—K)) = 7(9 g R g g o 29 g Z & Z ,
ClgalP =g PTETE T T g
from which it is clear thatk is determined, up to multiplication by positive constants,
by g. O

REMARK 1. The equation (L) is equivalent to (E). Also, (E) is satisfied if and only if
(10), (11) and (12) are satisfied.

THEOREM 3. Let S beasimply connected Riemann surfaceand N : S — Hi a differ-
entiable map. Then, a spacelikeimmersion x : § — L3 with the Gaussmap N existsinsucha
way that the conformal structure on S isinduced by the second fundamental formif and only
if the following hold.

(13) lgz12 — 1.1 > 0,
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3 4 _ B} _ gé-—éw))}
14 Im [ - —k LT A A9 =0,
4 {az(mzlz—mzlz(gzg“ IR T g

where g isasin (3). Moreover, the immersion is unique, up to similarity transformations of
L3, and can be recovered by the equations

—1+g2 1+ ¢%)g
x1=Re</2 d+9799:+( +g)gzdz)+c1,

V-K(1-gg)?
1_—2 1— 2\ =
(15) x2=Re</—2i( 979. *( 7 )gzdz>+cz,
V=K (1—-ygg9)
_ggz+g§z
x3=Re< 4—_dz>+cs,
V-K1—-gj)?
where
8 _ _ _99:—99;z
Iog(—K):Re(/7<g,g 5= 0.0 — 29,9, ——— |dz | + A,
lgz12 — g 2 \7°7% 720 Y 1-ygg

c1, c2, c3, A arereal constants and the integral is taken along a path from a fixed point to
the variable point.

PrRoOOF. If S is a Riemann surface with the conformal structure given by the second
fundamental form of a spacelike immersion S — L3, thenK < 0, so that both log-K)
anda?(log(—K))/9zdz must be real. The result follows from Theorems 1 and 2 together with
Corollary 1.

Conversely, since is simply connected, there exists: S — R such thatk = —e¥
which satisfies (L) if and only if (14) is safied. Now, from Remark 1, it is easy to check that
(L) (or equivalently, (E)) is the complete integrability condition for (4).

Moreover, ifx, y : S — L2 are two immersions as above with Gaussian curvakytek,
respectively, therlog(—K1)), = (log(—K>2)), andK1 = r K2 for some positive constant
Thusy, = /rx; andy = \/rx + ¢, c € L3. O

From the above theorem we obtain the following uniqueness result for immersions with
negative Gaussian curvature,

PrRoOPOSITION 1. Let S be a simply connected Riemann surface, and x1, x2 : S — L3
be two spacelike immersions with negative Gaussian curvature K1, K2 and the Gauss map
N1, N2 : S— Hi, respectively. Then the following conditions are equivalent:

() There exist a conformal equivalence ¢ on S and an orthocronal isometry f of L3
(that is, an isometry preserving the temporal orientation of L) such that f o x1 = x50 ¢.

(i) There exist a conformal equivalence ¢ on S and an isometry i of Hi such that
ioN1 = Nropand K; = Ko ¢.

PROOF. Since each isometry preserves the Gaussian curvature of an immergian, if
x1 = x20¢,thenkK; = Kz 0 ¢. Moreoverdf (Ty,(»)S) = Trop(p)S, Where, for instance,
T,,(p)S denotes the tangent plane to the immersipat the pointc1(p). Thus, if we consider
i as the restriction of f to H2 , itis clear thai o Ny = Nz o ¢.
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Conversely, given an isometiyof H2 , we considerf’ as the extension afto an isome-
try of L3, If we takex; = f’ox1, then from (i), N; = N2ogp andK; = K20¢, whereN; and
K’ are the Gauss map and Gaussian curvatusg.ddo, using Theorem @(x; —x20¢) = 0.
Thereforex; = x20¢ + ¢ for somec € L3 and the result follows. O

REMARK 2. The above computations can be carried out in a similar way for an immer-
sion with positive Gaussian curvature, considerthgs a Lorentz surface with the Lorentz
metric induced by the second fundamental form.

3. Constant Gaussian curvatureand harmonic maps. Letx : S — L3 be a space-
like immersion with negative constant Gaussianvature. Then, given a conformal parameter
z for its second fundamental form, we obtain, from Theorem 2,

- 979z
9.z + 29 1- g3 0,
that is, its Gauss map is harmonic into the hyperbolic plane.

Conversely, ifS is a simply connected Riemann surface and S — Hi a harmonic
local diffeomorphism then, from Theorem 3, there exists, up to translations, a unique immer-
sion with negative constant Gaussian curvatkirsuch thatVv (or —N) is its Gauss map and
its conformal structure is induced by the second fundamental form of the immersion.

Now, we defined as the set of all complete spacelike immersions3with constant
negative Gaussian curvatuke < 0, where congruent immersions are identified by isometries
of L3, andB be the set of all harmonic diffeomorphisms from the unit disr the complex
planeC onto the hyperbolic plane? , where two harmonic diffeomorphisms, /- are iden-
tified if there exist a conformal equivalengeon D or C and an isometry on Hi such that
h1=iohsog.

Then we obtain the following classification theorem.

THEOREM 4. There exists a bijective correspondence between Ax and B for all
K < 0. That is, complete spacelike surfaces with constant negative Gaussian curvature are
classified in terms of harmonic diffeomorphisms from Riemann surfaces onto the hyperbolic
plane.

PROOF. Note that without loss of generality we may suppése- —1. Letx : § — L3
be a complete spacelike immersion with constant Gaussian curvatureSince its Gauss

mapN is harmonic, we have
atli) =
Z\(1—g7)? ’

wherez is a conformal parameter for the second fundamental fbfrandg = 1 o N or
Y1 0 (—N). Equivalently, from (8), th&2, 0)-part of / and/ 11 are holomorphic with respect
to 11 and the identity map Id (S, I1) — (S, I) is a harmonic diffeomorphism.

On the other hand, noting that the immersion is complet§) is a graph on the entire
plane, therefore is simply connected and there exist a conformal equivalenftem S to
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D or C and an isometry : (S,I) — H%r. In consequence, for any immersionas above
we consider the harmonic diffeomorphisme Id o ¢~ that is uniquely determined up to
conformal equivalences dn or C and isometries ohii.

Thus, for anyx we consider an element &, @(x) = [i o Id o ¢~1], given by the
equivalence class dfo Id o ¢ 1. Moreover, ify is another immersion such that= f o x,
for some isometryf of L3, itis clear from Proposition 1 tha (x) = @ (y) and, hence, there
exists amapp : A_; — B given by® ([x]) = @ (x).

Now, we consider two immersions : S; — L3, j = 1,2, such thafx1], [x2] € A_1
and @ (x1) = @(x2). Then there exists a holomorphic diffeomorphism S; — S» and
an isometryi : (S1, I) = (S2, I) such that Ig, = i—lo Ids, o ¢. Therefore,i = ¢ and
x1, x20i : S1 — L3 are two immersions with the same induced metric and conformal structure
for the second fundamental form. Since the Gaussian curvature of both immersions agree,
from the theorem egregium (see pp. 156, 157 in [22]) the second fundamental form must be
the same. Hencej andxpoi agree up to an isometry 6P, [x1] = [x2] and® is one-to-one.

Let A be the unit disk or the complex plane ahd: A — Hi a surjective harmonic
diffeomorphism. From Theorem 3 there exists a spacelike immession — L2 with con-
stant Gaussian curvaturel such that: is its Gauss map. On the other hand, the identity
map Idy : (4, 11,) — (4, I,) is harmonic, where, for instancé, denotes the first funda-
mental form fory, and sinceA is simply connected, there exists an isometric immersion
i:(AL)— Hi. Thus, from Theorem 3 there exists a spacelike immersionA — L3
with constant Gaussian curvaturdl such that o Id, is its Gauss map. Moreover, from (8),
111, = i*(ds,%) = I, givesII, = I, andl, = I11,. Thereforex is complete because of
Iy = (dh,dh) = h*(ds2), @ (x) = [h] and@ is onto. o

REMARK 3. From [1] together with the above theorem, it is clear that there exist infin-
itely many non-congruent isometric immersions from the hyperbolic plane in the Minkowski
3-space. Moreover, each of them has the second fundamental form conformally equivalent to
the unit disk.

On the other hand, the conjecture about the non-existence of harmonic diffeomorphisms
from the complex plane onto the hyperbolic plane is equivalent to the non-existence of a com-
plete spacelike immersion with negative constant Gaussian curvature and second fundamental
form conformally equivalent t€&.

Concerning this, it is not difficult to prove the following result.

PROPOSITION 2. Let S be a simply connected surface and x : S — L3 be a space-
like immersion with constant negative Gaussian curvature K < 0. |f the mean curvature H
is bounded, then S, with the Riemann structure given by the second fundamental form, is
conformal to the unit disk.

ProoOF. From (8) the second fundamental form is conformal to the metric

oo Algsl
V=K(1-yg49)

ldz|?.
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Sinceg is harmonic, the Gaussian curvaturesofsee [17]) is given by

o lg.1?
K" =+—-K 5 — 1).
|gz|
Since H is bounded, we obtain from (9) that there exists a constant 1 such that
lg.1%/19:1? < candK? < +/—K (c — 1) < 0. Hence, using the Ahlfors-Schwarz lemma
(see [10] p. 66)S is conformally equivalent to the unit disk. m]

REMARK 4. The converse of the above proposition is not true. For instance, the surface
Mo in [9] is a complete spacelike immersion with constant negative Gaussian curveture
and non-boundedi, which is conformally equivalent t® with the structure given by its
second fundamental form.

Now, we find a relation between harmonic diffeomorphisms dﬂfpand a Monge-
Ampére equation in a bounded convex domain.

THEOREM 5. There exists a bijective correspondence between harmonic diffeomor-
phisms from the unit disk or the complex plane onto the hyperbolic plane (up to conformal
equivalences in the domain) and the solutions of the Monge-Ampére equation
2 _ 1
uv (1_M2_v2)2 ’

PROOF Let A beDorCandN : A— H?r a surjective harmonic diffeomorphism.
From Theorem 3, there exists a unique, up to translations, spacelike immersian— L3
with constant negative Gaussian curvatwesuch thatVv is its Gauss map and the Riemann

structure onA is given by the second fundamental form. Then, we consider the Legendre
transformation

O§u2+v2<1.

(16) ¢L¢M¢UU - ¢

¢(u,v) =uxy + vxg — x3,

wherex = (x1, x2, x3) is locally a graph on théx1, x2)-plane, and the map given by =
(N1, N2, N3) = (u, v) = (N1/N3, N2/N3) is a diffeomorphism fron2. onto the unit disk.
Thus, (u, v) are new parameters and a straightforward computation yiglds- x1,
¢, = x2 and
32)63 32)C3 32)C3

17 D =—7, D = , D =7
( ) ¢uu 3)622 ¢uv Ax19x2 ¢vv 8xf

with D = (32x3/9x2)(3%x3/dx3) — (92x3/9x13x2)2.
Therefore, from the expresion of the Gaussian curvature
- (92x3/9x2)(32x3/0x3) — (3%x3/dx19x2)?
(1 — (dx3/9x1)2 — (dx3/0x2)?)2

K:—l:

)

we obtain (16).
Now, from (17), it is not difficult to prove that the gragh, v, ¢ («, v)) gives rise to an
immersion intoR3, which has conformal second fundamental form.
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Conversely, given a solutiop, the harmonic magy can be recover by the inverse Le-

gendre transformation of the graph, v, ¢ (u, v)). That is, the spacelike immersion with
constant negative Gaussian curvatutiegiven by(¢,, ¢y, ug, + ve, — ¢) agrees withe, and

N is its Gauss map. Thus, the theorem follows in an easy way. O
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